SlideShare a Scribd company logo
1 of 23
3rd ANNOUNCEMENT
PAWEES
2013
The 12th Conference of
International Society of
Paddy and Water
Environment
Engineering
Intelligent Real-time Water Level
Forecast Models for Pumping Stations
Department of Bioenvironmental Systems Engineering, National Taiwan University
Fi-John Chang, Ying-Ray Lu
Department of Bioenvironmental System Engineering, National Taiwan University, Taipei, Taiwan, ROC
Advisor: Distinguished Professor Fi-John Chang (changfj@ntu.edu.tw)
Outline
2
Study Motivation
Methodology
Applications
Results and Discussions
Conclusions
Motivation
• Urbanization leads to a reduction in the time of rainfall
concentration.
• Climate Change causes fast rising peak flows.
→ Urban flood control is a crucial task, particularly in developed cities.
3
達第一次警戒
達第一次警戒
達第一次警戒
達第一次警戒
達第一次警戒
達第一次警戒
達第一次警戒
達第一次警戒
Keelung River
Layout of Pumping Station
4
Yu-Chung Pumping station
Structure ChartRacking MachineFront Pool Pumps
Sewer
Center console
Materials
• Study Area
• Yu-Cheng Pumping Station
• Select Events
• 13 events of typhoons &
heavy rainfall in 2004-2013
5
• Data Collection
• Water level at the
pumping station
• Water levels of sewer
outlets (YC2-YC12)
• Rainfall (R1-R6, Average
Rainfall)
Year 2013 2012 2012 2010 2009 2008 2008 2006 2005 2005 2004 2004 2004
Event 511 Saola 612 Megi Parma Jangmi Sinlaku 910 Talim Haitang Nanmadol Nockten Haima
Number
of data
85 221 113 145 320 307 197 148 140 143 65 150 148
Mean water
level (m)
1.79 2.07 2.57 2.13 2.07 2.05 2.25 2.08 2.25 2.17 2.5 2.23 3.12
Standard
deviation (m)
0.37 0.31 0.55 0.09 0.14 0.39 0.28 0.26 0.19 0.18 0.24 0.48 1.04
6
Model Construction
Data Collection
Data Analysis
Input Selection
Forecast Models
Pearson's Correlation Coefficient
Rainfall
(6 Stations)
Water Level at Pumping Station
(1 Station)
Sewer Water Level
(11 Stations)
Gamma Test
(Key Factors Assessment)
BPNN
Elman NN
NARX
Static Neural Network
Dynamic Neural Network
Data Analysis
7
Rainfall vs. Water level at the pumping station
• Rainfall vs. water level
• Rainfall vs. RECOVERED water level
• Accumulated rainfall vs. RECOVERED water
level
Water level vs. Water level
• Water levels of sewer outlets and the water level
at the pumping station
• Pearson's Correlation Coefficient
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0 10 20 30 40 50 60 70
CorrelationCoefficient
Time Step Difference (min)
Average Rainfall
R1
R2
R3
R4
R5
R6
• Rainfall vs. water level at the front pool
Correlation Coefficient Analysis
8
Time
Lag
Average
Rainfall
R1 R2 R3 R4 R5 R6
0 min 0.38 0.27 0.46 0.29 0.34 0.40 0.34
10 min 0.45 0.30 0.52 0.36 0.41 0.46 0.40
20 min 0.50 0.33 0.56 0.41 0.46 0.52 0.44
30 min 0.52 0.34 0.59 0.42 0.47 0.55 0.45
40 min 0.51 0.35 0.59 0.41 0.46 0.55 0.44
50 min 0.50 0.34 0.59 0.40 0.44 0.53 0.42
60 min 0.48 0.34 0.57 0.39 0.43 0.51 0.40
70 min 0.47 0.34 0.56 0.39 0.41 0.50 0.39
• RECOVER the water level of the pumping station
- Estimate the increased water levels based on the number of
running pumps and the actual water storage area of the
pumping station.
- Next, recover the front pool water level hydrograph.
9
Correlation Coefficient Analysis
 Estimate the actual water storage area
 Calculate the effect of the starting water level for pumps
 Calculate the corresponding number of running pumps each time
Sewer Area (m2) Fore Bay Area (m2) Flood Storage Area (m2)
163,008 1,650 164,658
Quantity Capacity (cms) Increased water level (m/10min)
