SlideShare a Scribd company logo
1 of 1
Download to read offline
𝑿𝑳𝑽𝑪𝑬𝑳 𝑻𝑴 Morton Effect and Bearing Simulation Software
by Dr. Alan Palazzolo, a-palazzolo@tamu.edu and Mr. Xiaomeng Tong, tongxiaomeng1989@tamu.edu
XLVCEL
Objective: User friendly software package for prediction of Morton Effect and bearing Dynamic Coefficients
with the consideration of 3D fluid film bearings, flexible rotor and 3D heat conduction and convection.
Shaft Thermal Bending Induced Synchronous Rotor Instability Problem
Double
Overhung
Morton Effect
Single
Overhung
Morton Effect
Dynamic
Coefficients
Ver. 1.01
2
3tilting pad.
fixed pad.
pressure dam.
flexure pivot[KMC].4
1 2 3
a flexible/rigid pad. b flexible/rigid pivot.
c cylindrical/spherical pivot.
a b c
a
b
c
1 2
3 4
a b c
No MATLAB
Required
Nonlinear Transient
Morton Analysis
Nonlinear Steady
Morton Analysis
Dynamic Coefficient
Prediction
1 2 3 4
Nonlinear Transient
Morton Analysis
Nonlinear Steady
Morton Analysis
Dynamic Coefficient
Prediction
Bearing Type Available Options
1.Nonlinear Transient/Steady Simulation for the
Morton effect induced instability.
 Thermal gradient in shaft and bearing
 Parameter effect: oil temperature
2.Bearing Static and Dynamic Solver
 3D bearing model with pad flexibility
 Rocker/spherical pivot with nonlinear stiffness
 Asymmetric film clearance
1. Finite Element Dynamic Rotor Model
Supported in Two Nonlinear-Bearings
0
0.2
0.4
0.6
0.8
1
-0.2
0
Z axis (m)
Rotor Geometry Check, Red:BRG1 , Blue:BRG2, Black:LIN BRG
(m)
1. Finite Element Rotor
Maximum No. of Elements = 80
Number of Inputs 19 Number of Elements 19
Input No. ElementNo. Material Group No. Length(m) OuterDiameter (m) InnerDiameter (m)
1 1 1 0.02667 0.197612 0
2 2 1 0.077724 0.113538 0
3 3 1 0.054356 0.082296 0
4 4 1 0.06858 0.082296 0
5 5 1 0.06858 0.082296 0
6 6 1 0.041148 0.122428 0
7 7 1 0.07112 0.357378 0
8 8 1 0.148844 0.122428 0
9 9 1 0.12446 0.184404 0
10 10 1 0.12446 0.184404 0
11 11 1 0.046736 0.1016 0
12 12 1 0.04318 0.1016 0
13 13 1 0.108712 0.093472 0
14 14 1 0.085344 0.082296 0
15 15 1 0.0127 0.11303 0
16 16 1 0.019304 0.50673 0
17 17 1 0.019304 0.50673 0
18 18 1 0.019304 0.433832 0
19 19 1 0.03302 0.282448 0
a. Pads Geometry
Pad Flexibility (0:Rigid, 1:Flex) 0
Bearing Load Type (0:LOP, 1:LBP) 0
Number of Pads 5
Pad Arc Length (degree) 56
Offset 0.5
Radius of Shaft at BRG (m) 0.0508
Bearing Clearance, CL_B (m) 7.48E-05
Preload 0.5
Pad Thickness (m) 0.0127
Pad Thickness at Pivot (m) [Cylindrical Pivot]
(> Pad Thickness)
0.015
Bearing Length (m) 0.0508
b. Pivot Geometry ( Pad Motion and Stiffness )
Pivot Type(1:Spherical 2:Sphere-in-a-Cylinder,3:Cylindrical) 1
Pivot Stiffness (0: Rigid, 1: Linear+Cubic, 2: Nonlinear) 0
b-1: Linear+Cubic Pivot Stiffness
Linear Stiffness Coefficient (x)[N/m] 8.00E+08
Cubic Stiffness Coefficient (x^3)[N/m]^3 0.00E+00
b-2: Pivot Geometry for Nonlinear Pivot Stiffness (not for Dyn.Coeff)
[1.Spherical] : Dh [m] 0.01
[1.Spherical] : Ratio of (Dp/Dh) (<1) 0.98
[2.Sphere-in-a-Cylinder] : Dh [m] 0.01
[2.Sphere-in-a-Cylinder] : Ratio of (Dp/Dh) (<1) 0.98
[3.Cylindrical] : Dp1 [m] -Radial 1.24E-01
[3.Cylindrical] : Ratio of (Dp1/Dh1) (<1) 0.8895
[3.Cylindrical] : Dp2 [m] -Axial 2.54E+00
[3.Cylindrical] : Ratio of (Dp2/Dh2) (<1) 0.0000001-0.05
0
0.05
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
X axis
MESH AND B MATRIX CHECK PLOT
Z axis
Yaxis
2. 3D Finite Element Bearing Model
0.04
0.06-0.02
0
0.02
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
X axis
frequency =0(Hz)
Y axis
Zaxis
0.04 0.05 0.06 0.07
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
frequency =0(Hz)
X axis
Yaxis
0.04
0.06-0.02
0
0.02
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
X axis
frequency =33639(Hz)
Y axis
Zaxis
0.04 0.05 0.06 0.07
-0.03
-0.02
-0.01
0
0.01
0.02
0.03
frequency =33639(Hz)
X axis
Yaxis
NUMERICAL MODELING OF ROTOR-BEARING SIMULATION RESULT
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0
-0.1
-0.05
0
0.05
0.1
80
82
82
78
79
80
81
70
70
80
80
90
90
70
70
80
80
90
90
Temperature Distribution on Bearing and Shaft from Cross View
Axial Direction (m)
Yaxis(m)
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
Temperature distribution (Celsius)
X axis
Yaxis
68
70
72
74
76
78
80
60
61
62
63
64
65
58
58.5
59
59.5
60
60.5
61
61
62
63
64
65
66
68
70
72
74
76
78
68
70
72
74767880
82
5859
60
61
62
63
64
65
66
57
58
59606162
59
60
61626364656667
64
66
68
70
72
74767880
68.2
68.4
68.4
68.6
68.6
68.8
68.8
69
69
69
69.2
69.2
69.2
69.4
69.4
69.4
69.6
69.6
69.6
69.8
69.8
69.8
69.8
70
70
70
70
3D Thermal Gradient in the Shaft
Nonlinear Steady Morton Effect Analysis
𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
50℃30℃
unstable
unstable
Reduce Oil Temp--
Instability Band Shifts Left
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑
Nonlinear Transient Morton Effect Analysis

