SlideShare a Scribd company logo
1 of 1
Souleymane SY (1,2)*, Benjamin SULTAN (2), Juan Pablo Boisier (3), Nathalie de NOBLET-DUCOUDRE (3)
Malick WADE (1), Amadou T. GAYE (1), Ousmane NDIAYE (4), Yohann FARE (5)
(1)	
  -­‐Laboratoire	
  de	
  Physique	
  de	
  l’Atmosphère	
  et	
  de	
  l’Océan	
  -­‐Siméon	
  Fongang,	
  Ecole	
  Supérieure	
  Polytechnique	
  de	
  l’Université	
  Cheikh	
  Anta	
  Diop	
  (UCAD)	
  Dakar,	
  Senegal	
  
(2)	
  -­‐Laboratoire	
  d’Océanographie	
  et	
  du	
  Climat:	
  ExpérimentaLon	
  et	
  Approches	
  Numériques,	
  Université	
  Pierre	
  et	
  Marie	
  Curie,	
  Paris	
  France	
  
(3)-­‐	
  Laboratoire	
  de	
  Science	
  du	
  Climat	
  et	
  de	
  l’Environnement	
  de	
  l’InsLtut	
  Pierre	
  Simon	
  Laplace,	
  CEA-­‐CNRS-­‐UVSQ.	
  Gif	
  sur	
  YveXe,	
  France	
  
(4)-­‐	
  Agence	
  NaLonale	
  de	
  l'AviaLon	
  Civile	
  et	
  de	
  la	
  Météorologie	
  du	
  Sénégal	
  (ANACIM),	
  Sénégal	
  
(5)-­‐	
  KINOME,	
  Montreuil	
  sous	
  Bois,	
  France	
  
Impacts of changes in land surface processes on the West African Monsoon variability :
Results from LUCID Intercomparison project
Our Common Future Under Climate Change
International Scientific Conference
7-10 July 2015 Paris,France
P-­‐2217-­‐28
Human	
  have	
  	
  radically	
  modified	
  the	
  land	
  cover	
  distribuLon	
  to	
  the	
  profit	
  of	
  agricultural	
  acLviLes.	
  Nearly	
  35%	
  of	
  the	
  land	
  surface	
  was	
  directly	
  converted	
  into	
  anthropic	
  systems	
  	
  
[Ramanku(y	
  and	
  Foley1999].	
  In	
  the	
  next	
  decades,	
  	
  million	
  hectares	
  of	
  forest	
  fracLon	
  could	
  conLnue	
  to	
  disappear,	
  parLcularly	
  in	
  the	
  tropical	
  areas	
  (Davin,	
  de	
  Noblet-­‐Ducoudré,	
  and	
  Friedlingstein	
  2007).	
  
At	
  global	
  scale,	
  Land	
  Use-­‐Land	
  Cover	
  Change	
  (LULCC)	
  have	
  direct	
  consequences	
  on	
  animal	
  and	
  vegetable	
  biodiversity,	
  in	
  parLcular	
  on	
  biophysical	
  properLes	
  of	
  land	
  surface.	
  	
  LULCC	
  is	
  in	
  
parLcular	
  related	
  to	
  the	
  reducLon	
  of	
  forest	
  fracLons	
  and	
  of	
  natural	
  savannas,	
  to	
  the	
  profit	
  of	
  sedngs	
  crops	
  and	
  pastures,	
  as	
  it	
  was	
  observed	
  on	
  globale	
  scale	
  during	
  the	
  last	
  decades	
  [Scanlon	
  and	
  al.,	
  
2007a,Warburton	
  and	
  al.,	
  2012].	
  	
  If	
  this	
  current	
  trend	
  conLnues,	
  the	
  culLvated	
  surface	
  could	
  increase	
  by	
  20%	
  during	
  next	
  50	
  years	
  [Tilman	
  and	
  al.,	
  2001].	
  
	
  
	
  Anthropogenic	
  changes	
  of	
  LULCC	
  affect	
  climate	
  through	
  two	
  different	
  pathways.	
  The	
  first	
  one	
  is	
  the	
  biogeophysical	
  pathway.	
  It	
  considers	
  alteraLon	
  of	
  the	
  physical	
  characterisLcs	
  of	
  the	
  land	
  surface	
  such	
  
as	
  albedo,	
  soil	
  moisture	
  and	
  roughness.	
  The	
  biogeochemical	
  pathway,	
  on	
  the	
  other	
  hand,	
  takes	
  into	
  account	
  alteraLons	
  of	
  the	
  atmospheric	
  concentraLons	
  of	
  greenhouse	
  gases	
  (GHGs),	
  in	
  response	
  to	
  
changes	
  in	
  the	
  land-­‐atmosphere	
  fluxes	
  of	
  these	
  trace	
  gases	
  [Arora	
  and	
  Boer	
  2010].	
  They	
  also	
  affect	
  the	
  emissions	
  and	
  the	
  deposiLon	
  of	
  carbon,	
  nitrogen	
  and	
  other	
  chemically	
  acLve	
  species,	
  that	
  may	
  have	
  
a	
  global-­‐scale	
  impact	
  on	
  climate	
  and	
  ecosystem	
  funcLoning,	
  inducing	
  potenLally	
  relevant	
  feedback	
  mechanisms.	
  
	
  
	
  The	
  climate	
  modelling	
  communiLes	
  have	
  demonstrated	
  impacts	
  on	
  surface	
  temperature,	
  rainfall	
  and	
  turbulent	
  energy	
  fluxes	
  when	
  land	
  cover	
  is	
  perturbed	
  [Henderson-­‐Sellers	
  et	
  al.,	
  1993;	
  Chase	
  et	
  al.,	
  
2000;	
  Werth	
  and	
  Avissar,	
  2002;	
  Findell	
  et	
  al.,	
  2006].	
  This	
  is	
  consistent	
  with	
  the	
  strong	
  impact	
  of	
  land	
  surface	
  processes	
  on	
  the	
  atmosphere	
  in	
  some	
  regions	
  (Koster	
  et	
  al.	
  2004;	
  Seneviratne	
  et	
  al.	
  2006).	
  	
  
	
  	
  
West	
  Africa	
  has	
  been	
  highlighted	
  as	
  a	
  hot	
  spot	
  of	
  land	
  surface–atmosphere	
  interacLons	
  (Koster	
  et	
  al.	
  2004)	
  (Figure	
  1).	
  The	
  West	
  African	
  Monsoon	
  (WAM)	
  flow	
  is	
  driven	
  by	
  land–sea	
  thermal	
  contrast	
  and	
  
the	
  atmosphere–land	
  surface	
  interacLons	
  are	
  modulated	
  by	
  the	
  magnitude	
  of	
  the	
  associated	
  north–south	
  gradient	
  of	
  heat	
  and	
  moisture	
  in	
  the	
  lower	
  atmosphere	
  (Eltahir	
  and	
  Gong	
  1996).	
  The	
  links	
  
between	
  land	
  surface	
  processes	
  and	
  the	
  WAM	
  have	
  been	
  demonstrated	
  in	
  numerous	
  numerical	
  studies	
  using	
  global	
  climate	
  models	
  (GCMs)	
  and	
  regional-­‐scale	
  atmospheric	
  climate	
  models	
  (RCMs)	
  over	
  
the	
  last	
  decades.	
  	
  
	
  
Three	
  main	
  objecLves	
  of	
  this	
  study	
  are:	
  
-­‐  	
  To	
  highlights	
  the	
  biogeophysical	
  impacts	
  of	
  Land	
  use	
  –	
  land	
  cover	
  change	
  on	
  surface	
  climate	
  over	
  West	
  African	
  region;	
  
-­‐  	
  To	
  isolate	
  the	
  direct	
  effects	
  of	
  LULCC	
  on	
  WAM	
  from	
  the	
  indirect	
  effects	
  caused	
  by	
  interacLons	
  with	
  the	
  other	
  components	
  of	
  climate	
  system	
  (e.g.,	
  elevated	
  greenhouse	
  gases	
  resulLng	
  changes	
  in	
  sea	
  
surface	
  temperatures	
  and	
  sea	
  ice	
  extent);	
  
-­‐  To	
  increase	
  our	
  understanding	
  of	
  the	
  land–atmosphere	
  feedback	
  mechanisms	
  in	
  West	
  Africa	
  in	
  order	
  to	
  beXer	
  understand	
  the	
  effect	
  of	
  land	
  surface	
  processes	
  on	
  the	
  WAM	
  variability.	
  	
  
Fig 1: Regions of Strong Coupling Between Soil Moisture and Precipitation
= West Africa (Koster et al. 2004)
IntroducLon	
  
Data	
  and	
  Methods	
  
Importance	
  of	
  land-­‐use	
  change	
  for	
  future	
  climate	
  in	
  the	
  TROPICS	
  	
  
Past	
  land-­‐use	
  change	
  (1992-­‐1870)	
   Future	
  land-­‐use	
  change	
  (2100-­‐1992)	
  
A2 socio-economic scenario
Davin et al. 2007• 	
  Projected	
  future	
  land-­‐use	
  change	
  =	
  Tropics	
  
LUCID	
  Simula_on	
  
	
  
	
  
	
  
The	
  LUCID	
  simulaLons	
  analyzed	
  here	
  are	
  same	
  as	
  those	
  described	
  in	
  Pitman	
  et	
  al.	
  [2009],	
  De	
  Noblet-­‐Ducoudré	
  	
  et	
  al.	
  [2012]	
  and	
  
Boisier	
  and	
  al.	
  [2012].	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
All	
  simulaLons	
  have	
  been	
  run	
  in	
  an	
  ensemble	
  mode	
  to	
  include	
  more	
  robustness	
  in	
  the	
  results	
  reported	
  herein.	
  The	
  
seven	
  GCMs	
  involved	
  in	
  LUCID	
  and	
  the	
  land	
  surface	
  models	
  (LSMs)	
  embedded	
  in	
  each	
  GCM	
  (herearer	
  GCM/LSMs),	
  
are	
  ARPEGE/ISBA	
  [Salas-­‐Mélia	
  et	
  al.,	
  2005;	
  Voldoire,	
  2006],	
  CCAM/CABLE	
  [McGregor	
  and	
  Dix,	
  2008;	
  Abramowitz	
  et	
  
al.,	
  2008],	
  CCSM/CLM	
  [Collins	
  et	
  al.,	
  2006;	
  Oleson	
  et	
  al.,	
  2008],	
  ECEARTH/TESSEL	
  [van	
  den	
  Hurk	
  et	
  al.,	
  2000],	
  
ECHAM5/JSBACH	
  [Roeckner	
  et	
  al.,	
  2006;	
  Raddatz	
  et	
  al.,	
  2007],	
  IPSL/ORCHIDEE	
  [MarL	
  et	
  al.,	
  2010;	
  Krinner	
  et	
  al.,	
  
2005]	
  and	
  SPEEDY/LPJmL	
  [Strengers	
  et	
  al.,	
  2010;	
  Bondeau	
  et	
  al.,	
  2007].	
  	
  	
  
	
  
All	
  seven	
  climate	
  models	
  	
  used	
  the	
  same	
  forcing	
  :	
  	
  	
  
Ø  SST/CO2	
  and	
  SIC	
  from	
  HadISST	
  	
  (See	
  Met	
  Office	
  Hadley	
  Center	
  Sea	
  Ice	
  and	
  SST)	
  	
  data	
  set	
  of	
  	
  Rayner	
  et	
  al.	
  2003	
  
Ø 	
  Crops/pastures	
  	
  fracLon	
  is	
  prescribed	
  at	
  a	
  resoluLon	
  of	
  0.5	
  from	
  	
  	
  RamankuXy	
  and	
  Foley	
  (1999)	
  and	
  Goldewijk	
  
(2001).	
  
