SlideShare a Scribd company logo
1 of 69
Download to read offline
1
DSGN143 Integrated System Design
Group 04
Design Report by:
Jake Neilson - 10445608
Tarig Halim - 10432393
Bradley Smith - 10494678
Anthony McNamara - 10451873
Jonathan Loosen - 10423362
Oral Selver - 10476226
Abdul Momen - 10445876
2
Abstract
This report details a design proposal for a new Plymouth university ‘Intelligent building’ for
the Dsgn143 module. The building will be a multi-purpose addition to the university which will
comprise of additional lecture theatres, study rooms, IT facilities and staff offices. This new
building will adhere to the university’s image of being one of the top 50 up and coming
universities in the world and kicking its old metropolitan look.
To begin the report will show the aims and product specification and give an outline of the
project as a whole in reference to this design module. Then the Interested parties involved in
the construction and use of the building, will be discussed. Thirdly the design section will
show other ideas that were discussed in the early stages of the project, as well as an
explanation as to why we chose ‘The Ship’ as our final design. This will be followed with
Computer Aided Design (CAD) drawings, sketches and screenshots of our final Solidworks
model including floor plans for each floor. The systems of the building will then be described
in detail and the purpose of them within an ‘Intelligent Building’. Lastly, the report will
conclude with discussion as to whether the design specification has been met through this
report, the design concept video and finally the presentation of the 3D model.
3
Contents
Abstract......................................................................................................................2
1 INTRODUCTION................................................................................................... 4
2 AIMS ............................................................................................................... 4
3 INTERESTED PARTIES .................................................................................. 4
3.1 Identify the interested parties....................................................................... 5
3.2 Identify the needs (wants) of the interested parties. .................................... 5
4 PROJECT SPECIFICATION ........................................................................... 5
5 THE DESIGN .................................................................................................. 6
5.1 Options Evaluated .......................................................................................6
5.1.1 Environmentally friendly design aspects................................................. 10
5.2 The Chosen Design ................................................................................... 10
5.3 Detailed description of Chosen Design...................................................... 10
5.4 Systems ..................................................................................................... 17
5.4.1 Lighting Systems ......................................................................................... 17
5.4.2 Sound systems ............................................................................................18
5.4.3 Sanitation Systems...................................................................................... 19
5.4.4 Environment Systems.................................................................................. 21
5.4.5 Security System...........................................................................................23
5.4.6 Fire Systems................................................................................................28
5.4.7 Sustainable Energy - Solar Hydrogen systems............................................ 35
5.4.8 Space Saving...............................................................................................42
6 PROJECT PLAN ...........................................................................................43
7 CONCLUSIONS............................................................................................44
8 REFERENCES...................................................................................................... 45
9 APPENDICES REFERENCES.............................................................................. 49
10 APPENDICES ..................................................................................................... 51
4
1 INTRODUCTION
This report will feature an in depth look at the design aspects in regards to the ‘The Ship’.
This will be done by analysing the requirements of an intelligent building outlined in the
project specification and applying these within the chosen design. The project specification
has been drawn from expectations and assumptions made both prior to and during the
project, regarding the design of an intelligent building. A major factor governing the design of
the project will be the wants and needs of the interested parties in relation to ‘The Ship’.
These will be identified within the report and then taken into consideration throughout the
design of the project.
The main focus of the report will be the actual design aspects with a number of preliminary
ideas discussed, including advantages and disadvantages, before deciding on a final design.
This will be followed by a detailed description of the building and floorplans of each floor
within the building.
The systems including fire, security, lighting, space saving and environmental will be
described in detail with appropriate research and some examples of ways in which these
systems will be implemented.
This report will also touch upon the costing of the construction of the building as a whole,
followed by a risk assessment evaluating the potential for error regarding the construction.
The conclusion of the report will discuss whether the project has been a success or not
judged on whether objectives were met and the learning experience of the project.
2 AIMS
The aim of the project was to design an intelligent building that would meet the needs of its
occupiers in that it creates an optimal environment for its purpose. This means that the
building has to be both adaptable and flexible whilst being both functional and efficient. This
can be done in numerous ways including multi-functional open spaces, energy efficiency and
complete systems integration. One of the other key concepts of an intelligent building is to
have reduced maintenance and operating costs but is worth more to its occupants. The
design of ‘The Ship’ has tried to incorporate all these factors in to its design and foremost to
create an enjoyable and comfortable learning environment.
3 INTERESTED PARTIES
In order for the proposed building design to be classified as an intelligent building concept, it
must first be able to provide for the needs of its occupants. For this reason the building was
specifically designed with a select group of people in mind the interested parties. In order to
create the buildings specifications, an assessment of the buildings occupiers must be drawn
together to work out the requirements of the intelligent building.
5
3.1 Identify the interested parties.
As the Building is designed to be a multifunctional university facility, the interested parties
that would be proposed for the project are a narrow field with three separate tiers of
involvement.
The primary parties are those who would be using the building on a regular occasion. The
primary interested parties for the building are Plymouth University Students, Lecturers and
Staff. Secondary interested party members are. For example those who would have access
to the building in off peak periods. For example Businesses, Researchers and PHD/ Thesis
mature students/ post graduates. Final the tertiary interested parties who would be those
who are interested in the building but for their own purposes and would infrequently use the
building.
3.2 Identify the needs (wants) of the interested parties.
The primary parties are the biggest users of the building; students who would be using the
building for daily for revision space, group work areas and lectures. The lecturers would also
be primary party member as they would be teaching in the 3 lecture theatres or assisting
students in the open planned study area. The final group within the primary interested party
members are the staffs who were displaced from Portland villas that for obvious purposes
will be rehomed within the buildings offices.
Within the secondary interested party members are Businesses who would be interested in
the building for its seminar rooms or lecture theatres for those who require space for a large
presentation, as well as the fact that there is plenty of space for advertisement of services
within the buildings floorplan and it is a prime location on site to host business fares to entice
students. Researchers or people doing there PHDs/ thesis post grads would also be
secondary interested parties and use the building in off peak times or who require quiet
spaces to do their work.
Finally the tertiary Interested are those who are interested in the building for their own
purpose and would not be frequently using the facilities; for example the Plymouth city public
who will obviously care about the aesthetics of the building and would care about the
reputation of the university. Another aspect why the public would be invested is that during
summer Plymouth University is known to let out its halls and facilities to summer schools.
4 PROJECT SPECIFICATION
The design specification is an important process for the project brief as it has to represent all
of the intended key features of the building that would be required by its future occupants
needs. Items listed on the design specification must be applicable to any and all of the
design ideas, so that when the buildings initial ideas are planned they are done so with
these requirements in mind. It also is vital to help select the most appropriate building
concept, the requirements for this brief’s designs are:
6
 85 offices to replace the buildings offices that originally stood in the designs footprint
 4 Lecture Theatres for class learning
 20 Study Rooms for group and quiet study/ working
 Café on site
 Toilets on every other floor (both male, female and disabled)
 An IT area solely set aside for computer based working
 A control room to control and monitor the buildings inner workings
 Large reception
 7 Tutorial Rooms large enough to seat over 150 students
 3 Faculty Offices to replace the ones from the pre-existing building
 Open planned
 Well laid out and informative floor plan
 Adaptable working environment
 A challenging & smart design
 Atheistically pleasing
 Modern design that fits in with the target location
 Environmentally friendly/ Energy Saving
 Local
 Benefit populous
 A “Smart House” intelligent systems
 Cost effective
 Efficient use of space
5 THE DESIGN
5.1 Options Evaluated
By deciding to build the building on Portland villas adequate use of spaced, creative iconic
design and energy efficiency were key factors to the design. The first idea (Figure 1) was a
hexagonal building that would contain a consistent floor plan throughout to allow intelligent
use of space and consistent floor designs throughout the building. Although this was
favourable the long but narrow plot of land would not allow space for a symmetrical
hexagonal building.
(Figure 1)
7
The Shape of the land was considered and a long rectangular building was decided with
open study spaces, cafe spaces and office spaces on the top floor (Figure 1). This
incorporated the same modular floor plan idea from hexagon building; however this lead to
the problem of the building being a standard rectangle building. This did not fulfil the iconic
design requirement for the project.
(Figure 2)
8
Second sketch of a possible building design where the standard rectangle shaped building is
incorporated.(Figure 2)
For iconic aesthetic purposes that would fit in with the ethos of the city a building
shaped like a ship was designed (Figure 3 – 3a Drawings). The first exterior Solid-works
model was made (Figure 4), however the initial plan did not translate into an iconic design as
the reverse ‘bow’ and straight sided office tower did not exude the visualisation of a ship and
had to be re-designed.
(Figure 3)
(Figure 3a)
9
(Figure 4)
Figure 5 shows a developed version of figure 4. The previous design shows tower walls
being straight, Figure 5 shows that the tower being angled and fully developed ship. The
straight ‘bow’ of the ship increased the useful floor area and made the overall design less
complex (Figure 5). The floor area decreases the further up the building goes. (Figure 6)
(Figure 5)
(Figure 6)
10
5.1.1 Environmentally friendly design aspects
A fuel cell would be chosen to supplement or completely supply the electrical needs of the
building. The initial was the 160 KW Bloom box that would cost between ($700,000-800,000)
operated off of methane (Quick, 2010) and convert excess heat into electricity stored in
batteries. However this option was too expensive, inefficient (Appendix – 7
Reconsiderations-Thermos) and continued to produce small amounts of CO2.
The final design utilises a solar-hydrogen system that uses cheaper (£ 660/KW) and more
efficient Redox Fuel Cells instead and heat for passive building utilities and services
(discussed in Chosen Design).
5.2 The Chosen Design
The final Ship idea (figure 4) was chosen to be taken into development this was because the
design the most fitting when compared to the project specification. With the Ship shaped
building the iconic aspect was fullfilled as it looked as though it was sailing out into the
adjacted round about space to motorist passing by. It also encompised the space and
environmental functionallity of the previous design conciderations.
5.3 Detailed description of Chosen Design
The final chosen design constructed via Solid Works (Figure 7).
(Figure 7)
The heights of each floor was decided to be 4 metres high for each level, with a 1 meter
space between the floor and drop ceiling to allow space for ducting, plumbing and electrical
conduits to occupy. The rear section of the ground floor was required 8m high in order to
accommodate adequate floor height for the (3) lecture theatres from floor to ceiling. (Figure
8)
11
(Figure 8)
(Figure 9)
Figure 9 shows the reason why with the office tower were tilted at a 102.68 degree angle. In
order to increase the amount of sunlight to enter the building year round reducing lighting
cost. However the solar panels play two roles and act as shades to prevent excess sunlight
from overheating the building during the summer months. The angled sides act to increase
surface area and a rain water guide to increase the amount of water collected by the building
and channelling it to the tank reservoir.
Ground floor layout description
The ground floor of the building has been produced so that it had the tallest ceilings in
comparison to the rest of the building where half the floor has a height of 8m this has helped
to design a visually appealing open space floor plan, which produces a sense of freedom to
12
move freely, this also helps to integrate the ideology of an intelligent building. The group had
come to the conclusion that the following features needed to be implemented on this floor:
lecture theatres, faculty offices and the reception.
There is a total of three lecture theatres in this building were two have taken the shape of a
rectangle. The third lecture theatre is much larger but this was produced with the intention
that it can be split up into two smaller lecture theatres, this is in the shape of a semi-circle
holding a much larger capacity, the benefits of this would not only cater for the more
populated university subjects it can also be used to host large events such as university
open days. All lecture theatres are situated the back of the building were the height of the
building is at its highest as shown in figure 10. As mentioned before the building needed to
accommodate for all the offices and faculty offices that were located in the current Portland
Villas building. Currently Portland Villas hold two faculty offices these will be presented on
the ground floor. The faculty offices are produced these are situated near to the middle
section of the ground floor as shown in figure 10. A circle shaped reception will be situated at
the front of the ground floor. There are four entrances to the building two on each side as
shown in figure 10 each entrance will have a revolving door to prevent heat loss alongside a
conventional door as shown in figure 10.
Figure 10 Floor Plan for Ground Floor
13
First Floor
The first floor of the building will consist of 10 medium size study rooms aimed at students
doing group study or for the use of small tutorial sessions. These rooms will be bookable
through the university website to allow students to reserve study space. The open area at
the front will have more seating that can be used for study or socialising. Included on this
floor will be the systems control room, this will act as the central hub in which all the fire,
security and safety information is processed and monitored. Below is an image of the
floorplan.
Control Room
Figure 11 Floor plan of First
Floor
14
Second Floor
The second floor of the University building will be focused on study space for students.
There will be 6 large study rooms, varying in size, which will offer the much-needed group
study areas. (Located at the back of the building) The front half of the floor will consist of
many tables, to offer individual/small group work with the rest of the space being taken by
computers, some relaxation areas and the toilets. Below is the floor plan for this section of
the building.
Figure 13
15
Café
The café will be in place in order to offer food and drink both to students and staff and also
as a place to socialise without disturbing others. The café will have small kitchen facilities but
it will mainly serve cold food and drinks. Being situated on the third floor and with large glass
windows the café will have appealing views across the city. Shown below is an image of the
solid works model for this section of the building.
Figure 14
16
The offices
The ship will be built in the location of the existing Portland Villars. Currently the Portland
Villars is used as office for university staff. The ship will create a total of 88 offices which will
replace the existing offices in the Portland Villars and also create some spear offices which
will allow for expansion of the university in the future.
The offices will be located over four flours and will be in the tower at the rear of the ship, as
shown in figure 15.
Due to the irregular shape of the ship, the dimensions of each office do slightly vary for one
another. However each office is approximately 5mx8m. Below, figure 15.1 shows a typical
office. The full office dimensions can be found in the appendix.
Figure 15
Office
Figure 15.1
17
Figure 16: Leviton, 2014. Occupancy sensor:
OSC05-RMW. Available at:
http://www.leviton.com/OA_HTML/ProductDe
tail.jsp?partnumber=OSC20-
RMW&section=38563&minisite=10251
Figure 17: Amazon, 2015. Philips 433227 60
Watt Equivalent SlimStyle A19 LED Light
Bulb Soft White, Dimmable. Available at:
http://www.amazon.com/exec/obidos/ASIN/B
00I134ORI/ref=nosim/6688506-rg1112-0020-
20?s=merchant&m=ATVPDKIKX0DER
5.4 Systems
5.4.1 Lighting Systems
Purpose
Intelligent Lighting systems will be used throughout the building to help save energy and
create a comfortable learning environment.
Motion sensors
Occupancy sensors (commonly referred to as motion sensors), will
be installed throughout the building. These sensors will
automatically turn the lights on when motion is detected within a
room and then switch the lights off once the motion stops being
detected. The occupancy sensors used will be the OSC20-RUW by
Leviton which is shown in figure 16. These sensors use a
combination of passive infrared and ultrasound to detect
motion and can be mounted to a ceiling. They provide a large
coverage through 360 degrees, making them useable in all
the rooms throughout the building. They cost approximately
£100 per unit which although is relatively expensive, will help
save energy and hence save money in the long run.
Energy efficient LED lightbulbs
Energy efficient LED lightbulbs will be used throughout the building.
The lightbulb used will be Philips 433227 60 Watt Equivalent Slim
Style A19 LED which cost just over five pounds per bulb (Amazon,
2015).
Studies have shown at these lightbulbs are almost six times more
efficient that Incandescent bulbs and over four times more efficient
than Halogen bulbs (Wikipedia , 2014).This will help preserve energy
and in doing so save money as support the universities
environmentally friendly image.
18
Figure 18 screwfix, 2015. British General 1-
Gang 2-Way 400W Push Dimmer Switch
White.
Available at:
http://www.screwfix.com/p/british-general-
1-gang-2-way-400w-push-dimmer-switch-
white/65335
Figure 19
Christil Glass, 2014. Price
Calculator. [Online]
Available at:
http://christieglass.com/pricecalc
ulator.php
Natural light and remote control blinds
The design of the ship was created to best optimise the use of natural light sources. The
outside shell is made using clear glass which is transparent to let light enter the building. The
level of natural light entering the building can be reduced if necessary by
using remote control blinds.
Dimmer switches
Dimmer switches will be installed throughout some rooms of the ship to
select the desired level of lighting in the room. Lecture theatres
will have dimmer switches installed which will be used, for
example, when presenting PowerPoints from a projector. The
switches cost £9.40 per unit (screwfix, 2015).
5.4.2 Sound systems
Purpose
Sound systems will be installed throughout the ship to help remove
unwanted noise and to increase the clarity of vocal communications.
Unwanted noise pollution will be reduced using sound absorbent
materials in the construction of the building and also with the
instillation of high quality double glazed windows. Double glazed
windows can be supplied through a company known as Christil
Glass and will cost approximately £50 per m2 (Christil Glass, 2014).
Sound systems such as microphones and speakers will be installed
throughout lecture theatres to help increase communications between
the lecturer and the students. Tannoy systems will also be installed
which can be used for wide range communication across the building.
19
5.4.3 Sanitation Systems
Purpose
The purpose of sanitation systems is the use of intelligent devises and methods such as
recycling to reduce waste, which in turn reduces cost. Sanitation refers to the safe disposal
of human excrement and also the maintenance of hygienic condition through waste water
disposal (World Health Organization, 2015).
Rain Water Toilet Flush system
This is a system currently used on campus in the Roland
Levinsky building. This system works by collecting rain water
while working alongside the typical water mains to flush the
toilets within the building simple system of this is shown on
figure 5. This helps to cut cost as water bills would reduce.
These systems tend to cost next to nothing to implement
Waterless Urinals system
The use of waterless urinals is becoming very popular in many
industries and organization it helps to reduce water consumption
and also reduces the amount to waste water produced. Aquafree
Urinal maintenance Device cartridges cost £24 per unit and last
around a 3 month period however can be bulk bought for a
friction of its cost.
Figure 20 James L 2007 avalable at:
http://www.greenliving.co.uk/pdc04/week5/week
5.htm
Figure 21 Gent works 2015 Avalible at:
http://www.gentworks.co.uk/aquafree-
urinal-maintenance-device-
cartridge.html?gclid=CMOO17aDisQCFQ
LMtAodBFgAhA
20
Heated Taps system
The use of a, at the source heated tap system would be
beneficial as it would allow the instant flow of hot water
when required. This is very economical in comparison
to the conventional boiler system that uses pipe lines
across the buildings to transport hot water, as the
heated water via the conventional system would lose
heat energy during transportation, Also when the taps
are not in use the heated water would be sat in the pipe
lines and this will eventually lose all heat energy and be
regarded as waste and overtime this can be costly.
Boiling water tap system will work perfectly and the
temperature can be adjusted so that the water
dispensed is the perfect temperature. Simple models
such as the SST-FLTR 2/3-Gallon Stainless Tank and
Filtration System can be bought from Purbeck
Plumbing & Heating at a unit cost of £272.95
Double Toilet Flush System
The double toilet flush system is a very cost effective way to
save money. An average flush uses around 13 liters of water
however the double flush system has that option but also come
with an additional feature, the smaller button is a lighter flush
using only half the water in comparison to large flush this
alternative is used when a large flush is not required. The
product UNIVERSAL Push Button Dual Flush System can be
easily purchased from Bathroom Technology at a unit cost of
£17.25
Figure 22 Insinkerator 2014 Available at:
http://www.purbeckplumbingandheating.co.uk/insinkerat
or-model-sst-fltr-23-gallon-stainless-tank-and-filtration-
system-10014-
p.asp?gclid=CIK6p9rkk8QCFRQatAodP1gAuw
Figure 23 Bathroom Tecnology 2015
Avalible at:
http://www.bathroomtechnology.co.u
k/shop/universal-spare-parts/wc-
waste-spares/universal-push-button-
dual-flush-
1094458.html?gclid=CNyh06nmk8Q
CFcPKtAodyDkA_Q
21
Figure 24 Heat loss in a building, (2015).
Available at:
http://www.avantcoatings.co.uk/Images/EWI_35P
ercent_Wall_HeatLoss.jpg
Figure 25 Air flow in a building 2015 Available at:
http://ad009cdnb.archdaily.net.s3.amazonaws.com/wp
-content/uploads/2011/10/1317665184-section-
natural-ventilation-1000x666.jpg
Figure 26 Planitherm.com, 2015 Available at:
http://www.planitherm.com/assets/TripleGlazingGRAPHICLarge_
1.jpg
5.4.4 Environment Systems
Purpose
Plymouth University has well-known reputation of a green
and environmentally friendly university around the country
so therefore it’s really important to match or even stretch
the reputation. One of our biggest concerns when
designing an intelligent building was the effective use of
heating and electricity. After completing research its clear
to identify which part of the building heat lost was a major
problem.
There are a number of control devices that will help
contribute to the environment. These controllers will turn
off light and heat when no one is using the room or part of
the building. This will reduce the cost of running and
maintaining the building.
Ventilation
Its a key part of the building as it exchanges fresh air into
the building which helps to protect the building against
damp and condensation. Unneeded ventilation can wasted
a huge amount of energy which will cost the building a lot
of money. Energy lost is one of the biggest concern for
most modern building with 35% of heat is lost through
ventilation. Unfortunately ventilation can waste energy
meaning costing the university a lot of money. The cost of
each ventilation is £6000. [2] Inserting high efficient fans
and motors can reduce 10% of heat lost due to less
resistance when operating, they need to be replaced
throughout the years as they do slow down and lost their
quality over the years. As you can see from figure 3 below that cooler air enters the building
through windows for a sense of comfort to the building whilst hot air raises and escapes
through ventilation fans.
Windows
Windows are another big issue when heat is
wasted from the building with 16% of the total
heat lost. This is why pressure is constantly
growing in making glass windows more
energy-efficiency to a point where double
glazing will no longer be useful in the future.
So it clears that triple glazing windows are the
Formatted: Font: (Default) +Body CS (Arial), 11 pt, Font
color: Black
22
new futuristic energy saving windows. They are good for the environment because it
maintains its ideal room temperature of 21 degrees. Windows contribute to a large amount of
heat lost. But after researching and comparing triple and double glazed windows it was
concluded that the payback time is very high compared to double glazing. The cost of triple
glazing is considerably high and only absorbing an extra two degrees which means that
payback time is a longer than double glazed windows.
Plants
Plants are important features of a green building. It bring a friendly touch of open space to the
building with the feeling of comfort of rich oxygen in the air. Oxygen being released from
plants through the respiration system whilst carbon dioxide is taken. Reducing the level of
CO2 will help with global warming. Global warming's is having significant and harmful
effects on our health and climate. Sea level is rising faster than ever, the number of
deforestation is alarming, dangerous heat waves are becoming more common, extreme storm
and draught events are increasing in many areas. The ship building will include an outside
cafe that will be surrounded by plants and grass.
Rainwater system
Rain water is the collection, storage and distribution recycled
rainwater, for the use of various different residential or commercial
environments. Rain water collection is another part of the building
which help influence to the environment with an average of 85,000
litres of rain water falls on building roofs in UK each year with many
benefits such as Significantly reduce mains water usage by 70%,
offers large saving on utility bills. Toilets and water cooling system
would benefit the most from this system. The cost of installing the
entire system could cost up to £2500 and saving £175 per year
which results payback time of 15 years. This is a worthwhile
investment to have in the ship building.
Figure 27: Plants Respiration
System 2015 Available at:
http://tomatosphere.org/teachers/gui
de/images/cycle1.jpg
Group 4: Intelligent building
23 | P a g e
5.4.5 Security System
Purpose
As with any building, security plays an essential part in the design. But as the concept for
this building is an intelligent floor plan, it is even more crucial as one of the fundamental
descriptions that encompasses an intelligent building is that it provides for its users in all
aspects of their required needs meaning it is vital that the buildings users are kept safe while
going about their business. Due to the fact that chosen location is situated on the university
premises and the function of the building making it very open, public and would be highly
used. Pair that with the one of the aims of this building was to be a highly efficient
environment, even at peak times in the day when the student population would access its
facilities, which could make it a target for vandalism, theft and more importantly an act of
terrorism because of these possible threats an advanced network of integrated security
systems must be installed to provide countermeasures to disasters as well as reduce and
prevent the possible risks/ opportunities of risk.
To ensure the safety of the students and staff on site, there will be members of staff
stationed within the building during opening hours, this would include; members of a security
team, receptionists, and maintenance/ cleaning staff, and a reduced number nearby to watch
over the building after hours which would solely be made up of security staff and caretakers.
Key card
It was decided during the preliminary development
stages that the intelligent building would use some of the
technology already incorporated throughout Plymouth
University such as the student cards that are used for
attendance, printing and to gain access to the library
would also be suitable to use in the intelligent buildings
design also.
It was essential that a key card system was established
within the building, with staff and student cards
programmed with a tier system, for example the staff
tiers could be broken down into lectures, maintenance,
security and administrative staff, that gives the user
access to specific rooms depending upon what tier they
are, it would also track them throughout the building by
recording what rooms the owner of the card scanned to enter or exit and sending a message
to the site’s server room (e.g. [time stamp] [card number] [card tier] entered/exited [room])
but just like other already existing student cards it would have addition purposes like signing
into computers, access to printers and other onsite technologies and monitoring attendance