7 26.3 0.096
4 12.5 0.046
0
2
4
6
8
10
12
14
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112
Rainfall(mm)
Numbersofrunningpumps
Waterlevel(m)
• Rainfall and RECOVERED water level at the pumping station -
Correlation Coefficient Analysis
Correlation Coefficient Analysis
10
Time
Lag
Average
Rainfall
R1 R2 R3 R4 R5 R6
0 min 0.43 0.31 0.49 0.36 0.40 0.43 0.39
10 min 0.50 0.35 0.54 0.42 0.46 0.49 0.45
20 min 0.55 0.38 0.58 0.47 0.51 0.54 0.50
30 min 0.58 0.39 0.62 0.50 0.54 0.57 0.53
40 min 0.59 0.40 0.63 0.50 0.54 0.58 0.53
50 min 0.59 0.40 0.63 0.50 0.53 0.58 0.52
60 min 0.58 0.41 0.62 0.50 0.52 0.57 0.51
70 min 0.58 0.41 0.61 0.50 0.52 0.57 0.51
Cumulative
Time
Average
Rainfall
R1 R2 R3 R4 R5 R6
10 min 0.43 0.31 0.49 0.36 0.40 0.43 0.39
20 min 0.49 0.38 0.55 0.42 0.46 0.49 0.46
30 min 0.55 0.43 0.60 0.48 0.52 0.53 0.51
40 min 0.59 0.46 0.64 0.52 0.56 0.57 0.55
50 min 0.62 0.49 0.68 0.55 0.59 0.61 0.58
60 min 0.65 0.51 0.70 0.58 0.62 0.63 0.60
70 min 0.66 0.53 0.73 0.60 0.63 0.65 0.62
• Accumulated Rainfall and RECOVERED water level at the pumping
station - Correlation Coefficient Analysis
• Water levels of sewer outlets and the water level at the pumping
station
Correlation Coefficient Analysis
11
Before 2005
Time Lag YC2 YC3 YC4 YC5 YC6 YC7 YC8 YC9 YC10 YC11 YC12
0 min 0.82 0.59 0.95 -0.06 -0.16 0.78 0.87 0.94 0.98 0.89 0.51
10 min 0.81 0.58 0.95 -0.06 -0.17 0.82 0.87 0.93 0.97 0.89 0.52
20 min 0.8 0.57 0.94 -0.07 -0.17 0.85 0.86 0.92 0.95 0.88 0.53
30 min 0.78 0.56 0.92 -0.08 -0.17 0.86 0.85 0.91 0.93 0.86 0.54
40 min 0.76 0.54 0.9 -0.08 -0.18 0.85 0.83 0.89 0.9 0.85 0.55
50 min 0.74 0.51 0.88 -0.08 -0.18 0.84 0.82 0.87 0.88 0.83 0.57
60 min 0.72 0.48 0.86 -0.09 -0.19 0.82 0.8 0.85 0.85 0.81 0.58
70 min 0.69 0.45 0.84 -0.08 -0.2 0.8 0.79 0.83 0.82 0.8 0.59
Time Lag YC2 YC3 YC4 YC5 YC6 YC7 YC8 YC9 YC10 YC11 YC12
0 min 0.01 -0.14 0.03 -0.13 0.02 0.09 0.30 0.05 0.28 0.05 -0.08
10 min 0.01 -0.14 0.03 -0.12 0.03 0.10 0.30 0.05 0.27 0.05 -0.08
20 min 0.02 -0.13 0.03 -0.12 0.03 0.10 0.30 0.06 0.26 0.06 -0.07
30 min 0.03 -0.13 0.04 -0.11 0.04 0.11 0.30 0.06 0.25 0.06 -0.07
40 min 0.04 -0.12 0.04 -0.10 0.04 0.11 0.29 0.06 0.24 0.06 -0.06
50 min 0.04 -0.11 0.05 -0.10 0.05 0.12 0.29 0.07 0.23 0.07 -0.06
60 min 0.05 -0.11 0.05 -0.09 0.06 0.12 0.29 0.07 0.23 0.07 -0.06
70 min 0.06 -0.10 0.06 -0.08 0.07 0.12 0.29 0.08 0.22 0.08 -0.05
After 2005
- Water levels of sewer outlets can not be used as input factors
Input Selection
• Gamma Test (GT):
• The GT (Agalbjörn et.al, 1997; Koncar, 1997) estimates
the noise level (Γ value) present in a data set.
• The GT can produce the estimation directly from the data
without assuming any parametric form of the equations
that govern the system. The only requirement is that the
system is smooth.
12
100%
90% 88%
69%
63%
44%
25%
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
2
4
6
8
10
12
14
R2 Average
Rainfall
R5 R1 R6 R3 R4
Score
Frequency
F(d<d10) F(d>d90) 1-F(d>d90)/F(d<d10)
Input Selection
13
• Gamma Test:
• Select 6 rainfall station and average rainfall. (7 factors)
• Blue Bar: the occurrence frequency of a factor in the best results.
• Red Bar: the occurrence frequency of a factor in the worst results.
• Green Line: the score of the factors. (1-worst/best))
→ Select the factors (R2, AR, R5) higher than 80% to be input factors.
Model
• Water Level Forecast Model Construction:
• Artificial Neural Network:
• Back-Propagation Neural Network (BPNN)
Model Construction