More Related Content

Similar to Morton Effect and Bearing Software Flyer

Similar to Morton Effect and Bearing Software Flyer (20)

THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTERTHE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
THE EFFECTS OF BOLT PRELOAD ON VIBRATION AMPLITUDE OF GANTRY CNC ROUTER
 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.
 
D012431621
D012431621D012431621
D012431621
 
B05810814
B05810814B05810814
B05810814
 
Strength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the RobotStrength Analysis and Optimization Design about the key parts of the Robot
Strength Analysis and Optimization Design about the key parts of the Robot
 
Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0Shaped blade centeress_grinding_v0
Shaped blade centeress_grinding_v0
 
New Friction Mechanical Transmission
New Friction Mechanical TransmissionNew Friction Mechanical Transmission
New Friction Mechanical Transmission
 
Gearbox design
Gearbox designGearbox design
Gearbox design
 
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
IRJET - Vibration Analysis Technique for the Diagnosis of Bearing Housing Vib...
 
Design, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable TransmissionDesign, Analysis, and Optimization of Continuous Variable Transmission
Design, Analysis, and Optimization of Continuous Variable Transmission
 
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
IRJET-Split Casing Open Differential without Cross Pin and it’s Comparison wi...
 
Computation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plantComputation of a gearbox for a wind power plant
Computation of a gearbox for a wind power plant
 
Fatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdfFatigue Limit of SPD.pdf
Fatigue Limit of SPD.pdf
 
The comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using feaThe comparative study of die cushioning force in u bending process using fea
The comparative study of die cushioning force in u bending process using fea
 
B013131219
B013131219B013131219
B013131219
 
Design of Helical Gear box
Design of Helical Gear boxDesign of Helical Gear box
Design of Helical Gear box
 
V130403156161
V130403156161V130403156161
V130403156161
 
G012334650
G012334650G012334650
G012334650
 
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLESTATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
STATIC AND DYNAMIC ANALYSIS OF HIGH SPEED MOTORIZED SPINDLE
 