in the site’s lecture halls.
Each tier of card would be programmed with a list of zones within the building that its owner
would be granted access to. Some areas of the building would be restricted to certain tiers,
such as people in the possession of a student key card could not access maintenance
Figure 28 Carter DC. 2010, Avalable at:
http://www.ecampusnews.com/technolog
ies/university-pushes-for-better-
attendance-with-electronic-scanners/
Group 4: Intelligent building
24 | P a g e
cupboards etc. Whereas, a member of the maintenance staff with maintenance tier key card
would be able to enter the maintenance cupboards.
The key cards will be using a traditional system of a magnetic “swipe” strip along the back as
well as a photo, barcode, a tier representative colored stripe running along one edge and
printed information on the front. However with the advancement of technology soon this
system would most likely be upgraded to an RFID (Radio-frequency Identification) tagging
system, this would not change the way the card functioned.
The way the cards will work, is that once the card is swiped or scanned by a reader, located
next to the door or on the machine, the information that has been programmed on card is
sequenced and read. The access control system located within server room will check the
information presented by the card and confer whether the door is opened/ machinery being
accessed is present on the list of accessible objects to that individual then it will grant them
access. However, if the object trying to be accessed isn’t on the list, the computer will reject
the command and no signal will be sent to the door meaning that it won’t open.
There are many benefits to using this method of security. The cards are waterproof so they
do not suffer from getting wet, they are also less prone to malfunction; therefore, not causing
so many inconveniences for the buildings users.
Security Doors
All doors will consist of a steel frame as well as a metal mess set within the body of the door
and a synthetic non-flammable plastic to ensure strong doors that are lightweight but also
function as a fire door. They will also be held in a metal door frame with heavy duty hinges to
prevent buckling from impact or heat. The door will be kept closed by electronic magnetic
locks. This helps to keep unauthorised individuals out of restricted areas, as the door will
only be released if the appropriate tier of key card is scanned. In the event of a fire all locks
throughout the building, will be released allowing all doors to
be freely accessed by anyone in the building.
Surveillance
Surveillance is another critical system required within an
intelligent building. A closed circuit television (CCTV) system
will be fitted to provide visual evidential security to all those
visiting within the building, as well as allowing security to
monitor multiple zones from one room.
There is a multitude of advantages to having surveillance
located around the buildings premises, such as it could
potentially reduce the likelihood of crime within and around
the building and all areas covered by CCTV, which would
hopefully give the feeling of a safe environment. Another
benefit is that if a crime does occur the CCTV cameras will aid in any situations where
suspicious behaviour is occurring or evidence is required.
Due to the scale of the building there will be a number of cameras situated around the
building, collecting footage. The system will consist of internal and external cameras. The
Figure 29 Huang, JH. (2012) Available
at: http://www.hd-
cctvcameras.com/china-
hd_sdi_cctv_high_speed_dome_camera
_cmos_illumination_0_3_lux_f1_2_12v_d
c_1a-358681.html
Formatted: Font: 11 pt
Group 4: Intelligent building
25 | P a g e
internal cameras will be connected to low voltage power supplies to allow them to run 24/7
without fear of being a drain on the buildings power supply. The power supply units will be
specific to each floor and then the separate systems will be connected to the main control
centre allowing the video footage to be recorded and viewed.
Whereas the external cameras have a motion tracking function as well as being motion
sensitive, meaning they will only activate when movement occurs, then they will follow the
motion until it goes out of range.
All the cameras fitted within this building will be using P.T.Z. (pan, tilt or zoom) dome
cameras. This will allow staff to track intruders or monitor suspicious behavior, as these
cameras are able to move vertically, horizontally and zoom. Each one of these CCTV units
will be sending information directly to the buildings control center without the need of
additional cameras. External cameras will require an infrared (IR) function to cope with
limited light between dusk and dawn. All cameras internal and external with have a backup
power source in case of a power cut.
CCTV cameras will have to be place strategically around the site to maximize observation
and it is critical that no areas are un-monitored expect the offices on the upper levels.
As there is going to be multiple camera set ups on different loops, monitoring all areas of the
buildings and grounds, however it’s not possible for someone to be viewing all the captured
footage whether it’s live feed or captured footage at the same time.
There are several ways to overcome this problem. One is by heavily controlling the rate at
which footage is captured, another is viewing it on a multi-screen in the control room to
choose which specific camera they want to view, there is also the stockpiling of footage for
use in a later on but the main solution to this is have the cameras cycle through a loop
spending 10 seconds on each camera and making sure the cameras are only on when
needed and not running unnecessarily.
Security shutters
As the library is open 24 hours a day, 7
days a week, 365.25 days a year, the
building will not also be open to the same
length of time as this seemed inefficient
instead a 6am-10pm open time slot, 7 days
a week, only during term time was deemed
more appropriate in order to support the
other university buildings instead of making
them obsolete. However certain zones
within the building will shut down at
different times to save energy, for example lecture periods start at 9am and end by 6pm so
the lecture theatres will be open between the periods of 8am – 7:30pm. Once areas are
closed industrial rolling security shutters will be lowed over the doors to seal them off and will
only lift just before it is time for the lecture period to begin.
Figure 30 Cetra (2015), Available at:
https://cetrasecurity.co.uk/productsandservices/rollershutt
erdoors/cetravision-800
Group 4: Intelligent building
26 | P a g e
Tannoys & intercoms
Tannoys & intercoms will also be installed allowing staff to view
and talk to the occupants of the building. Tannoys would be
used to inform everyone within the building/ on a specific floor
or within a certain zone of events. Whereas intercoms would be
used identify personnel before they are given access to the
restricted areas of building. There will also be an intercom
installed to allow conversations within the building between
staff.
Control centre/ Security office
Located on site will be a small secure office for members of security, it will be positioned
next to the server room and will house the surveillance station.
Intruder detection
Intruder detection is a key factor in any security system. As
it’s not possible to manually patrol the corridors at all hours
of the day, infrared motion sensors will be fitted in all rooms
that as well as working to turn on lights and sense when to
turn them off, and when the room has been locked, will also
function as a way of triggering alarms that will alert the
university security and the local law enforcement. Doors
and windows will be fitted with be alarmed and have
electromagnetic locks that activate when the room is not in
use, so that entry is broken, security will be notified that
someone has gained unauthorized access.
Flood lights with infrared sensors will also be fitted around
the outside of the building to light up poorly lit areas when
motion occurs in order to detect if anyone is in areas where they aren’t allowed to be.
Personal safety
Personal safety is a passive self-security set up in order to protect the buildings users from
accidents, mishaps or self-harm, although it isn’t extremely crucial as it’s a passive system it
is still a nice touch to emphasise a safe working environment. The building will use the latest
in construction materials, in this case high specification safety glass designed to be anti-
shatter without the use of a pin hammer applied to the corner of the frame. The windows in
the building will be anti-suicide windows meaning that they are small openings located on
Figure 31 Samsung Smart Home
(2015), Available at:
http://www.digitaldoorlocks.com.au/
product-category/video-
intercom/samsung-apartment-
units/)
Figure 32 Direct Industry (2015),
Available at:
http://www.directindustry.com/prod/ta
kex-europe/motion-detectors-
passive-infrared-ceiling-mount-
14273-737309.html
Group 4: Intelligent building
27 | P a g e
the top half of the glass panel exterior walls, they open upwards and have a limited opening
capacity to prevent people from falling out of them.
There will be a first aid station on site to provide medical support to those who injury
themselves on site. Action plans will also be implemented and carried out rigorously to
prepare for any eventuality that may arise.
Furniture in the building will have a curved design, such as rounded edges on tables to
prevent injury. Anti-slip material strips will be place outside all exits, on all fire escapes and
on all stairs to prevent accidents in the wet.
Light emitting diode (LED) displays stall be set up all over the site to keep the buildings
users of what’s going on in their university as well as the community (like a rolling notice
board), but in the event of an emergency can be overridden to provide useful information in
the event a fire etc. because of the application each one needs to be wired into a back-up
power supply (the same as CCTV).
28
5.4.6 Fire Systems
Purpose
The Fire System in ‘The Ship’ university building will have to comply with British Standards
BS5839, Meaning that the system has to protect the occupants of a building from the
occurrence of a fire. This system has to be certified before occupants can use this building.
The system has many roles to play in keeping occupants safe from any fires, which may
occur in the building. It has to firstly alert all occupants about the fire and allow them to leave
the building safely, as well as preventing any spreading of fire or smoke. The system also
has to keep the buildings damage to a minimum.
Fire System Design
The design will all comply with BS5839, as this states there must be a minimum amount of
fire detectors, fire panels, alarms, call points, fire extinguishers, sprinklers/shutters and fire
doors. These will all be correctly fitted and placed at correct heights and distances apart so
that the system will conform to all regulations. There will be detailed floor plans that will
illustrate how much equipment will be used later on in this section.
Fire Detectors System
As detectors are the first sign of a fire occurring, these will be placed across the whole
building. However, there will need to be both smoke and heat detectors used in ‘The Ship’.
This choice was made due to the fact that smoke detectors can be located in all offices,
group study areas and the whole bottom floor. Yet, in the café there will need to be heat
detectors instead, as the hot beverage or cooking appliances may result in smoke, leading to
false alarms.
The smoke detectors that will be
used are Apollo XP95 Optical
Smoke Detector (Addressable),
which are priced at £28.79 per unit
and are approved by the British
Standards of fire safety and
regulations. This optical smoke
detector is part of the Apollo Series
65 range. When smoke enters the
chamber it causes an LED light
pulse to scatter, which causes the
detector to change to the alarm
state. (Safelincs, 2015). The
sensing element will be in between 25-600mm below the ceiling to conform to BS5839, as
shown in figure 1. (Apollo, 2013, pp.4)
Figure 33 Apollo, 2013. Available at: http://www.apollo-
fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.4)
Group 4: Intelligent building
29
The smoke detectors will also have to be positioned correctly. They have a maximum range
(radius) of 7.5m from the detector, and have coverage of 112m3
. The building will have
detectors over lapped to monitor every part of the floor. (Apollo, 2013, pp.6) The coverage of
smoke detectors can be seen in figure 2, which will be implemented into this building.
The heat sensors that will be used in the café will be Apollo Discovery Heat Detector
(Addressable), which are priced at £31.91 per unit and area approved by the British
Standards of fire safety and regulations. ‘Incorporating a fixed temperature response for all
modes, the Discovery heat detector can also be configured as a rate of rise unit. The Apollo
heat detector uses a single thermistor to sense the air temperature.’ (Safelincs, 2015)
The sensing element will be in
between 25-150mm below the
ceiling to conform to BS5839, as
shown in figure 3. (Apollo, 2013,
pp.4)The heat detectors will also
have to be positioned correctly.
They have a maximum range
(radius) of 5.3m from the detector,
and have coverage of 56.3m3. The
building will have detectors over
lapped to monitor every part of the
café. (Apollo, 2013, pp.6) The
coverage of these sensors can be
seen in figure 4.
Figure 34 Apollo, 2013. Available at: http://www.apollo-
fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.6
Figure 35 Apollo, 2013. Available at: http://www.apollo-
fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.5
Group 4: Intelligent building
30
Fire Panel Systems
The university building will have an automated fire control system, so when an alarm is
triggered it will identify the location, close vents, open fire doors and any other actions
required. An addressable fire alarm panel will control this, which use an intelligent system
that identifies the exact detector that
has been activated, so the precise
location of the fire will be known.
A ‘XFP Addressable Two Loop Panel’
will be used in the building, which is
£743.99 per unit. This also fully
complies with EN54 standards.
(Safelincs, 2015)
Figure 36 (Apollo, 2013. Available at: http://www.apollo-fire.co.uk/media/57203/bs-guide-final-
locked.pdf, pp.6)
Figure 37 (Safelincs, 2015) Available at:
http://www.safelincs.co.uk/xfp-addressable-two-loop-32-
zone-panel/
Group 4: Intelligent building
31
Fire Alarm Systems
The fire alarms will be evenly spread across all floors and coincide with BS5839 fire safety
regulations. As shown in figure 5, ‘the minimum sound level of a sounder device should be
65dB(A) or 5dB(A) above a background noise (if lasting more than 30 seconds) and at a
frequency between 500Hz and 1000Hz. The maximum sound level should not exceed
120dB(A).’ (Cooper Lighting and Safety Ltd, 2002) The alarms used will be Apollo XP95
Open Area Weatherproof Sounder, which is designed to work with the XFP addressable fire
alarm panels. It has a nominal sound output of 100dB and is priced at £39.59 per unit.
(Safelincs, 2015)
Manual Call Points
Manual call points will be on every floor of the building and
‘are required at all exits to the open air-whether or not the
exits are specifically designed to be fire exits unless, for
example, the exits lead to an enclosed courtyard from which
there is no escape.’ (Apollo, 2013, pp.17) They are there so
occupants can manually set off, an alarm, before sensors
automatically trigger it. Also, the call point will be positioned
1.4m from floor level to comply with BS5839 regulations.
They will also be located so no person has to travel more
than 45m to reach the call point. (Apollo, 2013, pp.12) The
Apollo Discovery Manual Call Point with Isolator (Figure 7)
will be used in the building, which is priced at £33.59 per
unit. (Safelincs, 2015)
Figure 38 (Cooper Lighting and Safety Ltd, 2002. Available at:
http://www.cooperfire.com/sites/default/files/docs/CC1608_Fire%20Systems%20Design
%20Guide.pdf, pp. 4)
Figure 39 (Safelincs, 2015)
Available at:
http://www.safelincs.co.uk/apollo-
discovery-isolated-manual-call-
point/
Group 4: Intelligent building
32
Fire Extinguishers System
The building will have fire extinguishers available to all occupants of the building to address
any small fires that may occur, without the need to use any building systems such as
sprinklers. Figure 7 below shows the different types available, the building will have
appropriately placed extinguishers
where necessary.
The building will consist mainly of dry
powder extinguishers as they cover
almost all fire types. However, in the
café there will be wet chemical
extinguishers as well, due to there
being oil and fat in the cooking
facilities.
A 9-litre extinguisher costs:
(Safelincs, 2015):
Water: £25.19
Foam: £35.99
Dry Powder: £35.75
L2: £275.51 (N/A)
CO2 Gas: £83.39 (5 Litre)
Wet Chemical: £104.15 (6 Litre)
Fire doors/exits System
Due to the open plan nature of the building, the number of doors inside is low. However,
there will be fire doors for control rooms and any other rooms that require them. The
specially treated doors help them to burn for longer and suffocate fires by stopping the
airflow to them. This all helps to increase the time that occupants have to leave the building
and give fire longer to fight it. The standard FD30 fire doors that will be used in this building
offer 30 minutes of fire protection and are priced at £75.59 per door (Safelincs, 2015), the
fire exits in the building will be marked by an emergency exit sign above the door, to show
the location of any fire exit near to an occupant of the building.
Figure 40 (Fire and Safety Centre, 2015) Available at:
http://www.fireandsafetycentre.co.uk/fire-extinguisher-
chart.php
Group 4: Intelligent building
33
Ventilation System
There will be a ventilation system in the building to control airflow within the building. This
can also be used within the fire system, as when a fire is detected the ventilation system can
stop airflow around the building. Resulting in fires being suffocated, as they are given no
fresh oxygen to keep the fire burning, and the spread of fire is greatly reduced
Below are the ground, 1st and café floor plans for the fire systems that will need to implement
into the building to meet fire safety regulations.
Key:
Smoke Detectors
Heat detectors
Fire Panels
Fire Alarms Bells
Manual Call Points
Fire Extinguishers
2nd
Floor
Key:
Smoke Detectors
Heat detectors
Fire Panels
Fire Alarms Bells
Manual Call Points
Fire Extinguishers
Ground
Floor
Group 4: Intelligent building
34
Key:
Smoke Detectors
Heat detectors
Fire Panels
Fire Alarms Bells
Manual Call Points
Fire Extinguishers
Café
Group 4: Intelligent building
35
Figure 42 (Panel Locations)
5.4.7 Sustainable Energy - Solar Hydrogen systems
Purpose
The Ship will incorporate a solar- hydrogen energy system to meet the electrical and thermal
needs of the building services. This system will fall in line with the Plymouth low carbon city
target by being 90-98 Percent renewable (Department of Energy & Climate Change (DECC),
2013). When hydrogen is used as a fuel the only bi- products are water, heat and electricity;
making this system carbon neutral; an example The Sir Samuel Griffith Building (AUS).
(Chris Menictas and Skyllas-Kazacos, 2014)
Considerations
Due to the useful floor space being
11066.4m2
a dedicated control
facility on the First Floor will house
automatic electricity and gas meter
reading. (Portal and Government,
2014). the output of the renewable
energy system will be separately
monitored and calculate the energy
usage to the Building Management
System (BMS). (Portal and
Government, 2014) Ensure that
Solar availability of solar energy
year round in Plymouth being
between 2.5-19 MJ/m^2(Met Office
(2014)(Figure 41)
Stage 1 – Solar
The system begins with photovoltaic array on the roof and
linear sides Figure 42 of the building that face south and
south west. These locations have the least amount of
shadow cover from surrounding buildings such as Rolle and
Babbage; these features increase the amount of panels
exposed to the sun throughout the day [Figure 43 & 44].
Figure 41 (Met Office (2014) ‘UK Solar Radiation Maps’.
Available at: http://www.metoffice.gov.uk/renewables/solar.
Group 4: Intelligent building
36
BA
Figure 43- Shadows exposure during summer (A) and winter(B)
A
B
Figure 44- Shadows exposure during morning (A) and evening(B).
The amount of roof space and side exposure is (m2). Monocrystalline 240W Sanyo (HIT-
N240SE10 Model) panels will be applied and have the performance of 190 W/m2 at a cost of
£ 298.7 (Swithenbanks Alternative Energy Ltd, 2014). Total panels are 1363 this translates
to a 258 Kw solar array. Monocrystalline panels have the highest efficiency 6-9 /1 KWp per
meter 2. Although they have a high cost they have an efficient uses of small available space.
(Maehlum, 2013)
B
Group 4: Intelligent building
37
Figure 45 (Sunny Clear System Operation)
Group 4: Intelligent building
38 Figure 48 Redox Cube Fuel Cell (Clark,
2013)[10] Available at:
http://mtech.umd.edu/news/press_release
s/redox_wachsman_fuel_cells.html
Figure 47 Solid oxide Operation (Bierschenk,
Wilson and Barnett, 2011) Available at:
http://pubs.rsc.org/en/content/articlelanding/201
1/ee/c0ee00457j#!divAbstract
Or Air
Mode
SOFC
Figure 46 (Cloudy/ dark system operation)
Stage 2 - Solid Oxide Electrolysis Cell (SOEC)
A (SOEC) will use 30% of the solar energy provided to
electrochemically split water into hydrogen and oxygen.
6 Redox Cubes 25 KW fuel cells will be used in reverse
operation. (Tao and Virkar, 2006) (Figure 47)
During high insolation and hydrogen production months
(May- September) the excess hydrogen produced will be
stored long term to supplement the hydrogen demand for
the fuel cells in the low insolation months (Nov - March).
The Redox Cubes cost $1000/KW (Clark, 2013).
Group 4: Intelligent building
39
Rain water collected from the roof top can be in the system. This use of free water reduces
water consumption from water service provider.
Water produced from the fuel cell 22 kg per hour can also be condensed stored and recycled
for the electrolysis process. (Appendix for calculations)
Stage 3 - Fuel Cell
When the fuel cell is ran off of hydrogen it is 100% green, as there are no greenhouse
gasses produced during the reaction. This was a major deciding factor for a sustainable
energy production approach as the only by products are water vapour, electricity and heat.
Redox Cube (80 KW) in fuel cell mode will be used to convert the stored hydrogen and air
into electrical power and heat. During operation heat (approx. 3333KW) is released, this heat
was decided to be utilized in the heating, climate control and ventilation systems in the
building.
During the operational reaction the fuel cell reaction is exothermic (Heat is released), by
capturing the heat generated overall system efficiency increase from 45%-60% to 80% -
85%, this heat was decided to be utilized in the heating, climate control and ventilation
systems in the building. (Messenger, Vent and Venter, 1999).
Stage 4- Storage
Group 4: Intelligent building
40
Figure 50 Technology features: Panasonic inc. [pp 7]: (Panasonic Corporation, 2012)
Figure 51 Technology features: Panasonic inc [pp 7] (Panasonic Corporation, 2012)
Storage is one of the main components of this system; as peak energy production will not
coincide with the time periods in which the energy is needed (Figure 50).
Battery Storage for the Ship
The Ship will demonstrate the storage of solar energy in batteries and hydrogen. Battery
storage would be used for ‘load shifting’. The Panasonic DCB-104E (27 KWh) module was
chosen due to its high energy density per volume; high energy conversion efficiencies (95%)
(Appendix. Fig 25) and included battery management system (BMU). This BMU will be
linked to the building’s management system that will smooth out energy demand at peak
usage by releasing stored energy during peak demand, reducing grid consumption and peak
rates (Clements-Croome, 2004).The cost of 1500 € (Panasonic Corporation, 2012)
(Oberhofer and Meisen, 2012) [Appendix figure 2].
Group 4: Intelligent building
41
Figure 53 (Gray, 2007) ‘Hydrogen storage –
status and prospects’
Figure 52 (Panasonic Corporation, 2012) [Technology features: Panasonic inc [pp 10
Hydrogen Storage
Choosing a hydrogen storage medium
safety and volumetric density is a major
concern therefore metal hydride was
chosen as the storage medium as the risk
of explosion is improbable. Metal
Hydride(Magnesium Hydride) has one of
the highest volumetric weight of 7.6%(135
Kg H2 /m3)(Figure 53) of hydrogen (Ohta,
1979) [21] at a relatively low cost (eg
Magnesium hydride) that doesn’t need any
energy input in order to store the fuel like
liquid storage. The system will need 150
Kg of hydride (Tanks) at a cost of £36.20/
10g (Sigma-Aldrich Co. 2015) to store
hydrogen for a 3 month period of low
sunlight and clowd cover throughout the
daytime.
Risk Assessment:
Located in the Appendices is the full risk assessment for the project. The risk assessment
outlines all the potential risks before, during and after construction of the building.
Building Material:
As the design specification stated that the project that it had to fit in with the surrounding
buildings. The building managers decided to model the building after Plymouth University’s
buildings “Roland Levinsky & the House”. Using the same construction technique and
aesthetic design along with the same material composition of a reinforced concrete frame
with an outer shell made of copper panelling.
Group 4: Intelligent building
42
5.4.8 Space Saving
A key concept of an ‘Intelligent building’ is its functionality and ability to utilise all available
space in an intelligent manor, this has been done in varying ways within the university
building by using clever space efficiency techniques, whilst maximising usable working
space. Such as folding ‘curtain’ walls both in the lecture theatres but also in the smaller
study rooms, these allow the actual sizes of the rooms to be changed based on the needs of
the occupiers at the time. For instance by integrating two of these retracting walls in the
lecture theatre it can be used as a single theatre or split into two or three smaller halls, as
class sizes on different courses varies greatly. In the same way the study rooms can be split
into large rooms for group study sessions or smaller rooms for individuals allowing needs to
be accommodated and to maximise effective use of space. These walls are already being
used in other areas of the university such as in Smeaton and Babbage computer rooms and
in the seminar rooms in Robbins. However they are not as yet being used on the larger scale
in lecture theatres. These retracting walls have to be custom made for the application so a
price cannot be estimated, though as they are non- load bearing walls can be made from
lightweight, relatively cheap materials. The only issue that would have to be accommodated
for would be noise between the lecture theatres so soundproofing materials may have to be
used which would increase costing.
The building also incorporates versatile furniture and fittings allowing to maximise working
space within the building with an emphasis on the third floor and within the offices. As these
are the areas in which space efficiency is crucial in order to create an open plan, clutter free
environment which would appeal to all users of the building. These include lightweight
folding chairs which are priced at £19.80 per unit (staples.co.uk, 2015) and small linking
tables priced at £24.99 per unit (Homebase.co.uk, 2015) which can be easily resituated for
use with small or large groups or individuals. Wall mounted information screens and
underfloor power sockets, shown in Figure 1 below, will also be situated around the building.
These aspects are in use in some of the newer university buildings such as Roland Levinsky
and need to be integrated into new buildings to allow students and lecturers alike to keep
connected in the modern day.
The use of glass on the exterior of the building is
similarly an important feature in regards to space
efficiency as the use of natural light creates the
effect of more spacious rooms.
Figure 54 promarchive.ru (no date). Available at:
http://promarchive.com/product/78212
Group 4: Intelligent building
43
6 PROJECT PLAN
The Gantt chart shown below in figure 55 shows the tasks carried out to produce this report
and the time designated to each of the jobs.
Activities 12-Jan 19-Jan 26-Jan 02-Feb 09-Feb 16-Feb 23-Feb 02-Mar 09-Mar 16-Mar 23-Mar 30-Mar 06-Apr 13-Apr 20-Apr 27-Apr
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Planned
Actual
Final Preparation for the Presentation Day on the 1st of may
Attend Presentation Day on the 1st of May
Finalise & Submit Final Report on 25th March
Agree the Design for the Physical Model
Design and Build the Physical Model
Design the Poster for Presentation Day
Produce the Poster for Presentation Day
Prepare for the Presentation Day
Produce Draft Report
Finalise Design
Research building section 1- group member 1
Research building section 2 - group member 2
Research building section 3 - group member 3
Assign a system for each group member to research
Research system 1- group member 1
Research system 2 - group member 2
Research system 3 - group member 3
Research system 4 - group member 4
Week Commencing
Holiday
Assign section of building for each member to research
Produce Final report
Research building section 4 - group member 4
Research building section 5 - group member 5
Research building section 6- group member 6
Research building section 7- group member 7
Review building sections
Research system 5 - group member 5
Research system 6- group member 6
Research system 7- group member 7
Review each system
Review Draft Report
Read through past examples on dle
Decide and agree research areas for Final Report
Figure 55: Gantt Chart showing progress for term 2 work.
Group 4: Intelligent building
44
7 CONCLUSIONS
In conclusion a variety of evaluating methods have been used to help choose a final design
for the intelligent building. The purpose of the building was one of the first things to be
decided. A number of possible options were considered and after evaluate the strengths and
weaknesses of each one, a design of a multi-functional university building that will provide
space for lectures theatres, open access study areas and a café was chosen.
Next, the location of the building needed to be decided. It was felt that the building would
need to be located on the university campus to allow the building to reach its maximum
potential. Unfortunately however, being a city campus, available space for the building is
very limited. Due to this reason it was decided that the best possibility option would be to
remove an existing building to create space. By removing a section of the existing Portland
Villars, which are currently only used for offices, it would provide a location that is suitable for
the new university building. However, by doing this it would mean the new university building
will also need to contain offices to replace the existing ones in the Portland Villars.
The design and image of the building is obviously extremely important and needs to fit with
the universities image. A range of possible ideas were considered but in the end the chosen
building design is a modern, aesthetically pleasing building in the shape of a ship (which will
fit with the universities marine image).
A range of systems will be installed throughout the building helping to create an intelligent
building. There will be systems installed for sound, lighting, sanitation, the environment,
energy, security and fire. Estimated price for the systems have been included.
The aims of the report have been achieved and therefore the project has been a success.
The Project has also helped develop many useful skills which will be used throughout
university and also when in an engineering career. This include: communication skills,
teamwork skills, CAD skills (e.g. SolidWorks and Google Sketchup), report righting
techniques and time management.
Group 4: Intelligent building
45
8 REFERENCES
 Arch Daily, (2015) Building Ventilation [online] Available at:
http://ad009cdnb.archdaily.net.s3.amazonaws.com/wp-
content/uploads/2011/10/1317665184-section-natural-ventilation-1000x666.jpg
(Accessed: 09/03/2015)
 Amazon, (2015) Philips 433227 60 Watt Equivalent SlimStyle A19 LED Light Bulb