14
Water level (t) ANN
ModelRainfall (t)
Water level
(t+n)
‧‧‧
1
n
1
1
R1 (t)
2
3
4
R2 (t)
R3 (t)
H (t)
H (t+1)
Input layer Hidden layer Output layer
n=10-60min
Model
• Water Level Forecast Model Construction:
• Artificial Neural Network:
• Elman Neural Network (Elman NN)
Model Construction
15
Water level (t) ANN
ModelRainfall (t)
Water level
(t+n)
Input layer Hidden layer Output layer
‧‧‧
1
n
1
1
R1 (t)
2
3
4
R2 (t)
R3 (t)
H (t)
H (t+1)
‧‧‧
1w1 (t)
wn (t)
Model
• Water Level Forecast Model Construction:
• Artificial Neural Network:
• The nonlinear autoregressive network with exogenous inputs
(NARX)
Model Construction
16
Water level (t) ANN
ModelRainfall (t)
Water level
(t+n)
Input layer Hidden layer Output layer
‧‧‧1
n
1
1
R1 (t)
2
3
4
R2 (t)
R3 (t)
H (t)
H (t+1)
1H1 (t+n)
H1 (t+1)
←
Results and Discussion
17
200 400 600 800
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
Waterlevel(m)
Training
100 200 300 400 500 600
Time (10min)
Validation
100 200 300 400 500
Testing
Obeserved
Predicted
200 400 600 800
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
Waterlevel(m)
Training
100 200 300 400 500 600
Time (10min)
Validation
100 200 300 400 500
Testing
Obeserved
Predicted
200 400 600 800
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
Waterlevel(m)
Training
100 200 300 400 500 600
Time (10min)
Validation
100 200 300 400 500
Testing
Obeserved
Predicted
NARX
10-min-ahead
30-min-ahead
50-min-ahead
Results and Discussion
18
• Compare BPNN and NARX, t+6 (60-min-ahead)
200 400 600 800
1
2
3
4
5
6
Waterlevel(m)
Training
200 400 600
Validation
100 200 300 400 500
Testing
Obeserved
Predicted
200 400 600 800
1
2
3
4
5
6
Waterlevel(m)
200 400 600 100 200 300 400 500
Time (-10min)
BPNN
NARX
20
Results and Discussion
0.09
0.16
0.19
0.22
0.24 0.24
0.10
0.16
0.19
0.23
0.25
0.26
0.09
0.14
0.19
0.21
0.23 0.23
0.00
0.05
0.10
0.15
0.20
0.25
0.30
t+1 t+2 t+3 t+4 t+5 t+6
RMSE(m)
BPNN ELMAN NARX
BPNN ELMAN NARX
Time
lag
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18
20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19
30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19
40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21
50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25
60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32
21
Results and Discussion
0.94
0.83
0.70
0.61
0.55 0.55
0.40
0.50
0.60
0.70
0.80
0.90
1.00
t+1 t+2 t+3 t+4 t+5 t+6
CE
BPNN ELM NARX
BPNN ELMAN NARX
Time
lag
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18
20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19
30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19
40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21
50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25
60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32
22
Results and Discussion
BPNN ELMAN NARX
Time
lag
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
RMSE
(m)
CE Gbench
10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18
20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19
30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19
40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21
50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25
60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32
0.02
0.06
0.17
0.19
0.20
0.23
0.01
0.07
0.18
0.11 0.11
0.12
0.18
0.19 0.19
0.21
0.25
0.32
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
t+1 t+2 t+3 t+4 t+5 t+6
Gbench
BPNN ELM NARX
 