Observa_on-­‐based	
  data	
  sets:	
  	
  
	
  
	
  
To	
  evaluate	
  the	
  performance	
  of	
  the	
  seven	
  climate	
  models	
  used	
  in	
  
LUCID	
  simulaLons	
  to	
  reproduce	
  the	
  interanual	
  variability	
  of	
  the	
  
WAM,	
  several	
  climate	
  observaLon	
  data	
  sets	
  were	
  examined:	
  
	
  
-­‐  PrecipitaLon	
  and	
  surface	
  temperature	
  simulated	
  by	
  climate	
  
models	
  were	
  compared	
  with	
  observaLonal	
  data	
  CRU	
  (ClimaLc	
  
Research	
  Unit)	
  available	
  at	
  spaLal	
  resoluLon	
  of	
  0.5°	
  laLtude-­‐
longitude	
  and	
  from	
  1901	
  to	
  2000	
  (hXp:	
  //www.cru.uea.ac.uk,	
  
Mitchell	
  et	
  al	
  2003).	
  	
  
-­‐  LAI	
  satellite	
  data	
  set	
  form	
  the	
  Geoland2	
  project	
  (hXp:	
  /	
  /
www.geoland2.eu,	
  Verger	
  et	
  al	
  2012)	
  were	
  used	
  to	
  evaluate	
  the	
  
bias	
  (not	
  shown)	
  and	
  the	
  seasonal	
  cycle	
  of	
  LAI	
  simulate	
  by	
  the	
  
Land	
  Surface	
  Model	
  (LSM).	
  The	
  LAI	
  dataset	
  is	
  available	
  at	
  spaLal	
  
resoluLon	
  of	
  0.05°	
  laLtude-­‐longitude	
  and	
  with	
  a	
  temporal	
  
resoluLon	
  of	
  10	
  days	
  during	
  the	
  period	
  1982	
  to	
  2000.	
  	
  
Ensemble simulations (with & without land-use changes).
SST/GHG (ppm)
Exp. design
Land Cover Year
PDPDv1970-1999/375
PIvPI1870-1899/280
19921870
Results	
  and	
  Discussion	
  
Summary	
  and	
  Conclusion	
  
LUCID Climate/Vegetation models
MeanRainfall(mm/day)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
ARP CCA CCS ECH IPS SPE ECE ENS OBS
a. Precipitation Sahel
Guinea
LUCID Climate/Vegetation models
Meantemperature(°C)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
b. 2−m Temperature
ARP CCA CCS ECH IPS SPE ECE ENS OBS
Figure	
  5:	
  Each	
  bar	
  illustrates	
  the	
  simulated	
  seasonal	
  average	
  of	
  rainfall	
  (a)	
  and	
  temperature	
  (b)	
  for	
  each	
  of	
  
the	
  seven	
  GCM/LSMs,	
  	
  the	
  Ensemble-­‐Mean	
  experiment,	
  and	
  observaLon	
  data	
  set	
  in	
  both	
  the	
  region	
  defined	
  
in	
  the	
  Sahel	
  (light	
  gray)	
  and	
  the	
  Guinea	
  area	
  (dark	
  gray)	
  in	
  the	
  1970	
  to1999	
  period.	
  Errors	
  bars	
  (represenLng	
  
the	
  mean	
  value	
  (±1)	
  the	
  standard	
  deviaLon)	
  illustrate	
  the	
  rainfall	
  and	
  temperature	
  variability	
  simulated	
  by	
  
GCM/LSMs	
  compared	
  with	
  observaLons.	
  	
  DoXed	
  lines	
  indicate	
  the	
  seasonal	
  average	
  from	
  CRU	
  observaLon	
  
data	
  set.	
  Model	
  acronyms	
  are	
  the	
  same	
  as	
  in	
  Figure	
  2	
  	
  
0.0
0.5
1.0
1.5
2.0
2.5
FEV
MAY
AUG
NOV
Monthly mean LAI [m2/m2]
ARPEGE−ISBA
FEV
MAY
AUG
NOV
CCAM−CABLE
FEV
MAY
AUG
NOV
CCSM−CLM
FEV
MAY
AUG
NOV
EC−EARTH−TESSEL
FEV
MAY
AUG
NOV
ECHAM5−JSBACH
FEV
MAY
AUG
NOV
IPSL−ORCHIDEE
FEV
MAY
AUG
NOV
SPEEDY−LPJmL
FEV
MAY
AUG
NOV
Model−MEAN
FEV
MAY
AUG
NOV
Sahel
OBSERVATION
0
1
2
3
4
5
FEV
MAY
AUG
NOV
ARPEGE−ISBA
FEV
MAY
AUG
NOV
CCAM−CABLE
FEV
MAY
AUG
NOV
CCSM−CLM
FEV
MAY
AUG
NOV
EC−EARTH−TESSEL
FEV
MAY
AUG
NOV
ECHAM5−JSBACH
FEV
MAY
AUG
NOV
IPSL−ORCHIDEE
FEV
MAY
AUG
NOV
SPEEDY−LPJmL
FEV
MAY
AUG
NOV
Model−MEAN
FEV
MAY
AUG
NOV
Guinea
OBSERVATION
	
  
Model	
  Evalua_ons	
  	
  
	
  
*Contact:	
  Souleymane	
  SY,	
  PhD	
  Student	
  at	
  LOCEAN/IPSL	
  	
  University	
  Pierre	
  et	
  Marie	
  Curie	
  and	
  LPAOSF/ESP/UCAD	
  Sénégal	
  Email:	
  souleymane.sy@locean-­‐ipsl.upmc.fr	
  ,Tel.	
  +33652190745,	
  45B,	
  boulevard	
  Jourdan	
  75014	
  Paris,	
  France	
  	
  	
  	
  
Figure	
  6:	
  Monthly	
  mean	
  of	
  leaf	
  area	
  index	
  (LAI)	
  simulated	
  by	
  the	
  models	
  listed	
  at	
  
the	
  top	
  of	
  each	
  panel,	
  by	
  Ensemble-­‐Mean	
  Experiment	
  and	
  ObservaLon	
  data	
  set.	
  
Monthly	
  mean	
  LAI	
  averaged	
  over	
  the	
  Sahel	
  (top)	
  and	
  the	
  Guinea	
  area	
  (boXom).	
  
ObservaLon	
  data	
  set	
  is	
  illustrated	
  as	
  solid	
  red	
  line	
  in	
  right	
  panels	
  	
  
Effect	
  of	
  changes	
  in	
  land	
  surface	
  processes	
  on	
  WAM	
  variability	
  	
  
How	
  the	
  seasonal	
  cycle	
  of	
  Leaf	
  Area	
  Index	
  is	
  simulated	
  by	
  the	
  LSMs?	
  	
  
Changes	
  in	
  land	
  cover	
  frac_on	
  between	
  1870	
  and	
  1992	
  	
  
Figure	
  3:	
  Changes	
  in	
  the	
  extent	
  of	
  crops	
  and	
  pastures	
  cover	
  between	
  PI	
  (1870)	
  and	
  the	
  PD	
  (1992).	
  (a)	
  Crops	
  
fracLon	
  in	
  1992,	
  (b)	
  pastures	
  fracLons	
  in	
  1992	
  and	
  the	
  difference	
  in	
  crops	
  and	
  pastures	
  fracLons	
  between	
  1992	
  
and	
  1870	
  (c,d).	
  Combined	
  changes	
  of	
  crop	
  and	
  pasture	
  fracLons	
  between	
  PI	
  and	
  PD	
  (e).	
  The	
  red	
  and	
  orange	
  
color	
  represent	
  the	
  extension	
  of	
  culLvated	
  areas	
  and	
  the	
  blue	
  color	
  shows	
  the	
  abandoned	
  areas.	
  The	
  crops	
  and	
  
pastures	
  data	
  have	
  been	
  reconstructed	
  by	
  RamankuXy	
  and	
  Foley	
  (1999)	
  and	
  combined	
  with	
  a	
  pastures	
  area	
  
Goldewijk	
  Klein	
  (2001)	
  on	
  a	
  0.50°x	
  0.50°	
  resoluLon.	
  DoXed	
  contours	
  illustrate	
  areas	
  with	
  changes	
  larger	
  than	
  
5%	
  in	
  crop	
  or	
  pasture	
  fracLons	
  confined	
  to	
  Sahel	
  and	
  the	
  South	
  of	
  Guinea.	
  	
  
Figure	
  4:	
  Differences	
  (in	
  fracLon	
  of	
  total	
  area)	
  in	
  each	
  of	
  those	
  types	
  of	
  vegetaLon	
  
between	
  PD	
  and	
  PI	
  Lmes	
  in	
  the	
  Sahel	
  and	
  the	
  Gulf	
  of	
  Guinea.	
  The	
  color	
  bars	
  show	
  
the	
  fracLons	
  of	
  the	
  land	
  area	
  occupied	
  by	
  crops	
  (light	
  gray),	
  pasture	
  (dark	
  gray),	
  the	
  
evergreen	
  trees	
  (light	
  green),	
  the	
  deciduous	
  trees	
  (dark	
  green)	
  and	
  deserts	
  (white).	
  
The	
  doXed	
  line	
  shows	
  the	
  changes	
  in	
  the	
  extent	
  covered	
  of	
  crops	
  fracLons	
  observed	
  
between	
  1870	
  and	
  1992	
  from	
  the	
  SAGE	
  data-­‐set.	
  ARP,	
  CCA,	
  CCS,	
  ECE,	
  ECH,	
  IPS	
  and	
  
SPE	
  are	
  the	
  GCM/LSMs	
  acronyms	
  for	
  respecLvely	
  ARPEGE/ISBA,	
  CCAM/CABLE,	
  
CCSM/CLM,	
  ECEARTH/	
  TESSEL,	
  ECHAM5/JSBACH,	
  IPSL/ORCHIDEE	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  SPEEDY/LPJmL	
  
DJF MAM JJA SON
∆α(X100)
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
Surface Albedo Anomaly
ARPEGE / ISBA
DJF MAM JJA SON
CCAM / CABLE
DJF MAM JJA SON
CCSM / CLM
DJF MAM JJA SON
EC−EARTH / TESSEL
DJF MAM JJA SON
ECHAM5 / JSBACH
DJF MAM JJA SON
IPSL / ORCHIDEE
DJF MAM JJA SON
SPEEDY / LPJmL
DJF MAM JJA SON
Model−MEAN
Sahel
DJF MAM JJA SON
∆α(X100)
0
1
2
3
4
5
ARPEGE / ISBA
DJF MAM JJA SON
CCAM / CABLE
DJF MAM JJA SON
CCSM / CLM
DJF MAM JJA SON
EC−EARTH / TESSEL
DJF MAM JJA SON
ECHAM5 / JSBACH
DJF MAM JJA SON
IPSL / ORCHIDEE
DJF MAM JJA SON
SPEEDY/ LPJmL
DJF MAM JJA SON
Model−MEAN
Guinea
DJF MAM JJA SON
∆LAI(m2
m−2
)
−6
−4
−2
0
2
4
6
Leaf Area Index Anomaly
ARPEGE / ISBA
DJF MAM JJA SON
CCAM / CABLE
DJF MAM JJA SON
CCSM / CLM
DJF MAM JJA SON
EC−EARTH / TESSEL
DJF MAM JJA SON
ECHAM5 / JSBACH
DJF MAM JJA SON
IPSL / ORCHIDEE
DJF MAM JJA SON
SPEEDY / LPJmL
DJF MAM JJA SON
Model−MEAN
Sahel
DJF MAM JJA SON
∆LAI(m2
m−2
)
−20
−10
0
10
20
ARPEGE / ISBA
DJF MAM JJA SON
CCAM / CABLE
DJF MAM JJA SON
CCSM / CLM
DJF MAM JJA SON
EC−EARTH / TESSEL
DJF MAM JJA SON
ECHAM5 / JSBACH
DJF MAM JJA SON
IPSL / ORCHIDEE
DJF MAM JJA SON
SPEEDY/ LPJmL
DJF MAM JJA SON
Model−MEAN
Guinea
−6 −4 −2 0
−3
−2
−1
0
1
∆QA(Wm−2
)
∆QT(Wm−2
)
ARPEGE
CCAM
CCSM
EC−EARTH
ECHAM5
IPSL
SPEEDY
ENS−MEAN
a.
−6 −4 −2 0
−4
−2
0
2
4
∆QA(Wm−2
)
∆QT(Wm−2
)
ARPEGE
CCAM
CCSM
EC−EARTH
ECHAM5
IPSL
SPEEDY
ENS−MEAN
b.
−8 −6 −4 −2 0 2
−3
−2
−1
0
1
2
∆QA − ∆QT(Wm−2
)
∆QLU(Wm−2
)
c.
−10 −8 −6 −4 −2 0 2
−2.0
−1.5
−1.0
−0.5
0.0
0.5
∆QA − ∆QT(Wm−2
)
∆QLU(Wm−2
)
ARPEGE
CCAM
CCSM
EC−EARTH
ECHAM5
IPSL
SPEEDY
ENS−MEAN
d.
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
∆T(C)
DJF MAM JJA SON
a.Sahel LULCC
CO2SST
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
∆T(C)
DJF MAM JJA SON
b.Guinea LULCC
CO2SST
−5
0
5
10
15
20
25
−5
0
5
10
15
20
25
∆QA(Wm−2
)
DJF MAM JJA SON
c.Sahel LULCC
CO2SST
−5
0
5
10
15
20
25
−5
0
5
10
15
20
25
∆QA(Wm−2
)
DJF MAM JJA SON
d.Guinea LULCC
CO2SST
F i g u r e 1 0 :	
   C h a n g e s	
   i n	
   2 -­‐ m	
  
