SlideShare a Scribd company logo
1 of 6
Download to read offline
Article
* E-mail: ssliuhl@263.net
Received March 27, 2013; published May 2, 2013.
Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.
Project supported by the National Natural Science Foundation of China (Nos. 21177097, 20977065) and Specialized Research Fund for the Doctoral Program
of Higher Education (20120072110052).
(Nos. 21177097, 20977065) (No. 20120072110052) .
Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1035
*
( 200092)
.
. (Vibrio qinghaiensis sp.-Q67, Q67)
, . ,
, Q67 .
Q67 . , Q67 , /
, / . /
. Q67 ,
.
; ; ; ;
Chen, Fu Liu, Shushen* Duan, Xintian
(Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and
Engineering, Tongji University, Shanghai 200092)
Abstract Bioluminescence technique derived from the luciferase-based catalization reactions has been widely used in
chemistry, biological assay and environmental science. The three-dimensional crystal structures of luciferase proteins in some
firefly and luminescent bacteria were elucidated. Vibrio qinghaiensis sp.-Q67 (Q67), one of freshwater luminescent bacteria
which was extracted from Gymnocypris przewalskii in Qinghai lake, has been used in biological assay and toxicity evaluation
of many chemicals. However, the crystal structure of the luciferase (the most important catalyzer to bioluminescent) in Q67 is
still not established, which hinders the process of the study on the molecular mechanism of toxicities of chemicals to Q67. In
this study, the three dimensional structure of bacterial luciferase in Q67 was constructed by using the heterodimeric homol-
ogy modeling combined with the molecular dynamics simulation which were performed with explicit TIP3P water. The
simulation system was equilibrated at 4 ns, and was prolonged for another 4 ns for extracting the equilibrium trajectories at
the 8th ns. The stability of the system was monitored through the convergences of energy, temperature, and global root mean
square deviation (RMSD). The ptraj modules in the AMBER software were used to analyze hydrogen bond occupancy be-
tween and subunit. And then, the molecular mechanics generalized born surface area method was applied to identify
critical amino acids of the and subunits that interact with each other during the native heterotetrameric structure forma-
tion. It was shown that the luciferase in Q67 is a heterdimer including two polypeptide subunits ( and ) and the stabilization
of this heterodimer was mainly determined by the van der waals force. The specificity of association is realized by hydrogen
bonds formed between subunits. However, the electrostatic interaction from the net charge on and subunit is unfavorable
to the stability of the dimer. The active sites of flavin mononucleotide binding to the luciferase in Q67 are located in the ac-
tive pocket of subunit. The subunit is helpful to keep the structural stability of the active sites on the subunit.
Keywords heterodimer; luciferase; homology modeling; freshwater luminescent bacteria; molecular dynamics
1
[1]
. (luciferin)
(aliphatic aldehyde) .
(luciferase assay) .
,
(bioluminescence).
1036 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040
,
DNA . ,
[2 4]
.
. ,
N ( 4 436) C ( 440 544),
[5]
. Mg2
ATP O2 , (Luciferin) ,
.
, luxA
luxB [6]
.
(FMNH2) ,
. ,
[7,8]
.
,
. Auld [2,9]
Photinus pyralis
,
, . Sundlov [10]
Photinus
pyralis ,
C 140 N ,
(Luciola cruciate) [11]
. Campbell [8]
Vibrio harveyi
[12]
loop (262
291) , -FMN
, ,
. Yamasaki [13]
Vibrio fischeri C12H25OH
C11H23CHO , C12H25OH
.
,
(Vibrio qinghaiensis sp.-Q67, Q67)[14]
pH (6.5 11) ,
[15]
. Q67
[16 18]
.
Q67 [19 22]
.
Q67
Hormesis [23]
.
.
, Q67
,
. , Q67 ,
[24]
Q67
,
, (FMN)
, .
2
2.1
Q67 8 ns
. 1 , 4 ns , ,
4 8 ns (RMSD) , RMSD
2.27 Å, 0.3 Å,
.
, , 4 ns
.
1 Q67 RMSD
Figure 1 Plot of root mean square deviation (RMSD) vs. time for the
luciferase in Q67
2.2 Q67 Ramachandran
8 ns Q67
, Ramachandran ( ), 2 .
2 Q67
Figure 2 Ramachandran plot of the structure of luciferase in Q67
, Lys283 ,
Ile219 , Asp147 Ile230 ,
. Gly
Gly ,
Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1037