Soft White, Dimmable. [Online] Available at:
http://www.amazon.com/exec/obidos/ASIN/B00I134ORI/ref=nosim/6688506-rg1112-
0020-20?s=merchant&m=ATVPDKIKX0DER (Accessed: 04/03/2015)
 Apollo (2013) A guide to Fire Alarm Systems Design BS5839 Part1: 2013. Available
at: http://www.apollo-fire.co.uk/media/57203/bs-guide-final-locked.pdf (Accessed:
04/03/2015)
 Avantcoatings (2015) Available at:
http://www.avantcoatings.co.uk/Images/EWI_35Percent_Wall_HeatLoss.jpg
(Accessed: 08/03/2015)
 Bathroom Technology (2015) UNIVERSAL push button duel flush system. Available
at: http://www.bathroomtechnology.co.uk/shop/universal-spare-parts/wc-waste-
spares/universal-push-button-dual-flush-
1094458.html?gclid=CNyh06nmk8QCFcPKtAodyDkA_Q (Accessed: 06/03/2015)
 Bierschenk, D. M., Wilson, J. R. and Barnett, S. A. (2011) High efficiency electrical
energy storage using a methane–oxygen solid oxide cell, The Royal Society of
Chemistry. Available at:
http://pubs.rsc.org/en/content/articlelanding/2011/ee/c0ee00457j#!divAbstract
(Accessed: 15/03/2015)
 Buildingsheriff.com, (2015). Average Labour Cost/Price to Fit/Install an Extractor Fan
(Electrician's Rates). [online] Available at: http://www.buildingsheriff.com/extractor-
fan-cost.html (Accessed: 08/03/2015)
 Carter, DC. (2010) Student ID cards are required at many buildings on NAU’s
campus. Available at: http://www.ecampusnews.com/technologies/university-pushes-
for-better-attendance-with-electronic-scanners/ (Accessed: 04/03/15)
 Cetra (2015) CetraVision 800 - Transparent Roller Shutter. Available at:
https://cetrasecurity.co.uk/productsandservices/rollershutterdoors/cetravision-800
(Accessed: 04/03/15)
 Christil Glass, (2014) Price Calculator. [Online] Available at:
http://christieglass.com/pricecalculator.php (Accessed: 14/03/2014)
 Clark, A. J. (2013) Maryland Technology Enterprise Institute — Educate, Create,
Connect, Mtech. Available at:
http://mtech.umd.edu/news/press_releases/redox_wachsman_fuel_cells.html
(Accessed: 15/03/2015)
Group 4: Intelligent building
46
 Clark, (2013) Redox Cube Fuel Cell. Available at:
http://mtech.umd.edu/news/press_releases/redox_wachsman_fuel_cells.html
(Accessed: 15/03/2015)
 Clements-Croome, D. (2004) Intelligent Buildings: Design Management and
Operation (Student Paperbacks): Design Management and Operation. United
Kingdom: Thomas Telford Services Ltd, pp 9–12.
 Cooper Lighting and Safety Ltd (2002) A guide to fire alarm systems design.
Available at:
http://www.cooperfire.com/sites/default/files/docs/CC1608_Fire%20Systems%20Desi
gn%20Guide.pdf (Accessed: 04/03/15)
 Department of Energy & Climate Change (DECC) (2013) Topic paper low carbon,
Plymouth.gov.uk. Available at: www.plymouth.gov.uk/topic_paper_low_carbon.pdf
(Accessed: 13/03/2015)
 Direct Industry, (2015) Takex motion dector/ passive infrared/ ceiling-mount.
Available at: http://www.directindustry.com/prod/takex-europe/motion-detectors-
passive-infrared-ceiling-mount-14273-737309.html (Accessed: 04/03/15)
 Dunsmore, F. (2014) Carly Office Desk - Black., homebase.co.uk. Homebase.
Available at: http://www.homebase.co.uk/en/homebaseuk/carly-office-desk---black-
189693 (Accessed: 20/02/2015)
 Fire and Safety Centre (2015) Fire Extinguisher Usage Guide. Available at:
http://www.fireandsafetycentre.co.uk/fire-extinguisher-chart.php (Accessed:
05/03/2015)
 Gent Work (2015) Aqua free cartridge pack. Available at:
http://www.gentworks.co.uk/aquafree-urinal-maintenance-device-
cartridge.html?gclid=CMOO17aDisQCFQLMtAodBFgAhA (Accessed: 03/03/2015)
 Gray, M. E. (2007) ‘Hydrogen storage – status and prospects’, Advances in Applied
Ceramics, 106(1-2), pp. 25–28. doi: 10.1179/174367607x152380.
 Guttermate.co.uk, (2015) Rainwater Harvesting Systems by GutterMate. [online]
Available at: http://www.guttermate.co.uk/rainwater-harvesting-collection-system
(Accessed: 13/03/2015)
 Huang, JH. (2012) (BOSCOM TECHNOLOGY CO., LIMITED) Hd-sdi cctv High
Speed Dome Camera CMOS Illumination 0.3 Lux / F1.2, 12V DC 1A. Available at:
http://www.hd-cctvcameras.com/china-
hd_sdi_cctv_high_speed_dome_camera_cmos_illumination_0_3_lux_f1_2_12v_dc_
1a-358681.html (Accessed: 04/03/15)
 Insinkerator (2014) Model SST-FLTR. Available at: http://www.insinkerator.com/en-
us/Household-Products/Water-Products/Pages/Model-SST-FLTR.aspx (Accessed:
06/03/2015)
 James L (2007) Rain water flush system drawing. Available at:
http://www.greenliving.co.uk/pdc04/week5/week5.htm (Accessed: 02/03/2015)
Group 4: Intelligent building
47
 Leviton, (2014) Occupancy sensor: OSC05-RMW. [Online] Available at:
http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=OSC20-
RMW&section=38563&minisite=10251 (Accessed: 04/3/2015)
 Maehlum, M. A. (2013) ‘Solar Cell Comparison Chart. Available at:
http://energyinformative.org/solar-cell-comparison-chart-mono-polycrystalline-thin-
film/ (Accessed: 08/03/2015)
 Menictas C and Skyllas-Kazacos M (2014) Advances in Batteries for Medium and
Large-Scale Energy Storage: Types and Applications 1st edn Edited by C Menictas
M Skyllas-Kazacos and T. Lim. United States: Elsevier, 2014; Woodhead Publishing
Series in Energy, pp. 582–584
 Messenger, R. A., Vent, G. and Ventre, J. G. (1999) Photovoltaic systems
engineering. Boca Raton, Fla: CRC Press Inc, pp 60-62.
 Met Office, (2014) ‘UK Solar Radiation Maps’. Available at:
http://www.metoffice.gov.uk/renewables/solar (Accessed: 08/03/2015)
 Oberhofer, A. and Meisen, P. (2012) ‘Energy Storage Technologies & Their Role in
Renewable Integration’, Global Energy Network Institute, pp. 32–33
 Ohta, T. (1979) Solar- hydrogen energy systems: an authoritative review of water-
splitting systems by solar beam and solar heat ; hydrogen production, storage and
utilisation. First. Edited by T. Ohta. United Kingdom: Pergamon Press, p. PP–193–
203.
 Panasonic Corporation (2012) Storage Battery System Using Lithium‐ ion Batteries.
Available at:
http://www.panasonic.com/business/pesna/includes/pdf/Products_Battery%20Storag
e%20-%20Storage%20Battery%20System.pdf (pp 07) (Accessed: 27/01/2015)
 Panasonic Corporation (2012) Storage Battery System Using Lithium‐ ion Batteries.
Available at:
http://www.panasonic.com/business/pesna/includes/pdf/Products_Battery%20Storag
e%20-%20Storage%20Battery%20System.pdf (Accessed: 27/01/2015)
 Planitherm.com, (2015) [online] Available at:
http://www.planitherm.com/assets/TripleGlazingGRAPHICLarge_1.jpg (Accessed:
12/03/2015)
 Plants Respiration System, (2015) [online] Available at:
http://tomatosphere.org/teachers/guide/images/cycle1.jpg (Accessed: 13/03/2015)
 Portal, P. and Government, L. (2014) Approved Document L - Conservation of fuel
and power. Planning Portal (Department for Communities and Local Government).
Available at:
http://www.planningportal.gov.uk/buildingregulations/approveddocuments/partl/appro
ved (Accessed: 08/03/2015)
 promarchive.ru (no date). Available at: http://promarchive.com/product/78212
(Accessed: 22/02/2015).
Group 4: Intelligent building
48
 Safelincs (2015) Addressable Smoke and Heat Detectors. Available at:
http://www.safelincs.co.uk/apollo-xp95-optical-smoke-detector/ (Accessed: 05/03/15)
 Safelincs (2015) Addressable Smoke and Heat Detectors. Available at:
http://www.safelincs.co.uk/apollo-discovery-heat-detector/ (Accessed: 05/03/15)
 Safelincs (2015) Addressable Fire Alarm Panels. Available at:
http://www.safelincs.co.uk/xfp-addressable-two-loop-32-zone-panel/ (Accessed:
05/03/15)
 Safelincs (2015) Addressable Sounders and Beacons. Available at:
http://www.safelincs.co.uk/xp95-open-area-weatherproof-sounder/ (Accessed:
05/03/15)
 Safelincs (2015) Addressable Manual Call Points. Available at:
http://www.safelincs.co.uk/apollo-discovery-isolated-manual-call-point/ (Accessed:
05/03/15)
 Safelincs (2015) FD30 Fire Doors. Available at: http://www.safelincs.co.uk/fire-doors-
with-30-minutes-protection-fd30/ (Accessed: 05/03/15)
 Safelincs (2015) Fire Extinguishers. Available at: http://www.safelincs.co.uk/fire-
extinguishers/ (Accessed: 05/03/15)
 Samsung Smart Home, (2015) HA System – Apartment Intercoms Systems.
Available at: http://www.digitaldoorlocks.com.au/product-category/video-
intercom/samsung-apartment-units/ (Accessed: 03/03/15)
 Screwfix, (2015) British General 1-Gang 2-Way 400W Push Dimmer Switch White.
[Online] Available at: http://www.screwfix.com/p/british-general-1-gang-2-way-400w-
push-dimmer-switch-white/65335 (Accessed: 05/03/2014)
 Sigma-Aldrich Co (2015) Magnesium hydride hydrogen-storage grade | Sigma-
Aldrich, Sigma-Aldrich. Available at:
http://www.sigmaaldrich.com/catalog/product/aldrich/683043?lang=en&region=
(Accessed: 15/03/2015)
 Staples (no date) Furniture/Chairs/Cabnets. Available at:
http://www.staples.co.uk/padded-folding-
chair/cbs/413568.html?promoCode=300300666 (Accessed: 20/02/2015)
 Swithenbanks Alternative Energy Ltd, S. A. E. L. (2014) Solar Photovoltaic,
Swithenbanks Altenative Energy. Available at:
http://www.swithenbanks.co.uk/Solar_Photovoltaic_Equipment/11307/Sanyo_Solar_
PV_Panel_240W_HIT-N240SE10.html (Accessed: 08/03/2015)
 Tao, G. and Virkar, A. (2006) ‘A Reversible Planar Solid Oxide Fuel-Fed Electrolysis
Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on
Natural Gas/Biomass Fuels’, Annual Progress Report - Hydrogen program, pp. 25–
27. doi: 10.2172/934689
 Thermal Electronics (2014) EspressoMilkCooler.com – TEG Power Generator &
Thermoelectric Generator, Thermal Electronics Corp. Available at:
Group 4: Intelligent building
49
http://espressomilkcooler.com/teg-power-generator-thermoelectric-generator/
(Accessed: 13/03/2015)
 Wikipedia , (2014) LED lamp. [Online] Available at:
http://en.wikipedia.org/wiki/LED_lamp (Accessed: 04/03/2015)
 Williams, H. (2013) What is the payback time for a rainwater harvesting system? -
The Green Home. [online] Available at: http://www.thegreenhome.co.uk/heating-
renewables/rainwater-harvesting/what-is-the-payback-period-for-rainwater-
harvesting-system/ (Accessed: 11/03/2015)
 World Health Organization, (2015) Sanitation. Available at:
http://www.who.int/topics/sanitation/en/ (Accessed: 02/03/2015)
9 APPENDICES REFERENCES
 Amos, Wade. A. (1998) ‘Costs of Storing and Transporting Hydrogen’, Costs of
Storing and Transporting Hydrogen. United States, pp. 10–27. doi: 10.2172/6574.
 Amos, W. A. (1998) ‘Figure F.2 – At longer storage times, liquid hydrogen storage
starts to compete with other methods.’
 Amos, W. A. (1998) ‘Figure F.5 – Liquid hydrogen and underground storage show
relatively little increase in cost with longer storage times due to low capital costs of
storage’.
 FRS, D. M. (2008) Sustainable Energy - without the hot air: Why on-site renewables
don’t add up, Blog Spot. Available at:
http://withouthotair.blogspot.co.uk/2008/12/why-on-site-renewables-dont-add-up.html
(Accessed: 01/02/2015)
 Gray, M. E. (2007) ‘Hydrogen storage – status and prospects’, Advances in Applied
Ceramics, 106(1-2), pp. 25–28. doi: 10.1179/174367607x152380.
 Greenstream Publishing Limited (2015) Solar Irradiance Calculator, The Solar
Electricity Handbook website. Available at:
http://www.solarelectricityhandbook.com/solar-irradiance.html (Accessed:
14/03/2015)
 Greenstream Publishing Limited (2015) Solar Irradiance Calculator, The Solar
Electricity Handbook website. Solar Electricity Handbook. Available at:
http://www.solarelectricityhandbook.com/solar-irradiance.html [1](Accessed:
01/03/2015)
 Larminie, J. and Dicks, A. (2000) Fuel Cell Systems Explained. First. United
Kingdom: John Wiley & Sons Ltd, pp 164-166.
Group 4: Intelligent building
50
 Larminie, J. and Dicks, A. (2000) Fuel Cell Systems Explained. First. United
Kingdom: John Wiley & Sons Ltd, pp 297–302.
 Maehlum, M. A. (2013) ‘Solar Cell Comparison Chart – Mono-, Polycrystalline and
Thin Film’. Available at: http://energyinformative.org/solar-cell-comparison-chart-
mono-polycrystalline-thin-film/ (Accessed: 08/03/2015)
 Messenger, R. A., Vent, G. and Ventre, J. G. (1999) Photovoltaic systems
engineering. Boca Raton, Fla: CRC Press Inc, PP 60-62.
 Met Office (2013) South West England: climate. Available at:
http://www.metoffice.gov.uk/climate/uk/regional-climates/sw (Accessed: 08/03/2015)
 Ohta, ed. by T. (1979) Solar- hydrogen energy systems: an authoritative review of
water-splitting systems by solar beam and solar heat ; hydrogen production, storage
and utilisation. First. Edited by T. Ohta. United Kingdom: Pergamon Press, pp. 193 -
203
 Oberhofer, A. and Meisen, P. (2012) 'Figure 25: Comparison of the efficiency for
different technologies’, Global Energy Network Institute, pp. 31.
 Oberhofer, A. and Meisen, P. (2012) ‘Energy Storage Technologies & Their Role in
Renewable Integration’, Global Energy Network Institute, pp. 32–33.
 Oberhofer, A. and Meisen, P. (2012) ‘Figure 3: Load curves for typical electricity grid’.
 Panasonic Corporation (2015) Features | Storage Battery System. Available at:
http://panasonic.net/energy/storage_battery/features/index.html (Accessed:
13/03/2015)
 Tao, G. and Virkar, A. (2006) ‘A Reversible Planar Solid Oxide Fuel-Fed Electrolysis
Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on
Natural Gas/Biomass Fuels’, Annual Progress Report - Hydrogen program, pp. 25–
27. doi: 10.2172/934689.
 Wachsman, E. D. (2012) Redox Power System’s Revolutionary SOFC Technology;
25 Years of Persistence, Hydrogen Energy. Available at:
http://www.hydrogen.energy.gov/pdfs/htac_apr14_14_wachsman.pdf (Accessed:
15/03/2015)
Group 4: Intelligent building
51
10 APPENDICES
Solar Appendix (Map of location)
Site position(lat/lon) 50.376211, -4.141138
50° 22' 34", -04° 08' 28"(show decimal)
Altitude:34 m(show ft)
Plymouth University, Portland Villas, Plymouth, Plymouth PL4 6DX, UK
(Met Office , 2013)
(Greenstream Publishing Limited, 2015)
Group 4: Intelligent building
52
The Cells
Monocrystalline Polycrystalline Amorphous CdTe CIS/CIGS
Typical
module
efficiency
15-20% 13-16% 6-8% 9-11% 10-12%
Best
research
cell
efficiency
25.0% 20.4% 13.4% 18.7% 20.4%
Area
required for
1 kWp
6-9 m2 8-9 m2 13-20 m2 11-13 m2 9-11 m2
Typical
length of
warranty
25 years 25 years 10-25 years
Lowest
price
0.75 $/W 0.62 $/W 0.69 $/W
Temperature
resistance
Performance
drops 10-15%
at high
temperatures
Less
temperature
resistant than
monocrystalline
Tolerates
extreme
heat
Relatively
low impact
on
performance
Additional
details
Oldest cell
technology and
most widely
used
Less silicon
waste in the
production
process
Tend to
degrade
faster than
crystalline-
based solar
panels
Low
availability
on the
market
(Maehlum, 2013)
Electrolysis Appendix
A solid oxide electrolyser is an electrochemical device that converts water into hydrogen
fuel. It operates in the exact opposite operation as the fuel cell by utilizing solar or grid
electricity to split the water molecule into oxygen and hydrogen (fuel).Conveniently the out
put of a Photovoltaic system produces direct current which is consistent with the input needs
of the electrolyser. This means that hydrogen can be produced by simply passing current
through the water. But unlike other electrolysers SOEC operate at high temperatures(800
Group 4: Intelligent building
53
>1000) that contribute to the thermal decomposition of water. (Messenger, Vent and Ventre,
1999) (Tao and Virkar, 2006)
Fuel Cell Appendix
A Fuel Cell an electrochemical reactor that converts fuel and air into heat and electricity
Fuel flows over the anode and air flows over the cathode. An electrolyte (solid ()metal oxide)
layer between anode and cathode transport oxygen ions from cathode to anode. A
peripheral circuit is connected to the anode and cathode and provides the apparatus to take
power from the fuel cell to power electrical services. (Larminie and Dicks, 2000)
Types of
fuel cell Electrolyte
Operating
Temp Fuel Oxidant Efficiency
Solid oxide
(SOFC)
ceramic as
stabilised
zirconia and
doped
perovskite
600–1000°C natural gas or
propane
O2/Air 55–60%
Phosphoric acid
(PAFC)
phosphoric acid 160–210°C hydrogen
from
hydrocarbons
and alcohol
O2/Air 40–50%
Proton-exchange
membrane
(PEMFC)
polymer, proton
exchange
membrane
50–80°C less pure
hydrogen
from
hydrocarbons
or methanol
O2/Air 40–50%
Molten
carbonate(MCFC)
molten salt
such as nitrate,
sulphate,
carbonates…
630–650°C hydrogen,
carbon
monoxide,
natural gas,
propane,
marine diesel
CO2/O2/Air 50–60%
Alkaline (AFC)
potassium
hydroxide
(KOH)
50–200°C pure
hydrogen, or
hydrazine
O2/Air 50–55%
Table 1 (Messenger, Vent and Ventre, 1999)
Group 4: Intelligent building
54
A Solid Oxide fuel Cell was chosen from comparing it to the other fuel cells in table 1. Solid
oxide fuel cells characteristics and advantages for building application are due to:
1. They operate at high temperature (600-1000 Deg C) and low cost catalyst nickel
metal metal catalyst this makes the cost of the cell considerably lower.
2. Operational Efficiency rating of 60%
3. 85% Efficiency when both electricity and heat is utilized.
4. Versatile operation can operate off of hydrogen or back up - biogas, methane-
hydrocarbons.
(Larminie and Dicks, 2000)
Storage Batteries
Figure 25(Oberhofer and Meisen, 2012)
Group 4: Intelligent building
55
Environmental Impacts and Life cycle cost
Method Impact Life Cycle Cost/kWH
output
Energy
density
Flywheels construction creates
greatest impacts, Very
low
20 years 1,000 -
5,000 €
Superconducting
Magnetic Energy
Storage(SMES)
Very low, only during
construction
1,000,000
cycles
30,000 -
200,000 €
Lead-Acid High impact, Lead is
poisonous and can
contaminate soil and
water.
1,000 -
2,000
cycles
25 - 250 € 25-
50Wh/kg
Lithium-Ion Low impact, during
production of the cells
1,000 -
2,000
cycles
800 - 1,500
€
140kWh/ton
or 150-
200kWh/m3
Figure 26.Table 3 & 4 (Oberhofer and Meisen, 2012) : Comparison of environmental impacts
for different technologies and Comparison of the costs for different technologies.
Group 4: Intelligent building
56
Middle Size 27- kWh
System
DCB-102E
Large Size
DCB-104E
Charging Voltage 52V 780V
Nominal Voltage 46.8V 702V
Charge Rate
(continuous/max)
50A 76.8A
Discharge Rate
(continuous/max)
50A 76.8A
Maximum Parallel
and Series
1S5P 15S1P
Table 27 .Product Specification :Battery (Panasonic Corporation, 2015)
Hydrogen Storage
There are three major means of storing hydrogen: Liquid, Compressed gas and Metal
Hydride.
(Table 1.Costs Of Storing and transporting [hydride costs]) Shows the advantages and
disadvantages
Storage
Medium
Characteristic Advantage Disadvantage Cost Storage
period and
consideration
Safety
Liquid
Storage
Hydrogen is
processed
through,
throttle valves,
heat
expansion
engine, heat
exchangers
and
compressors
until liquefied.
highest
storage
density
insulated
storage
container
hydrogen
evaporation
will occur and
build up
pressure.
liquefaction
process -
energy
$650-
$6,600/kW-
Depending on
compressor size
Long term
or seasonal
storage
of hydrogen,
low electricity
costs
requiring
liquid
hydrogen
High
Pressur
es
Group 4: Intelligent building
57
intensive
Metal
Hydride
Storage
Hydrogen
chemically
bonds to
metal, alloy or
metalloid
elements.
Examples:
LaNi5-xAlx,
TiV2-xMnx and
FeTi1-
xMnx
store about
2%-6%
hydrogen by
weight
high
volumetric
storage
densities
27Kg<
Absortion
of
hydrogen
>=
Atmospher
ic
pressure.
Release
hydrogen
at high
when
heated.
Many
Hydride
alloys to
choose
from for
desired
application
.
Heat is
released
when
hydrogen is
released-
Cooling
system
needed.
Can be
damaged by:
water, carbon
di-oxide or
sulphur
compounds
low weight-
storage
density
$820/kg-
$60,000/kg
not
economical
for large
quantities
due to high
capital cost
Safest
due to
low
pressur
e
storage
Compre
ssed
Gas
Storage
Hydrogen gas
is compressed
into a smaller
volume only
compressor
and a pressure
vessel
needed.
Simplest
method
Low
Pressure
capacity
<=1300 kg
at 1.2-1.6
MPa
low storage
density
High Storage
pressure(20-
30 MPa)
increases
investments
and operating
cost
Size (kg/h) 170
for $118,000
($/kg/h)
Or
Size (kg/h)
1,500 for
$25,600 ($/kg/h)
small
quantities
short storage
times
Storage Methods Comparrison (Amos, 1998)
Group 4: Intelligent building
58
Table 10 -
Hydrogen
Storage
Capital Cost
Assumptions
Base Size Base Cost Base
Pressure
Sizing
Exponent
Pressure
Factor
Compressor 4,000 kW
(5,400 hp)
$1,000/kW
($746/hp)
20 MPa
(2,900 psia)
0.80 0.18
Compressed
Gas Vessel
227 kg
(500 lb)
$1,323/kg
($600/lb)
20 MPa
(2,900 psia)
0.75 0.44
Liquefier 454 kg/h
(1,000 lb/h)
$44,100/kg/hr
($20,000/lb/h)
n/a 0.65 n/a
Metal
Hydride
n/a $2,200/kg
($1,000/lb)
n/a 1.00 n/a
(Amos, 1998) Table 10 provides the factors used to estimate the capital costs associated
with hydrogen storage.
These particular numbers were used because they provided the best cost estimates over the
entire range of flows examined.
Amos, W. A. (1998) ‘Figure F.5 – Liquid hydrogen and underground storage show relatively
little increase in cost with longer storage times due to low capital costs of storage’.
Group 4: Intelligent building
59
(Wade. A Amos, 1998) ‘Figure F.2 – At longer storage times, liquid hydrogen storage starts
to compete with other methods.’
(Oberhofer and Meisen, 2012) Source: http://www.world-nuclear.org/info/inf10.html
Base Load: This is the amount of electricity that is required and generated at any time.
Intermediate Load: Power plants that are easier and faster to regulate are used for the task
of middle load.
Peak Load: Power demand outside of the regular daily requirement.
Group 4: Intelligent building
60
Figure 3. (Gray, 2007) ‘Hydrogen storage – status and prospects’
Group 4: Intelligent building
61
Risk Assessment:
Sector Risk
Factor
(1=minor,
5=major)
Likelihood
(1=rarely,
5=commonly)
RiskFactor
How can it be overcome? Stages taken to mitigate the risk
Exterior
Injury caused by the revolving
door
3 2 6 Do not mess around near the automated
doors.
Make sure anyone entering the revolving
doors does so in a calm manner. Motion
sensors on the door will alert it to the
approach of a person meaning it will only
revolve when required and in a slow
manner.
Revolving door jamming 2 3 6 Keep the door revolving at a steady
pace away from any sort of object/
surface that could cause jamming.
Raised the door up above floor and carpet
level and add skirting to reduce snagging
and keep the heat in.
Objects falling off roof 5 1 5 Do not have an unnecessary objects
attached to the extremities of the
building.
Plymouth is a windy city, ensure all objects
attached to the outside of the building are
correctly/ firmly bolted in place and do not
have them situated over any of the
buildings access points.
Slip hazards outside entrance 3 3 9 Strategically place non slip tape in areas
prone to damp.
Rain is frequent of the coast so make sure
to pace appropriate warnings in areas that
are notorious for water accumulation. Place
non slip tape on any smooth surfaces
outside access points or on steps.
Interior
Electrical Fault/ surge 3 2 6 Follow fault procedures. All electrical circuits and appliances should
be connected to a surge protect fuse and if
a fault occurs site maintenance staff will
arrive to rectify the problem.
Tripping on stairs 3 3 9 A calm and safe manner must be
maintained when climbing or descending
on stairs.
All stairwells in the building are carpeted
with a regularly interval and slip strip edge
to prevent any unnecessary tumbles.
Wet floors 3 4 12 If there is no sign present inform a
member of staff.
Wet floors can mean one of two thing both
someone is cleaning, and in this case a
cleaner will be present with a wet floor
sign, avoid it and carry on. However if there
is a puddle and no sign/ staff around report
it to the buildings reception to who will send
Group 4: Intelligent building
62
staff to assess and act upon the situation.
Getting stuck in the lifts 2 1 2 Do not mess around in the lifts and
above all remain calm.
If personnel get stuck for any reason,
remain calm and press and hold the alarm
button located on the lifts interface, this will
put you through to the buildings security
staff who shall come and retrieve you.
Food poisoning from the cafe 1 1 1 Make sure food is cleaned, prepared
and cooked correctly before
consumption.
All café staff will be aware of food hygiene
and be competent in cooking to make sure
food is proper cleaned, prepared and
cooked.
Miscellaneous burns 2 1 2 This can happen in a multitude of ways,
just remember to remain calm around
hot objects.
If a burn occurs head to the ground floor
first aid station where you will be treated by
a member of staff with a first aid certificate
and if the burn is more severe further
action will be taken.
Miscellaneous cuts 2 2 4 This can happen in a multitude of ways,
just remember not to act recklessly
around sharp objects.
If a cut occurs head to the ground floor first
aid station where you will be treated by a
member of staff with a first aid certificate
and if the cut is more severe further action
will be taken.
Mild electrocution 3 1 3 Remember to act intelligently and never
play around with electricity.
Keep drinks away from the sites
computers, avoid putting yourself in harm’s
way where electricity is involved, keep all
digits away from plug sockets and if a
frayed wire is spotted inform a member of
staff. If you find another person in a state of
electrocution, call 999 immediately.
Flooding 3 1 3 Flooding can occur through large
downpours, if the sites entrance is wet or
flooded, be cautious upon entering the
site.
Wet floor signs will highlight areas that
have be flooded, avoid walking through
these areas if you can, if it has only just
occurred, inform site staff and if for any
reason the building is waterlogged
evacuate through the nearest entrance.
Fire 4 1 4 Follow procedures. Upon locating a fire, alert the buildings
occupants through a fire alarm and
evacuate.
Lift failure 5 1 5 In the case of a lift failure use the stairs. If a lift is out of order, use the stairs.
However if you are inside the lift when it
fails, don’t panic the lift will not plummet,
the lifts safety protocols will hold you in
place. Hold the alarm button and it shall put
you through to security, who will retrieve
you.
Power failure 3 1 3 In the case of a power failure, follow
procedures.
Upon the power going out the auxiliary
power supply shall boot up and at that
point carry on, if however it does not start
up, call the sites security number and make
it out of the building following the luminous
Group 4: Intelligent building
63
markings. Electricians will arrive after you
leave to fix the problems.
Toilet blockage/ back up 2 2 4 When this happens inform staff. If a toilet begins to flood or one is
discovered, tell a member of staff and they
shall close off the toilets until the problem
can be rectified.
Burst pipe 2 1 2 Flooding inside the building can happen
when a pipe bursts, when this happens
avoid the area and inform staff.
If a pipe bursts immediately inform staff
and divert others as it could cause more
problems.
Broken glass 3 2 6 Avoid it. Do not handle the glass, try to a shoe to
push it to one side and fetch a cleaner to
collect the shards and dispose of them
properly.
Carbon monoxide/ dioxide
build up
4 1 4 Follow protocols. When it starts to feel hot and stuffy, open a
few of the rooms windows however if this
doesn’t help, leave the room.
Ventilation malfunction 3 2 6 Inform staff. If a vent in a room stops working open a
window and inform a member of the
maintenance staff.
Getting locked in a room 2 3 6 Gain the attention of others. Call the site security office and they will
collect you from the room.
Security doors colliding with
personnel
2 4 8 Do not run through doors blindly. All the doors in the building are safety
doors so they have a slow travel time. Be
careful when opening and closing doors.
Objects falling from the walls
or ceilings
3 2 6 Make sure all objects attached to interior
walls are mounted properly.
Make sure everything attached to the wall
is firmly done so, do not hang off of them or
play with them.
Hydrogen leak/ fuel leak 5 1 5 Follow procedures Evacuate.
Disabled/ handicapped
personnel limitations
3 3 9 Assist handicapped if needed, when
asked.
Make sure that there are appropriate
amenities for any and all handicapped
building occupants.
Operation of hazardous
machinery
2 2 4 Follow instructions on the machine. When operating machinery read the
instructions and use correctly.
Obstruction in the vents 3 1 3 Follow Protocol. Inform staff.
A system failure 4 2 8 If an obvious system failure occurs alert
staff and follow the necessary action
plan.
Depending on which system depends on
the outcome however in all of these, a calm
attitude needs to be present.
Loss of temperature control 3 1 3 Follow common sense. Open a window, or remove a layer of
clothing if it is required, if not leave the
room but at the end of either scenario
inform a member of staff who shall call
maintenance to repair the system.
Over crowding 3 4 12 If a room is overcrowded, find another
room.
When a large number of people
congregate in one room it becomes its own
health and safety hazard, if a room is over
capacity, leave and find a less crowded
area.
Group 4: Intelligent building
64
Construction
Injury to workers 4 2 8 Follow working protocol and procedures. All workers must wear protective gear and
take care while moving around on site, as
well as take the appropriate measures
when working with hazardous TMM (Tools,
Machinery and Materials).
Planning permission denied 5 2 10 Alterations need to be made to meet
local authority’s requirements on the
building’s design.
Check with building regulations before
beginning construction, as well as having
weekly meetings with the sites building
consultant and foreman. Make sure to
design the building in an eco-friendly/
conservative manner.
Delivery delays 3 3 9 Account for lateness with deliveries. Check regularly with your supplier and
drivers to make sure that everything is
running smoothly and if not plan a head to
make sure to stay one step ahead of your
material surplus.
Building movement post build 2 4 8 Monitor the building and take
appropriate action.
During construction carry out safety checks
to make sure the contractor is complying
with everything so as to minimalise the
chance of fault. Once the building has been
constructed and left to stand for 2 weeks
send in a team of surveyors to check for
any slant.
Finance issues 3 2 6 Account for delays, loss & replacement
of materials or tools and keep track of
the sites manuscript.
Focus on keeping the project budget on
target if not factor in expenditures to
counter the cost curve when issues arise.
Keep to deadlines and account for
economy fluctuation of the builds
timescale.
Material availability 3 3 9 Make sure suppliers are reliable. Only employ trusted and well rated
suppliers from an accredited charter to
ensure supply will be met with no
complaints. Make sure back up suppliers
are also available/ not to use rare and hard
to come by materials/ that the project has
more than one supplier and that they all
have surplus of the chosen materials.
Unforeseen circumstances - - - These cannot be accounted for, but
respond with appropriate and logical
action.
-
Lazy/ Unhappy workforce 3 1 3 Make sure the contractors that are hired
for the job have a strong job satisfaction
rating and may have done some work for
Plymouth University before or with an
affiliate that you can observe first.
Make sure to provide appropriate amenities
on site as well as suitably spaced rest
breaks and working hours to ensure high
quality productivity. Regularly visit the site
in person to assess progress and always
have a progression plan that can be
referred to when needed.
Group 4: Intelligent building
65
Machinery malfunction 4 1 4 Try to plan ahead for malfunctions. Vehicles and machinery onsite must be
maintained regularly, as well as being
surveyed every morning before use and
put away correctly at the end of a working
day in order to minimalise complications.
Working restrictions 3 5 15 It is different wherever you work, but
make sure to visit the sites local
planning office to check what is
expected of workers.
Many places have a no heavy working
policy between 9am to 7pm, if the site does
have to obey these restrictions do so and
make sure that the sites time management
is managed smoothly to make up for it.
Construction set backs 3 4 12 Give clean and concise instruction when
explaining jobs to the workforce
Supply multiple copies of a detailed plan of
construction in order to minimalise
mistakes and ensure to label essential
materials so that they can be allocated the
correct place. Again a competent workforce
is key.
Group 4: Intelligent building
66
Below shows the dimensions for all of the offices:
4th floor:
5th floor:
6th floor: 7th floor:
8th floor:
Group 4: Intelligent building
67
Building/Panel Dimensions Equations and Assumptions
Group 4: Intelligent building
68
Cost of Building Systems
Group 4: Intelligent building
69
Solar Hydrogen Calculations