temperature	
   (a,b)	
   and	
   in	
   available	
  
energy	
  (sum	
  of	
  downward	
  longwave	
  
and	
   net	
   shortwave	
   radiaLon)	
  
induced	
  by	
  LULCC	
  (light	
  gray)	
  and	
  by	
  
changes	
  in	
  CO2SST	
  (dark	
  gray	
  boxes)	
  
between	
   preindustrial	
   period	
   and	
  
the	
  present	
  day.	
  The	
  anomalies	
  are	
  
calculated	
   for	
   each	
   grid	
   cell	
   in	
   the	
  
two	
   regions	
   defined	
   in	
   Sahel	
   (a,	
   c)	
  
and	
   Guinea	
   (b,	
   d).	
   	
   Box-­‐whisker	
  
plots	
   indicate	
   the	
   extremes,	
   the	
  
inter-­‐quarLle	
  range	
  and	
  the	
  median	
  
of	
   the	
   mean	
   ensemble	
   values	
   of	
  
each	
  individual	
  model	
  and	
  each	
  set	
  
of	
   experiment	
   (PD-­‐PDv	
   for	
   the	
  
LULCC	
   impacts,	
   PD-­‐PIv	
   for	
   CO2SST	
  
impacts).	
  
	
   Figure	
   9:	
   Mean	
   summer	
   LULCC-­‐
induced	
  changes	
  (Wm-­‐2)	
  in	
  (a)	
  and	
  
(b)	
   QT	
   ploXed	
   against	
   the	
   mean	
  
summer	
   changes	
   in	
   QA;	
   (c),	
   (d)	
  
longwave	
   radiaLon	
   emiXed	
   by	
  
the	
  surface	
  (QLU)	
  ploXed	
  
Against	
   the	
   changes	
   in	
   the	
  
difference	
   between	
   QA	
   and	
   QT.	
  
(a),	
   (c)	
   The	
   Sahel	
   area;	
   (b),	
   (d)	
  
Guinea	
   Area.	
   Symbols	
   refer	
   to	
  
individual	
   models	
   and	
   the	
   MulL-­‐
Model	
  Mean.	
  DoXed	
  line	
  in	
  all	
  
Panels	
   represents	
   the	
   y	
   =	
   x	
  
relaLon	
  (e,	
  g	
  the	
  ΔQT	
  =ΔQA	
  or	
  the	
  
ΔQA-­‐ΔQT=ΔQLU	
  curve)	
  
	
  
Figure	
  7:	
  Seasonal	
  LULCC-­‐induced	
  changes	
  in	
  the	
  simulated	
  of	
  surface	
  albedo	
  (%)	
  between	
  PD	
  and	
  PI	
  Lmes	
  by	
  the	
  
models	
  listed	
  at	
  the	
  top	
  of	
  each	
  panel.	
  The	
  shading	
  refer	
  to	
  the	
  differences	
  calculated	
  between	
  the	
  simulaLons	
  that	
  are	
  
forced	
  with	
  Present	
  Day	
  SSTs,	
  CO2,	
  and	
  GHG	
  (black,	
  simulaLon	
  PD	
  minus	
  simulaLon	
  PDv)	
  and	
  Pre-­‐Industrial	
  SSTs,	
  CO2,	
  
and	
  GHG	
  (gray,	
  simulaLon	
  PIv	
  minus	
  simulaLon	
  PI).	
  PresenLng	
  both	
  black	
  and	
  gray	
  bars	
  demonstrates	
  the	
  robustness	
  of	
  
the	
  impacts	
  of	
  LULCC	
  changes,	
  largely	
  independent	
  of	
  the	
  state	
  of	
  the	
  background	
  GHG	
  and	
  surface	
  ocean’s	
  
temperatures	
  on	
  the	
  Sahel	
  (top)	
  and	
  Guinea	
  area	
  (boXom).	
  All	
  seasons	
  are	
  ploXed	
  from	
  (ler)	
  winter	
  (DJF)	
  to	
  (right)	
  fall.	
  
	
  
	
  
	
  Changes	
  in	
  surface	
  proper_es,	
  energy	
  fluxes	
  and	
  
temperature	
  	
  
	
  
	
  
Discussions	
  	
  
	
  
u 	
  The	
  figure	
  3	
  shows	
  the	
  change	
  in	
  cropland	
  and	
  pastures	
  paXerns	
  due	
  to	
  LULCC.	
  The	
  
changes	
  in	
  the	
  extent	
  of	
  crops	
  and	
  pastures	
  cover	
  between	
  PI	
  (1870)	
  and	
  the	
  PD	
  (1992)	
  
are	
  not	
  homogeneous	
  on	
  the	
  West	
  Africa	
  regions.	
  The	
  areas	
  where	
  land	
  cover	
  change	
  is	
  
above	
  5%	
  are	
  noted	
  in	
  Sahel	
  and	
  Guinea.	
  In	
  the	
  Sahel,	
  LULCC	
  concerns	
  the	
  northwest	
  of	
  
Senegal,	
  	
  Mauritania,	
  part	
  of	
  Mali,	
  central	
  Burkina	
  Faso,	
  the	
  north	
  of	
  Nigeria,	
  southern	
  
Niger,	
  Chad	
  and	
  Sudan.	
  In	
  the	
  Guinea	
  area,	
  the	
  extension	
  of	
  cropland	
  and	
  pasture	
  is	
  
located	
  in	
  the	
  South	
  zone	
  of	
  Cote	
  d'Ivoire,	
  in	
  Ghana,	
  in	
  Guinea	
  Conakry,	
  in	
  Sierra	
  Leone	
  
and	
  in	
  Liberia.	
  
u 	
  The	
  figure	
  4	
  shows	
  the	
  mean	
  change	
  of	
  fracLon	
  in	
  each	
  of	
  these	
  types	
  of	
  vegetaLon	
  
between	
  1870	
  and	
  1992	
  in	
  the	
  boxes	
  selected	
  for	
  Sahel	
  and	
  Gulf	
  of	
  Guinea.	
  The	
  color	
  
bars	
  show	
  the	
  fracLon	
  of	
  land	
  area	
  occupied	
  by	
  the	
  different	
  land	
  cover	
  types.	
  The	
  
different	
  land	
  cover	
  distribuLons	
  of	
  LSMs	
  resulted	
  from	
  three	
  main	
  reasons:	
  (1)	
  the	
  way	
  
the	
  LULCC	
  informaLon	
  is	
  represented	
  in	
  models;	
  (2)	
  the	
  strategy	
  used	
  by	
  each	
  modelling	
  
group	
  to	
  implement	
  LULCC	
  in	
  their	
  background	
  land	
  cover	
  ;	
  and	
  (3)	
  the	
  modelling	
  groups	
  
use	
  different	
  sources	
  of	
  informaLon	
  to	
  describe	
  present-­‐day	
  or	
  	
  potenLal	
  vegetaLon.	
  
	
  
u 	
  The	
  figure	
  5	
  show	
  the	
  various	
  LUCID	
  GCM/LMSs	
  and	
  observed	
  mean	
  seasonal	
  rainfall	
  
(figure	
  3a)	
  and	
  temperature	
  (figure	
  3b)	
  in	
  both	
  region	
  defined	
  in	
  Sahel	
  and	
  Guinea.	
  Error	
  
bars	
  show	
  the	
  ±1.0	
  standard	
  deviaLon	
  illustraLng	
  the	
  rainfall	
  and	
  temperature	
  variability	
  
simulated	
  by	
  each	
  GCM/LSMs.	
  In	
  the	
  Sahel	
  and	
  Guinea	
  region,	
  the	
  observaLons-­‐based	
  
seasonal	
  (June	
  to	
  September	
  (JJAS))	
  average	
  rainfall	
  values	
  are	
  2.7	
  mmday-­‐1	
  and	
  about	
  
4.4	
  mmday-­‐1	
  respecLvely.	
  The	
  seasonal	
  (June	
  to	
  September	
  (JJAS))	
  average	
  temperature	
  
values	
  are	
  about	
  of	
  30°C	
  in	
  the	
  Sahel	
  and	
  about	
  25°C	
  in	
  the	
  Guinea	
  area	
  according	
  to	
  the	
  
observaLons.	
  	
  
u 	
  The	
  climate	
  models	
  show,	
  however,	
  significant	
  differences	
  in	
  the	
  magnitude	
  of	
  the	
  
rainfall	
  and	
  temperature	
  variability.	
  The	
  magnitude	
  of	
  that	
  variability	
  varies	
  significantly	
  
from	
  model	
  to	
  model	
  resulLng	
  on	
  how	
  different	
  climate	
  models	
  responses	
  to	
  LULCC.	
  Two	
  
major	
  ‘features’	
  varying	
  from	
  one	
  model	
  to	
  another	
  explain	
  differences:	
  the	
  land-­‐cover	
  
distribuLon	
  and	
  the	
  simulated	
  sensiLvity	
  to	
  LULCC.	
  The	
  way	
  to	
  explain	
  the	
  LULCC	
  vary	
  
greatly	
  between	
  models	
  depending	
  on	
  the	
  magnitude	
  and	
  the	
  sign	
  of	
  LULCC	
  and	
  how	
  the	
  
land-­‐surface	
  funcLoning	
  is	
  parameterized	
  in	
  the	
  LSM	
  model,	
  in	
  parLcular	
  regarding	
  the	
  
evapotranspiraLon	
  parLLoning	
  within	
  the	
  different	
  land-­‐cover	
  types,	
  as	
  well	
  as	
  the	
  role	
  
of	
  leaf	
  area	
  index	
  in	
  the	
  flux	
  calculaLons	
  (Boisier	
  et	
  al	
  2012)	
  and	
  how	
  strongly	
  the	
  surface	
  
is	
  coupled	
  to	
  the	
  atmosphere	
  (Koster	
  and	
  al.	
  2004;	
  Seneviratne	
  et	
  al.	
  2006).	
  	
  
u 	
  The	
  figure	
  6	
  illustrates	
  the	
  monthly	
  mean	
  of	
  LAI	
  shown	
  by	
  the	
  each	
  of	
  seven	
  LUCID	
  LSMs,	
  
the	
  mulL-­‐model	
  mean	
  LAI	
  and	
  the	
  observed	
  in	
  the	
  Sahel	
  and	
  the	
  Guinea	
  zone.	
  In	
  the	
  
Sahel,	
  four	
  of	
  the	
  seven	
  LSM	
  (ISBA	
  (ARPEGE),	
  CABLE	
  (CCAM),	
  CLM	
  (CCSM)	
  and	
  ORCHIDEE	
  
(IPSL))	
  reproduce	
  the	
  observed	
  growing	
  season	
  of	
  crops	
  centred	
  in	
  the	
  late	
  summer,	
  
TESSEL	
  (SPEEDY)	
  and	
  LPJmL	
  (EC-­‐EARTH)	
  LSMs	
  simulate	
  fixed	
  values	
  of	
  LAI	
  during	
  the	
  year	
  
in	
  both	
  areas.	
  Other	
  model	
  (JSBACH	
  (ECHAM5)	
  for	
  example)	
  simulates	
  the	
  growing	
  
season	
  of	
  crops	
  and	
  pastures	
  in	
  the	
  fall.	
  The	
  model	
  differences	
  depicted	
  in	
  Figure	
  5	
  
reflects	
  the	
  various	
  characterizaLon	
  of	
  LAI	
  within	
  the	
  LUCID	
  LSMs.	
  For	
  instance,	
  LAI	
  in	
  
JSBACH,	
  LPJmL	
  and	
  ORCHIDEE	
  is	
  explicitly	
  simulated	
  based	
  on	
  the	
  seasonal	
  carbon	
  
allocaLon	
  and	
  the	
  local	
  climate.	
  The	
  other	
  LSMs	
  prescribe	
  a	
  LAI	
  cycle	
  based	
  on	
  satellite	
  
observaLons	
  (ISBA,	
  CABLE,	
  CLM),	
  or	
  use	
  a	
  fixed	
  value	
  year-­‐round	
  (TESSEL).	
  	
  
u 	
  The	
  seasonal	
  LULCC	
  induced	
  changes	
  in	
  the	
  simulated	
  of	
  surface	
  albedo	
  between	
  the	
  PD	
  
and	
  PI	
  in	
  the	
  two	
  regions	
  defined	
  in	
  Sahel	
  and	
  Guinea	
  are	
  shown	
  in	
  the	
  Figure	
  7.	
  In	
  most	
  
models	
  and	
  seasons,	
  the	
  mean	
  land	
  surface	
  albedo	
  is	
  higher	
  under	
  modern	
  land	
  cover	
  
than	
  in	
  preindustrial	
  Lmes.	
  	