 






 N
t
ii
N
t
ii
dd
yd
1
2
1
1
2
1Gbench =
Conclusions
23
Intelligent real-time water level forecast models are
developed to forecast the 10-60 min-ahead front pool
water levels by utilizing the current rainfall and water
level.
The results indicate that all of the forecasts are good,
which can well capture the trend of the flooding
hydrograph.
The NARX network produces the best performance in
terms of RMSE, CE and G-bench values.
24
Department of Bioenvironmental Systems Engineering, National Taiwan University
3rdANNOUNCEMENT
PAWEES2013
The12thConferenceof
InternationalSocietyofPaddyandWaterEnvironmentEngineering
THANK YOU FOR
YOUR ATTENTION

More Related Content

Similar to Intelligent Real-time Water Level Forecast Models for Pumping Stations

Peclet Number HDS Sizing Method for Stormwater Treatment
Peclet Number HDS Sizing Method for Stormwater TreatmentPeclet Number HDS Sizing Method for Stormwater Treatment
Peclet Number HDS Sizing Method for Stormwater TreatmentAquaShield, Inc.
 
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...Malvina Haxhiu
 
Metodiautonomico2015
Metodiautonomico2015Metodiautonomico2015
Metodiautonomico2015PahPavia
 
Roll eccentricity compensation system for an aluminium rolling mill
Roll eccentricity compensation system for an aluminium rolling millRoll eccentricity compensation system for an aluminium rolling mill
Roll eccentricity compensation system for an aluminium rolling millIan Caister
 
Water demand forecasting for the optimal operation of large-scale water networks
Water demand forecasting for the optimal operation of large-scale water networksWater demand forecasting for the optimal operation of large-scale water networks
Water demand forecasting for the optimal operation of large-scale water networksPantelis Sopasakis
 
lectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticslectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticstfoutz991
 
Terrace effects on soil erosion processes
Terrace effects on soil erosion processesTerrace effects on soil erosion processes
Terrace effects on soil erosion processesHui Shao
 
UnitHydrograph.pptx
UnitHydrograph.pptxUnitHydrograph.pptx
UnitHydrograph.pptxssuserdf29f0
 
Clerc statistical methods for industrial hygiene
Clerc   statistical methods for industrial hygieneClerc   statistical methods for industrial hygiene
Clerc statistical methods for industrial hygieneFrédéric Clerc
 
Xact 640 multimetal continuous monitoring (CEMS)
Xact 640 multimetal continuous monitoring (CEMS)Xact 640 multimetal continuous monitoring (CEMS)
Xact 640 multimetal continuous monitoring (CEMS)European Tech Serv
 
Swmm Example 4 - Water Quality
Swmm Example 4 - Water QualitySwmm Example 4 - Water Quality
Swmm Example 4 - Water Quality은성 정
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSUMARDIONO .
 

Similar to Intelligent Real-time Water Level Forecast Models for Pumping Stations (20)

Peclet Number HDS Sizing Method for Stormwater Treatment
Peclet Number HDS Sizing Method for Stormwater TreatmentPeclet Number HDS Sizing Method for Stormwater Treatment
Peclet Number HDS Sizing Method for Stormwater Treatment
 
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...
METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF HUMAN SERUM ALBUMIN MO...
 