phi psi .
N-C ,
, - ,
. Q67 ,
, ( )
532 ( 87.4%) ( )73 (12%)
( )3 (0.5%) 1 (0.2%).
Q67 .
2.3 Q67
Q67 .
3 - 15 - 22 - 1 -
. 2 - 13 - 24 -
. 3 Q67 .
2.3.1
3 3a . 1
A 9 , 2 B
2 , 3 C 2
. A 6 ,
1 2 Rossman .
C 2 (Lys268 Tyr270
Trp277 Asp279 ). 50 (
14.1%), 144 ( 40.6%).
2.3.2
2 3b . ,
1 D , 9 , 2
E 2 . D
5 , 1 2
Rossman . E (Tyr143
Cys144 Ile156 Ser157 ). 39
( 12.0%), 143 ( 44.1%).
, ,
32%.
, ,
,
. .
2.3.3
(RMSF) ,
( 4). 3 ,
Ser145 Gln159 ,
loop , Leu213
Ile219 , 3 Asp279
Arg291 loop
. ;
,
.
RMSF ( 4),
Met1 Asp195 RMSF ,
3 Q67 (a) (b)
Figure 3 Topological graphs for the secondary structures of (a) and
subunit (b) of the luciferase in Q67
, ,
, .
Arg201 Gln324 RMSF , .
Trp194 Asn198 ,
, ,
, RMSF .
2.4 /
Q67 5.
S1.
8 ns ,
, 90%
1, S1. 17 8
ns 90% 90%, 17
1038 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040
4 Q67 RMSF
Figure 4 Plot of the root mean square fluctuation (RMSF) vs. the resi-
due index
5 Q67 /
Figure 5 The tertiary structure and binding pockets of the luciferase in
Q67
. Arg85 Glu43 , Glu43
Arg85 His45 Glu88 99%
, (
20.06, 17.72 21.73 kcal/mol). 3
( 1).
(∆G)
(∆Gpol-sol) (∆Gnpol-sol)
(∆Evdw) (∆Eele). ,
1
Table 1 The occupancy of hydrogen bonds formed between and
subunits and bonding distance
/% /Å
Asn159 @O Gln17 @N 100 2.90
Gln95 @O Thr18 @O 100 2.68
Glu43 @O Arg85 @NH2 100 2.79
Glu43 @O Arg85 @NH1 100 2.81
Gln95 @O Thr18 @O 100 2.74
Val57 @O Ser60 @O 100 2.71
Glu43 @O Arg85 @N 100 2.75
Ser152 @O Arg115 @N 99 2.93
Glu88 @O His45 @N 99 2.76
Ser152 @O Gln266 @N 97 2.94
Asn273 @O Asn118 @N 97 2.93
Thr80 @O Arg85 @N 97 3.01
Gln266 @O Asn145 @N 96 3.03
Thr80 @O Arg85 @N 96 2.89
Glu48 @O Asn159 @N 95 2.91
His152 @O Asn118 @N 94 3.02
Phe116 @O Val82 @N 91 2.96
water@O Thr80 @O 97 2.90
water@O Asn273 @N 97 3.01
water@O Ser298 @O 93 2.79
.
[25]
. 4
(His45 -Glu88 , Arg85 -Glu43 , Glu43 -Arg85
Lys98 -Asp22 ) ( 97%),
( 10
kcal/mol). ( 2) ,
( 1) ,
. ,
, , 3
Arg85 -His76 , Arg85 -His45 His45 -Arg85 ( 2).
183.0 kcal/mol,
∆Gnpol-sol 39.6 kcal/mol) ∆Evdw 309.3 kcal/mol)
∆Gpol-sol 45.0 kcal/mol , .
∆Eele 210.9 kcal/mol, . /
22 [7,26]
. ,
,
, 165.9 kcal/mol,
Q67 .
,
, 348.9 kcal/mol. , /
,
. / /
Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1039
2 a
Table 2 The interaction energies of pairwise residues between and
subunits
1 2 ∆Gvdw ∆Gele ∆Gpol sol ∆Gnpol sol ∆Gtot
His45 Glu88 0.61 53.61 31.85 0.64 21.79
Arg85 Glu43 1.20 49.14 28.32 0.49 20.12
Glu43 Arg85 0.81 44.70 26.48 0.32 17.73
Lys98 Asp22 0.55 50.93 40.44 0.79 10.73
Thr80 Arg85 0.21 11.60 2.94 0.69 9.57
Asp89 Thr47 0.49 11.52 4.60 0.68 7.11
Lys98 Thr18 0.47 7.86 2.90 1.24 6.66
Glu88 His45 0.64 39.97 34.71 0.65 6.55
Arg85 His81 1.74 3.97 0.65 1.38 6.44
Glu48 Asn159 0.55 8.35 3.47 0.88 6.31
Arg85 His76 0.56 4.37 1.41 0.40 2.00
Arg85 His45 0.34 30.19 25.74 0.29 3.82
His45 Arg85 0.61 33.67 26.62 0.55 5.89
a
: kcal/mol.
,
.
2.5 Q67
Q67 , 2
A B ( 5). A 852.75 Å3
,
, B 635.75 Å3
,
.
. Q67 FMN ,
FMN Vibrio harveyi
. FMN Vibrio
harveyi ,
Glu43, Ala75, Arg107, Leu109, Ser176
Thr179. Q67 Vibrio harveyi
(84%), ,
, , Vibrio harveyi
FMN ,
Q67 FMN . Q67
6.
FMN ( ) Glu43 ,
Ala75 , Arg107 , Leu109 , Glu175 Ser176 ,
FMN . Thr179
, ,
FMN . FMN , Thr179
FMN 2.47 Å,
. Ser145 Arg165 loop ,
Thr179 .
, . RMSF ,
. ,
.
6 Q67 ( ) FMN ( )
Figure 6 The structures of active pockets of the binding-free luciferase
(blue) and the binding FMN-luciferase (yellow) in Q67
3
Q67
/ ,
.
, ,
. FMN
Vibrio harveyi ,
Q67 FMN . ,
,
. Q67
.
4
4.1
Q67 , 355
, 324 ,
[27,28]
.
Q67 PDB ,
30% 3fgc[8]
, 1bsl[6]
,
1nfp[29]
1fvp[30]
, Vibrio harveyi
3fgc Q67 ( 84%,
60%). 3fgc HOMCOS (http://
strcomp.protein.osaka-u.ac.jp/homcos/)
. S2.
(Zseqcon 53.6) .
UCSF Chimera[31]
MODELLER[32]
Q67
loop .
4.2
AMBER Q67
[33]
. ff12SB ,
antechamber tool .
TIP3P ,
1040 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040
8.5 Å. 22 Na .
, ,
(isothermal-isobaric ensemble, NPT)
[34]
. : ,
, .
2000 1000
[35]
. 50 ps 0 K 300 K,
NPT . PME (particle
meshewald) .
8 Å. Langevin thermostat
300 K. SHAKE , 2
fs[36]
. 10 ps . ptraj
Q67 RMSD
RMSF .
8 ns Q67
. 8 ns 8 ns
, . S3.
4.3 MM/GBSA
MM/GBSA , 8 ns