  The	
  decrease	
  of	
  land	
  surface	
  albedo	
  in	
  ARPEGE-­‐ISBA	
  model	
  is	
  
due	
  to	
  an	
  extent	
  of	
  crops	
  and	
  pastures	
  fracLon	
  which	
  are	
  occurred	
  to	
  the	
  detriment	
  of	
  
bar	
  soil	
  in	
  the	
  Sahel.	
  The	
  CABLE	
  (CCAM)	
  LSM	
  shows	
  no	
  change	
  in	
  albedo	
  despite	
  the	
  
prescribed	
  changes	
  of	
  LULCC.	
  In	
  this	
  version	
  of	
  the	
  model,	
  the	
  parameters	
  used	
  in	
  
calculaLng	
  canopy	
  albedo	
  do	
  not	
  vary	
  as	
  a	
  funcLon	
  of	
  plant	
  funcLonal	
  type	
  (Sellers	
  et	
  al.	
  
1992),	
  making	
  the	
  model	
  albedo	
  insensiLve	
  to	
  changes	
  in	
  the	
  vegetaLon	
  structure	
  (this	
  
has	
  been	
  revised	
  in	
  more	
  recent	
  versions	
  of	
  the	
  model).	
  In	
  the	
  Sahel,	
  a	
  few	
  changes	
  of	
  
surface	
  albedo	
  are	
  simulated	
  by	
  LSM	
  variant	
  of	
  around	
  0	
  to	
  0.6	
  %	
  due	
  to	
  a	
  very	
  few	
  
changes	
  of	
  LULCC	
  imposed	
  in	
  LSM.	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  In	
  Guinea	
  area,	
  except	
  CABLE	
  (CCAM)	
  model,	
  the	
  albedo	
  changes	
  are	
  roughly	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  proporLonal	
  to	
  the	
  deforestaLon	
  scale	
  with	
  a	
  parLcular	
  average	
  albedo	
  increase	
  of	
  4%	
  	
  
	
  	
  	
  	
  for	
  the	
  JSBACH	
  (ECHAM5)	
  model	
  and	
  about	
  0	
  to	
  1%	
  for	
  six	
  other	
  models.	
  The	
  amplitude	
  	
  
	
  	
  	
  	
  of	
  changes	
  in	
  surface	
  albedo	
  varies	
  in	
  magnitude	
  from	
  model	
  to	
  model	
  following	
  at	
  first	
  
	
  	
  	
  	
  	
  order	
  the	
  intensity	
  of	
  forest	
  fracLon	
  changes	
  prescribed.	
  	
  
u The	
  figure	
  8	
  illustrate	
  	
  the	
  seasonal	
  mean	
  LULCC-­‐induced	
  changes	
  in	
  leaf	
  area	
  index	
  (LAI)	
  
over	
  Sahel	
  and	
  Guinea.	
  In	
  both	
  regions,	
  	
  the	
  seasonal	
  paXerns	
  of	
  LAI	
  changes	
  in	
  the	
  Sahel	
  
and	
  the	
  Guinea	
  area	
  are	
  not	
  homogeneous	
  among	
  the	
  models.	
  The	
  most	
  part	
  of	
  LSMs	
  
show	
  LAI	
  decreases	
  during	
  the	
  most	
  of	
  the	
  year	
  (figure	
  8).	
  In	
  Guinea,	
  all	
  LSMs	
  except	
  
CABLE	
  and	
  JSBACH	
  show	
  decreased	
  foliage	
  development	
  during	
  all	
  year	
  because	
  forests	
  
fracLon	
  have	
  commonly	
  been	
  replaced	
  by	
  crops	
  and	
  grasslands,	
  which	
  have	
  negligible	
  
foliage	
  development.	
  Others	
  LSMs	
  show	
  an	
  increased	
  LAI	
  during	
  all	
  year	
  (ISBA,	
  CABLE)	
  
and	
  others	
  during	
  the	
  season	
  (JSBACH,	
  ORCHIDEE)	
  in	
  the	
  Sahel	
  region.	
  	
  
	
  
Discussion	
  1	
  	
  
	
  
	
  
Discussion	
  2	
  	
  
	
  
	
  
Discussion	
  3	
  	
  
	
  
	
  
Discussion	
  4	
  
	
  
Figure	
  8:	
  As	
  in	
  Fig.	
  7,	
  but	
  for	
  changes	
  in	
  the	
  simulated	
  Leaf	
  Area	
  Index	
  (LAI)	
  (%)	
  	
  
u The	
  mean	
  summer	
  LULCC-­‐induced	
  changes	
  in	
  QT	
  ploXed	
  against	
  the	
  mean	
  summer	
  changes	
  in	
  QA	
  in	
  both	
  region	
  are	
  shown	
  in	
  the	
  figure	
  9a	
  and	
  b,	
  the	
  longwave	
  radiaLon	
  emiXed	
  	
  
	
  	
  	
  	
  by	
  the	
  surface	
  (QLU)	
  ploXed	
  against	
  the	
  changes	
  in	
  the	
  difference	
  between	
  QA	
  and	
  QT	
  are	
  also	
  illustrates	
  in	
  the	
  figure	
  9c,d.	
  In	
  the	
  Sahel,	
  the	
  simulated	
  decrease	
  of	
  QA	
  in	
  ARPEGE,	
  CCAM,	
  	
  	
  
	
  	
  	
  	
  ECHAM5	
  and	
  SPEEDY	
  (as	
  well	
  as	
  CCSM,	
  IPSL,	
  SPEEDY	
  in	
  Guinea	
  area)	
  is	
  accompanied	
  in	
  summer	
  by	
  a	
  decrease	
  in	
  turbulent	
  fluxes	
  (QT)	
  	
  (figs	
  9a,b).	
  In	
  contrast,	
  in	
  the	
  case	
  of	
  CCSM	
  in	
  Sahel	
  	
  	
  	
  
	
  	
  	
  (as	
  well	
  as	
  ARPEGE	
  and	
  ECEARTH	
  in	
  Guinea),	
  the	
  slight	
  simulated	
  increase	
  of	
  available	
  energy	
  is	
  accompanied	
  by	
  a	
  slight	
  increase	
  in	
  turbulent	
  fluxes.	
  In	
  Sahel,	
  in	
  others	
  models	
  the	
  	
  
	
  	
  	
  simulated	
  increase	
  of	
  QA	
  in	
  the	
  summer	
  suggests	
  that	
  deforestaLon	
  leads	
  to	
  an	
  increased	
  porLon	
  of	
  QA	
  that	
  is	
  used	
  to	
  warm	
  up	
  the	
  land	
  surface	
  (reduced	
  longwave	
  cooling),	
  while	
  the	
  	
  
	
  	
  	
  turbulent	
  fluxes	
  decrease.	
  	
  
u For	
  most	
  models	
  in	
  the	
  Sahel	
  (CCAM	
  parLcularly)	
  the	
  summerLme	
  change	
  in	
  turbulent	
  fluxes	
  is	
  smaller	
  than	
  the	
  change	
  in	
  QA.	
  This	
  suggests	
  that	
  the	
  remaining	
  energy	
  decrease	
  has	
  
been	
  used	
  to	
  cool	
  down	
  the	
  land	
  surface,	
  resulLng	
  in	
  reduced	
  emiXed	
  thermal	
  radiaLon	
  as	
  illustrated	
  by	
  Figs.	
  9c,d.	
  In	
  Guinea	
  (ECHAM5-­‐JSBACH	
  parLcularly),	
  the	
  simulated	
  parLcular	
  
decrease	
  of	
  available	
  energy	
  is	
  compensated	
  by	
  increased	
  turbulent	
  fluxes	
  and	
  a	
  slight	
  increase	
  in	
  emiXed	
  thermal	
  radiaLon	
  that	
  is	
  used	
  in	
  surface	
  warming.	
  	
  Four	
  of	
  the	
  seven	
  models	
  
in	
  Sahel	
  (and	
  all	
  in	
  Guinea)	
  the	
  amplitude	
  of	
  QT	
  change	
  is	
  not	
  similar	
  than	
  QA,	
  therefore	
  the	
  relaLve	
  change	
  (ΔQT/ΔQA)	
  varies	
  from	
  one	
  model	
  to	
  the	
  other,	
  depending	
  on	
  how	
  land	
  cover	
  
perturbaLon	
  and	
  associated	
  characterisLcs	
  that	
  have	
  led	
  to	
  a	
  change	
  in	
  the	
  funcLoning	
  of	
  the	
  Soil-­‐VegetaLon-­‐Atmosphere.	
  	
  
	
  
u The	
  comparison	
  between	
  the	
  simulated	
  regional	
  climate	
  changes	
  induced	
  by	
  LULCC	
  and	
  the	
  ones	
  induced	
  by	
  CO2SST	
  is	
  illustrated	
  in	
  Fig	
  10.	
  This	
  figure	
  shows	
  the	
  seasonal	
  changes	
  in	
  
available	
  energy	
  QA	
  and	
  T2m	
  averaged	
  over	
  two	
  regions	
  defined	
  in	
  the	
  Sahel	
  and	
  the	
  Guinea	
  region	
  resulLng	
  from	
  both	
  driver.	
  	
  The	
  signal	
  of	
  LULCC	
  induced	
  QA	
  and	
  T2m	
  changes	
  in	
  both	
  
regions	
  shown	
  by	
  the	
  ensemble	
  mean	
  of	
  LUCID	
  simulaLons,	
  are	
  very	
  small	
  and	
  opposite	
  in	
  sign	
  to	
  the	
  esLmated	
  responses	
  of	
  increasing	
  GHG	
  concentraLon	
  over	
  the	
  regions.	
  The	
  
changes	
  of	
  CO2SST	
  lead	
  to	
  an	
  increase	
  in	
  QA	
  at	
  the	
  surface	
  	
  [2	
  -­‐	
  5Wm-­‐2]	
  in	
  the	
  Sahel	
  [5	
  -­‐	
  10Wm-­‐2	
  in	
  Guinea]	
  with	
  larger	
  values	
  during	
  summerLme	
  when	
  incoming	
  radiaLon	
  is	
  the	
  highest	
  
(Figs	
  10c,d).	
  This	
  increase	
  is	
  caused	
  mainly	
  by	
  increased	
  incoming	
  infrared	
  radiaLon	
  (QLD)	
  associated	
  with	
  the	
  higher	
  atmospheric	
  CO2.	
  	