Project Example
Project ExampleProject Example
Project Example
 
Metodiautonomico2015
Metodiautonomico2015Metodiautonomico2015
Metodiautonomico2015
 
Roll eccentricity compensation system for an aluminium rolling mill
Roll eccentricity compensation system for an aluminium rolling millRoll eccentricity compensation system for an aluminium rolling mill
Roll eccentricity compensation system for an aluminium rolling mill
 
Water demand forecasting for the optimal operation of large-scale water networks
Water demand forecasting for the optimal operation of large-scale water networksWater demand forecasting for the optimal operation of large-scale water networks
Water demand forecasting for the optimal operation of large-scale water networks
 
ME461 Final Presentation
ME461 Final PresentationME461 Final Presentation
ME461 Final Presentation
 
lectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statusticslectures on a bunch of stuff related to statustics
lectures on a bunch of stuff related to statustics
 
Terrace effects on soil erosion processes
Terrace effects on soil erosion processesTerrace effects on soil erosion processes
Terrace effects on soil erosion processes
 
UnitHydrograph.pptx
UnitHydrograph.pptxUnitHydrograph.pptx
UnitHydrograph.pptx
 
Clerc statistical methods for industrial hygiene
Clerc   statistical methods for industrial hygieneClerc   statistical methods for industrial hygiene
Clerc statistical methods for industrial hygiene
 
Jhon
JhonJhon
Jhon
 
Xact 640 multimetal continuous monitoring (CEMS)
Xact 640 multimetal continuous monitoring (CEMS)Xact 640 multimetal continuous monitoring (CEMS)
Xact 640 multimetal continuous monitoring (CEMS)
 
Synopsis 21st february
Synopsis 21st februarySynopsis 21st february
Synopsis 21st february
 
September 1 - 0216 - Zhiming Qi
September 1 - 0216 - Zhiming QiSeptember 1 - 0216 - Zhiming Qi
September 1 - 0216 - Zhiming Qi
 
Swmm Example 4 - Water Quality
Swmm Example 4 - Water QualitySwmm Example 4 - Water Quality
Swmm Example 4 - Water Quality
 
srd
srdsrd
srd
 
Crop Residue Removal and Cover Crop Impact
Crop Residue Removal and Cover Crop ImpactCrop Residue Removal and Cover Crop Impact
Crop Residue Removal and Cover Crop Impact
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
filters
filtersfilters
filters
 

Recently uploaded

Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spaintimesproduction05
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 

Recently uploaded (20)

Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 

Intelligent Real-time Water Level Forecast Models for Pumping Stations

  • 1. 3rd ANNOUNCEMENT PAWEES 2013 The 12th Conference of International Society of Paddy and Water Environment Engineering Intelligent Real-time Water Level Forecast Models for Pumping Stations Department of Bioenvironmental Systems Engineering, National Taiwan University Fi-John Chang, Ying-Ray Lu Department of Bioenvironmental System Engineering, National Taiwan University, Taipei, Taiwan, ROC Advisor: Distinguished Professor Fi-John Chang (changfj@ntu.edu.tw)
  • 3. Motivation • Urbanization leads to a reduction in the time of rainfall concentration. • Climate Change causes fast rising peak flows. → Urban flood control is a crucial task, particularly in developed cities. 3 達第一次警戒 達第一次警戒 達第一次警戒 達第一次警戒 達第一次警戒 達第一次警戒 達第一次警戒 達第一次警戒
  • 4. Keelung River Layout of Pumping Station 4 Yu-Chung Pumping station Structure ChartRacking MachineFront Pool Pumps Sewer Center console
  • 5. Materials • Study Area • Yu-Cheng Pumping Station • Select Events • 13 events of typhoons & heavy rainfall in 2004-2013 5 • Data Collection • Water level at the pumping station • Water levels of sewer outlets (YC2-YC12) • Rainfall (R1-R6, Average Rainfall) Year 2013 2012 2012 2010 2009 2008 2008 2006 2005 2005 2004 2004 2004 Event 511 Saola 612 Megi Parma Jangmi Sinlaku 910 Talim Haitang Nanmadol Nockten Haima Number of data 85 221 113 145 320 307 197 148 140 143 65 150 148 Mean water level (m) 1.79 2.07 2.57 2.13 2.07 2.05 2.25 2.08 2.25 2.17 2.5 2.23 3.12 Standard deviation (m) 0.37 0.31 0.55 0.09 0.14 0.39 0.28 0.26 0.19 0.18 0.24 0.48 1.04
  • 6. 6 Model Construction Data Collection Data Analysis Input Selection Forecast Models Pearson's Correlation Coefficient Rainfall (6 Stations) Water Level at Pumping Station (1 Station) Sewer Water Level (11 Stations) Gamma Test (Key Factors Assessment) BPNN Elman NN NARX Static Neural Network Dynamic Neural Network
  • 7. Data Analysis 7 Rainfall vs. Water level at the pumping station • Rainfall vs. water level • Rainfall vs. RECOVERED water level • Accumulated rainfall vs. RECOVERED water level Water level vs. Water level • Water levels of sewer outlets and the water level at the pumping station • Pearson's Correlation Coefficient
  • 8. 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0 10 20 30 40 50 60 70 CorrelationCoefficient Time Step Difference (min) Average Rainfall R1 R2 R3 R4 R5 R6 • Rainfall vs. water level at the front pool Correlation Coefficient Analysis 8 Time Lag Average Rainfall R1 R2 R3 R4 R5 R6 0 min 0.38 0.27 0.46 0.29 0.34 0.40 0.34 10 min 0.45 0.30 0.52 0.36 0.41 0.46 0.40 20 min 0.50 0.33 0.56 0.41 0.46 0.52 0.44 30 min 0.52 0.34 0.59 0.42 0.47 0.55 0.45 40 min 0.51 0.35 0.59 0.41 0.46 0.55 0.44 50 min 0.50 0.34 0.59 0.40 0.44 0.53 0.42 60 min 0.48 0.34 0.57 0.39 0.43 0.51 0.40 70 min 0.47 0.34 0.56 0.39 0.41 0.50 0.39
  • 9. • RECOVER the water level of the pumping station - Estimate the increased water levels based on the number of running pumps and the actual water storage area of the pumping station. - Next, recover the front pool water level hydrograph. 9 Correlation Coefficient Analysis  Estimate the actual water storage area  Calculate the effect of the starting water level for pumps  Calculate the corresponding number of running pumps each time Sewer Area (m2) Fore Bay Area (m2) Flood Storage Area (m2) 163,008 1,650 164,658 Quantity Capacity (cms) Increased water level (m/10min) 7 26.3 0.096 4 12.5 0.046 0 2 4 6 8 10 12 14 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112 Rainfall(mm) Numbersofrunningpumps Waterlevel(m)