More Related Content

Similar to Intelligent Building Project

Metis project deliverable D3.2: Draft of pilot workshop
Metis project deliverable D3.2: Draft of pilot workshopMetis project deliverable D3.2: Draft of pilot workshop
Metis project deliverable D3.2: Draft of pilot workshopYishay Mor
 
Planning and scheduling of industrial building (VJTI MUMBAI)
Planning and scheduling of industrial building (VJTI MUMBAI)Planning and scheduling of industrial building (VJTI MUMBAI)
Planning and scheduling of industrial building (VJTI MUMBAI)Mayur Rahangdale
 
Ramy mosa developing a strategic framework for the design of adaptive buildin...
Ramy mosa developing a strategic framework for the design of adaptive buildin...Ramy mosa developing a strategic framework for the design of adaptive buildin...
Ramy mosa developing a strategic framework for the design of adaptive buildin...Ramy Mosa
 
Chapter 1 The Environment in which Technical People Work PCPM101.pptx
Chapter 1 The Environment in which Technical People Work PCPM101.pptxChapter 1 The Environment in which Technical People Work PCPM101.pptx
Chapter 1 The Environment in which Technical People Work PCPM101.pptxSydneyJaydeanKhanyil
 
Building Engineering and Systems Design_NoRestriction.docx
Building Engineering and Systems Design_NoRestriction.docxBuilding Engineering and Systems Design_NoRestriction.docx
Building Engineering and Systems Design_NoRestriction.docxHuynhNgocNghia
 
Project Management.Project 1
Project Management.Project 1Project Management.Project 1
Project Management.Project 1suzzanekan
 
Pm assignment -5111570030
Pm assignment -5111570030Pm assignment -5111570030
Pm assignment -5111570030adzoyi
 
Technical report writing skills for civil engineers pdf
Technical report writing skills for civil engineers pdfTechnical report writing skills for civil engineers pdf
Technical report writing skills for civil engineers pdfSaqib Imran
 
CT project
CT projectCT project
CT projectJack Ng
 
COA RKGITM #sem education purpose ppt good for student
COA RKGITM #sem education purpose ppt good for studentCOA RKGITM #sem education purpose ppt good for student
COA RKGITM #sem education purpose ppt good for studentmohitmehra75
 
CSQS ch 1, 2& 3 lec. note.pdf
CSQS ch 1, 2& 3 lec. note.pdfCSQS ch 1, 2& 3 lec. note.pdf
CSQS ch 1, 2& 3 lec. note.pdfDejeneTsegaye6
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxDejeneTsegaye6
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxDejeneTsegaye6
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxDejeneTsegaye6
 
Hamburg - Strategic Report Jan 2016.indd
Hamburg - Strategic Report Jan 2016.inddHamburg - Strategic Report Jan 2016.indd
Hamburg - Strategic Report Jan 2016.inddRobert Hefferon
 
case study of architecture students
case study of architecture studentscase study of architecture students
case study of architecture studentsAbhishek Râghûbïr
 

Similar to Intelligent Building Project (20)

Metis project deliverable D3.2: Draft of pilot workshop
Metis project deliverable D3.2: Draft of pilot workshopMetis project deliverable D3.2: Draft of pilot workshop
Metis project deliverable D3.2: Draft of pilot workshop
 
Planning and scheduling of industrial building (VJTI MUMBAI)
Planning and scheduling of industrial building (VJTI MUMBAI)Planning and scheduling of industrial building (VJTI MUMBAI)
Planning and scheduling of industrial building (VJTI MUMBAI)
 
Ici individual
Ici individualIci individual
Ici individual
 
Ramy mosa developing a strategic framework for the design of adaptive buildin...
Ramy mosa developing a strategic framework for the design of adaptive buildin...Ramy mosa developing a strategic framework for the design of adaptive buildin...
Ramy mosa developing a strategic framework for the design of adaptive buildin...
 