  This	
  increased	
  QA	
  is	
  associated	
  with	
  a	
  surface	
  
warming	
  [0.2°C	
  -­‐	
  0.6°C]	
  in	
  Sahel	
  and	
  [0.6°C	
  -­‐	
  0.7°C	
  in	
  Guinea]	
  (Figs.	
  10c,d)	
  over	
  all	
  seasons	
  with	
  slightly	
  larger	
  values	
  during	
  summerLme	
  parLcularly	
  in	
  the	
  Sahel.	
  In	
  Guinea	
  region	
  there	
  
is	
  a	
  no	
  seasonal	
  cycle	
  in	
  the	
  increased	
  in	
  QA	
  and	
  the	
  surface	
  warming	
  and	
  the	
  spread	
  among	
  the	
  models	
  is	
  larger	
  in	
  this	
  region	
  compared	
  to	
  Sahel	
  region.	
  	
  
This	
  posters	
  extends	
  the	
  studies	
  of	
  Pitman	
  et	
  al.	
  (2009),	
  de	
  Noblet-­‐Ducoudré	
  et	
  al.	
  (2012)	
  and	
  Boisier	
  et	
  al.	
  (2012),	
  that	
  invesLgated	
  the	
  robust	
  responses	
  of	
  the	
  surface	
  climate	
  to	
  the	
  land-­‐use	
  induced	
  land-­‐cover	
  change	
  (LULCC)	
  since	
  pre-­‐
industrial	
  Lmes	
  in	
  the	
  temperate	
  regions.	
  This	
  study	
  describes	
  the	
  biogeophysical	
  effect	
  on	
  the	
  surface	
  climate	
  of	
  land-­‐use	
  changes	
  over	
  two	
  areas	
  defined	
  in	
  West	
  African	
  Monsoon	
  regions	
  (fig3).	
  
	
  
One	
  of	
  the	
  important	
  conclusion	
  of	
  this	
  study	
  lies	
  to	
  the	
  low	
  impact	
  simulated	
  by	
  seven	
  climate	
  models	
  due	
  to	
  a	
  low	
  LULCC	
  forcing	
  imposed	
  in	
  the	
  West	
  African	
  region.	
  Therefore,	
  the	
  quesLons	
  being	
  asked	
  in	
  this	
  study	
  is	
  that	
  the	
  historical	
  
LULCC	
  	
  forcing	
  imposed	
  in	
  these	
  regions	
  are	
  they	
  realisLc?	
  
Within	
  the	
  LUCID	
  models,	
  most	
  of	
  the	
  seven	
  models	
  simulate	
  a	
  small	
  change	
  during	
  a	
  most	
  part	
  of	
  the	
  year	
  in	
  both	
  regions	
  due	
  to	
  small	
  land	
  cover	
  change	
  imposed.	
  The	
  amplitude	
  and	
  the	
  sign	
  of	
  the	
  responses	
  of	
  land	
  use	
  change	
  vary	
  among	
  
the	
  models	
  depending	
  on	
  different	
  	
  land	
  surface	
  perturbaLon.	
  The	
  small	
  changes	
  of	
  temperature	
  and	
  Net	
  shortwave	
  radiaLon	
  simulated	
  by	
  the	
  seven	
  climate	
  models	
  are	
  due	
  to	
  the	
  insignificant	
  past	
  land	
  use	
  change	
  imposed	
  in	
  Sahel	
  and	
  
Guinea	
  region,	
  except	
  CCAM	
  in	
  the	
  Sahel	
  and	
  ECAHM5	
  Guinea	
  area	
  that	
  simulates	
  parLcularly	
  changes.	
  The	
  cooling	
  simulated	
  by	
  the	
  majority	
  of	
  seven	
  climate	
  models	
  throughout	
  the	
  year	
  is	
  dominated	
  by	
  a	
  consistent	
  decrease	
  in	
  available	
  
energy	
  at	
  the	
  surface.	
  The	
  simulated	
  decrease	
  of	
  available	
  energy	
  in	
  the	
  major	
  part	
  of	
  seven	
  climate	
  models	
  is	
  accompanied	
  during	
  the	
  summer	
  by	
  a	
  decrease	
  in	
  turbulent	
  fluxes	
  (Figs	
  9a,b),	
  but	
  a	
  different	
  amplitude.	
  	
  
	
  
Another	
  important	
  conclusion	
  of	
  this	
  study	
  results	
  from	
  the	
  spread	
  among	
  the	
  models	
  that	
  is	
  larger	
  in	
  Guinea	
  region.	
  In	
  this	
  region,	
  the	
  spread	
  result	
  of	
  the	
  absence	
  of	
  consistent	
  change	
  among	
  the	
  various	
  models	
  regarding	
  the	
  impact	
  of	
  
land	
  cover	
  type	
  on	
  the	
  parLLoning	
  of	
  QA	
  between	
  QT	
  and	
  QLU	
  on	
  the	
  surface	
  energy	
  balance	
  (Fig	
  10).	
  Nevertheless,	
  our	
  results	
  suggest	
  that	
  the	
  cooling	
  surface	
  (and	
  decrease	
  in	
  QA)	
  induced	
  by	
  the	
  biogeophysical	
  effects	
  of	
  LULCC	
  are	
  
insignificant	
  compared	
  to	
  surface	
  warming	
  (and	
  increase	
  in	
  QA)	
  induced	
  by	
  the	
  regional	
  significance	
  effect	
  of	
  CO2SST	
  due	
  to	
  a	
  small	
  LULCC	
  imposed.	
  	
  In	
  contrast,	
  our	
  results	
  suggest	
  that	
  the	
  decrease	
  of	
  surface	
  water	
  balance	
  resulLng	
  from	
  
LULCC	
  effect	
  are	
  a	
  similar	
  sign	
  to	
  those	
  resulLng	
  from	
  CO2SST	
  during	
  the	
  most	
  part	
  of	
  the	
  year,	
  but	
  the	
  signal	
  resulLng	
  from	
  the	
  biogeophysical	
  effects	
  of	
  LULCC	
  is	
  stronger	
  than	
  the	
  regional	
  CO2SST	
  effect	
  (Not	
  shown).	
  	
  
	
  
In	
  addiLon	
  to	
  several	
  limitaLons	
  listed	
  in	
  Pitman	
  et	
  al	
  2009,	
  the	
  small	
  LULCC	
  imposed	
  in	
  tropical	
  region	
  give	
  the	
  necessity	
  to	
  revalue	
  the	
  LULCC	
  forcing	
  used	
  in	
  LUCID	
  projet	
  for	
  more	
  confidence	
  on	
  the	
  land	
  use	
  forcings	
  use	
  was	
  good	
  in	
  the	
  this	
  
region.	
  
	
  	
  
	
  

More Related Content

What's hot

jennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterjennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterJennifer DiGiulio
 
11CCEE_23Jul2015_Final
11CCEE_23Jul2015_Final11CCEE_23Jul2015_Final
11CCEE_23Jul2015_FinalUpul Atukorala
 
Agroclimatology for agronomy
Agroclimatology for agronomyAgroclimatology for agronomy
Agroclimatology for agronomyDanielManore2
 
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationM6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationAli Osman Öncel
 
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...National Institute of Food and Agriculture
 
Climate Change an hazard zonation on the circum-arctic permafrost region
Climate Change an hazard zonation on the circum-arctic permafrost regionClimate Change an hazard zonation on the circum-arctic permafrost region
Climate Change an hazard zonation on the circum-arctic permafrost regionSimoneBoccuccia
 
Geomorphological indicators of climate change zewde alemayehu tilahun
Geomorphological indicators of climate change zewde alemayehu tilahunGeomorphological indicators of climate change zewde alemayehu tilahun
Geomorphological indicators of climate change zewde alemayehu tilahunzewde alemayehu
 
forms and distribution of potassium along a toposequence on basaltic soils of...
forms and distribution of potassium along a toposequence on basaltic soils of...forms and distribution of potassium along a toposequence on basaltic soils of...
forms and distribution of potassium along a toposequence on basaltic soils of...IJEAB
 
Rising Ocean Temps and Coral
Rising Ocean Temps and CoralRising Ocean Temps and Coral
Rising Ocean Temps and CoralMichelle Jones
 
Watson 2013
Watson 2013Watson 2013
Watson 2013econadin
 
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...ExternalEvents
 
Spatial models of energy flow and nutrient dynamics
Spatial models of energy flow and nutrient dynamicsSpatial models of energy flow and nutrient dynamics
Spatial models of energy flow and nutrient dynamicsRoMerrick Dacullo
 
Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Edie Barbour
 
Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Riccardo Rigon
 

What's hot (20)

jennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_posterjennifer_digiulio_56x36in_poster
jennifer_digiulio_56x36in_poster
 
Disputation_VN3_short
Disputation_VN3_shortDisputation_VN3_short
Disputation_VN3_short
 
Lecture 10p
Lecture 10pLecture 10p
Lecture 10p
 
11CCEE_23Jul2015_Final
11CCEE_23Jul2015_Final11CCEE_23Jul2015_Final
11CCEE_23Jul2015_Final
 
Agroclimatology for agronomy
Agroclimatology for agronomyAgroclimatology for agronomy
Agroclimatology for agronomy
 
Mercator Ocean newsletter 42
Mercator Ocean newsletter 42Mercator Ocean newsletter 42
Mercator Ocean newsletter 42
 
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic AttenuationM6.0 2004 Parkfield Earthquake : Seismic Attenuation
M6.0 2004 Parkfield Earthquake : Seismic Attenuation
 
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
Reducing uncertainty in carbon cycle science of North America: a synthesis pr...
 
Climate Change an hazard zonation on the circum-arctic permafrost region
Climate Change an hazard zonation on the circum-arctic permafrost regionClimate Change an hazard zonation on the circum-arctic permafrost region
Climate Change an hazard zonation on the circum-arctic permafrost region
 
Geomorphological indicators of climate change zewde alemayehu tilahun
Geomorphological indicators of climate change zewde alemayehu tilahunGeomorphological indicators of climate change zewde alemayehu tilahun
Geomorphological indicators of climate change zewde alemayehu tilahun
 
forms and distribution of potassium along a toposequence on basaltic soils of...
forms and distribution of potassium along a toposequence on basaltic soils of...forms and distribution of potassium along a toposequence on basaltic soils of...
forms and distribution of potassium along a toposequence on basaltic soils of...
 
Rising Ocean Temps and Coral
Rising Ocean Temps and CoralRising Ocean Temps and Coral
Rising Ocean Temps and Coral
 
Watson 2013
Watson 2013Watson 2013
Watson 2013
 
Science is Life
Science is LifeScience is Life
Science is Life
 
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...
IPCC and soil organic carbon: Key findings of the 5th Assessment Report, plan...
 
Spatial models of energy flow and nutrient dynamics
Spatial models of energy flow and nutrient dynamicsSpatial models of energy flow and nutrient dynamics
Spatial models of energy flow and nutrient dynamics
 
Bot deptlecture20110310(1)
Bot deptlecture20110310(1)Bot deptlecture20110310(1)
Bot deptlecture20110310(1)
 
Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.Egu talk on EcoHydrology by Brenner et al.
Egu talk on EcoHydrology by Brenner et al.
 