  • 10. • Rainfall and RECOVERED water level at the pumping station - Correlation Coefficient Analysis Correlation Coefficient Analysis 10 Time Lag Average Rainfall R1 R2 R3 R4 R5 R6 0 min 0.43 0.31 0.49 0.36 0.40 0.43 0.39 10 min 0.50 0.35 0.54 0.42 0.46 0.49 0.45 20 min 0.55 0.38 0.58 0.47 0.51 0.54 0.50 30 min 0.58 0.39 0.62 0.50 0.54 0.57 0.53 40 min 0.59 0.40 0.63 0.50 0.54 0.58 0.53 50 min 0.59 0.40 0.63 0.50 0.53 0.58 0.52 60 min 0.58 0.41 0.62 0.50 0.52 0.57 0.51 70 min 0.58 0.41 0.61 0.50 0.52 0.57 0.51 Cumulative Time Average Rainfall R1 R2 R3 R4 R5 R6 10 min 0.43 0.31 0.49 0.36 0.40 0.43 0.39 20 min 0.49 0.38 0.55 0.42 0.46 0.49 0.46 30 min 0.55 0.43 0.60 0.48 0.52 0.53 0.51 40 min 0.59 0.46 0.64 0.52 0.56 0.57 0.55 50 min 0.62 0.49 0.68 0.55 0.59 0.61 0.58 60 min 0.65 0.51 0.70 0.58 0.62 0.63 0.60 70 min 0.66 0.53 0.73 0.60 0.63 0.65 0.62 • Accumulated Rainfall and RECOVERED water level at the pumping station - Correlation Coefficient Analysis
  • 11. • Water levels of sewer outlets and the water level at the pumping station Correlation Coefficient Analysis 11 Before 2005 Time Lag YC2 YC3 YC4 YC5 YC6 YC7 YC8 YC9 YC10 YC11 YC12 0 min 0.82 0.59 0.95 -0.06 -0.16 0.78 0.87 0.94 0.98 0.89 0.51 10 min 0.81 0.58 0.95 -0.06 -0.17 0.82 0.87 0.93 0.97 0.89 0.52 20 min 0.8 0.57 0.94 -0.07 -0.17 0.85 0.86 0.92 0.95 0.88 0.53 30 min 0.78 0.56 0.92 -0.08 -0.17 0.86 0.85 0.91 0.93 0.86 0.54 40 min 0.76 0.54 0.9 -0.08 -0.18 0.85 0.83 0.89 0.9 0.85 0.55 50 min 0.74 0.51 0.88 -0.08 -0.18 0.84 0.82 0.87 0.88 0.83 0.57 60 min 0.72 0.48 0.86 -0.09 -0.19 0.82 0.8 0.85 0.85 0.81 0.58 70 min 0.69 0.45 0.84 -0.08 -0.2 0.8 0.79 0.83 0.82 0.8 0.59 Time Lag YC2 YC3 YC4 YC5 YC6 YC7 YC8 YC9 YC10 YC11 YC12 0 min 0.01 -0.14 0.03 -0.13 0.02 0.09 0.30 0.05 0.28 0.05 -0.08 10 min 0.01 -0.14 0.03 -0.12 0.03 0.10 0.30 0.05 0.27 0.05 -0.08 20 min 0.02 -0.13 0.03 -0.12 0.03 0.10 0.30 0.06 0.26 0.06 -0.07 30 min 0.03 -0.13 0.04 -0.11 0.04 0.11 0.30 0.06 0.25 0.06 -0.07 40 min 0.04 -0.12 0.04 -0.10 0.04 0.11 0.29 0.06 0.24 0.06 -0.06 50 min 0.04 -0.11 0.05 -0.10 0.05 0.12 0.29 0.07 0.23 0.07 -0.06 60 min 0.05 -0.11 0.05 -0.09 0.06 0.12 0.29 0.07 0.23 0.07 -0.06 70 min 0.06 -0.10 0.06 -0.08 0.07 0.12 0.29 0.08 0.22 0.08 -0.05 After 2005 - Water levels of sewer outlets can not be used as input factors
  • 12. Input Selection • Gamma Test (GT): • The GT (Agalbjörn et.al, 1997; Koncar, 1997) estimates the noise level (Γ value) present in a data set. • The GT can produce the estimation directly from the data without assuming any parametric form of the equations that govern the system. The only requirement is that the system is smooth. 12
  • 13. 100% 90% 88% 69% 63% 44% 25% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 2 4 6 8 10 12 14 R2 Average Rainfall R5 R1 R6 R3 R4 Score Frequency F(d<d10) F(d>d90) 1-F(d>d90)/F(d<d10) Input Selection 13 • Gamma Test: • Select 6 rainfall station and average rainfall. (7 factors) • Blue Bar: the occurrence frequency of a factor in the best results. • Red Bar: the occurrence frequency of a factor in the worst results. • Green Line: the score of the factors. (1-worst/best)) → Select the factors (R2, AR, R5) higher than 80% to be input factors.
  • 14. Model • Water Level Forecast Model Construction: • Artificial Neural Network: • Back-Propagation Neural Network (BPNN) Model Construction 14 Water level (t) ANN ModelRainfall (t) Water level (t+n) ‧‧‧ 1 n 1 1 R1 (t) 2 3 4 R2 (t) R3 (t) H (t) H (t+1) Input layer Hidden layer Output layer n=10-60min
  • 15. Model • Water Level Forecast Model Construction: • Artificial Neural Network: • Elman Neural Network (Elman NN) Model Construction 15 Water level (t) ANN ModelRainfall (t) Water level (t+n) Input layer Hidden layer Output layer ‧‧‧ 1 n 1 1 R1 (t) 2 3 4 R2 (t) R3 (t) H (t) H (t+1) ‧‧‧ 1w1 (t) wn (t)