Chapter 1 The Environment in which Technical People Work PCPM101.pptx
Chapter 1 The Environment in which Technical People Work PCPM101.pptxChapter 1 The Environment in which Technical People Work PCPM101.pptx
Chapter 1 The Environment in which Technical People Work PCPM101.pptx
 
Building Engineering and Systems Design_NoRestriction.docx
Building Engineering and Systems Design_NoRestriction.docxBuilding Engineering and Systems Design_NoRestriction.docx
Building Engineering and Systems Design_NoRestriction.docx
 
Project Management.Project 1
Project Management.Project 1Project Management.Project 1
Project Management.Project 1
 
Day1 session3
Day1 session3Day1 session3
Day1 session3
 
Pm assignment -5111570030
Pm assignment -5111570030Pm assignment -5111570030
Pm assignment -5111570030
 
Technical report writing skills for civil engineers pdf
Technical report writing skills for civil engineers pdfTechnical report writing skills for civil engineers pdf
Technical report writing skills for civil engineers pdf
 
CT project
CT projectCT project
CT project
 
COA RKGITM #sem education purpose ppt good for student
COA RKGITM #sem education purpose ppt good for studentCOA RKGITM #sem education purpose ppt good for student
COA RKGITM #sem education purpose ppt good for student
 
CSQS ch 1, 2& 3 lec. note.pdf
CSQS ch 1, 2& 3 lec. note.pdfCSQS ch 1, 2& 3 lec. note.pdf
CSQS ch 1, 2& 3 lec. note.pdf
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docx
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docx
 
Contract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docxContract Specification and Quantity Surveying.docx
Contract Specification and Quantity Surveying.docx
 
Day1 session3
Day1 session3Day1 session3
Day1 session3
 
Hamburg - Strategic Report Jan 2016.indd
Hamburg - Strategic Report Jan 2016.inddHamburg - Strategic Report Jan 2016.indd
Hamburg - Strategic Report Jan 2016.indd
 
Pm final01
Pm final01Pm final01
Pm final01
 
case study of architecture students
case study of architecture studentscase study of architecture students
case study of architecture students
 