R130302112118
R130302112118R130302112118
R130302112118
 

Morton Effect and Bearing Software Flyer

  • 1. 𝑿𝑳𝑽𝑪𝑬𝑳 𝑻𝑴 Morton Effect and Bearing Simulation Software by Dr. Alan Palazzolo, a-palazzolo@tamu.edu and Mr. Xiaomeng Tong, tongxiaomeng1989@tamu.edu XLVCEL Objective: User friendly software package for prediction of Morton Effect and bearing Dynamic Coefficients with the consideration of 3D fluid film bearings, flexible rotor and 3D heat conduction and convection. Shaft Thermal Bending Induced Synchronous Rotor Instability Problem Double Overhung Morton Effect Single Overhung Morton Effect Dynamic Coefficients Ver. 1.01 2 3tilting pad. fixed pad. pressure dam. flexure pivot[KMC].4 1 2 3 a flexible/rigid pad. b flexible/rigid pivot. c cylindrical/spherical pivot. a b c a b c 1 2 3 4 a b c No MATLAB Required Nonlinear Transient Morton Analysis Nonlinear Steady Morton Analysis Dynamic Coefficient Prediction 1 2 3 4 Nonlinear Transient Morton Analysis Nonlinear Steady Morton Analysis Dynamic Coefficient Prediction Bearing Type Available Options 1.Nonlinear Transient/Steady Simulation for the Morton effect induced instability.  Thermal gradient in shaft and bearing  Parameter effect: oil temperature 2.Bearing Static and Dynamic Solver  3D bearing model with pad flexibility  Rocker/spherical pivot with nonlinear stiffness  Asymmetric film clearance 1. Finite Element Dynamic Rotor Model Supported in Two Nonlinear-Bearings 0 0.2 0.4 0.6 0.8 1 -0.2 0 Z axis (m) Rotor Geometry Check, Red:BRG1 , Blue:BRG2, Black:LIN BRG (m) 1. Finite Element Rotor Maximum No. of Elements = 80 Number of Inputs 19 Number of Elements 19 Input No. ElementNo. Material Group No. Length(m) OuterDiameter (m) InnerDiameter (m) 1 1 1 0.02667 0.197612 0 2 2 1 0.077724 0.113538 0 3 3 1 0.054356 0.082296 0 4 4 1 0.06858 0.082296 0 5 5 1 0.06858 0.082296 0 6 6 1 0.041148 0.122428 0 7 7 1 0.07112 0.357378 0 8 8 1 0.148844 0.122428 0 9 9 1 0.12446 0.184404 0 10 10 1 0.12446 0.184404 0 11 11 1 0.046736 0.1016 0 12 12 1 0.04318 0.1016 0 13 13 1 0.108712 0.093472 0 14 14 1 0.085344 0.082296 0 15 15 1 0.0127 0.11303 0 16 16 1 0.019304 0.50673 0 17 17 1 0.019304 0.50673 0 18 18 1 0.019304 0.433832 0 19 19 1 0.03302 0.282448 0 a. Pads Geometry Pad Flexibility (0:Rigid, 1:Flex) 0 Bearing Load Type (0:LOP, 1:LBP) 0 Number of Pads 5 Pad Arc Length (degree) 56 Offset 0.5 Radius of Shaft at BRG (m) 0.0508 Bearing Clearance, CL_B (m) 7.48E-05 Preload 0.5 Pad Thickness (m) 0.0127 Pad Thickness at Pivot (m) [Cylindrical Pivot] (> Pad Thickness) 0.015 Bearing Length (m) 0.0508 b. Pivot Geometry ( Pad Motion and Stiffness ) Pivot Type(1:Spherical 2:Sphere-in-a-Cylinder,3:Cylindrical) 1 Pivot Stiffness (0: Rigid, 1: Linear+Cubic, 2: Nonlinear) 0 b-1: Linear+Cubic Pivot Stiffness Linear Stiffness Coefficient (x)[N/m] 8.00E+08 Cubic Stiffness Coefficient (x^3)[N/m]^3 0.00E+00 b-2: Pivot Geometry for Nonlinear Pivot Stiffness (not for Dyn.Coeff) [1.Spherical] : Dh [m] 0.01 [1.Spherical] : Ratio of (Dp/Dh) (<1) 0.98 [2.Sphere-in-a-Cylinder] : Dh [m] 0.01 [2.Sphere-in-a-Cylinder] : Ratio of (Dp/Dh) (<1) 0.98 [3.Cylindrical] : Dp1 [m] -Radial 1.24E-01 [3.Cylindrical] : Ratio of (Dp1/Dh1) (<1) 0.8895 [3.Cylindrical] : Dp2 [m] -Axial 2.54E+00 [3.Cylindrical] : Ratio of (Dp2/Dh2) (<1) 0.0000001-0.05 0 0.05 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 X axis MESH AND B MATRIX CHECK PLOT Z axis Yaxis 2. 3D Finite Element Bearing Model 0.04 0.06-0.02 0 0.02 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 X axis frequency =0(Hz) Y axis Zaxis 0.04 0.05 0.06 0.07 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 frequency =0(Hz) X axis Yaxis 0.04 0.06-0.02 0 0.02 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 X axis frequency =33639(Hz) Y axis Zaxis 0.04 0.05 0.06 0.07 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 frequency =33639(Hz) X axis Yaxis NUMERICAL MODELING OF ROTOR-BEARING SIMULATION RESULT -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0 -0.1 -0.05 0 0.05 0.1 80 82 82 78 79 80 81 70 70 80 80 90 90 70 70 80 80 90 90 Temperature Distribution on Bearing and Shaft from Cross View Axial Direction (m) Yaxis(m) -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 Temperature distribution (Celsius) X axis Yaxis 68 70 72 74 76 78 80 60 61 62 63 64 65 58 58.5 59 59.5 60 60.5 61 61 62 63 64 65 66 68 70 72 74 76 78 68 70 72 74767880 82 5859 60 61 62 63 64 65 66 57 58 59606162 59 60 61626364656667 64 66 68 70 72 74767880 68.2 68.4 68.4 68.6 68.6 68.8 68.8 69 69 69 69.2 69.2 69.2 69.4 69.4 69.4 69.6 69.6 69.6 69.8 69.8 69.8 69.8 70 70 70 70 3D Thermal Gradient in the Shaft Nonlinear Steady Morton Effect Analysis 𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 50℃30℃ unstable unstable Reduce Oil Temp-- Instability Band Shifts Left 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 Nonlinear Transient Morton Effect Analysis