100 ,
[25]
. ∆G
[37]
. ,
GB (Generalized Born)
;
SASA LCPO [38]
.
,
AMBER MMPBSA.py
MM/GBSA , .
References
[1] Razgulin, A.; Ma, N.; Rao, J. H. Chem. Soc. Rev. 2011, 40, 4186.
[2] Thorne, N.; Shen, M.; Lea, W. A.; Simeonov, A.; Lovell, S.; Auld, D.
S.; Inglese, J. Chem. Biol. 2012, 19, 1060.
[3] Loening, A. M.; Fenn, T. D.; Gambhir, S. S. J. Mol. Biol. 2007, 374,
1017.
[4] Aufhammer, S. W.; Warkentin, E.; Ermler, U.; Hagemeier, C. H.;
Thauer, R. K.; Shima, S. Protein Sci. 2005, 14, 1840.
[5] Conti, E.; Franks, N. P.; Brick, P. Structure 1996, 4, 287.
[6] Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.;
Wesenberg, G.; Baldwin, T. O.; Rayment, I. Protein Sci. 1997, 6, 13.
[7] Ke, D. C.; Tu, S. C. Photochem. Photobiol. 2011, 87, 1346.
[8] Campbell, Z. T.; Weichsel, A.; Montfort, W. R.; Baldwin, T. O.
Biochemistry 2009, 48, 6085.
[9] Auld, D. S.; Lovell, S.; Thorne, N.; Lea, W. A.; Maloney, D. J.;
Shen, M.; Rai, G.; Battaile, K. P.; Thomas, C. J.; Simeonov, A.;
Hanzlik, R. P.; Inglese, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107,
4878.
[10] Sundlov, J. A.; Fontaine, D. M.; Southworth, T. L.; Branchini, B. R.;
Gulick, A. M. Biochemistry 2012, 51, 6493.
[11] Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.;
Sakata, K.; Kato, H. Nature 2006, 440, 372.
[12] Fisher, A. J.; Thompson, T. B.; Thoden, J. B.; Baldwin, T. O.;
Rayment, I. J. Biol. Chem. 1996, 271, 21956.
[13] Yamasaki, S.; Yamada, S.; Takehara, K. Anal. Sci. 2013, 29, 41.
[14] Zhu, W. J.; Zheng, T. L.; Li, W. M. Luminous Bacteria and
Environmental Monitoring, China Light Industry Press, Beijing,
2009. ( , , , ,
, , 2009.)
[15] Bureau of Environmental Protection People's Republic of China,
Monitoring And Analysis Methods about Water And Wastewater, 4th
ed., China Environmental Science Press, Beijing, 2002. (
, ( ), ,
, 2002.)
[16] Li, J.; Jiang, G. X.; Yang, B.; Dong, X. H.; Feng, L. Y.; Lin, S.;
Chen, F.; Ashraf, M.; Jiang, Y. M. Anal. Bioanal. Chem. 2012, 402,
1347.
[17] Ma, X. Y.; Wang, X. C.; Liu, Y. J. J. Hazard. Mater. 2011, 190, 100.
[18] Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. Acta Chim. Sinica
2012, 70, 1511. ( , , , , , 2012,
70, 1511.)
[19] Liu, S. S.; Song, X. Q.; Liu, H. L.; Zhang, Y. H.; Zhang, J.
Chemosphere 2009, 75, 381.
[20] Dou, R. N.; Liu, S. S.; Mo, L. Y.; Liu, H. L.; Deng, F. C. Environ.
Sci. Pollut. Res. 2011, 18, 734.
[21] Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. Water Res. 2009, 43, 1731.
[22] Zhang, J.; Liu, S.-S.; Yu, Z.-Y.; Zhang, J. Chemosphere 2013, 91,
462.
[23] Wang, L. J.; Liu, S. S.; Yuan, J.; Liu, H. L. Chemosphere 2011, 84,
1440.
[24] Cai, W.; Christophe, C. Acta Chim. Sinica 2013, 71, 159. ( ,
Christophe Chipot, , 2013, 71, 159.)
[25] Baris, I.; Tuncel, A.; Ozber, N.; Keskin, O.; Kavakli, I. H. PLoS
Comput. Biol. 2009, 5, 1.
[26] Taveecharoenkool, T.; Angsuthanasombat, C.; Kanchanawarin, C.
PMC Biophys. 2010, 3, 10.
[27] Fukuhara, N.; Go, N.; Kawabata, T. Biophysics 2007, 3, 13.
[28] Fukuhara, N.; Kawabata, T. Nucleic Acids Res. 2008, 36, W185.
[29] Moore, S. A.; James, M. N. G. J. Mol. Biol. 1995, 249, 195.
[30] Kita, A.; Kasai, S.; Miyata, M.; Miki, K. Acta Crystallogr. Sect. D:
Biol. Crystallogr. 1996, 52, 77.
[31] Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang,
C. C.; Pettersen, E. F.; Goddard, T. D.; Meng, E. C.; Sali, A.; Ferrin,
T. E. J. Struct. Biol. 2012, 179, 269.
[32] Fiser, A.; Do, R. K. G.; Sali, A. Protein Sci. 2000, 9, 1753.
[33] Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.;
Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.
J. Comput. Chem. 2005, 26, 1668.
[34] Han, M.; Zhang, J. Z. H. J. Chem. Inf. Model. 2010, 50, 136.
[35] Khuntawee, W.; Rungrotmongkol, T.; Hannongbua, S. J. Chem. Inf.
Model. 2012, 52, 76.
[36] Chen, X.; Zhao, X.; Wang, S.; Wang, L.; Li, W.; Sun, C. Acta Chim.
Sinica 2013, 71, 199. ( , , , , ,
, , 2013, 71, 199.)
[37] Hou, T. J.; Wang, J. M.; Li, Y. Y.; Wang, W. J. Chem. Inf. Model.
2011, 51, 69.
[38] Greenidge, P. A.; Kramer, C.; Mozziconacci, J. C.; Wolf, R. M. J.
Chem. Inf. Model. 2013, 53, 201.
(Cheng, B.; Fan, Y.)