Intelligent Building Project

  • 1. 1 DSGN143 Integrated System Design Group 04 Design Report by: Jake Neilson - 10445608 Tarig Halim - 10432393 Bradley Smith - 10494678 Anthony McNamara - 10451873 Jonathan Loosen - 10423362 Oral Selver - 10476226 Abdul Momen - 10445876
  • 2. 2 Abstract This report details a design proposal for a new Plymouth university ‘Intelligent building’ for the Dsgn143 module. The building will be a multi-purpose addition to the university which will comprise of additional lecture theatres, study rooms, IT facilities and staff offices. This new building will adhere to the university’s image of being one of the top 50 up and coming universities in the world and kicking its old metropolitan look. To begin the report will show the aims and product specification and give an outline of the project as a whole in reference to this design module. Then the Interested parties involved in the construction and use of the building, will be discussed. Thirdly the design section will show other ideas that were discussed in the early stages of the project, as well as an explanation as to why we chose ‘The Ship’ as our final design. This will be followed with Computer Aided Design (CAD) drawings, sketches and screenshots of our final Solidworks model including floor plans for each floor. The systems of the building will then be described in detail and the purpose of them within an ‘Intelligent Building’. Lastly, the report will conclude with discussion as to whether the design specification has been met through this report, the design concept video and finally the presentation of the 3D model.
  • 3. 3 Contents Abstract......................................................................................................................2 1 INTRODUCTION................................................................................................... 4 2 AIMS ............................................................................................................... 4 3 INTERESTED PARTIES .................................................................................. 4 3.1 Identify the interested parties....................................................................... 5 3.2 Identify the needs (wants) of the interested parties. .................................... 5 4 PROJECT SPECIFICATION ........................................................................... 5 5 THE DESIGN .................................................................................................. 6 5.1 Options Evaluated .......................................................................................6 5.1.1 Environmentally friendly design aspects................................................. 10 5.2 The Chosen Design ................................................................................... 10 5.3 Detailed description of Chosen Design...................................................... 10 5.4 Systems ..................................................................................................... 17 5.4.1 Lighting Systems ......................................................................................... 17 5.4.2 Sound systems ............................................................................................18 5.4.3 Sanitation Systems...................................................................................... 19 5.4.4 Environment Systems.................................................................................. 21 5.4.5 Security System...........................................................................................23 5.4.6 Fire Systems................................................................................................28 5.4.7 Sustainable Energy - Solar Hydrogen systems............................................ 35 5.4.8 Space Saving...............................................................................................42 6 PROJECT PLAN ...........................................................................................43 7 CONCLUSIONS............................................................................................44 8 REFERENCES...................................................................................................... 45 9 APPENDICES REFERENCES.............................................................................. 49 10 APPENDICES ..................................................................................................... 51
  • 4. 4 1 INTRODUCTION This report will feature an in depth look at the design aspects in regards to the ‘The Ship’. This will be done by analysing the requirements of an intelligent building outlined in the project specification and applying these within the chosen design. The project specification has been drawn from expectations and assumptions made both prior to and during the project, regarding the design of an intelligent building. A major factor governing the design of the project will be the wants and needs of the interested parties in relation to ‘The Ship’. These will be identified within the report and then taken into consideration throughout the design of the project. The main focus of the report will be the actual design aspects with a number of preliminary ideas discussed, including advantages and disadvantages, before deciding on a final design. This will be followed by a detailed description of the building and floorplans of each floor within the building. The systems including fire, security, lighting, space saving and environmental will be described in detail with appropriate research and some examples of ways in which these systems will be implemented. This report will also touch upon the costing of the construction of the building as a whole, followed by a risk assessment evaluating the potential for error regarding the construction. The conclusion of the report will discuss whether the project has been a success or not judged on whether objectives were met and the learning experience of the project. 2 AIMS The aim of the project was to design an intelligent building that would meet the needs of its occupiers in that it creates an optimal environment for its purpose. This means that the building has to be both adaptable and flexible whilst being both functional and efficient. This can be done in numerous ways including multi-functional open spaces, energy efficiency and complete systems integration. One of the other key concepts of an intelligent building is to have reduced maintenance and operating costs but is worth more to its occupants. The design of ‘The Ship’ has tried to incorporate all these factors in to its design and foremost to create an enjoyable and comfortable learning environment. 3 INTERESTED PARTIES In order for the proposed building design to be classified as an intelligent building concept, it must first be able to provide for the needs of its occupants. For this reason the building was specifically designed with a select group of people in mind the interested parties. In order to create the buildings specifications, an assessment of the buildings occupiers must be drawn together to work out the requirements of the intelligent building.
  • 5. 5 3.1 Identify the interested parties. As the Building is designed to be a multifunctional university facility, the interested parties that would be proposed for the project are a narrow field with three separate tiers of involvement. The primary parties are those who would be using the building on a regular occasion. The primary interested parties for the building are Plymouth University Students, Lecturers and Staff. Secondary interested party members are. For example those who would have access to the building in off peak periods. For example Businesses, Researchers and PHD/ Thesis mature students/ post graduates. Final the tertiary interested parties who would be those who are interested in the building but for their own purposes and would infrequently use the building. 3.2 Identify the needs (wants) of the interested parties. The primary parties are the biggest users of the building; students who would be using the building for daily for revision space, group work areas and lectures. The lecturers would also be primary party member as they would be teaching in the 3 lecture theatres or assisting students in the open planned study area. The final group within the primary interested party members are the staffs who were displaced from Portland villas that for obvious purposes will be rehomed within the buildings offices. Within the secondary interested party members are Businesses who would be interested in the building for its seminar rooms or lecture theatres for those who require space for a large presentation, as well as the fact that there is plenty of space for advertisement of services within the buildings floorplan and it is a prime location on site to host business fares to entice students. Researchers or people doing there PHDs/ thesis post grads would also be secondary interested parties and use the building in off peak times or who require quiet spaces to do their work. Finally the tertiary Interested are those who are interested in the building for their own purpose and would not be frequently using the facilities; for example the Plymouth city public who will obviously care about the aesthetics of the building and would care about the reputation of the university. Another aspect why the public would be invested is that during summer Plymouth University is known to let out its halls and facilities to summer schools. 4 PROJECT SPECIFICATION The design specification is an important process for the project brief as it has to represent all of the intended key features of the building that would be required by its future occupants needs. Items listed on the design specification must be applicable to any and all of the design ideas, so that when the buildings initial ideas are planned they are done so with these requirements in mind. It also is vital to help select the most appropriate building concept, the requirements for this brief’s designs are:
  • 6. 6  85 offices to replace the buildings offices that originally stood in the designs footprint  4 Lecture Theatres for class learning  20 Study Rooms for group and quiet study/ working  Café on site  Toilets on every other floor (both male, female and disabled)  An IT area solely set aside for computer based working  A control room to control and monitor the buildings inner workings  Large reception  7 Tutorial Rooms large enough to seat over 150 students  3 Faculty Offices to replace the ones from the pre-existing building  Open planned  Well laid out and informative floor plan  Adaptable working environment  A challenging & smart design  Atheistically pleasing  Modern design that fits in with the target location  Environmentally friendly/ Energy Saving  Local  Benefit populous  A “Smart House” intelligent systems  Cost effective  Efficient use of space 5 THE DESIGN 5.1 Options Evaluated By deciding to build the building on Portland villas adequate use of spaced, creative iconic design and energy efficiency were key factors to the design. The first idea (Figure 1) was a hexagonal building that would contain a consistent floor plan throughout to allow intelligent use of space and consistent floor designs throughout the building. Although this was favourable the long but narrow plot of land would not allow space for a symmetrical hexagonal building. (Figure 1)
  • 7. 7 The Shape of the land was considered and a long rectangular building was decided with open study spaces, cafe spaces and office spaces on the top floor (Figure 1). This incorporated the same modular floor plan idea from hexagon building; however this lead to the problem of the building being a standard rectangle building. This did not fulfil the iconic design requirement for the project. (Figure 2)
  • 8. 8 Second sketch of a possible building design where the standard rectangle shaped building is incorporated.(Figure 2) For iconic aesthetic purposes that would fit in with the ethos of the city a building shaped like a ship was designed (Figure 3 – 3a Drawings). The first exterior Solid-works model was made (Figure 4), however the initial plan did not translate into an iconic design as the reverse ‘bow’ and straight sided office tower did not exude the visualisation of a ship and had to be re-designed. (Figure 3) (Figure 3a)
  • 9. 9 (Figure 4) Figure 5 shows a developed version of figure 4. The previous design shows tower walls being straight, Figure 5 shows that the tower being angled and fully developed ship. The straight ‘bow’ of the ship increased the useful floor area and made the overall design less complex (Figure 5). The floor area decreases the further up the building goes. (Figure 6) (Figure 5) (Figure 6)
  • 10. 10 5.1.1 Environmentally friendly design aspects A fuel cell would be chosen to supplement or completely supply the electrical needs of the building. The initial was the 160 KW Bloom box that would cost between ($700,000-800,000) operated off of methane (Quick, 2010) and convert excess heat into electricity stored in batteries. However this option was too expensive, inefficient (Appendix – 7 Reconsiderations-Thermos) and continued to produce small amounts of CO2. The final design utilises a solar-hydrogen system that uses cheaper (£ 660/KW) and more efficient Redox Fuel Cells instead and heat for passive building utilities and services (discussed in Chosen Design). 5.2 The Chosen Design The final Ship idea (figure 4) was chosen to be taken into development this was because the design the most fitting when compared to the project specification. With the Ship shaped building the iconic aspect was fullfilled as it looked as though it was sailing out into the adjacted round about space to motorist passing by. It also encompised the space and environmental functionallity of the previous design conciderations. 5.3 Detailed description of Chosen Design The final chosen design constructed via Solid Works (Figure 7). (Figure 7) The heights of each floor was decided to be 4 metres high for each level, with a 1 meter space between the floor and drop ceiling to allow space for ducting, plumbing and electrical conduits to occupy. The rear section of the ground floor was required 8m high in order to accommodate adequate floor height for the (3) lecture theatres from floor to ceiling. (Figure 8)
  • 11. 11 (Figure 8) (Figure 9) Figure 9 shows the reason why with the office tower were tilted at a 102.68 degree angle. In order to increase the amount of sunlight to enter the building year round reducing lighting cost. However the solar panels play two roles and act as shades to prevent excess sunlight from overheating the building during the summer months. The angled sides act to increase surface area and a rain water guide to increase the amount of water collected by the building and channelling it to the tank reservoir. Ground floor layout description The ground floor of the building has been produced so that it had the tallest ceilings in comparison to the rest of the building where half the floor has a height of 8m this has helped to design a visually appealing open space floor plan, which produces a sense of freedom to
  • 12. 12 move freely, this also helps to integrate the ideology of an intelligent building. The group had come to the conclusion that the following features needed to be implemented on this floor: lecture theatres, faculty offices and the reception. There is a total of three lecture theatres in this building were two have taken the shape of a rectangle. The third lecture theatre is much larger but this was produced with the intention that it can be split up into two smaller lecture theatres, this is in the shape of a semi-circle holding a much larger capacity, the benefits of this would not only cater for the more populated university subjects it can also be used to host large events such as university open days. All lecture theatres are situated the back of the building were the height of the building is at its highest as shown in figure 10. As mentioned before the building needed to accommodate for all the offices and faculty offices that were located in the current Portland Villas building. Currently Portland Villas hold two faculty offices these will be presented on the ground floor. The faculty offices are produced these are situated near to the middle section of the ground floor as shown in figure 10. A circle shaped reception will be situated at the front of the ground floor. There are four entrances to the building two on each side as shown in figure 10 each entrance will have a revolving door to prevent heat loss alongside a conventional door as shown in figure 10. Figure 10 Floor Plan for Ground Floor
  • 13. 13 First Floor The first floor of the building will consist of 10 medium size study rooms aimed at students doing group study or for the use of small tutorial sessions. These rooms will be bookable through the university website to allow students to reserve study space. The open area at the front will have more seating that can be used for study or socialising. Included on this floor will be the systems control room, this will act as the central hub in which all the fire, security and safety information is processed and monitored. Below is an image of the floorplan. Control Room Figure 11 Floor plan of First Floor
  • 14. 14 Second Floor The second floor of the University building will be focused on study space for students. There will be 6 large study rooms, varying in size, which will offer the much-needed group study areas. (Located at the back of the building) The front half of the floor will consist of many tables, to offer individual/small group work with the rest of the space being taken by computers, some relaxation areas and the toilets. Below is the floor plan for this section of the building. Figure 13
  • 15. 15 Café The café will be in place in order to offer food and drink both to students and staff and also as a place to socialise without disturbing others. The café will have small kitchen facilities but it will mainly serve cold food and drinks. Being situated on the third floor and with large glass windows the café will have appealing views across the city. Shown below is an image of the solid works model for this section of the building. Figure 14
  • 16. 16 The offices The ship will be built in the location of the existing Portland Villars. Currently the Portland Villars is used as office for university staff. The ship will create a total of 88 offices which will replace the existing offices in the Portland Villars and also create some spear offices which will allow for expansion of the university in the future. The offices will be located over four flours and will be in the tower at the rear of the ship, as shown in figure 15. Due to the irregular shape of the ship, the dimensions of each office do slightly vary for one another. However each office is approximately 5mx8m. Below, figure 15.1 shows a typical office. The full office dimensions can be found in the appendix. Figure 15 Office Figure 15.1
  • 17. 17 Figure 16: Leviton, 2014. Occupancy sensor: OSC05-RMW. Available at: http://www.leviton.com/OA_HTML/ProductDe tail.jsp?partnumber=OSC20- RMW&section=38563&minisite=10251 Figure 17: Amazon, 2015. Philips 433227 60 Watt Equivalent SlimStyle A19 LED Light Bulb Soft White, Dimmable. Available at: http://www.amazon.com/exec/obidos/ASIN/B 00I134ORI/ref=nosim/6688506-rg1112-0020- 20?s=merchant&m=ATVPDKIKX0DER 5.4 Systems 5.4.1 Lighting Systems Purpose Intelligent Lighting systems will be used throughout the building to help save energy and create a comfortable learning environment. Motion sensors Occupancy sensors (commonly referred to as motion sensors), will be installed throughout the building. These sensors will automatically turn the lights on when motion is detected within a room and then switch the lights off once the motion stops being detected. The occupancy sensors used will be the OSC20-RUW by Leviton which is shown in figure 16. These sensors use a combination of passive infrared and ultrasound to detect motion and can be mounted to a ceiling. They provide a large coverage through 360 degrees, making them useable in all the rooms throughout the building. They cost approximately £100 per unit which although is relatively expensive, will help save energy and hence save money in the long run. Energy efficient LED lightbulbs Energy efficient LED lightbulbs will be used throughout the building. The lightbulb used will be Philips 433227 60 Watt Equivalent Slim Style A19 LED which cost just over five pounds per bulb (Amazon, 2015). Studies have shown at these lightbulbs are almost six times more efficient that Incandescent bulbs and over four times more efficient than Halogen bulbs (Wikipedia , 2014).This will help preserve energy and in doing so save money as support the universities environmentally friendly image.
  • 18. 18 Figure 18 screwfix, 2015. British General 1- Gang 2-Way 400W Push Dimmer Switch White. Available at: http://www.screwfix.com/p/british-general- 1-gang-2-way-400w-push-dimmer-switch- white/65335 Figure 19 Christil Glass, 2014. Price Calculator. [Online] Available at: http://christieglass.com/pricecalc ulator.php Natural light and remote control blinds The design of the ship was created to best optimise the use of natural light sources. The outside shell is made using clear glass which is transparent to let light enter the building. The level of natural light entering the building can be reduced if necessary by using remote control blinds. Dimmer switches Dimmer switches will be installed throughout some rooms of the ship to select the desired level of lighting in the room. Lecture theatres will have dimmer switches installed which will be used, for example, when presenting PowerPoints from a projector. The switches cost £9.40 per unit (screwfix, 2015). 5.4.2 Sound systems Purpose Sound systems will be installed throughout the ship to help remove unwanted noise and to increase the clarity of vocal communications. Unwanted noise pollution will be reduced using sound absorbent materials in the construction of the building and also with the instillation of high quality double glazed windows. Double glazed windows can be supplied through a company known as Christil Glass and will cost approximately £50 per m2 (Christil Glass, 2014). Sound systems such as microphones and speakers will be installed throughout lecture theatres to help increase communications between the lecturer and the students. Tannoy systems will also be installed which can be used for wide range communication across the building.
  • 19. 19 5.4.3 Sanitation Systems Purpose The purpose of sanitation systems is the use of intelligent devises and methods such as recycling to reduce waste, which in turn reduces cost. Sanitation refers to the safe disposal of human excrement and also the maintenance of hygienic condition through waste water disposal (World Health Organization, 2015). Rain Water Toilet Flush system This is a system currently used on campus in the Roland Levinsky building. This system works by collecting rain water while working alongside the typical water mains to flush the toilets within the building simple system of this is shown on figure 5. This helps to cut cost as water bills would reduce. These systems tend to cost next to nothing to implement Waterless Urinals system The use of waterless urinals is becoming very popular in many industries and organization it helps to reduce water consumption and also reduces the amount to waste water produced. Aquafree Urinal maintenance Device cartridges cost £24 per unit and last around a 3 month period however can be bulk bought for a friction of its cost. Figure 20 James L 2007 avalable at: http://www.greenliving.co.uk/pdc04/week5/week 5.htm Figure 21 Gent works 2015 Avalible at: http://www.gentworks.co.uk/aquafree- urinal-maintenance-device- cartridge.html?gclid=CMOO17aDisQCFQ LMtAodBFgAhA
  • 20. 20 Heated Taps system The use of a, at the source heated tap system would be beneficial as it would allow the instant flow of hot water when required. This is very economical in comparison to the conventional boiler system that uses pipe lines across the buildings to transport hot water, as the heated water via the conventional system would lose heat energy during transportation, Also when the taps are not in use the heated water would be sat in the pipe lines and this will eventually lose all heat energy and be regarded as waste and overtime this can be costly. Boiling water tap system will work perfectly and the temperature can be adjusted so that the water dispensed is the perfect temperature. Simple models such as the SST-FLTR 2/3-Gallon Stainless Tank and Filtration System can be bought from Purbeck Plumbing & Heating at a unit cost of £272.95 Double Toilet Flush System The double toilet flush system is a very cost effective way to save money. An average flush uses around 13 liters of water however the double flush system has that option but also come with an additional feature, the smaller button is a lighter flush using only half the water in comparison to large flush this alternative is used when a large flush is not required. The product UNIVERSAL Push Button Dual Flush System can be easily purchased from Bathroom Technology at a unit cost of £17.25 Figure 22 Insinkerator 2014 Available at: http://www.purbeckplumbingandheating.co.uk/insinkerat or-model-sst-fltr-23-gallon-stainless-tank-and-filtration- system-10014- p.asp?gclid=CIK6p9rkk8QCFRQatAodP1gAuw Figure 23 Bathroom Tecnology 2015 Avalible at: http://www.bathroomtechnology.co.u k/shop/universal-spare-parts/wc- waste-spares/universal-push-button- dual-flush- 1094458.html?gclid=CNyh06nmk8Q CFcPKtAodyDkA_Q
  • 21. 21 Figure 24 Heat loss in a building, (2015). Available at: http://www.avantcoatings.co.uk/Images/EWI_35P ercent_Wall_HeatLoss.jpg Figure 25 Air flow in a building 2015 Available at: http://ad009cdnb.archdaily.net.s3.amazonaws.com/wp -content/uploads/2011/10/1317665184-section- natural-ventilation-1000x666.jpg Figure 26 Planitherm.com, 2015 Available at: http://www.planitherm.com/assets/TripleGlazingGRAPHICLarge_ 1.jpg 5.4.4 Environment Systems Purpose Plymouth University has well-known reputation of a green and environmentally friendly university around the country so therefore it’s really important to match or even stretch the reputation. One of our biggest concerns when designing an intelligent building was the effective use of heating and electricity. After completing research its clear to identify which part of the building heat lost was a major problem. There are a number of control devices that will help contribute to the environment. These controllers will turn off light and heat when no one is using the room or part of the building. This will reduce the cost of running and maintaining the building. Ventilation Its a key part of the building as it exchanges fresh air into the building which helps to protect the building against damp and condensation. Unneeded ventilation can wasted a huge amount of energy which will cost the building a lot of money. Energy lost is one of the biggest concern for most modern building with 35% of heat is lost through ventilation. Unfortunately ventilation can waste energy meaning costing the university a lot of money. The cost of each ventilation is £6000. [2] Inserting high efficient fans and motors can reduce 10% of heat lost due to less resistance when operating, they need to be replaced throughout the years as they do slow down and lost their quality over the years. As you can see from figure 3 below that cooler air enters the building through windows for a sense of comfort to the building whilst hot air raises and escapes through ventilation fans. Windows Windows are another big issue when heat is wasted from the building with 16% of the total heat lost. This is why pressure is constantly growing in making glass windows more energy-efficiency to a point where double glazing will no longer be useful in the future. So it clears that triple glazing windows are the Formatted: Font: (Default) +Body CS (Arial), 11 pt, Font color: Black
  • 22. 22 new futuristic energy saving windows. They are good for the environment because it maintains its ideal room temperature of 21 degrees. Windows contribute to a large amount of heat lost. But after researching and comparing triple and double glazed windows it was concluded that the payback time is very high compared to double glazing. The cost of triple glazing is considerably high and only absorbing an extra two degrees which means that payback time is a longer than double glazed windows. Plants Plants are important features of a green building. It bring a friendly touch of open space to the building with the feeling of comfort of rich oxygen in the air. Oxygen being released from plants through the respiration system whilst carbon dioxide is taken. Reducing the level of CO2 will help with global warming. Global warming's is having significant and harmful effects on our health and climate. Sea level is rising faster than ever, the number of deforestation is alarming, dangerous heat waves are becoming more common, extreme storm and draught events are increasing in many areas. The ship building will include an outside cafe that will be surrounded by plants and grass. Rainwater system Rain water is the collection, storage and distribution recycled rainwater, for the use of various different residential or commercial environments. Rain water collection is another part of the building which help influence to the environment with an average of 85,000 litres of rain water falls on building roofs in UK each year with many benefits such as Significantly reduce mains water usage by 70%, offers large saving on utility bills. Toilets and water cooling system would benefit the most from this system. The cost of installing the entire system could cost up to £2500 and saving £175 per year which results payback time of 15 years. This is a worthwhile investment to have in the ship building. Figure 27: Plants Respiration System 2015 Available at: http://tomatosphere.org/teachers/gui de/images/cycle1.jpg
  • 23. Group 4: Intelligent building 23 | P a g e 5.4.5 Security System Purpose As with any building, security plays an essential part in the design. But as the concept for this building is an intelligent floor plan, it is even more crucial as one of the fundamental descriptions that encompasses an intelligent building is that it provides for its users in all aspects of their required needs meaning it is vital that the buildings users are kept safe while going about their business. Due to the fact that chosen location is situated on the university premises and the function of the building making it very open, public and would be highly used. Pair that with the one of the aims of this building was to be a highly efficient environment, even at peak times in the day when the student population would access its facilities, which could make it a target for vandalism, theft and more importantly an act of terrorism because of these possible threats an advanced network of integrated security systems must be installed to provide countermeasures to disasters as well as reduce and prevent the possible risks/ opportunities of risk. To ensure the safety of the students and staff on site, there will be members of staff stationed within the building during opening hours, this would include; members of a security team, receptionists, and maintenance/ cleaning staff, and a reduced number nearby to watch over the building after hours which would solely be made up of security staff and caretakers. Key card It was decided during the preliminary development stages that the intelligent building would use some of the technology already incorporated throughout Plymouth University such as the student cards that are used for attendance, printing and to gain access to the library would also be suitable to use in the intelligent buildings design also. It was essential that a key card system was established within the building, with staff and student cards programmed with a tier system, for example the staff tiers could be broken down into lectures, maintenance, security and administrative staff, that gives the user access to specific rooms depending upon what tier they are, it would also track them throughout the building by recording what rooms the owner of the card scanned to enter or exit and sending a message to the site’s server room (e.g. [time stamp] [card number] [card tier] entered/exited [room]) but just like other already existing student cards it would have addition purposes like signing into computers, access to printers and other onsite technologies and monitoring attendance in the site’s lecture halls. Each tier of card would be programmed with a list of zones within the building that its owner would be granted access to. Some areas of the building would be restricted to certain tiers, such as people in the possession of a student key card could not access maintenance Figure 28 Carter DC. 2010, Avalable at: http://www.ecampusnews.com/technolog ies/university-pushes-for-better- attendance-with-electronic-scanners/