M025128139
M025128139M025128139
M025128139
 
2014 62 1_ungaro_33
2014 62 1_ungaro_332014 62 1_ungaro_33
2014 62 1_ungaro_33
 

Viewers also liked

Ratificación del convenio de estambul
Ratificación del convenio de estambulRatificación del convenio de estambul
Ratificación del convenio de estambulupydeuropa
 
BUILD July 2015 Conference Presentation - Shortened Version
BUILD July 2015 Conference Presentation - Shortened VersionBUILD July 2015 Conference Presentation - Shortened Version
BUILD July 2015 Conference Presentation - Shortened Versionladygator2
 
BUILD 2015 Coaching in a Video World DETAILED PRESENTATION
BUILD 2015 Coaching in a Video World DETAILED PRESENTATIONBUILD 2015 Coaching in a Video World DETAILED PRESENTATION
BUILD 2015 Coaching in a Video World DETAILED PRESENTATIONladygator2
 
Board Meeting- John P.Ryan
Board Meeting- John P.RyanBoard Meeting- John P.Ryan
Board Meeting- John P.RyanCGTI
 
Trastornos alimentarios e inmunologia
Trastornos alimentarios e inmunologiaTrastornos alimentarios e inmunologia
Trastornos alimentarios e inmunologiaja0906
 
What is the fastest way to lose weight
What is the fastest way to lose weightWhat is the fastest way to lose weight
What is the fastest way to lose weightkumen
 
EDUCA A TUS HIJOS
EDUCA A TUS HIJOSEDUCA A TUS HIJOS
EDUCA A TUS HIJOS200217
 
Apreciados profesores
Apreciados profesoresApreciados profesores
Apreciados profesoresfuaa
 
Bildergeschichten interaktiv auf_i_pad-erzählen14
Bildergeschichten interaktiv auf_i_pad-erzählen14Bildergeschichten interaktiv auf_i_pad-erzählen14
Bildergeschichten interaktiv auf_i_pad-erzählen14Heike Roegler
 
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...FIAB
 
Educa atus hijos
Educa atus hijosEduca atus hijos
Educa atus hijosJD678
 
Porta Badge Personalizzati | Collarini Personalizzati
Porta Badge Personalizzati | Collarini PersonalizzatiPorta Badge Personalizzati | Collarini Personalizzati
Porta Badge Personalizzati | Collarini PersonalizzatiAlessio Astolfi
 
poverpoint
poverpointpoverpoint
poverpointelxxxan
 
(Som) professor educador
(Som) professor educador(Som) professor educador
(Som) professor educadorJucimara Castro
 

Viewers also liked (18)

Ratificación del convenio de estambul
Ratificación del convenio de estambulRatificación del convenio de estambul
Ratificación del convenio de estambul
 
The BMJ
The BMJThe BMJ
The BMJ
 
BUILD July 2015 Conference Presentation - Shortened Version
BUILD July 2015 Conference Presentation - Shortened VersionBUILD July 2015 Conference Presentation - Shortened Version
BUILD July 2015 Conference Presentation - Shortened Version
 
Principios
Principios Principios
Principios
 
BUILD 2015 Coaching in a Video World DETAILED PRESENTATION
BUILD 2015 Coaching in a Video World DETAILED PRESENTATIONBUILD 2015 Coaching in a Video World DETAILED PRESENTATION
BUILD 2015 Coaching in a Video World DETAILED PRESENTATION
 
Board Meeting- John P.Ryan
Board Meeting- John P.RyanBoard Meeting- John P.Ryan
Board Meeting- John P.Ryan
 
Trastornos alimentarios e inmunologia
Trastornos alimentarios e inmunologiaTrastornos alimentarios e inmunologia
Trastornos alimentarios e inmunologia
 
What is the fastest way to lose weight
What is the fastest way to lose weightWhat is the fastest way to lose weight
What is the fastest way to lose weight
 
Genios vegetarianos
Genios vegetarianosGenios vegetarianos
Genios vegetarianos
 
EDUCA A TUS HIJOS
EDUCA A TUS HIJOSEDUCA A TUS HIJOS
EDUCA A TUS HIJOS
 
Apreciados profesores
Apreciados profesoresApreciados profesores
Apreciados profesores
 
Bildergeschichten interaktiv auf_i_pad-erzählen14
Bildergeschichten interaktiv auf_i_pad-erzählen14Bildergeschichten interaktiv auf_i_pad-erzählen14
Bildergeschichten interaktiv auf_i_pad-erzählen14
 
Photo shoot plan
Photo shoot plan Photo shoot plan
Photo shoot plan
 
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...
20140128 NP La cadena alimentaria señala que la recuperación no puede verse f...
 
Educa atus hijos
Educa atus hijosEduca atus hijos
Educa atus hijos
 
Porta Badge Personalizzati | Collarini Personalizzati
Porta Badge Personalizzati | Collarini PersonalizzatiPorta Badge Personalizzati | Collarini Personalizzati
Porta Badge Personalizzati | Collarini Personalizzati
 
poverpoint
poverpointpoverpoint
poverpoint
 
(Som) professor educador
(Som) professor educador(Som) professor educador
(Som) professor educador
 

Similar to Poster cfcc paris_2015

Modification and Climate Change Analysis of surrounding Environment using Rem...
Modification and Climate Change Analysis of surrounding Environment using Rem...Modification and Climate Change Analysis of surrounding Environment using Rem...
Modification and Climate Change Analysis of surrounding Environment using Rem...iosrjce
 
Mekonnen adnew
Mekonnen adnewMekonnen adnew
Mekonnen adnewClimDev15
 
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptx
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptxPaul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptx
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptxPaulBOkon
 
2011.12.16.UofMiami_Shukla.ppt
2011.12.16.UofMiami_Shukla.ppt2011.12.16.UofMiami_Shukla.ppt
2011.12.16.UofMiami_Shukla.pptStephenMcIntyre17
 
Impact of Future Climate Change on water availability in Kupang City
Impact of Future Climate Change on water availability in Kupang CityImpact of Future Climate Change on water availability in Kupang City
Impact of Future Climate Change on water availability in Kupang CityWillem Sidharno
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Impact of climate change on global soil carbon stock
Impact of climate change on global soil carbon stockImpact of climate change on global soil carbon stock
Impact of climate change on global soil carbon stocksubhasissatapathy95
 
Ecological indicators
Ecological indicatorsEcological indicators
Ecological indicatorsTaha Gorji
 
East africa food security
East africa food securityEast africa food security
East africa food securitycenafrica
 
diurnal temperature range trend over North Carolina and the associated mechan...
diurnal temperature range trend over North Carolina and the associated mechan...diurnal temperature range trend over North Carolina and the associated mechan...
diurnal temperature range trend over North Carolina and the associated mechan...Sayem Zaman, Ph.D, PE.
 
Assessment of climate change impact on water availability of bilate watershed...
Assessment of climate change impact on water availability of bilate watershed...Assessment of climate change impact on water availability of bilate watershed...
Assessment of climate change impact on water availability of bilate watershed...Alexander Decker
 
Greenhouse Effect IP3
Greenhouse Effect IP3Greenhouse Effect IP3
Greenhouse Effect IP3Mark Simon
 
00 01 bcc_introduction
00 01 bcc_introduction00 01 bcc_introduction
00 01 bcc_introductionHoàng Tiến
 

Similar to Poster cfcc paris_2015 (20)

Modification and Climate Change Analysis of surrounding Environment using Rem...
Modification and Climate Change Analysis of surrounding Environment using Rem...Modification and Climate Change Analysis of surrounding Environment using Rem...
Modification and Climate Change Analysis of surrounding Environment using Rem...
 
T01761138146
T01761138146T01761138146
T01761138146
 
Mekonnen adnew
Mekonnen adnewMekonnen adnew
Mekonnen adnew
 
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening GuidebookGrowing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
Growing Season Extension & its Impact on Terrestrial Carbon; Gardening Guidebook
 
Climate and climate modelling
Climate and climate modellingClimate and climate modelling
Climate and climate modelling
 
a3-4.park.pdf
a3-4.park.pdfa3-4.park.pdf
a3-4.park.pdf
 
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptx
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptxPaul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptx
Paul Okon ICTP-SSSN workshop on Soil Physics ABU Zaria.pptx
 
Overview of climate variability and climate change in GMS
Overview of climate variability and climate change in GMSOverview of climate variability and climate change in GMS
Overview of climate variability and climate change in GMS
 
2011.12.16.UofMiami_Shukla.ppt
2011.12.16.UofMiami_Shukla.ppt2011.12.16.UofMiami_Shukla.ppt
2011.12.16.UofMiami_Shukla.ppt
 
Impact of Future Climate Change on water availability in Kupang City
Impact of Future Climate Change on water availability in Kupang CityImpact of Future Climate Change on water availability in Kupang City
Impact of Future Climate Change on water availability in Kupang City
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Impact of climate change on global soil carbon stock
Impact of climate change on global soil carbon stockImpact of climate change on global soil carbon stock
Impact of climate change on global soil carbon stock
 
Ecological indicators
Ecological indicatorsEcological indicators
Ecological indicators
 
East africa food security
East africa food securityEast africa food security
East africa food security
 
diurnal temperature range trend over North Carolina and the associated mechan...
diurnal temperature range trend over North Carolina and the associated mechan...diurnal temperature range trend over North Carolina and the associated mechan...
diurnal temperature range trend over North Carolina and the associated mechan...
 
Assessment of climate change impact on water availability of bilate watershed...
Assessment of climate change impact on water availability of bilate watershed...Assessment of climate change impact on water availability of bilate watershed...
Assessment of climate change impact on water availability of bilate watershed...
 
Greenhouse Effect IP3
Greenhouse Effect IP3Greenhouse Effect IP3
Greenhouse Effect IP3
 
IAS_SRF_Project_2015
IAS_SRF_Project_2015IAS_SRF_Project_2015
IAS_SRF_Project_2015
 
00 01 bcc_introduction
00 01 bcc_introduction00 01 bcc_introduction
00 01 bcc_introduction
 

Recently uploaded

Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"syalehistoricalreview
 
Abu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community ppAbu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community pp202215407
 
Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Open Access Research Paper
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...Delhi Escorts
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012sapnasaifi408
 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashikranjana rawat
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresvasubhanot1234
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...Suhani Kapoor
 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Environmental Management System - ISO 14001:2015-
Environmental Management System      - ISO 14001:2015-Environmental Management System      - ISO 14001:2015-
Environmental Management System - ISO 14001:2015-Kawther MEKNI
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Along the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"sAlong the Lakefront, "Menacing Unknown"s
Along the Lakefront, "Menacing Unknown"s
 
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974FULL ENJOY Call Girls In  kashmiri gate (Delhi) Call Us 9953056974
FULL ENJOY Call Girls In kashmiri gate (Delhi) Call Us 9953056974
 
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
 
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort ServiceHot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Nehru Place, 🔝 9953056974 🔝 escort Service
 
Abu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community ppAbu Dhabi Sea Beach Visitor Community pp
Abu Dhabi Sea Beach Visitor Community pp
 
Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...Species composition, diversity and community structure of mangroves in Barang...
Species composition, diversity and community structure of mangroves in Barang...
 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls ServicesGandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
Gandhi Nagar (Delhi) 9953330565 Escorts, Call Girls Services
 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
 
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
(ANAYA) Call Girls Hadapsar ( 7001035870 ) HI-Fi Pune Escorts Service
 
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...9873940964 High Profile  Call Girls  Delhi |Defence Colony ( MAYA CHOPRA ) DE...
9873940964 High Profile Call Girls Delhi |Defence Colony ( MAYA CHOPRA ) DE...
 