More Related Content

What's hot

An efficient synthesis, characterization and antibacterial activity of novel ...
An efficient synthesis, characterization and antibacterial activity of novel ...An efficient synthesis, characterization and antibacterial activity of novel ...
An efficient synthesis, characterization and antibacterial activity of novel ...iosrjce
 
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesOrganocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesDrMAdamSayah
 
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...ijtsrd
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...IOSR Journals
 
Heteroleptic palladium
Heteroleptic palladiumHeteroleptic palladium
Heteroleptic palladiumThaaer Khalil
 
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASES
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASESSYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASES
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASESJing Zang
 
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...Dr. Pradeep mitharwal
 
Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.theijes
 
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND ANTIANDROGENIC E...
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND  ANTIANDROGENIC E...A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND  ANTIANDROGENIC E...
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND ANTIANDROGENIC E...Dr. Pradeep mitharwal
 
Мутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиМутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиAnatol Alizar
 
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET Journal
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...inventionjournals
 
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...IJAEMSJORNAL
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Ibrahim Abdel-Rahman
 
Theoretical investigation of the Structure Activity Relationships (SARs) of a...
Theoretical investigation of the Structure Activity Relationships (SARs) of a...Theoretical investigation of the Structure Activity Relationships (SARs) of a...
Theoretical investigation of the Structure Activity Relationships (SARs) of a...IJERA Editor
 
Catalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid CatalystsCatalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid Catalystspbpbms6
 

What's hot (20)

3
33
3
 
An efficient synthesis, characterization and antibacterial activity of novel ...
An efficient synthesis, characterization and antibacterial activity of novel ...An efficient synthesis, characterization and antibacterial activity of novel ...
An efficient synthesis, characterization and antibacterial activity of novel ...
 
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimidesOrganocatalytic enantioselective conjugate addition of aldehydes to maleimides
Organocatalytic enantioselective conjugate addition of aldehydes to maleimides
 
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...
Preparation and Antimicrobial Studies of Oxadiazine Containing Heterocyclic C...
 
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
Micellar Effect On Dephosphorylation Of Bis-4-Chloro-3,5-Dimethylphenylphosph...
 
Heteroleptic palladium
Heteroleptic palladiumHeteroleptic palladium
Heteroleptic palladium
 
Open Journal of Chemistry
Open Journal of ChemistryOpen Journal of Chemistry
Open Journal of Chemistry
 
Aijrfans14 259
Aijrfans14 259Aijrfans14 259
Aijrfans14 259
 
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASES
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASESSYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASES
SYNTHESIS OF OXAZIPEN COMPOUNDS VIA SCHIFF BASES
 
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...
Synthesis, Characterization, Spectral (FT-IR, 1H, 13C NMR, Mass and UV) and B...
 
Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.
 
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND ANTIANDROGENIC E...
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND  ANTIANDROGENIC E...A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND  ANTIANDROGENIC E...
A STUDY TO EVALUATE THE IN VITRO ANTIMICROBIAL ACTIVITY AND ANTIANDROGENIC E...
 
Мутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотикамиМутации бактерий на арене с антибиотиками
Мутации бактерий на арене с антибиотиками
 
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
IRJET - Factorial Optimization and Peri-Kinetics of Pharmaceutical Effluent C...
 
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
An Efficient Synthetic Approach Towards 4-Cyano-3-(Methylthio)-5-Oxo-2H-Pyraz...
 
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
Synthesis of 1,2,3-Triazole 5-Chloroisatin Derivatives via Copper-Catalyzed 1...
 
Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016Research Published Paper-157-JMES-2207-Hjouji-March-2016
Research Published Paper-157-JMES-2207-Hjouji-March-2016
 
UIUC REU Poster
UIUC REU PosterUIUC REU Poster
UIUC REU Poster
 
Theoretical investigation of the Structure Activity Relationships (SARs) of a...
Theoretical investigation of the Structure Activity Relationships (SARs) of a...Theoretical investigation of the Structure Activity Relationships (SARs) of a...
Theoretical investigation of the Structure Activity Relationships (SARs) of a...
 
Catalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid CatalystsCatalytic Conversion of Biomass using Solid Acid Catalysts
Catalytic Conversion of Biomass using Solid Acid Catalysts
 

Similar to Structure and Stability of Bacterial Luciferase in Freshwater Luminescent Bacteria Vibrio qinghaiensis sp.-Q67 (Less than 40 chars

Reduction of cu o and cu2o with h2 h embedding and kinetics effects in the ...
Reduction of cu o and cu2o with h2   h embedding and kinetics effects in the ...Reduction of cu o and cu2o with h2   h embedding and kinetics effects in the ...
Reduction of cu o and cu2o with h2 h embedding and kinetics effects in the ...Luciana Pirone
 
5. all published paper
5. all published paper5. all published paper
5. all published paperHalei Zhai
 
Switching Off and On the Supramolecular Chiral Memory in Porphyrin
Switching Off and On the Supramolecular Chiral Memory in PorphyrinSwitching Off and On the Supramolecular Chiral Memory in Porphyrin
Switching Off and On the Supramolecular Chiral Memory in PorphyrinAngela Mammana
 
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compound
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compoundSynthesis, Crystal and Molecular Structure Studies of a new Pyrazole compound
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compoundIRJET Journal
 
Kanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSocKanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSocJalal Hawari
 
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...trunghieuchinh
 
Photochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converPhotochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converIAEME Publication
 
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...Simona Cavalu
 
Isotropy of intermetallic compounds
Isotropy of intermetallic compoundsIsotropy of intermetallic compounds
Isotropy of intermetallic compoundsIJCSEA Journal
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinoneDaniel Teoh Tan
 
Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Svetlana Gelpi
 
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...IJSIT Editor
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nKarlitox Saoj
 

Similar to Structure and Stability of Bacterial Luciferase in Freshwater Luminescent Bacteria Vibrio qinghaiensis sp.-Q67 (Less than 40 chars (20)

G044028042
G044028042G044028042
G044028042
 
Reduction of cu o and cu2o with h2 h embedding and kinetics effects in the ...
Reduction of cu o and cu2o with h2   h embedding and kinetics effects in the ...Reduction of cu o and cu2o with h2   h embedding and kinetics effects in the ...
Reduction of cu o and cu2o with h2 h embedding and kinetics effects in the ...
 
Aijrfans14 243
Aijrfans14 243Aijrfans14 243
Aijrfans14 243
 
Org Let PASS
Org Let PASSOrg Let PASS
Org Let PASS
 
Aijrfans14 227
Aijrfans14 227Aijrfans14 227
Aijrfans14 227
 
5. all published paper
5. all published paper5. all published paper
5. all published paper
 
Switching Off and On the Supramolecular Chiral Memory in Porphyrin
Switching Off and On the Supramolecular Chiral Memory in PorphyrinSwitching Off and On the Supramolecular Chiral Memory in Porphyrin
Switching Off and On the Supramolecular Chiral Memory in Porphyrin
 
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compound
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compoundSynthesis, Crystal and Molecular Structure Studies of a new Pyrazole compound
Synthesis, Crystal and Molecular Structure Studies of a new Pyrazole compound
 
Kanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSocKanabus 1987 JAmChemSoc
Kanabus 1987 JAmChemSoc
 
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
 
Photochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy converPhotochemical study of micelles in photogalvanic cell for solar energy conver
Photochemical study of micelles in photogalvanic cell for solar energy conver
 
Master-Ag2S
Master-Ag2SMaster-Ag2S
Master-Ag2S
 
PhysRevLett.111.237001
PhysRevLett.111.237001PhysRevLett.111.237001
PhysRevLett.111.237001
 
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...
SIMONA CAVALU_EPR study of non covalent spin labeled serum albumin and haemog...
 
Isotropy of intermetallic compounds
Isotropy of intermetallic compoundsIsotropy of intermetallic compounds
Isotropy of intermetallic compounds
 
2007 revised nmr data for incartine an alkaloid from galanthus
2007 revised nmr data for incartine an alkaloid from galanthus2007 revised nmr data for incartine an alkaloid from galanthus
2007 revised nmr data for incartine an alkaloid from galanthus
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
 
Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18Computational NMR Characterization of Chiral Au25(SMeBut)18
Computational NMR Characterization of Chiral Au25(SMeBut)18
 
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA  HEAVY CRUDE OIL B...
STUDY OF NANOSECOND ND: YAG 213 nm LASER ABLATION OF EXTRA HEAVY CRUDE OIL B...
 
Swift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_nSwift and efficient_sono-hydrolysis_of_n
Swift and efficient_sono-hydrolysis_of_n
 

Structure and Stability of Bacterial Luciferase in Freshwater Luminescent Bacteria Vibrio qinghaiensis sp.-Q67 (Less than 40 chars