  • 24. Group 4: Intelligent building 24 | P a g e cupboards etc. Whereas, a member of the maintenance staff with maintenance tier key card would be able to enter the maintenance cupboards. The key cards will be using a traditional system of a magnetic “swipe” strip along the back as well as a photo, barcode, a tier representative colored stripe running along one edge and printed information on the front. However with the advancement of technology soon this system would most likely be upgraded to an RFID (Radio-frequency Identification) tagging system, this would not change the way the card functioned. The way the cards will work, is that once the card is swiped or scanned by a reader, located next to the door or on the machine, the information that has been programmed on card is sequenced and read. The access control system located within server room will check the information presented by the card and confer whether the door is opened/ machinery being accessed is present on the list of accessible objects to that individual then it will grant them access. However, if the object trying to be accessed isn’t on the list, the computer will reject the command and no signal will be sent to the door meaning that it won’t open. There are many benefits to using this method of security. The cards are waterproof so they do not suffer from getting wet, they are also less prone to malfunction; therefore, not causing so many inconveniences for the buildings users. Security Doors All doors will consist of a steel frame as well as a metal mess set within the body of the door and a synthetic non-flammable plastic to ensure strong doors that are lightweight but also function as a fire door. They will also be held in a metal door frame with heavy duty hinges to prevent buckling from impact or heat. The door will be kept closed by electronic magnetic locks. This helps to keep unauthorised individuals out of restricted areas, as the door will only be released if the appropriate tier of key card is scanned. In the event of a fire all locks throughout the building, will be released allowing all doors to be freely accessed by anyone in the building. Surveillance Surveillance is another critical system required within an intelligent building. A closed circuit television (CCTV) system will be fitted to provide visual evidential security to all those visiting within the building, as well as allowing security to monitor multiple zones from one room. There is a multitude of advantages to having surveillance located around the buildings premises, such as it could potentially reduce the likelihood of crime within and around the building and all areas covered by CCTV, which would hopefully give the feeling of a safe environment. Another benefit is that if a crime does occur the CCTV cameras will aid in any situations where suspicious behaviour is occurring or evidence is required. Due to the scale of the building there will be a number of cameras situated around the building, collecting footage. The system will consist of internal and external cameras. The Figure 29 Huang, JH. (2012) Available at: http://www.hd- cctvcameras.com/china- hd_sdi_cctv_high_speed_dome_camera _cmos_illumination_0_3_lux_f1_2_12v_d c_1a-358681.html Formatted: Font: 11 pt
  • 25. Group 4: Intelligent building 25 | P a g e internal cameras will be connected to low voltage power supplies to allow them to run 24/7 without fear of being a drain on the buildings power supply. The power supply units will be specific to each floor and then the separate systems will be connected to the main control centre allowing the video footage to be recorded and viewed. Whereas the external cameras have a motion tracking function as well as being motion sensitive, meaning they will only activate when movement occurs, then they will follow the motion until it goes out of range. All the cameras fitted within this building will be using P.T.Z. (pan, tilt or zoom) dome cameras. This will allow staff to track intruders or monitor suspicious behavior, as these cameras are able to move vertically, horizontally and zoom. Each one of these CCTV units will be sending information directly to the buildings control center without the need of additional cameras. External cameras will require an infrared (IR) function to cope with limited light between dusk and dawn. All cameras internal and external with have a backup power source in case of a power cut. CCTV cameras will have to be place strategically around the site to maximize observation and it is critical that no areas are un-monitored expect the offices on the upper levels. As there is going to be multiple camera set ups on different loops, monitoring all areas of the buildings and grounds, however it’s not possible for someone to be viewing all the captured footage whether it’s live feed or captured footage at the same time. There are several ways to overcome this problem. One is by heavily controlling the rate at which footage is captured, another is viewing it on a multi-screen in the control room to choose which specific camera they want to view, there is also the stockpiling of footage for use in a later on but the main solution to this is have the cameras cycle through a loop spending 10 seconds on each camera and making sure the cameras are only on when needed and not running unnecessarily. Security shutters As the library is open 24 hours a day, 7 days a week, 365.25 days a year, the building will not also be open to the same length of time as this seemed inefficient instead a 6am-10pm open time slot, 7 days a week, only during term time was deemed more appropriate in order to support the other university buildings instead of making them obsolete. However certain zones within the building will shut down at different times to save energy, for example lecture periods start at 9am and end by 6pm so the lecture theatres will be open between the periods of 8am – 7:30pm. Once areas are closed industrial rolling security shutters will be lowed over the doors to seal them off and will only lift just before it is time for the lecture period to begin. Figure 30 Cetra (2015), Available at: https://cetrasecurity.co.uk/productsandservices/rollershutt erdoors/cetravision-800
  • 26. Group 4: Intelligent building 26 | P a g e Tannoys & intercoms Tannoys & intercoms will also be installed allowing staff to view and talk to the occupants of the building. Tannoys would be used to inform everyone within the building/ on a specific floor or within a certain zone of events. Whereas intercoms would be used identify personnel before they are given access to the restricted areas of building. There will also be an intercom installed to allow conversations within the building between staff. Control centre/ Security office Located on site will be a small secure office for members of security, it will be positioned next to the server room and will house the surveillance station. Intruder detection Intruder detection is a key factor in any security system. As it’s not possible to manually patrol the corridors at all hours of the day, infrared motion sensors will be fitted in all rooms that as well as working to turn on lights and sense when to turn them off, and when the room has been locked, will also function as a way of triggering alarms that will alert the university security and the local law enforcement. Doors and windows will be fitted with be alarmed and have electromagnetic locks that activate when the room is not in use, so that entry is broken, security will be notified that someone has gained unauthorized access. Flood lights with infrared sensors will also be fitted around the outside of the building to light up poorly lit areas when motion occurs in order to detect if anyone is in areas where they aren’t allowed to be. Personal safety Personal safety is a passive self-security set up in order to protect the buildings users from accidents, mishaps or self-harm, although it isn’t extremely crucial as it’s a passive system it is still a nice touch to emphasise a safe working environment. The building will use the latest in construction materials, in this case high specification safety glass designed to be anti- shatter without the use of a pin hammer applied to the corner of the frame. The windows in the building will be anti-suicide windows meaning that they are small openings located on Figure 31 Samsung Smart Home (2015), Available at: http://www.digitaldoorlocks.com.au/ product-category/video- intercom/samsung-apartment- units/) Figure 32 Direct Industry (2015), Available at: http://www.directindustry.com/prod/ta kex-europe/motion-detectors- passive-infrared-ceiling-mount- 14273-737309.html
  • 27. Group 4: Intelligent building 27 | P a g e the top half of the glass panel exterior walls, they open upwards and have a limited opening capacity to prevent people from falling out of them. There will be a first aid station on site to provide medical support to those who injury themselves on site. Action plans will also be implemented and carried out rigorously to prepare for any eventuality that may arise. Furniture in the building will have a curved design, such as rounded edges on tables to prevent injury. Anti-slip material strips will be place outside all exits, on all fire escapes and on all stairs to prevent accidents in the wet. Light emitting diode (LED) displays stall be set up all over the site to keep the buildings users of what’s going on in their university as well as the community (like a rolling notice board), but in the event of an emergency can be overridden to provide useful information in the event a fire etc. because of the application each one needs to be wired into a back-up power supply (the same as CCTV).
  • 28. 28 5.4.6 Fire Systems Purpose The Fire System in ‘The Ship’ university building will have to comply with British Standards BS5839, Meaning that the system has to protect the occupants of a building from the occurrence of a fire. This system has to be certified before occupants can use this building. The system has many roles to play in keeping occupants safe from any fires, which may occur in the building. It has to firstly alert all occupants about the fire and allow them to leave the building safely, as well as preventing any spreading of fire or smoke. The system also has to keep the buildings damage to a minimum. Fire System Design The design will all comply with BS5839, as this states there must be a minimum amount of fire detectors, fire panels, alarms, call points, fire extinguishers, sprinklers/shutters and fire doors. These will all be correctly fitted and placed at correct heights and distances apart so that the system will conform to all regulations. There will be detailed floor plans that will illustrate how much equipment will be used later on in this section. Fire Detectors System As detectors are the first sign of a fire occurring, these will be placed across the whole building. However, there will need to be both smoke and heat detectors used in ‘The Ship’. This choice was made due to the fact that smoke detectors can be located in all offices, group study areas and the whole bottom floor. Yet, in the café there will need to be heat detectors instead, as the hot beverage or cooking appliances may result in smoke, leading to false alarms. The smoke detectors that will be used are Apollo XP95 Optical Smoke Detector (Addressable), which are priced at £28.79 per unit and are approved by the British Standards of fire safety and regulations. This optical smoke detector is part of the Apollo Series 65 range. When smoke enters the chamber it causes an LED light pulse to scatter, which causes the detector to change to the alarm state. (Safelincs, 2015). The sensing element will be in between 25-600mm below the ceiling to conform to BS5839, as shown in figure 1. (Apollo, 2013, pp.4) Figure 33 Apollo, 2013. Available at: http://www.apollo- fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.4)
  • 29. Group 4: Intelligent building 29 The smoke detectors will also have to be positioned correctly. They have a maximum range (radius) of 7.5m from the detector, and have coverage of 112m3 . The building will have detectors over lapped to monitor every part of the floor. (Apollo, 2013, pp.6) The coverage of smoke detectors can be seen in figure 2, which will be implemented into this building. The heat sensors that will be used in the café will be Apollo Discovery Heat Detector (Addressable), which are priced at £31.91 per unit and area approved by the British Standards of fire safety and regulations. ‘Incorporating a fixed temperature response for all modes, the Discovery heat detector can also be configured as a rate of rise unit. The Apollo heat detector uses a single thermistor to sense the air temperature.’ (Safelincs, 2015) The sensing element will be in between 25-150mm below the ceiling to conform to BS5839, as shown in figure 3. (Apollo, 2013, pp.4)The heat detectors will also have to be positioned correctly. They have a maximum range (radius) of 5.3m from the detector, and have coverage of 56.3m3. The building will have detectors over lapped to monitor every part of the café. (Apollo, 2013, pp.6) The coverage of these sensors can be seen in figure 4. Figure 34 Apollo, 2013. Available at: http://www.apollo- fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.6 Figure 35 Apollo, 2013. Available at: http://www.apollo- fire.co.uk/media/57203/bs-guide-final-locked.pdf, pp.5
  • 30. Group 4: Intelligent building 30 Fire Panel Systems The university building will have an automated fire control system, so when an alarm is triggered it will identify the location, close vents, open fire doors and any other actions required. An addressable fire alarm panel will control this, which use an intelligent system that identifies the exact detector that has been activated, so the precise location of the fire will be known. A ‘XFP Addressable Two Loop Panel’ will be used in the building, which is £743.99 per unit. This also fully complies with EN54 standards. (Safelincs, 2015) Figure 36 (Apollo, 2013. Available at: http://www.apollo-fire.co.uk/media/57203/bs-guide-final- locked.pdf, pp.6) Figure 37 (Safelincs, 2015) Available at: http://www.safelincs.co.uk/xfp-addressable-two-loop-32- zone-panel/
  • 31. Group 4: Intelligent building 31 Fire Alarm Systems The fire alarms will be evenly spread across all floors and coincide with BS5839 fire safety regulations. As shown in figure 5, ‘the minimum sound level of a sounder device should be 65dB(A) or 5dB(A) above a background noise (if lasting more than 30 seconds) and at a frequency between 500Hz and 1000Hz. The maximum sound level should not exceed 120dB(A).’ (Cooper Lighting and Safety Ltd, 2002) The alarms used will be Apollo XP95 Open Area Weatherproof Sounder, which is designed to work with the XFP addressable fire alarm panels. It has a nominal sound output of 100dB and is priced at £39.59 per unit. (Safelincs, 2015) Manual Call Points Manual call points will be on every floor of the building and ‘are required at all exits to the open air-whether or not the exits are specifically designed to be fire exits unless, for example, the exits lead to an enclosed courtyard from which there is no escape.’ (Apollo, 2013, pp.17) They are there so occupants can manually set off, an alarm, before sensors automatically trigger it. Also, the call point will be positioned 1.4m from floor level to comply with BS5839 regulations. They will also be located so no person has to travel more than 45m to reach the call point. (Apollo, 2013, pp.12) The Apollo Discovery Manual Call Point with Isolator (Figure 7) will be used in the building, which is priced at £33.59 per unit. (Safelincs, 2015) Figure 38 (Cooper Lighting and Safety Ltd, 2002. Available at: http://www.cooperfire.com/sites/default/files/docs/CC1608_Fire%20Systems%20Design %20Guide.pdf, pp. 4) Figure 39 (Safelincs, 2015) Available at: http://www.safelincs.co.uk/apollo- discovery-isolated-manual-call- point/
  • 32. Group 4: Intelligent building 32 Fire Extinguishers System The building will have fire extinguishers available to all occupants of the building to address any small fires that may occur, without the need to use any building systems such as sprinklers. Figure 7 below shows the different types available, the building will have appropriately placed extinguishers where necessary. The building will consist mainly of dry powder extinguishers as they cover almost all fire types. However, in the café there will be wet chemical extinguishers as well, due to there being oil and fat in the cooking facilities. A 9-litre extinguisher costs: (Safelincs, 2015): Water: £25.19 Foam: £35.99 Dry Powder: £35.75 L2: £275.51 (N/A) CO2 Gas: £83.39 (5 Litre) Wet Chemical: £104.15 (6 Litre) Fire doors/exits System Due to the open plan nature of the building, the number of doors inside is low. However, there will be fire doors for control rooms and any other rooms that require them. The specially treated doors help them to burn for longer and suffocate fires by stopping the airflow to them. This all helps to increase the time that occupants have to leave the building and give fire longer to fight it. The standard FD30 fire doors that will be used in this building offer 30 minutes of fire protection and are priced at £75.59 per door (Safelincs, 2015), the fire exits in the building will be marked by an emergency exit sign above the door, to show the location of any fire exit near to an occupant of the building. Figure 40 (Fire and Safety Centre, 2015) Available at: http://www.fireandsafetycentre.co.uk/fire-extinguisher- chart.php
  • 33. Group 4: Intelligent building 33 Ventilation System There will be a ventilation system in the building to control airflow within the building. This can also be used within the fire system, as when a fire is detected the ventilation system can stop airflow around the building. Resulting in fires being suffocated, as they are given no fresh oxygen to keep the fire burning, and the spread of fire is greatly reduced Below are the ground, 1st and café floor plans for the fire systems that will need to implement into the building to meet fire safety regulations. Key: Smoke Detectors Heat detectors Fire Panels Fire Alarms Bells Manual Call Points Fire Extinguishers 2nd Floor Key: Smoke Detectors Heat detectors Fire Panels Fire Alarms Bells Manual Call Points Fire Extinguishers Ground Floor
  • 34. Group 4: Intelligent building 34 Key: Smoke Detectors Heat detectors Fire Panels Fire Alarms Bells Manual Call Points Fire Extinguishers Café
  • 35. Group 4: Intelligent building 35 Figure 42 (Panel Locations) 5.4.7 Sustainable Energy - Solar Hydrogen systems Purpose The Ship will incorporate a solar- hydrogen energy system to meet the electrical and thermal needs of the building services. This system will fall in line with the Plymouth low carbon city target by being 90-98 Percent renewable (Department of Energy & Climate Change (DECC), 2013). When hydrogen is used as a fuel the only bi- products are water, heat and electricity; making this system carbon neutral; an example The Sir Samuel Griffith Building (AUS). (Chris Menictas and Skyllas-Kazacos, 2014) Considerations Due to the useful floor space being 11066.4m2 a dedicated control facility on the First Floor will house automatic electricity and gas meter reading. (Portal and Government, 2014). the output of the renewable energy system will be separately monitored and calculate the energy usage to the Building Management System (BMS). (Portal and Government, 2014) Ensure that Solar availability of solar energy year round in Plymouth being between 2.5-19 MJ/m^2(Met Office (2014)(Figure 41) Stage 1 – Solar The system begins with photovoltaic array on the roof and linear sides Figure 42 of the building that face south and south west. These locations have the least amount of shadow cover from surrounding buildings such as Rolle and Babbage; these features increase the amount of panels exposed to the sun throughout the day [Figure 43 & 44]. Figure 41 (Met Office (2014) ‘UK Solar Radiation Maps’. Available at: http://www.metoffice.gov.uk/renewables/solar.
  • 36. Group 4: Intelligent building 36 BA Figure 43- Shadows exposure during summer (A) and winter(B) A B Figure 44- Shadows exposure during morning (A) and evening(B). The amount of roof space and side exposure is (m2). Monocrystalline 240W Sanyo (HIT- N240SE10 Model) panels will be applied and have the performance of 190 W/m2 at a cost of £ 298.7 (Swithenbanks Alternative Energy Ltd, 2014). Total panels are 1363 this translates to a 258 Kw solar array. Monocrystalline panels have the highest efficiency 6-9 /1 KWp per meter 2. Although they have a high cost they have an efficient uses of small available space. (Maehlum, 2013) B
  • 37. Group 4: Intelligent building 37 Figure 45 (Sunny Clear System Operation)
  • 38. Group 4: Intelligent building 38 Figure 48 Redox Cube Fuel Cell (Clark, 2013)[10] Available at: http://mtech.umd.edu/news/press_release s/redox_wachsman_fuel_cells.html Figure 47 Solid oxide Operation (Bierschenk, Wilson and Barnett, 2011) Available at: http://pubs.rsc.org/en/content/articlelanding/201 1/ee/c0ee00457j#!divAbstract Or Air Mode SOFC Figure 46 (Cloudy/ dark system operation) Stage 2 - Solid Oxide Electrolysis Cell (SOEC) A (SOEC) will use 30% of the solar energy provided to electrochemically split water into hydrogen and oxygen. 6 Redox Cubes 25 KW fuel cells will be used in reverse operation. (Tao and Virkar, 2006) (Figure 47) During high insolation and hydrogen production months (May- September) the excess hydrogen produced will be stored long term to supplement the hydrogen demand for the fuel cells in the low insolation months (Nov - March). The Redox Cubes cost $1000/KW (Clark, 2013).
  • 39. Group 4: Intelligent building 39 Rain water collected from the roof top can be in the system. This use of free water reduces water consumption from water service provider. Water produced from the fuel cell 22 kg per hour can also be condensed stored and recycled for the electrolysis process. (Appendix for calculations) Stage 3 - Fuel Cell When the fuel cell is ran off of hydrogen it is 100% green, as there are no greenhouse gasses produced during the reaction. This was a major deciding factor for a sustainable energy production approach as the only by products are water vapour, electricity and heat. Redox Cube (80 KW) in fuel cell mode will be used to convert the stored hydrogen and air into electrical power and heat. During operation heat (approx. 3333KW) is released, this heat was decided to be utilized in the heating, climate control and ventilation systems in the building. During the operational reaction the fuel cell reaction is exothermic (Heat is released), by capturing the heat generated overall system efficiency increase from 45%-60% to 80% - 85%, this heat was decided to be utilized in the heating, climate control and ventilation systems in the building. (Messenger, Vent and Venter, 1999). Stage 4- Storage
  • 40. Group 4: Intelligent building 40 Figure 50 Technology features: Panasonic inc. [pp 7]: (Panasonic Corporation, 2012) Figure 51 Technology features: Panasonic inc [pp 7] (Panasonic Corporation, 2012) Storage is one of the main components of this system; as peak energy production will not coincide with the time periods in which the energy is needed (Figure 50). Battery Storage for the Ship The Ship will demonstrate the storage of solar energy in batteries and hydrogen. Battery storage would be used for ‘load shifting’. The Panasonic DCB-104E (27 KWh) module was chosen due to its high energy density per volume; high energy conversion efficiencies (95%) (Appendix. Fig 25) and included battery management system (BMU). This BMU will be linked to the building’s management system that will smooth out energy demand at peak usage by releasing stored energy during peak demand, reducing grid consumption and peak rates (Clements-Croome, 2004).The cost of 1500 € (Panasonic Corporation, 2012) (Oberhofer and Meisen, 2012) [Appendix figure 2].
  • 41. Group 4: Intelligent building 41 Figure 53 (Gray, 2007) ‘Hydrogen storage – status and prospects’ Figure 52 (Panasonic Corporation, 2012) [Technology features: Panasonic inc [pp 10 Hydrogen Storage Choosing a hydrogen storage medium safety and volumetric density is a major concern therefore metal hydride was chosen as the storage medium as the risk of explosion is improbable. Metal Hydride(Magnesium Hydride) has one of the highest volumetric weight of 7.6%(135 Kg H2 /m3)(Figure 53) of hydrogen (Ohta, 1979) [21] at a relatively low cost (eg Magnesium hydride) that doesn’t need any energy input in order to store the fuel like liquid storage. The system will need 150 Kg of hydride (Tanks) at a cost of £36.20/ 10g (Sigma-Aldrich Co. 2015) to store hydrogen for a 3 month period of low sunlight and clowd cover throughout the daytime. Risk Assessment: Located in the Appendices is the full risk assessment for the project. The risk assessment outlines all the potential risks before, during and after construction of the building. Building Material: As the design specification stated that the project that it had to fit in with the surrounding buildings. The building managers decided to model the building after Plymouth University’s buildings “Roland Levinsky & the House”. Using the same construction technique and aesthetic design along with the same material composition of a reinforced concrete frame with an outer shell made of copper panelling.
  • 42. Group 4: Intelligent building 42 5.4.8 Space Saving A key concept of an ‘Intelligent building’ is its functionality and ability to utilise all available space in an intelligent manor, this has been done in varying ways within the university building by using clever space efficiency techniques, whilst maximising usable working space. Such as folding ‘curtain’ walls both in the lecture theatres but also in the smaller study rooms, these allow the actual sizes of the rooms to be changed based on the needs of the occupiers at the time. For instance by integrating two of these retracting walls in the lecture theatre it can be used as a single theatre or split into two or three smaller halls, as class sizes on different courses varies greatly. In the same way the study rooms can be split into large rooms for group study sessions or smaller rooms for individuals allowing needs to be accommodated and to maximise effective use of space. These walls are already being used in other areas of the university such as in Smeaton and Babbage computer rooms and in the seminar rooms in Robbins. However they are not as yet being used on the larger scale in lecture theatres. These retracting walls have to be custom made for the application so a price cannot be estimated, though as they are non- load bearing walls can be made from lightweight, relatively cheap materials. The only issue that would have to be accommodated for would be noise between the lecture theatres so soundproofing materials may have to be used which would increase costing. The building also incorporates versatile furniture and fittings allowing to maximise working space within the building with an emphasis on the third floor and within the offices. As these are the areas in which space efficiency is crucial in order to create an open plan, clutter free environment which would appeal to all users of the building. These include lightweight folding chairs which are priced at £19.80 per unit (staples.co.uk, 2015) and small linking tables priced at £24.99 per unit (Homebase.co.uk, 2015) which can be easily resituated for use with small or large groups or individuals. Wall mounted information screens and underfloor power sockets, shown in Figure 1 below, will also be situated around the building. These aspects are in use in some of the newer university buildings such as Roland Levinsky and need to be integrated into new buildings to allow students and lecturers alike to keep connected in the modern day. The use of glass on the exterior of the building is similarly an important feature in regards to space efficiency as the use of natural light creates the effect of more spacious rooms. Figure 54 promarchive.ru (no date). Available at: http://promarchive.com/product/78212
  • 43. Group 4: Intelligent building 43 6 PROJECT PLAN The Gantt chart shown below in figure 55 shows the tasks carried out to produce this report and the time designated to each of the jobs. Activities 12-Jan 19-Jan 26-Jan 02-Feb 09-Feb 16-Feb 23-Feb 02-Mar 09-Mar 16-Mar 23-Mar 30-Mar 06-Apr 13-Apr 20-Apr 27-Apr Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Planned Actual Final Preparation for the Presentation Day on the 1st of may Attend Presentation Day on the 1st of May Finalise & Submit Final Report on 25th March Agree the Design for the Physical Model Design and Build the Physical Model Design the Poster for Presentation Day Produce the Poster for Presentation Day Prepare for the Presentation Day Produce Draft Report Finalise Design Research building section 1- group member 1 Research building section 2 - group member 2 Research building section 3 - group member 3 Assign a system for each group member to research Research system 1- group member 1 Research system 2 - group member 2 Research system 3 - group member 3 Research system 4 - group member 4 Week Commencing Holiday Assign section of building for each member to research Produce Final report Research building section 4 - group member 4 Research building section 5 - group member 5 Research building section 6- group member 6 Research building section 7- group member 7 Review building sections Research system 5 - group member 5 Research system 6- group member 6 Research system 7- group member 7 Review each system Review Draft Report Read through past examples on dle Decide and agree research areas for Final Report Figure 55: Gantt Chart showing progress for term 2 work.
  • 44. Group 4: Intelligent building 44 7 CONCLUSIONS In conclusion a variety of evaluating methods have been used to help choose a final design for the intelligent building. The purpose of the building was one of the first things to be decided. A number of possible options were considered and after evaluate the strengths and weaknesses of each one, a design of a multi-functional university building that will provide space for lectures theatres, open access study areas and a café was chosen. Next, the location of the building needed to be decided. It was felt that the building would need to be located on the university campus to allow the building to reach its maximum potential. Unfortunately however, being a city campus, available space for the building is very limited. Due to this reason it was decided that the best possibility option would be to remove an existing building to create space. By removing a section of the existing Portland Villars, which are currently only used for offices, it would provide a location that is suitable for the new university building. However, by doing this it would mean the new university building will also need to contain offices to replace the existing ones in the Portland Villars. The design and image of the building is obviously extremely important and needs to fit with the universities image. A range of possible ideas were considered but in the end the chosen building design is a modern, aesthetically pleasing building in the shape of a ship (which will fit with the universities marine image). A range of systems will be installed throughout the building helping to create an intelligent building. There will be systems installed for sound, lighting, sanitation, the environment, energy, security and fire. Estimated price for the systems have been included. The aims of the report have been achieved and therefore the project has been a success. The Project has also helped develop many useful skills which will be used throughout university and also when in an engineering career. This include: communication skills, teamwork skills, CAD skills (e.g. SolidWorks and Google Sketchup), report righting techniques and time management.