  • 16. Model • Water Level Forecast Model Construction: • Artificial Neural Network: • The nonlinear autoregressive network with exogenous inputs (NARX) Model Construction 16 Water level (t) ANN ModelRainfall (t) Water level (t+n) Input layer Hidden layer Output layer ‧‧‧1 n 1 1 R1 (t) 2 3 4 R2 (t) R3 (t) H (t) H (t+1) 1H1 (t+n) H1 (t+1) ←
  • 17. Results and Discussion 17 200 400 600 800 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Waterlevel(m) Training 100 200 300 400 500 600 Time (10min) Validation 100 200 300 400 500 Testing Obeserved Predicted 200 400 600 800 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Waterlevel(m) Training 100 200 300 400 500 600 Time (10min) Validation 100 200 300 400 500 Testing Obeserved Predicted 200 400 600 800 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Waterlevel(m) Training 100 200 300 400 500 600 Time (10min) Validation 100 200 300 400 500 Testing Obeserved Predicted NARX 10-min-ahead 30-min-ahead 50-min-ahead
  • 18. Results and Discussion 18 • Compare BPNN and NARX, t+6 (60-min-ahead) 200 400 600 800 1 2 3 4 5 6 Waterlevel(m) Training 200 400 600 Validation 100 200 300 400 500 Testing Obeserved Predicted 200 400 600 800 1 2 3 4 5 6 Waterlevel(m) 200 400 600 100 200 300 400 500 Time (-10min) BPNN NARX
  • 19. 20 Results and Discussion 0.09 0.16 0.19 0.22 0.24 0.24 0.10 0.16 0.19 0.23 0.25 0.26 0.09 0.14 0.19 0.21 0.23 0.23 0.00 0.05 0.10 0.15 0.20 0.25 0.30 t+1 t+2 t+3 t+4 t+5 t+6 RMSE(m) BPNN ELMAN NARX BPNN ELMAN NARX Time lag RMSE (m) CE Gbench RMSE (m) CE Gbench RMSE (m) CE Gbench 10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18 20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19 30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19 40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21 50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25 60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32
  • 20. 21 Results and Discussion 0.94 0.83 0.70 0.61 0.55 0.55 0.40 0.50 0.60 0.70 0.80 0.90 1.00 t+1 t+2 t+3 t+4 t+5 t+6 CE BPNN ELM NARX BPNN ELMAN NARX Time lag RMSE (m) CE Gbench RMSE (m) CE Gbench RMSE (m) CE Gbench 10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18 20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19 30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19 40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21 50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25 60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32
  • 21. 22 Results and Discussion BPNN ELMAN NARX Time lag RMSE (m) CE Gbench RMSE (m) CE Gbench RMSE (m) CE Gbench 10 min 0.095 0.93 0.02 0.095 0.93 0.01 0.087 0.94 0.18 20 min 0.156 0.80 0.06 0.155 0.80 0.07 0.145 0.83 0.19 30 min 0.190 0.70 0.17 0.189 0.70 0.18 0.188 0.70 0.19 40 min 0.219 0.59 0.19 0.229 0.55 0.11 0.214 0.61 0.21 50 min 0.237 0.52 0.20 0.251 0.46 0.11 0.227 0.55 0.25 60 min 0.245 0.48 0.23 0.262 0.41 0.12 0.228 0.55 0.32 0.02 0.06 0.17 0.19 0.20 0.23 0.01 0.07 0.18 0.11 0.11 0.12 0.18 0.19 0.19 0.21 0.25 0.32 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 t+1 t+2 t+3 t+4 t+5 t+6 Gbench BPNN ELM NARX            N t ii N t ii dd yd 1 2 1 1 2 1Gbench =
  • 22. Conclusions 23 Intelligent real-time water level forecast models are developed to forecast the 10-60 min-ahead front pool water levels by utilizing the current rainfall and water level. The results indicate that all of the forecasts are good, which can well capture the trend of the flooding hydrograph. The NARX network produces the best performance in terms of RMSE, CE and G-bench values.
  • 23. 24 Department of Bioenvironmental Systems Engineering, National Taiwan University 3rdANNOUNCEMENT PAWEES2013 The12thConferenceof InternationalSocietyofPaddyandWaterEnvironmentEngineering THANK YOU FOR YOUR ATTENTION

Editor's Notes

  1. The figures are the Scatter diagram.