  • 1. Article * E-mail: ssliuhl@263.net Received March 27, 2013; published May 2, 2013. Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn. Project supported by the National Natural Science Foundation of China (Nos. 21177097, 20977065) and Specialized Research Fund for the Doctoral Program of Higher Education (20120072110052). (Nos. 21177097, 20977065) (No. 20120072110052) . Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1035 * ( 200092) . . (Vibrio qinghaiensis sp.-Q67, Q67) , . , , Q67 . Q67 . , Q67 , / , / . / . Q67 , . ; ; ; ; Chen, Fu Liu, Shushen* Duan, Xintian (Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092) Abstract Bioluminescence technique derived from the luciferase-based catalization reactions has been widely used in chemistry, biological assay and environmental science. The three-dimensional crystal structures of luciferase proteins in some firefly and luminescent bacteria were elucidated. Vibrio qinghaiensis sp.-Q67 (Q67), one of freshwater luminescent bacteria which was extracted from Gymnocypris przewalskii in Qinghai lake, has been used in biological assay and toxicity evaluation of many chemicals. However, the crystal structure of the luciferase (the most important catalyzer to bioluminescent) in Q67 is still not established, which hinders the process of the study on the molecular mechanism of toxicities of chemicals to Q67. In this study, the three dimensional structure of bacterial luciferase in Q67 was constructed by using the heterodimeric homol- ogy modeling combined with the molecular dynamics simulation which were performed with explicit TIP3P water. The simulation system was equilibrated at 4 ns, and was prolonged for another 4 ns for extracting the equilibrium trajectories at the 8th ns. The stability of the system was monitored through the convergences of energy, temperature, and global root mean square deviation (RMSD). The ptraj modules in the AMBER software were used to analyze hydrogen bond occupancy be- tween and subunit. And then, the molecular mechanics generalized born surface area method was applied to identify critical amino acids of the and subunits that interact with each other during the native heterotetrameric structure forma- tion. It was shown that the luciferase in Q67 is a heterdimer including two polypeptide subunits ( and ) and the stabilization of this heterodimer was mainly determined by the van der waals force. The specificity of association is realized by hydrogen bonds formed between subunits. However, the electrostatic interaction from the net charge on and subunit is unfavorable to the stability of the dimer. The active sites of flavin mononucleotide binding to the luciferase in Q67 are located in the ac- tive pocket of subunit. The subunit is helpful to keep the structural stability of the active sites on the subunit. Keywords heterodimer; luciferase; homology modeling; freshwater luminescent bacteria; molecular dynamics 1 [1] . (luciferin) (aliphatic aldehyde) . (luciferase assay) . , (bioluminescence).
  • 2. 1036 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040 , DNA . , [2 4] . . , N ( 4 436) C ( 440 544), [5] . Mg2 ATP O2 , (Luciferin) , . , luxA luxB [6] . (FMNH2) , . , [7,8] . , . Auld [2,9] Photinus pyralis , , . Sundlov [10] Photinus pyralis , C 140 N , (Luciola cruciate) [11] . Campbell [8] Vibrio harveyi [12] loop (262 291) , -FMN , , . Yamasaki [13] Vibrio fischeri C12H25OH C11H23CHO , C12H25OH . , (Vibrio qinghaiensis sp.-Q67, Q67)[14] pH (6.5 11) , [15] . Q67 [16 18] . Q67 [19 22] . Q67 Hormesis [23] . . , Q67 , . , Q67 , [24] Q67 , , (FMN) , . 2 2.1 Q67 8 ns . 1 , 4 ns , , 4 8 ns (RMSD) , RMSD 2.27 Å, 0.3 Å, . , , 4 ns . 1 Q67 RMSD Figure 1 Plot of root mean square deviation (RMSD) vs. time for the luciferase in Q67 2.2 Q67 Ramachandran 8 ns Q67 , Ramachandran ( ), 2 . 2 Q67 Figure 2 Ramachandran plot of the structure of luciferase in Q67 , Lys283 , Ile219 , Asp147 Ile230 , . Gly Gly ,