  • 45. Group 4: Intelligent building 45 8 REFERENCES  Arch Daily, (2015) Building Ventilation [online] Available at: http://ad009cdnb.archdaily.net.s3.amazonaws.com/wp- content/uploads/2011/10/1317665184-section-natural-ventilation-1000x666.jpg (Accessed: 09/03/2015)  Amazon, (2015) Philips 433227 60 Watt Equivalent SlimStyle A19 LED Light Bulb Soft White, Dimmable. [Online] Available at: http://www.amazon.com/exec/obidos/ASIN/B00I134ORI/ref=nosim/6688506-rg1112- 0020-20?s=merchant&m=ATVPDKIKX0DER (Accessed: 04/03/2015)  Apollo (2013) A guide to Fire Alarm Systems Design BS5839 Part1: 2013. Available at: http://www.apollo-fire.co.uk/media/57203/bs-guide-final-locked.pdf (Accessed: 04/03/2015)  Avantcoatings (2015) Available at: http://www.avantcoatings.co.uk/Images/EWI_35Percent_Wall_HeatLoss.jpg (Accessed: 08/03/2015)  Bathroom Technology (2015) UNIVERSAL push button duel flush system. Available at: http://www.bathroomtechnology.co.uk/shop/universal-spare-parts/wc-waste- spares/universal-push-button-dual-flush- 1094458.html?gclid=CNyh06nmk8QCFcPKtAodyDkA_Q (Accessed: 06/03/2015)  Bierschenk, D. M., Wilson, J. R. and Barnett, S. A. (2011) High efficiency electrical energy storage using a methane–oxygen solid oxide cell, The Royal Society of Chemistry. Available at: http://pubs.rsc.org/en/content/articlelanding/2011/ee/c0ee00457j#!divAbstract (Accessed: 15/03/2015)  Buildingsheriff.com, (2015). Average Labour Cost/Price to Fit/Install an Extractor Fan (Electrician's Rates). [online] Available at: http://www.buildingsheriff.com/extractor- fan-cost.html (Accessed: 08/03/2015)  Carter, DC. (2010) Student ID cards are required at many buildings on NAU’s campus. Available at: http://www.ecampusnews.com/technologies/university-pushes- for-better-attendance-with-electronic-scanners/ (Accessed: 04/03/15)  Cetra (2015) CetraVision 800 - Transparent Roller Shutter. Available at: https://cetrasecurity.co.uk/productsandservices/rollershutterdoors/cetravision-800 (Accessed: 04/03/15)  Christil Glass, (2014) Price Calculator. [Online] Available at: http://christieglass.com/pricecalculator.php (Accessed: 14/03/2014)  Clark, A. J. (2013) Maryland Technology Enterprise Institute — Educate, Create, Connect, Mtech. Available at: http://mtech.umd.edu/news/press_releases/redox_wachsman_fuel_cells.html (Accessed: 15/03/2015)
  • 46. Group 4: Intelligent building 46  Clark, (2013) Redox Cube Fuel Cell. Available at: http://mtech.umd.edu/news/press_releases/redox_wachsman_fuel_cells.html (Accessed: 15/03/2015)  Clements-Croome, D. (2004) Intelligent Buildings: Design Management and Operation (Student Paperbacks): Design Management and Operation. United Kingdom: Thomas Telford Services Ltd, pp 9–12.  Cooper Lighting and Safety Ltd (2002) A guide to fire alarm systems design. Available at: http://www.cooperfire.com/sites/default/files/docs/CC1608_Fire%20Systems%20Desi gn%20Guide.pdf (Accessed: 04/03/15)  Department of Energy & Climate Change (DECC) (2013) Topic paper low carbon, Plymouth.gov.uk. Available at: www.plymouth.gov.uk/topic_paper_low_carbon.pdf (Accessed: 13/03/2015)  Direct Industry, (2015) Takex motion dector/ passive infrared/ ceiling-mount. Available at: http://www.directindustry.com/prod/takex-europe/motion-detectors- passive-infrared-ceiling-mount-14273-737309.html (Accessed: 04/03/15)  Dunsmore, F. (2014) Carly Office Desk - Black., homebase.co.uk. Homebase. Available at: http://www.homebase.co.uk/en/homebaseuk/carly-office-desk---black- 189693 (Accessed: 20/02/2015)  Fire and Safety Centre (2015) Fire Extinguisher Usage Guide. Available at: http://www.fireandsafetycentre.co.uk/fire-extinguisher-chart.php (Accessed: 05/03/2015)  Gent Work (2015) Aqua free cartridge pack. Available at: http://www.gentworks.co.uk/aquafree-urinal-maintenance-device- cartridge.html?gclid=CMOO17aDisQCFQLMtAodBFgAhA (Accessed: 03/03/2015)  Gray, M. E. (2007) ‘Hydrogen storage – status and prospects’, Advances in Applied Ceramics, 106(1-2), pp. 25–28. doi: 10.1179/174367607x152380.  Guttermate.co.uk, (2015) Rainwater Harvesting Systems by GutterMate. [online] Available at: http://www.guttermate.co.uk/rainwater-harvesting-collection-system (Accessed: 13/03/2015)  Huang, JH. (2012) (BOSCOM TECHNOLOGY CO., LIMITED) Hd-sdi cctv High Speed Dome Camera CMOS Illumination 0.3 Lux / F1.2, 12V DC 1A. Available at: http://www.hd-cctvcameras.com/china- hd_sdi_cctv_high_speed_dome_camera_cmos_illumination_0_3_lux_f1_2_12v_dc_ 1a-358681.html (Accessed: 04/03/15)  Insinkerator (2014) Model SST-FLTR. Available at: http://www.insinkerator.com/en- us/Household-Products/Water-Products/Pages/Model-SST-FLTR.aspx (Accessed: 06/03/2015)  James L (2007) Rain water flush system drawing. Available at: http://www.greenliving.co.uk/pdc04/week5/week5.htm (Accessed: 02/03/2015)
  • 47. Group 4: Intelligent building 47  Leviton, (2014) Occupancy sensor: OSC05-RMW. [Online] Available at: http://www.leviton.com/OA_HTML/ProductDetail.jsp?partnumber=OSC20- RMW&section=38563&minisite=10251 (Accessed: 04/3/2015)  Maehlum, M. A. (2013) ‘Solar Cell Comparison Chart. Available at: http://energyinformative.org/solar-cell-comparison-chart-mono-polycrystalline-thin- film/ (Accessed: 08/03/2015)  Menictas C and Skyllas-Kazacos M (2014) Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications 1st edn Edited by C Menictas M Skyllas-Kazacos and T. Lim. United States: Elsevier, 2014; Woodhead Publishing Series in Energy, pp. 582–584  Messenger, R. A., Vent, G. and Ventre, J. G. (1999) Photovoltaic systems engineering. Boca Raton, Fla: CRC Press Inc, pp 60-62.  Met Office, (2014) ‘UK Solar Radiation Maps’. Available at: http://www.metoffice.gov.uk/renewables/solar (Accessed: 08/03/2015)  Oberhofer, A. and Meisen, P. (2012) ‘Energy Storage Technologies & Their Role in Renewable Integration’, Global Energy Network Institute, pp. 32–33  Ohta, T. (1979) Solar- hydrogen energy systems: an authoritative review of water- splitting systems by solar beam and solar heat ; hydrogen production, storage and utilisation. First. Edited by T. Ohta. United Kingdom: Pergamon Press, p. PP–193– 203.  Panasonic Corporation (2012) Storage Battery System Using Lithium‐ ion Batteries. Available at: http://www.panasonic.com/business/pesna/includes/pdf/Products_Battery%20Storag e%20-%20Storage%20Battery%20System.pdf (pp 07) (Accessed: 27/01/2015)  Panasonic Corporation (2012) Storage Battery System Using Lithium‐ ion Batteries. Available at: http://www.panasonic.com/business/pesna/includes/pdf/Products_Battery%20Storag e%20-%20Storage%20Battery%20System.pdf (Accessed: 27/01/2015)  Planitherm.com, (2015) [online] Available at: http://www.planitherm.com/assets/TripleGlazingGRAPHICLarge_1.jpg (Accessed: 12/03/2015)  Plants Respiration System, (2015) [online] Available at: http://tomatosphere.org/teachers/guide/images/cycle1.jpg (Accessed: 13/03/2015)  Portal, P. and Government, L. (2014) Approved Document L - Conservation of fuel and power. Planning Portal (Department for Communities and Local Government). Available at: http://www.planningportal.gov.uk/buildingregulations/approveddocuments/partl/appro ved (Accessed: 08/03/2015)  promarchive.ru (no date). Available at: http://promarchive.com/product/78212 (Accessed: 22/02/2015).
  • 48. Group 4: Intelligent building 48  Safelincs (2015) Addressable Smoke and Heat Detectors. Available at: http://www.safelincs.co.uk/apollo-xp95-optical-smoke-detector/ (Accessed: 05/03/15)  Safelincs (2015) Addressable Smoke and Heat Detectors. Available at: http://www.safelincs.co.uk/apollo-discovery-heat-detector/ (Accessed: 05/03/15)  Safelincs (2015) Addressable Fire Alarm Panels. Available at: http://www.safelincs.co.uk/xfp-addressable-two-loop-32-zone-panel/ (Accessed: 05/03/15)  Safelincs (2015) Addressable Sounders and Beacons. Available at: http://www.safelincs.co.uk/xp95-open-area-weatherproof-sounder/ (Accessed: 05/03/15)  Safelincs (2015) Addressable Manual Call Points. Available at: http://www.safelincs.co.uk/apollo-discovery-isolated-manual-call-point/ (Accessed: 05/03/15)  Safelincs (2015) FD30 Fire Doors. Available at: http://www.safelincs.co.uk/fire-doors- with-30-minutes-protection-fd30/ (Accessed: 05/03/15)  Safelincs (2015) Fire Extinguishers. Available at: http://www.safelincs.co.uk/fire- extinguishers/ (Accessed: 05/03/15)  Samsung Smart Home, (2015) HA System – Apartment Intercoms Systems. Available at: http://www.digitaldoorlocks.com.au/product-category/video- intercom/samsung-apartment-units/ (Accessed: 03/03/15)  Screwfix, (2015) British General 1-Gang 2-Way 400W Push Dimmer Switch White. [Online] Available at: http://www.screwfix.com/p/british-general-1-gang-2-way-400w- push-dimmer-switch-white/65335 (Accessed: 05/03/2014)  Sigma-Aldrich Co (2015) Magnesium hydride hydrogen-storage grade | Sigma- Aldrich, Sigma-Aldrich. Available at: http://www.sigmaaldrich.com/catalog/product/aldrich/683043?lang=en&region= (Accessed: 15/03/2015)  Staples (no date) Furniture/Chairs/Cabnets. Available at: http://www.staples.co.uk/padded-folding- chair/cbs/413568.html?promoCode=300300666 (Accessed: 20/02/2015)  Swithenbanks Alternative Energy Ltd, S. A. E. L. (2014) Solar Photovoltaic, Swithenbanks Altenative Energy. Available at: http://www.swithenbanks.co.uk/Solar_Photovoltaic_Equipment/11307/Sanyo_Solar_ PV_Panel_240W_HIT-N240SE10.html (Accessed: 08/03/2015)  Tao, G. and Virkar, A. (2006) ‘A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels’, Annual Progress Report - Hydrogen program, pp. 25– 27. doi: 10.2172/934689  Thermal Electronics (2014) EspressoMilkCooler.com – TEG Power Generator & Thermoelectric Generator, Thermal Electronics Corp. Available at:
  • 49. Group 4: Intelligent building 49 http://espressomilkcooler.com/teg-power-generator-thermoelectric-generator/ (Accessed: 13/03/2015)  Wikipedia , (2014) LED lamp. [Online] Available at: http://en.wikipedia.org/wiki/LED_lamp (Accessed: 04/03/2015)  Williams, H. (2013) What is the payback time for a rainwater harvesting system? - The Green Home. [online] Available at: http://www.thegreenhome.co.uk/heating- renewables/rainwater-harvesting/what-is-the-payback-period-for-rainwater- harvesting-system/ (Accessed: 11/03/2015)  World Health Organization, (2015) Sanitation. Available at: http://www.who.int/topics/sanitation/en/ (Accessed: 02/03/2015) 9 APPENDICES REFERENCES  Amos, Wade. A. (1998) ‘Costs of Storing and Transporting Hydrogen’, Costs of Storing and Transporting Hydrogen. United States, pp. 10–27. doi: 10.2172/6574.  Amos, W. A. (1998) ‘Figure F.2 – At longer storage times, liquid hydrogen storage starts to compete with other methods.’  Amos, W. A. (1998) ‘Figure F.5 – Liquid hydrogen and underground storage show relatively little increase in cost with longer storage times due to low capital costs of storage’.  FRS, D. M. (2008) Sustainable Energy - without the hot air: Why on-site renewables don’t add up, Blog Spot. Available at: http://withouthotair.blogspot.co.uk/2008/12/why-on-site-renewables-dont-add-up.html (Accessed: 01/02/2015)  Gray, M. E. (2007) ‘Hydrogen storage – status and prospects’, Advances in Applied Ceramics, 106(1-2), pp. 25–28. doi: 10.1179/174367607x152380.  Greenstream Publishing Limited (2015) Solar Irradiance Calculator, The Solar Electricity Handbook website. Available at: http://www.solarelectricityhandbook.com/solar-irradiance.html (Accessed: 14/03/2015)  Greenstream Publishing Limited (2015) Solar Irradiance Calculator, The Solar Electricity Handbook website. Solar Electricity Handbook. Available at: http://www.solarelectricityhandbook.com/solar-irradiance.html [1](Accessed: 01/03/2015)  Larminie, J. and Dicks, A. (2000) Fuel Cell Systems Explained. First. United Kingdom: John Wiley & Sons Ltd, pp 164-166.
  • 50. Group 4: Intelligent building 50  Larminie, J. and Dicks, A. (2000) Fuel Cell Systems Explained. First. United Kingdom: John Wiley & Sons Ltd, pp 297–302.  Maehlum, M. A. (2013) ‘Solar Cell Comparison Chart – Mono-, Polycrystalline and Thin Film’. Available at: http://energyinformative.org/solar-cell-comparison-chart- mono-polycrystalline-thin-film/ (Accessed: 08/03/2015)  Messenger, R. A., Vent, G. and Ventre, J. G. (1999) Photovoltaic systems engineering. Boca Raton, Fla: CRC Press Inc, PP 60-62.  Met Office (2013) South West England: climate. Available at: http://www.metoffice.gov.uk/climate/uk/regional-climates/sw (Accessed: 08/03/2015)  Ohta, ed. by T. (1979) Solar- hydrogen energy systems: an authoritative review of water-splitting systems by solar beam and solar heat ; hydrogen production, storage and utilisation. First. Edited by T. Ohta. United Kingdom: Pergamon Press, pp. 193 - 203  Oberhofer, A. and Meisen, P. (2012) 'Figure 25: Comparison of the efficiency for different technologies’, Global Energy Network Institute, pp. 31.  Oberhofer, A. and Meisen, P. (2012) ‘Energy Storage Technologies & Their Role in Renewable Integration’, Global Energy Network Institute, pp. 32–33.  Oberhofer, A. and Meisen, P. (2012) ‘Figure 3: Load curves for typical electricity grid’.  Panasonic Corporation (2015) Features | Storage Battery System. Available at: http://panasonic.net/energy/storage_battery/features/index.html (Accessed: 13/03/2015)  Tao, G. and Virkar, A. (2006) ‘A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels’, Annual Progress Report - Hydrogen program, pp. 25– 27. doi: 10.2172/934689.  Wachsman, E. D. (2012) Redox Power System’s Revolutionary SOFC Technology; 25 Years of Persistence, Hydrogen Energy. Available at: http://www.hydrogen.energy.gov/pdfs/htac_apr14_14_wachsman.pdf (Accessed: 15/03/2015)
  • 51. Group 4: Intelligent building 51 10 APPENDICES Solar Appendix (Map of location) Site position(lat/lon) 50.376211, -4.141138 50° 22' 34", -04° 08' 28"(show decimal) Altitude:34 m(show ft) Plymouth University, Portland Villas, Plymouth, Plymouth PL4 6DX, UK (Met Office , 2013) (Greenstream Publishing Limited, 2015)
  • 52. Group 4: Intelligent building 52 The Cells Monocrystalline Polycrystalline Amorphous CdTe CIS/CIGS Typical module efficiency 15-20% 13-16% 6-8% 9-11% 10-12% Best research cell efficiency 25.0% 20.4% 13.4% 18.7% 20.4% Area required for 1 kWp 6-9 m2 8-9 m2 13-20 m2 11-13 m2 9-11 m2 Typical length of warranty 25 years 25 years 10-25 years Lowest price 0.75 $/W 0.62 $/W 0.69 $/W Temperature resistance Performance drops 10-15% at high temperatures Less temperature resistant than monocrystalline Tolerates extreme heat Relatively low impact on performance Additional details Oldest cell technology and most widely used Less silicon waste in the production process Tend to degrade faster than crystalline- based solar panels Low availability on the market (Maehlum, 2013) Electrolysis Appendix A solid oxide electrolyser is an electrochemical device that converts water into hydrogen fuel. It operates in the exact opposite operation as the fuel cell by utilizing solar or grid electricity to split the water molecule into oxygen and hydrogen (fuel).Conveniently the out put of a Photovoltaic system produces direct current which is consistent with the input needs of the electrolyser. This means that hydrogen can be produced by simply passing current through the water. But unlike other electrolysers SOEC operate at high temperatures(800
  • 53. Group 4: Intelligent building 53 >1000) that contribute to the thermal decomposition of water. (Messenger, Vent and Ventre, 1999) (Tao and Virkar, 2006) Fuel Cell Appendix A Fuel Cell an electrochemical reactor that converts fuel and air into heat and electricity Fuel flows over the anode and air flows over the cathode. An electrolyte (solid ()metal oxide) layer between anode and cathode transport oxygen ions from cathode to anode. A peripheral circuit is connected to the anode and cathode and provides the apparatus to take power from the fuel cell to power electrical services. (Larminie and Dicks, 2000) Types of fuel cell Electrolyte Operating Temp Fuel Oxidant Efficiency Solid oxide (SOFC) ceramic as stabilised zirconia and doped perovskite 600–1000°C natural gas or propane O2/Air 55–60% Phosphoric acid (PAFC) phosphoric acid 160–210°C hydrogen from hydrocarbons and alcohol O2/Air 40–50% Proton-exchange membrane (PEMFC) polymer, proton exchange membrane 50–80°C less pure hydrogen from hydrocarbons or methanol O2/Air 40–50% Molten carbonate(MCFC) molten salt such as nitrate, sulphate, carbonates… 630–650°C hydrogen, carbon monoxide, natural gas, propane, marine diesel CO2/O2/Air 50–60% Alkaline (AFC) potassium hydroxide (KOH) 50–200°C pure hydrogen, or hydrazine O2/Air 50–55% Table 1 (Messenger, Vent and Ventre, 1999)
  • 54. Group 4: Intelligent building 54 A Solid Oxide fuel Cell was chosen from comparing it to the other fuel cells in table 1. Solid oxide fuel cells characteristics and advantages for building application are due to: 1. They operate at high temperature (600-1000 Deg C) and low cost catalyst nickel metal metal catalyst this makes the cost of the cell considerably lower. 2. Operational Efficiency rating of 60% 3. 85% Efficiency when both electricity and heat is utilized. 4. Versatile operation can operate off of hydrogen or back up - biogas, methane- hydrocarbons. (Larminie and Dicks, 2000) Storage Batteries Figure 25(Oberhofer and Meisen, 2012)
  • 55. Group 4: Intelligent building 55 Environmental Impacts and Life cycle cost Method Impact Life Cycle Cost/kWH output Energy density Flywheels construction creates greatest impacts, Very low 20 years 1,000 - 5,000 € Superconducting Magnetic Energy Storage(SMES) Very low, only during construction 1,000,000 cycles 30,000 - 200,000 € Lead-Acid High impact, Lead is poisonous and can contaminate soil and water. 1,000 - 2,000 cycles 25 - 250 € 25- 50Wh/kg Lithium-Ion Low impact, during production of the cells 1,000 - 2,000 cycles 800 - 1,500 € 140kWh/ton or 150- 200kWh/m3 Figure 26.Table 3 & 4 (Oberhofer and Meisen, 2012) : Comparison of environmental impacts for different technologies and Comparison of the costs for different technologies.
  • 56. Group 4: Intelligent building 56 Middle Size 27- kWh System DCB-102E Large Size DCB-104E Charging Voltage 52V 780V Nominal Voltage 46.8V 702V Charge Rate (continuous/max) 50A 76.8A Discharge Rate (continuous/max) 50A 76.8A Maximum Parallel and Series 1S5P 15S1P Table 27 .Product Specification :Battery (Panasonic Corporation, 2015) Hydrogen Storage There are three major means of storing hydrogen: Liquid, Compressed gas and Metal Hydride. (Table 1.Costs Of Storing and transporting [hydride costs]) Shows the advantages and disadvantages Storage Medium Characteristic Advantage Disadvantage Cost Storage period and consideration Safety Liquid Storage Hydrogen is processed through, throttle valves, heat expansion engine, heat exchangers and compressors until liquefied. highest storage density insulated storage container hydrogen evaporation will occur and build up pressure. liquefaction process - energy $650- $6,600/kW- Depending on compressor size Long term or seasonal storage of hydrogen, low electricity costs requiring liquid hydrogen High Pressur es
  • 57. Group 4: Intelligent building 57 intensive Metal Hydride Storage Hydrogen chemically bonds to metal, alloy or metalloid elements. Examples: LaNi5-xAlx, TiV2-xMnx and FeTi1- xMnx store about 2%-6% hydrogen by weight high volumetric storage densities 27Kg< Absortion of hydrogen >= Atmospher ic pressure. Release hydrogen at high when heated. Many Hydride alloys to choose from for desired application . Heat is released when hydrogen is released- Cooling system needed. Can be damaged by: water, carbon di-oxide or sulphur compounds low weight- storage density $820/kg- $60,000/kg not economical for large quantities due to high capital cost Safest due to low pressur e storage Compre ssed Gas Storage Hydrogen gas is compressed into a smaller volume only compressor and a pressure vessel needed. Simplest method Low Pressure capacity <=1300 kg at 1.2-1.6 MPa low storage density High Storage pressure(20- 30 MPa) increases investments and operating cost Size (kg/h) 170 for $118,000 ($/kg/h) Or Size (kg/h) 1,500 for $25,600 ($/kg/h) small quantities short storage times Storage Methods Comparrison (Amos, 1998)
  • 58. Group 4: Intelligent building 58 Table 10 - Hydrogen Storage Capital Cost Assumptions Base Size Base Cost Base Pressure Sizing Exponent Pressure Factor Compressor 4,000 kW (5,400 hp) $1,000/kW ($746/hp) 20 MPa (2,900 psia) 0.80 0.18 Compressed Gas Vessel 227 kg (500 lb) $1,323/kg ($600/lb) 20 MPa (2,900 psia) 0.75 0.44 Liquefier 454 kg/h (1,000 lb/h) $44,100/kg/hr ($20,000/lb/h) n/a 0.65 n/a Metal Hydride n/a $2,200/kg ($1,000/lb) n/a 1.00 n/a (Amos, 1998) Table 10 provides the factors used to estimate the capital costs associated with hydrogen storage. These particular numbers were used because they provided the best cost estimates over the entire range of flows examined. Amos, W. A. (1998) ‘Figure F.5 – Liquid hydrogen and underground storage show relatively little increase in cost with longer storage times due to low capital costs of storage’.
  • 59. Group 4: Intelligent building 59 (Wade. A Amos, 1998) ‘Figure F.2 – At longer storage times, liquid hydrogen storage starts to compete with other methods.’ (Oberhofer and Meisen, 2012) Source: http://www.world-nuclear.org/info/inf10.html Base Load: This is the amount of electricity that is required and generated at any time. Intermediate Load: Power plants that are easier and faster to regulate are used for the task of middle load. Peak Load: Power demand outside of the regular daily requirement.
  • 60. Group 4: Intelligent building 60 Figure 3. (Gray, 2007) ‘Hydrogen storage – status and prospects’
  • 61. Group 4: Intelligent building 61 Risk Assessment: Sector Risk Factor (1=minor, 5=major) Likelihood (1=rarely, 5=commonly) RiskFactor How can it be overcome? Stages taken to mitigate the risk Exterior Injury caused by the revolving door 3 2 6 Do not mess around near the automated doors. Make sure anyone entering the revolving doors does so in a calm manner. Motion sensors on the door will alert it to the approach of a person meaning it will only revolve when required and in a slow manner. Revolving door jamming 2 3 6 Keep the door revolving at a steady pace away from any sort of object/ surface that could cause jamming. Raised the door up above floor and carpet level and add skirting to reduce snagging and keep the heat in. Objects falling off roof 5 1 5 Do not have an unnecessary objects attached to the extremities of the building. Plymouth is a windy city, ensure all objects attached to the outside of the building are correctly/ firmly bolted in place and do not have them situated over any of the buildings access points. Slip hazards outside entrance 3 3 9 Strategically place non slip tape in areas prone to damp. Rain is frequent of the coast so make sure to pace appropriate warnings in areas that are notorious for water accumulation. Place non slip tape on any smooth surfaces outside access points or on steps. Interior Electrical Fault/ surge 3 2 6 Follow fault procedures. All electrical circuits and appliances should be connected to a surge protect fuse and if a fault occurs site maintenance staff will arrive to rectify the problem. Tripping on stairs 3 3 9 A calm and safe manner must be maintained when climbing or descending on stairs. All stairwells in the building are carpeted with a regularly interval and slip strip edge to prevent any unnecessary tumbles. Wet floors 3 4 12 If there is no sign present inform a member of staff. Wet floors can mean one of two thing both someone is cleaning, and in this case a cleaner will be present with a wet floor sign, avoid it and carry on. However if there is a puddle and no sign/ staff around report it to the buildings reception to who will send
  • 62. Group 4: Intelligent building 62 staff to assess and act upon the situation. Getting stuck in the lifts 2 1 2 Do not mess around in the lifts and above all remain calm. If personnel get stuck for any reason, remain calm and press and hold the alarm button located on the lifts interface, this will put you through to the buildings security staff who shall come and retrieve you. Food poisoning from the cafe 1 1 1 Make sure food is cleaned, prepared and cooked correctly before consumption. All café staff will be aware of food hygiene and be competent in cooking to make sure food is proper cleaned, prepared and cooked. Miscellaneous burns 2 1 2 This can happen in a multitude of ways, just remember to remain calm around hot objects. If a burn occurs head to the ground floor first aid station where you will be treated by a member of staff with a first aid certificate and if the burn is more severe further action will be taken. Miscellaneous cuts 2 2 4 This can happen in a multitude of ways, just remember not to act recklessly around sharp objects. If a cut occurs head to the ground floor first aid station where you will be treated by a member of staff with a first aid certificate and if the cut is more severe further action will be taken. Mild electrocution 3 1 3 Remember to act intelligently and never play around with electricity. Keep drinks away from the sites computers, avoid putting yourself in harm’s way where electricity is involved, keep all digits away from plug sockets and if a frayed wire is spotted inform a member of staff. If you find another person in a state of electrocution, call 999 immediately. Flooding 3 1 3 Flooding can occur through large downpours, if the sites entrance is wet or flooded, be cautious upon entering the site. Wet floor signs will highlight areas that have be flooded, avoid walking through these areas if you can, if it has only just occurred, inform site staff and if for any reason the building is waterlogged evacuate through the nearest entrance. Fire 4 1 4 Follow procedures. Upon locating a fire, alert the buildings occupants through a fire alarm and evacuate. Lift failure 5 1 5 In the case of a lift failure use the stairs. If a lift is out of order, use the stairs. However if you are inside the lift when it fails, don’t panic the lift will not plummet, the lifts safety protocols will hold you in place. Hold the alarm button and it shall put you through to security, who will retrieve you. Power failure 3 1 3 In the case of a power failure, follow procedures. Upon the power going out the auxiliary power supply shall boot up and at that point carry on, if however it does not start up, call the sites security number and make it out of the building following the luminous
  • 63. Group 4: Intelligent building 63 markings. Electricians will arrive after you leave to fix the problems. Toilet blockage/ back up 2 2 4 When this happens inform staff. If a toilet begins to flood or one is discovered, tell a member of staff and they shall close off the toilets until the problem can be rectified. Burst pipe 2 1 2 Flooding inside the building can happen when a pipe bursts, when this happens avoid the area and inform staff. If a pipe bursts immediately inform staff and divert others as it could cause more problems. Broken glass 3 2 6 Avoid it. Do not handle the glass, try to a shoe to push it to one side and fetch a cleaner to collect the shards and dispose of them properly. Carbon monoxide/ dioxide build up 4 1 4 Follow protocols. When it starts to feel hot and stuffy, open a few of the rooms windows however if this doesn’t help, leave the room. Ventilation malfunction 3 2 6 Inform staff. If a vent in a room stops working open a window and inform a member of the maintenance staff. Getting locked in a room 2 3 6 Gain the attention of others. Call the site security office and they will collect you from the room. Security doors colliding with personnel 2 4 8 Do not run through doors blindly. All the doors in the building are safety doors so they have a slow travel time. Be careful when opening and closing doors. Objects falling from the walls or ceilings 3 2 6 Make sure all objects attached to interior walls are mounted properly. Make sure everything attached to the wall is firmly done so, do not hang off of them or play with them. Hydrogen leak/ fuel leak 5 1 5 Follow procedures Evacuate. Disabled/ handicapped personnel limitations 3 3 9 Assist handicapped if needed, when asked. Make sure that there are appropriate amenities for any and all handicapped building occupants. Operation of hazardous machinery 2 2 4 Follow instructions on the machine. When operating machinery read the instructions and use correctly. Obstruction in the vents 3 1 3 Follow Protocol. Inform staff. A system failure 4 2 8 If an obvious system failure occurs alert staff and follow the necessary action plan. Depending on which system depends on the outcome however in all of these, a calm attitude needs to be present. Loss of temperature control 3 1 3 Follow common sense. Open a window, or remove a layer of clothing if it is required, if not leave the room but at the end of either scenario inform a member of staff who shall call maintenance to repair the system. Over crowding 3 4 12 If a room is overcrowded, find another room. When a large number of people congregate in one room it becomes its own health and safety hazard, if a room is over capacity, leave and find a less crowded area.
  • 64. Group 4: Intelligent building 64 Construction Injury to workers 4 2 8 Follow working protocol and procedures. All workers must wear protective gear and take care while moving around on site, as well as take the appropriate measures when working with hazardous TMM (Tools, Machinery and Materials). Planning permission denied 5 2 10 Alterations need to be made to meet local authority’s requirements on the building’s design. Check with building regulations before beginning construction, as well as having weekly meetings with the sites building consultant and foreman. Make sure to design the building in an eco-friendly/ conservative manner. Delivery delays 3 3 9 Account for lateness with deliveries. Check regularly with your supplier and drivers to make sure that everything is running smoothly and if not plan a head to make sure to stay one step ahead of your material surplus. Building movement post build 2 4 8 Monitor the building and take appropriate action. During construction carry out safety checks to make sure the contractor is complying with everything so as to minimalise the chance of fault. Once the building has been constructed and left to stand for 2 weeks send in a team of surveyors to check for any slant. Finance issues 3 2 6 Account for delays, loss & replacement of materials or tools and keep track of the sites manuscript. Focus on keeping the project budget on target if not factor in expenditures to counter the cost curve when issues arise. Keep to deadlines and account for economy fluctuation of the builds timescale. Material availability 3 3 9 Make sure suppliers are reliable. Only employ trusted and well rated suppliers from an accredited charter to ensure supply will be met with no complaints. Make sure back up suppliers are also available/ not to use rare and hard to come by materials/ that the project has more than one supplier and that they all have surplus of the chosen materials. Unforeseen circumstances - - - These cannot be accounted for, but respond with appropriate and logical action. - Lazy/ Unhappy workforce 3 1 3 Make sure the contractors that are hired for the job have a strong job satisfaction rating and may have done some work for Plymouth University before or with an affiliate that you can observe first. Make sure to provide appropriate amenities on site as well as suitably spaced rest breaks and working hours to ensure high quality productivity. Regularly visit the site in person to assess progress and always have a progression plan that can be referred to when needed.
  • 65. Group 4: Intelligent building 65 Machinery malfunction 4 1 4 Try to plan ahead for malfunctions. Vehicles and machinery onsite must be maintained regularly, as well as being surveyed every morning before use and put away correctly at the end of a working day in order to minimalise complications. Working restrictions 3 5 15 It is different wherever you work, but make sure to visit the sites local planning office to check what is expected of workers. Many places have a no heavy working policy between 9am to 7pm, if the site does have to obey these restrictions do so and make sure that the sites time management is managed smoothly to make up for it. Construction set backs 3 4 12 Give clean and concise instruction when explaining jobs to the workforce Supply multiple copies of a detailed plan of construction in order to minimalise mistakes and ensure to label essential materials so that they can be allocated the correct place. Again a competent workforce is key.
  • 66. Group 4: Intelligent building 66 Below shows the dimensions for all of the offices: 4th floor: 5th floor: 6th floor: 7th floor: 8th floor:
  • 67. Group 4: Intelligent building 67 Building/Panel Dimensions Equations and Assumptions
  • 68. Group 4: Intelligent building 68 Cost of Building Systems
  • 69. Group 4: Intelligent building 69 Solar Hydrogen Calculations