  • 3. Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1037 phi psi . N-C , , - , . Q67 , , ( ) 532 ( 87.4%) ( )73 (12%) ( )3 (0.5%) 1 (0.2%). Q67 . 2.3 Q67 Q67 . 3 - 15 - 22 - 1 - . 2 - 13 - 24 - . 3 Q67 . 2.3.1 3 3a . 1 A 9 , 2 B 2 , 3 C 2 . A 6 , 1 2 Rossman . C 2 (Lys268 Tyr270 Trp277 Asp279 ). 50 ( 14.1%), 144 ( 40.6%). 2.3.2 2 3b . , 1 D , 9 , 2 E 2 . D 5 , 1 2 Rossman . E (Tyr143 Cys144 Ile156 Ser157 ). 39 ( 12.0%), 143 ( 44.1%). , , 32%. , , , . . 2.3.3 (RMSF) , ( 4). 3 , Ser145 Gln159 , loop , Leu213 Ile219 , 3 Asp279 Arg291 loop . ; , . RMSF ( 4), Met1 Asp195 RMSF , 3 Q67 (a) (b) Figure 3 Topological graphs for the secondary structures of (a) and subunit (b) of the luciferase in Q67 , , , . Arg201 Gln324 RMSF , . Trp194 Asn198 , , , , RMSF . 2.4 / Q67 5. S1. 8 ns , , 90% 1, S1. 17 8 ns 90% 90%, 17
  • 4. 1038 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040 4 Q67 RMSF Figure 4 Plot of the root mean square fluctuation (RMSF) vs. the resi- due index 5 Q67 / Figure 5 The tertiary structure and binding pockets of the luciferase in Q67 . Arg85 Glu43 , Glu43 Arg85 His45 Glu88 99% , ( 20.06, 17.72 21.73 kcal/mol). 3 ( 1). (∆G) (∆Gpol-sol) (∆Gnpol-sol) (∆Evdw) (∆Eele). , 1 Table 1 The occupancy of hydrogen bonds formed between and subunits and bonding distance /% /Å Asn159 @O Gln17 @N 100 2.90 Gln95 @O Thr18 @O 100 2.68 Glu43 @O Arg85 @NH2 100 2.79 Glu43 @O Arg85 @NH1 100 2.81 Gln95 @O Thr18 @O 100 2.74 Val57 @O Ser60 @O 100 2.71 Glu43 @O Arg85 @N 100 2.75 Ser152 @O Arg115 @N 99 2.93 Glu88 @O His45 @N 99 2.76 Ser152 @O Gln266 @N 97 2.94 Asn273 @O Asn118 @N 97 2.93 Thr80 @O Arg85 @N 97 3.01 Gln266 @O Asn145 @N 96 3.03 Thr80 @O Arg85 @N 96 2.89 Glu48 @O Asn159 @N 95 2.91 His152 @O Asn118 @N 94 3.02 Phe116 @O Val82 @N 91 2.96 water@O Thr80 @O 97 2.90 water@O Asn273 @N 97 3.01 water@O Ser298 @O 93 2.79 . [25] . 4 (His45 -Glu88 , Arg85 -Glu43 , Glu43 -Arg85 Lys98 -Asp22 ) ( 97%), ( 10 kcal/mol). ( 2) , ( 1) , . , , , 3 Arg85 -His76 , Arg85 -His45 His45 -Arg85 ( 2). 183.0 kcal/mol, ∆Gnpol-sol 39.6 kcal/mol) ∆Evdw 309.3 kcal/mol) ∆Gpol-sol 45.0 kcal/mol , . ∆Eele 210.9 kcal/mol, . / 22 [7,26] . , , , 165.9 kcal/mol, Q67 . , , 348.9 kcal/mol. , / , . / /
  • 5. Acta Chim. Sinica 2013, 71, 1035—1040 © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences http://sioc-journal.cn 1039 2 a Table 2 The interaction energies of pairwise residues between and subunits 1 2 ∆Gvdw ∆Gele ∆Gpol sol ∆Gnpol sol ∆Gtot His45 Glu88 0.61 53.61 31.85 0.64 21.79 Arg85 Glu43 1.20 49.14 28.32 0.49 20.12 Glu43 Arg85 0.81 44.70 26.48 0.32 17.73 Lys98 Asp22 0.55 50.93 40.44 0.79 10.73 Thr80 Arg85 0.21 11.60 2.94 0.69 9.57 Asp89 Thr47 0.49 11.52 4.60 0.68 7.11 Lys98 Thr18 0.47 7.86 2.90 1.24 6.66 Glu88 His45 0.64 39.97 34.71 0.65 6.55 Arg85 His81 1.74 3.97 0.65 1.38 6.44 Glu48 Asn159 0.55 8.35 3.47 0.88 6.31 Arg85 His76 0.56 4.37 1.41 0.40 2.00 Arg85 His45 0.34 30.19 25.74 0.29 3.82 His45 Arg85 0.61 33.67 26.62 0.55 5.89 a : kcal/mol. , . 2.5 Q67 Q67 , 2 A B ( 5). A 852.75 Å3 , , B 635.75 Å3 , . . Q67 FMN , FMN Vibrio harveyi . FMN Vibrio harveyi , Glu43, Ala75, Arg107, Leu109, Ser176 Thr179. Q67 Vibrio harveyi (84%), , , , Vibrio harveyi FMN , Q67 FMN . Q67 6. FMN ( ) Glu43 , Ala75 , Arg107 , Leu109 , Glu175 Ser176 , FMN . Thr179 , , FMN . FMN , Thr179 FMN 2.47 Å, . Ser145 Arg165 loop , Thr179 . , . RMSF , . , . 6 Q67 ( ) FMN ( ) Figure 6 The structures of active pockets of the binding-free luciferase (blue) and the binding FMN-luciferase (yellow) in Q67 3 Q67 / , . , , . FMN Vibrio harveyi , Q67 FMN . , , . Q67 . 4 4.1 Q67 , 355 , 324 , [27,28] . Q67 PDB , 30% 3fgc[8] , 1bsl[6] , 1nfp[29] 1fvp[30] , Vibrio harveyi 3fgc Q67 ( 84%, 60%). 3fgc HOMCOS (http:// strcomp.protein.osaka-u.ac.jp/homcos/) . S2. (Zseqcon 53.6) . UCSF Chimera[31] MODELLER[32] Q67 loop . 4.2 AMBER Q67 [33] . ff12SB , antechamber tool . TIP3P ,
  • 6. 1040 http://sioc-journal.cn © 2013 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Acta Chim. Sinica 2013, 71, 1035—1040 8.5 Å. 22 Na . , , (isothermal-isobaric ensemble, NPT) [34] . : , , . 2000 1000 [35] . 50 ps 0 K 300 K, NPT . PME (particle meshewald) . 8 Å. Langevin thermostat 300 K. SHAKE , 2 fs[36] . 10 ps . ptraj Q67 RMSD RMSF . 8 ns Q67 . 8 ns 8 ns , . S3. 4.3 MM/GBSA MM/GBSA , 8 ns 100 , [25] . ∆G [37] . , GB (Generalized Born) ; SASA LCPO [38] . , AMBER MMPBSA.py MM/GBSA , . References [1] Razgulin, A.; Ma, N.; Rao, J. H. Chem. Soc. Rev. 2011, 40, 4186. [2] Thorne, N.; Shen, M.; Lea, W. A.; Simeonov, A.; Lovell, S.; Auld, D. S.; Inglese, J. Chem. Biol. 2012, 19, 1060. [3] Loening, A. M.; Fenn, T. D.; Gambhir, S. S. J. Mol. Biol. 2007, 374, 1017. [4] Aufhammer, S. W.; Warkentin, E.; Ermler, U.; Hagemeier, C. H.; Thauer, R. K.; Shima, S. Protein Sci. 2005, 14, 1840. [5] Conti, E.; Franks, N. P.; Brick, P. Structure 1996, 4, 287. [6] Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.; Wesenberg, G.; Baldwin, T. O.; Rayment, I. Protein Sci. 1997, 6, 13. [7] Ke, D. C.; Tu, S. C. Photochem. Photobiol. 2011, 87, 1346. [8] Campbell, Z. T.; Weichsel, A.; Montfort, W. R.; Baldwin, T. O. Biochemistry 2009, 48, 6085. [9] Auld, D. S.; Lovell, S.; Thorne, N.; Lea, W. A.; Maloney, D. J.; Shen, M.; Rai, G.; Battaile, K. P.; Thomas, C. J.; Simeonov, A.; Hanzlik, R. P.; Inglese, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4878. [10] Sundlov, J. A.; Fontaine, D. M.; Southworth, T. L.; Branchini, B. R.; Gulick, A. M. Biochemistry 2012, 51, 6493. [11] Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Nature 2006, 440, 372. [12] Fisher, A. J.; Thompson, T. B.; Thoden, J. B.; Baldwin, T. O.; Rayment, I. J. Biol. Chem. 1996, 271, 21956. [13] Yamasaki, S.; Yamada, S.; Takehara, K. Anal. Sci. 2013, 29, 41. [14] Zhu, W. J.; Zheng, T. L.; Li, W. M. Luminous Bacteria and Environmental Monitoring, China Light Industry Press, Beijing, 2009. ( , , , , , , 2009.) [15] Bureau of Environmental Protection People's Republic of China, Monitoring And Analysis Methods about Water And Wastewater, 4th ed., China Environmental Science Press, Beijing, 2002. ( , ( ), , , 2002.) [16] Li, J.; Jiang, G. X.; Yang, B.; Dong, X. H.; Feng, L. Y.; Lin, S.; Chen, F.; Ashraf, M.; Jiang, Y. M. Anal. Bioanal. Chem. 2012, 402, 1347. [17] Ma, X. Y.; Wang, X. C.; Liu, Y. J. J. Hazard. Mater. 2011, 190, 100. [18] Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. Acta Chim. Sinica 2012, 70, 1511. ( , , , , , 2012, 70, 1511.) [19] Liu, S. S.; Song, X. Q.; Liu, H. L.; Zhang, Y. H.; Zhang, J. Chemosphere 2009, 75, 381. [20] Dou, R. N.; Liu, S. S.; Mo, L. Y.; Liu, H. L.; Deng, F. C. Environ. Sci. Pollut. Res. 2011, 18, 734. [21] Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. Water Res. 2009, 43, 1731. [22] Zhang, J.; Liu, S.-S.; Yu, Z.-Y.; Zhang, J. Chemosphere 2013, 91, 462. [23] Wang, L. J.; Liu, S. S.; Yuan, J.; Liu, H. L. Chemosphere 2011, 84, 1440. [24] Cai, W.; Christophe, C. Acta Chim. Sinica 2013, 71, 159. ( , Christophe Chipot, , 2013, 71, 159.) [25] Baris, I.; Tuncel, A.; Ozber, N.; Keskin, O.; Kavakli, I. H. PLoS Comput. Biol. 2009, 5, 1. [26] Taveecharoenkool, T.; Angsuthanasombat, C.; Kanchanawarin, C. PMC Biophys. 2010, 3, 10. [27] Fukuhara, N.; Go, N.; Kawabata, T. Biophysics 2007, 3, 13. [28] Fukuhara, N.; Kawabata, T. Nucleic Acids Res. 2008, 36, W185. [29] Moore, S. A.; James, M. N. G. J. Mol. Biol. 1995, 249, 195. [30] Kita, A.; Kasai, S.; Miyata, M.; Miki, K. Acta Crystallogr. Sect. D: Biol. Crystallogr. 1996, 52, 77. [31] Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C. C.; Pettersen, E. F.; Goddard, T. D.; Meng, E. C.; Sali, A.; Ferrin, T. E. J. Struct. Biol. 2012, 179, 269. [32] Fiser, A.; Do, R. K. G.; Sali, A. Protein Sci. 2000, 9, 1753. [33] Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668. [34] Han, M.; Zhang, J. Z. H. J. Chem. Inf. Model. 2010, 50, 136. [35] Khuntawee, W.; Rungrotmongkol, T.; Hannongbua, S. J. Chem. Inf. Model. 2012, 52, 76. [36] Chen, X.; Zhao, X.; Wang, S.; Wang, L.; Li, W.; Sun, C. Acta Chim. Sinica 2013, 71, 199. ( , , , , , , , 2013, 71, 199.) [37] Hou, T. J.; Wang, J. M.; Li, Y. Y.; Wang, W. J. Chem. Inf. Model. 2011, 51, 69. [38] Greenidge, P. A.; Kramer, C.; Mozziconacci, J. C.; Wolf, R. M. J. Chem. Inf. Model. 2013, 53, 201. (Cheng, B.; Fan, Y.)