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
Call Girls South Delhi Delhi reach out to us at ☎ 9711199012
 
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi NcrCall Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
 
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service NashikRussian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
Russian Call Girls Nashik Anjali 7001305949 Independent Escort Service Nashik
 
Soil pollution causes effects remedial measures
Soil pollution causes effects remedial measuresSoil pollution causes effects remedial measures
Soil pollution causes effects remedial measures
 
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
VIP Call Girls Mahadevpur Colony ( Hyderabad ) Phone 8250192130 | ₹5k To 25k ...
 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Environmental Management System - ISO 14001:2015-
Environmental Management System      - ISO 14001:2015-Environmental Management System      - ISO 14001:2015-
Environmental Management System - ISO 14001:2015-
 
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(NANDITA) Hadapsar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
 
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
VIP Call Girls Service Bandlaguda Hyderabad Call +91-8250192130
 

Poster cfcc paris_2015

  • 1. Souleymane SY (1,2)*, Benjamin SULTAN (2), Juan Pablo Boisier (3), Nathalie de NOBLET-DUCOUDRE (3) Malick WADE (1), Amadou T. GAYE (1), Ousmane NDIAYE (4), Yohann FARE (5) (1)  -­‐Laboratoire  de  Physique  de  l’Atmosphère  et  de  l’Océan  -­‐Siméon  Fongang,  Ecole  Supérieure  Polytechnique  de  l’Université  Cheikh  Anta  Diop  (UCAD)  Dakar,  Senegal   (2)  -­‐Laboratoire  d’Océanographie  et  du  Climat:  ExpérimentaLon  et  Approches  Numériques,  Université  Pierre  et  Marie  Curie,  Paris  France   (3)-­‐  Laboratoire  de  Science  du  Climat  et  de  l’Environnement  de  l’InsLtut  Pierre  Simon  Laplace,  CEA-­‐CNRS-­‐UVSQ.  Gif  sur  YveXe,  France   (4)-­‐  Agence  NaLonale  de  l'AviaLon  Civile  et  de  la  Météorologie  du  Sénégal  (ANACIM),  Sénégal   (5)-­‐  KINOME,  Montreuil  sous  Bois,  France   Impacts of changes in land surface processes on the West African Monsoon variability : Results from LUCID Intercomparison project Our Common Future Under Climate Change International Scientific Conference 7-10 July 2015 Paris,France P-­‐2217-­‐28 Human  have    radically  modified  the  land  cover  distribuLon  to  the  profit  of  agricultural  acLviLes.  Nearly  35%  of  the  land  surface  was  directly  converted  into  anthropic  systems     [Ramanku(y  and  Foley1999].  In  the  next  decades,    million  hectares  of  forest  fracLon  could  conLnue  to  disappear,  parLcularly  in  the  tropical  areas  (Davin,  de  Noblet-­‐Ducoudré,  and  Friedlingstein  2007).   At  global  scale,  Land  Use-­‐Land  Cover  Change  (LULCC)  have  direct  consequences  on  animal  and  vegetable  biodiversity,  in  parLcular  on  biophysical  properLes  of  land  surface.    LULCC  is  in   parLcular  related  to  the  reducLon  of  forest  fracLons  and  of  natural  savannas,  to  the  profit  of  sedngs  crops  and  pastures,  as  it  was  observed  on  globale  scale  during  the  last  decades  [Scanlon  and  al.,   2007a,Warburton  and  al.,  2012].    If  this  current  trend  conLnues,  the  culLvated  surface  could  increase  by  20%  during  next  50  years  [Tilman  and  al.,  2001].      Anthropogenic  changes  of  LULCC  affect  climate  through  two  different  pathways.  The  first  one  is  the  biogeophysical  pathway.  It  considers  alteraLon  of  the  physical  characterisLcs  of  the  land  surface  such   as  albedo,  soil  moisture  and  roughness.  The  biogeochemical  pathway,  on  the  other  hand,  takes  into  account  alteraLons  of  the  atmospheric  concentraLons  of  greenhouse  gases  (GHGs),  in  response  to   changes  in  the  land-­‐atmosphere  fluxes  of  these  trace  gases  [Arora  and  Boer  2010].  They  also  affect  the  emissions  and  the  deposiLon  of  carbon,  nitrogen  and  other  chemically  acLve  species,  that  may  have   a  global-­‐scale  impact  on  climate  and  ecosystem  funcLoning,  inducing  potenLally  relevant  feedback  mechanisms.      The  climate  modelling  communiLes  have  demonstrated  impacts  on  surface  temperature,  rainfall  and  turbulent  energy  fluxes  when  land  cover  is  perturbed  [Henderson-­‐Sellers  et  al.,  1993;  Chase  et  al.,   2000;  Werth  and  Avissar,  2002;  Findell  et  al.,  2006].  This  is  consistent  with  the  strong  impact  of  land  surface  processes  on  the  atmosphere  in  some  regions  (Koster  et  al.  2004;  Seneviratne  et  al.  2006).         West  Africa  has  been  highlighted  as  a  hot  spot  of  land  surface–atmosphere  interacLons  (Koster  et  al.  2004)  (Figure  1).  The  West  African  Monsoon  (WAM)  flow  is  driven  by  land–sea  thermal  contrast  and   the  atmosphere–land  surface  interacLons  are  modulated  by  the  magnitude  of  the  associated  north–south  gradient  of  heat  and  moisture  in  the  lower  atmosphere  (Eltahir  and  Gong  1996).  The  links   between  land  surface  processes  and  the  WAM  have  been  demonstrated  in  numerous  numerical  studies  using  global  climate  models  (GCMs)  and  regional-­‐scale  atmospheric  climate  models  (RCMs)  over   the  last  decades.       Three  main  objecLves  of  this  study  are:   -­‐   To  highlights  the  biogeophysical  impacts  of  Land  use  –  land  cover  change  on  surface  climate  over  West  African  region;   -­‐   To  isolate  the  direct  effects  of  LULCC  on  WAM  from  the  indirect  effects  caused  by  interacLons  with  the  other  components  of  climate  system  (e.g.,  elevated  greenhouse  gases  resulLng  changes  in  sea   surface  temperatures  and  sea  ice  extent);   -­‐  To  increase  our  understanding  of  the  land–atmosphere  feedback  mechanisms  in  West  Africa  in  order  to  beXer  understand  the  effect  of  land  surface  processes  on  the  WAM  variability.     Fig 1: Regions of Strong Coupling Between Soil Moisture and Precipitation = West Africa (Koster et al. 2004) IntroducLon   Data  and  Methods   Importance  of  land-­‐use  change  for  future  climate  in  the  TROPICS     Past  land-­‐use  change  (1992-­‐1870)   Future  land-­‐use  change  (2100-­‐1992)   A2 socio-economic scenario Davin et al. 2007•   Projected  future  land-­‐use  change  =  Tropics   LUCID  Simula_on         The  LUCID  simulaLons  analyzed  here  are  same  as  those  described  in  Pitman  et  al.  [2009],  De  Noblet-­‐Ducoudré    et  al.  [2012]  and   Boisier  and  al.  [2012].                         All  simulaLons  have  been  run  in  an  ensemble  mode  to  include  more  robustness  in  the  results  reported  herein.  The   seven  GCMs  involved  in  LUCID  and  the  land  surface  models  (LSMs)  embedded  in  each  GCM  (herearer  GCM/LSMs),   are  ARPEGE/ISBA  [Salas-­‐Mélia  et  al.,  2005;  Voldoire,  2006],  CCAM/CABLE  [McGregor  and  Dix,  2008;  Abramowitz  et   al.,  2008],  CCSM/CLM  [Collins  et  al.,  2006;  Oleson  et  al.,  2008],  ECEARTH/TESSEL  [van  den  Hurk  et  al.,  2000],   ECHAM5/JSBACH  [Roeckner  et  al.,  2006;  Raddatz  et  al.,  2007],  IPSL/ORCHIDEE  [MarL  et  al.,  2010;  Krinner  et  al.,   2005]  and  SPEEDY/LPJmL  [Strengers  et  al.,  2010;  Bondeau  et  al.,  2007].         All  seven  climate  models    used  the  same  forcing  :       Ø  SST/CO2  and  SIC  from  HadISST    (See  Met  Office  Hadley  Center  Sea  Ice  and  SST)    data  set  of    Rayner  et  al.  2003   Ø   Crops/pastures    fracLon  is  prescribed  at  a  resoluLon  of  0.5  from      RamankuXy  and  Foley  (1999)  and  Goldewijk   (2001).   Observa_on-­‐based  data  sets:         To  evaluate  the  performance  of  the  seven  climate  models  used  in   LUCID  simulaLons  to  reproduce  the  interanual  variability  of  the   WAM,  several  climate  observaLon  data  sets  were  examined:     -­‐  PrecipitaLon  and  surface  temperature  simulated  by  climate   models  were  compared  with  observaLonal  data  CRU  (ClimaLc   Research  Unit)  available  at  spaLal  resoluLon  of  0.5°  laLtude-­‐ longitude  and  from  1901  to  2000  (hXp:  //www.cru.uea.ac.uk,   Mitchell  et  al  2003).     -­‐  LAI  satellite  data  set  form  the  Geoland2  project  (hXp:  /  / www.geoland2.eu,  Verger  et  al  2012)  were  used  to  evaluate  the   bias  (not  shown)  and  the  seasonal  cycle  of  LAI  simulate  by  the   Land  Surface  Model  (LSM).  The  LAI  dataset  is  available  at  spaLal   resoluLon  of  0.05°  laLtude-­‐longitude  and  with  a  temporal   resoluLon  of  10  days  during  the  period  1982  to  2000.     Ensemble simulations (with & without land-use changes). SST/GHG (ppm) Exp. design Land Cover Year PDPDv1970-1999/375 PIvPI1870-1899/280 19921870 Results  and  Discussion   Summary  and  Conclusion   LUCID Climate/Vegetation models MeanRainfall(mm/day) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 ARP CCA CCS ECH IPS SPE ECE ENS OBS a. Precipitation Sahel Guinea LUCID Climate/Vegetation models Meantemperature(°C) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 b. 2−m Temperature ARP CCA CCS ECH IPS SPE ECE ENS OBS Figure  5:  Each  bar  illustrates  the  simulated  seasonal  average  of  rainfall  (a)  and  temperature  (b)  for  each  of   the  seven  GCM/LSMs,    the  Ensemble-­‐Mean  experiment,  and  observaLon  data  set  in  both  the  region  defined   in  the  Sahel  (light  gray)  and  the  Guinea  area  (dark  gray)  in  the  1970  to1999  period.  Errors  bars  (represenLng   the  mean  value  (±1)  the  standard  deviaLon)  illustrate  the  rainfall  and  temperature  variability  simulated  by   GCM/LSMs  compared  with  observaLons.    DoXed  lines  indicate  the  seasonal  average  from  CRU  observaLon   data  set.  Model  acronyms  are  the  same  as  in  Figure  2     0.0 0.5 1.0 1.5 2.0 2.5 FEV MAY AUG NOV Monthly mean LAI [m2/m2] ARPEGE−ISBA FEV MAY AUG NOV CCAM−CABLE FEV MAY AUG NOV CCSM−CLM FEV MAY AUG NOV EC−EARTH−TESSEL FEV MAY AUG NOV ECHAM5−JSBACH FEV MAY AUG NOV IPSL−ORCHIDEE FEV MAY AUG NOV SPEEDY−LPJmL FEV MAY AUG NOV Model−MEAN FEV MAY AUG NOV Sahel OBSERVATION 0 1 2 3 4 5 FEV MAY AUG NOV ARPEGE−ISBA FEV MAY AUG NOV CCAM−CABLE FEV MAY AUG NOV CCSM−CLM FEV MAY AUG NOV EC−EARTH−TESSEL FEV MAY AUG NOV ECHAM5−JSBACH FEV MAY AUG NOV IPSL−ORCHIDEE FEV MAY AUG NOV SPEEDY−LPJmL FEV MAY AUG NOV Model−MEAN FEV MAY AUG NOV Guinea OBSERVATION   Model  Evalua_ons       *Contact:  Souleymane  SY,  PhD  Student  at  LOCEAN/IPSL    University  Pierre  et  Marie  Curie  and  LPAOSF/ESP/UCAD  Sénégal  Email:  souleymane.sy@locean-­‐ipsl.upmc.fr  ,Tel.  +33652190745,  45B,  boulevard  Jourdan  75014  Paris,  France         Figure  6:  Monthly  mean  of  leaf  area  index  (LAI)  simulated  by  the  models  listed  at   the  top  of  each  panel,  by  Ensemble-­‐Mean  Experiment  and  ObservaLon  data  set.   Monthly  mean  LAI  averaged  over  the  Sahel  (top)  and  the  Guinea  area  (boXom).   ObservaLon  data  set  is  illustrated  as  solid  red  line  in  right  panels     Effect  of  changes  in  land  surface  processes  on  WAM  variability     How  the  seasonal  cycle  of  Leaf  Area  Index  is  simulated  by  the  LSMs?     Changes  in  land  cover  frac_on  between  1870  and  1992     Figure  3:  Changes  in  the  extent  of  crops  and  pastures  cover  between  PI  (1870)  and  the  PD  (1992).  (a)  Crops   fracLon  in  1992,  (b)  pastures  fracLons  in  1992  and  the  difference  in  crops  and  pastures  fracLons  between  1992   and  1870  (c,d).  Combined  changes  of  crop  and  pasture  fracLons  between  PI  and  PD  (e).  The  red  and  orange   color  represent  the  extension  of  culLvated  areas  and  the  blue  color  shows  the  abandoned  areas.  The  crops  and   pastures  data  have  been  reconstructed  by  RamankuXy  and  Foley  (1999)  and  combined  with  a  pastures  area   Goldewijk  Klein  (2001)  on  a  0.50°x  0.50°  resoluLon.  DoXed  contours  illustrate  areas  with  changes  larger  than   5%  in  crop  or  pasture  fracLons  confined  to  Sahel  and  the  South  of  Guinea.     Figure  4:  Differences  (in  fracLon  of  total  area)  in  each  of  those  types  of  vegetaLon   between  PD  and  PI  Lmes  in  the  Sahel  and  the  Gulf  of  Guinea.  The  color  bars  show   the  fracLons  of  the  land  area  occupied  by  crops  (light  gray),  pasture  (dark  gray),  the   evergreen  trees  (light  green),  the  deciduous  trees  (dark  green)  and  deserts  (white).   The  doXed  line  shows  the  changes  in  the  extent  covered  of  crops  fracLons  observed   between  1870  and  1992  from  the  SAGE  data-­‐set.  ARP,  CCA,  CCS,  ECE,  ECH,  IPS  and   SPE  are  the  GCM/LSMs  acronyms  for  respecLvely  ARPEGE/ISBA,  CCAM/CABLE,   CCSM/CLM,  ECEARTH/  TESSEL,  ECHAM5/JSBACH,  IPSL/ORCHIDEE                                                                                            and  SPEEDY/LPJmL   DJF MAM JJA SON ∆α(X100) −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 Surface Albedo Anomaly ARPEGE / ISBA DJF MAM JJA SON CCAM / CABLE DJF MAM JJA SON CCSM / CLM DJF MAM JJA SON EC−EARTH / TESSEL DJF MAM JJA SON ECHAM5 / JSBACH DJF MAM JJA SON IPSL / ORCHIDEE DJF MAM JJA SON SPEEDY / LPJmL DJF MAM JJA SON Model−MEAN Sahel DJF MAM JJA SON ∆α(X100) 0 1 2 3 4 5 ARPEGE / ISBA DJF MAM JJA SON CCAM / CABLE DJF MAM JJA SON CCSM / CLM DJF MAM JJA SON EC−EARTH / TESSEL DJF MAM JJA SON ECHAM5 / JSBACH DJF MAM JJA SON IPSL / ORCHIDEE DJF MAM JJA SON SPEEDY/ LPJmL DJF MAM JJA SON Model−MEAN Guinea DJF MAM JJA SON ∆LAI(m2 m−2 ) −6 −4 −2 0 2 4 6 Leaf Area Index Anomaly ARPEGE / ISBA DJF MAM JJA SON CCAM / CABLE DJF MAM JJA SON CCSM / CLM DJF MAM JJA SON EC−EARTH / TESSEL DJF MAM JJA SON ECHAM5 / JSBACH DJF MAM JJA SON IPSL / ORCHIDEE DJF MAM JJA SON SPEEDY / LPJmL DJF MAM JJA SON Model−MEAN Sahel DJF MAM JJA SON ∆LAI(m2 m−2 ) −20 −10 0 10 20 ARPEGE / ISBA DJF MAM JJA SON CCAM / CABLE DJF MAM JJA SON CCSM / CLM DJF MAM JJA SON EC−EARTH / TESSEL DJF MAM JJA SON ECHAM5 / JSBACH DJF MAM JJA SON IPSL / ORCHIDEE DJF MAM JJA SON SPEEDY/ LPJmL DJF MAM JJA SON Model−MEAN Guinea −6 −4 −2 0 −3 −2 −1 0 1 ∆QA(Wm−2 ) ∆QT(Wm−2 ) ARPEGE CCAM CCSM EC−EARTH ECHAM5 IPSL SPEEDY ENS−MEAN a. −6 −4 −2 0 −4 −2 0 2 4 ∆QA(Wm−2 ) ∆QT(Wm−2 ) ARPEGE CCAM CCSM EC−EARTH ECHAM5 IPSL SPEEDY ENS−MEAN b. −8 −6 −4 −2 0 2 −3 −2 −1 0 1 2 ∆QA − ∆QT(Wm−2 ) ∆QLU(Wm−2 ) c. −10 −8 −6 −4 −2 0 2 −2.0 −1.5 −1.0 −0.5 0.0 0.5 ∆QA − ∆QT(Wm−2 ) ∆QLU(Wm−2 ) ARPEGE CCAM CCSM EC−EARTH ECHAM5 IPSL SPEEDY ENS−MEAN d. −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 ∆T(C) DJF MAM JJA SON a.Sahel LULCC CO2SST −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 ∆T(C) DJF MAM JJA SON b.Guinea LULCC CO2SST −5 0 5 10 15 20 25 −5 0 5 10 15 20 25 ∆QA(Wm−2 ) DJF MAM JJA SON c.Sahel LULCC CO2SST −5 0 5 10 15 20 25 −5 0 5 10 15 20 25 ∆QA(Wm−2 ) DJF MAM JJA SON d.Guinea LULCC CO2SST F i g u r e 1 0 :   C h a n g e s   i n   2 -­‐ m   temperature   (a,b)   and   in   available   energy  (sum  of  downward  longwave   and   net   shortwave   radiaLon)   induced  by  LULCC  (light  gray)  and  by   changes  in  CO2SST  (dark  gray  boxes)   between   preindustrial   period   and   the  present  day.  The  anomalies  are   calculated   for   each   grid   cell   in   the   two   regions   defined   in   Sahel   (a,   c)   and   Guinea   (b,   d).     Box-­‐whisker   plots   indicate   the   extremes,   the   inter-­‐quarLle  range  and  the  median   of   the   mean   ensemble   values   of   each  individual  model  and  each  set   of   experiment   (PD-­‐PDv   for   the   LULCC   impacts,   PD-­‐PIv   for   CO2SST   impacts).     Figure   9:   Mean   summer   LULCC-­‐ induced  changes  (Wm-­‐2)  in  (a)  and   (b)   QT   ploXed   against   the   mean   summer   changes   in   QA;   (c),   (d)   longwave   radiaLon   emiXed   by   the  surface  (QLU)  ploXed   Against   the   changes   in   the   difference   between   QA   and   QT.   (a),   (c)   The   Sahel   area;   (b),   (d)   Guinea   Area.   Symbols   refer   to   individual   models   and   the   MulL-­‐ Model  Mean.  DoXed  line  in  all   Panels   represents   the   y   =   x   relaLon  (e,  g  the  ΔQT  =ΔQA  or  the   ΔQA-­‐ΔQT=ΔQLU  curve)     Figure  7:  Seasonal  LULCC-­‐induced  changes  in  the  simulated  of  surface  albedo  (%)  between  PD  and  PI  Lmes  by  the   models  listed  at  the  top  of  each  panel.  The  shading  refer  to  the  differences  calculated  between  the  simulaLons  that  are   forced  with  Present  Day  SSTs,  CO2,  and  GHG  (black,  simulaLon  PD  minus  simulaLon  PDv)  and  Pre-­‐Industrial  SSTs,  CO2,   and  GHG  (gray,  simulaLon  PIv  minus  simulaLon  PI).  PresenLng  both  black  and  gray  bars  demonstrates  the  robustness  of   the  impacts  of  LULCC  changes,  largely  independent  of  the  state  of  the  background  GHG  and  surface  ocean’s   temperatures  on  the  Sahel  (top)  and  Guinea  area  (boXom).  All  seasons  are  ploXed  from  (ler)  winter  (DJF)  to  (right)  fall.        Changes  in  surface  proper_es,  energy  fluxes  and   temperature         Discussions       u   The  figure  3  shows  the  change  in  cropland  and  pastures  paXerns  due  to  LULCC.  The   changes  in  the  extent  of  crops  and  pastures  cover  between  PI  (1870)  and  the  PD  (1992)   are  not  homogeneous  on  the  West  Africa  regions.  The  areas  where  land  cover  change  is   above  5%  are  noted  in  Sahel  and  Guinea.  In  the  Sahel,  LULCC  concerns  the  northwest  of   Senegal,    Mauritania,  part  of  Mali,  central  Burkina  Faso,  the  north  of  Nigeria,  southern   Niger,  Chad  and  Sudan.  In  the  Guinea  area,  the  extension  of  cropland  and  pasture  is   located  in  the  South  zone  of  Cote  d'Ivoire,  in  Ghana,  in  Guinea  Conakry,  in  Sierra  Leone   and  in  Liberia.   u   The  figure  4  shows  the  mean  change  of  fracLon  in  each  of  these  types  of  vegetaLon   between  1870  and  1992  in  the  boxes  selected  for  Sahel  and  Gulf  of  Guinea.  The  color   bars  show  the  fracLon  of  land  area  occupied  by  the  different  land  cover  types.  The   different  land  cover  distribuLons  of  LSMs  resulted  from  three  main  reasons:  (1)  the  way   the  LULCC  informaLon  is  represented  in  models;  (2)  the  strategy  used  by  each  modelling   group  to  implement  LULCC  in  their  background  land  cover  ;  and  (3)  the  modelling  groups   use  different  sources  of  informaLon  to  describe  present-­‐day  or    potenLal  vegetaLon.     u   The  figure  5  show  the  various  LUCID  GCM/LMSs  and  observed  mean  seasonal  rainfall   (figure  3a)  and  temperature  (figure  3b)  in  both  region  defined  in  Sahel  and  Guinea.  Error   bars  show  the  ±1.0  standard  deviaLon  illustraLng  the  rainfall  and  temperature  variability   simulated  by  each  GCM/LSMs.  In  the  Sahel  and  Guinea  region,  the  observaLons-­‐based   seasonal  (June  to  September  (JJAS))  average  rainfall  values  are  2.7  mmday-­‐1  and  about   4.4  mmday-­‐1  respecLvely.  The  seasonal  (June  to  September  (JJAS))  average  temperature   values  are  about  of  30°C  in  the  Sahel  and  about  25°C  in  the  Guinea  area  according  to  the   observaLons.     u   The  climate  models  show,  however,  significant  differences  in  the  magnitude  of  the   rainfall  and  temperature  variability.  The  magnitude  of  that  variability  varies  significantly   from  model  to  model  resulLng  on  how  different  climate  models  responses  to  LULCC.  Two   major  ‘features’  varying  from  one  model  to  another  explain  differences:  the  land-­‐cover   distribuLon  and  the  simulated  sensiLvity  to  LULCC.  The  way  to  explain  the  LULCC  vary   greatly  between  models  depending  on  the  magnitude  and  the  sign  of  LULCC  and  how  the   land-­‐surface  funcLoning  is  parameterized  in  the  LSM  model,  in  parLcular  regarding  the   evapotranspiraLon  parLLoning  within  the  different  land-­‐cover  types,  as  well  as  the  role   of  leaf  area  index  in  the  flux  calculaLons  (Boisier  et  al  2012)  and  how  strongly  the  surface   is  coupled  to  the  atmosphere  (Koster  and  al.  2004;  Seneviratne  et  al.  2006).     u   The  figure  6  illustrates  the  monthly  mean  of  LAI  shown  by  the  each  of  seven  LUCID  LSMs,   the  mulL-­‐model  mean  LAI  and  the  observed  in  the  Sahel  and  the  Guinea  zone.  In  the   Sahel,  four  of  the  seven  LSM  (ISBA  (ARPEGE),  CABLE  (CCAM),  CLM  (CCSM)  and  ORCHIDEE   (IPSL))  reproduce  the  observed  growing  season  of  crops  centred  in  the  late  summer,   TESSEL  (SPEEDY)  and  LPJmL  (EC-­‐EARTH)  LSMs  simulate  fixed  values  of  LAI  during  the  year   in  both  areas.  Other  model  (JSBACH  (ECHAM5)  for  example)  simulates  the  growing   season  of  crops  and  pastures  in  the  fall.  The  model  differences  depicted  in  Figure  5   reflects  the  various  characterizaLon  of  LAI  within  the  LUCID  LSMs.  For  instance,  LAI  in   JSBACH,  LPJmL  and  ORCHIDEE  is  explicitly  simulated  based  on  the  seasonal  carbon   allocaLon  and  the  local  climate.  The  other  LSMs  prescribe  a  LAI  cycle  based  on  satellite   observaLons  (ISBA,  CABLE,  CLM),  or  use  a  fixed  value  year-­‐round  (TESSEL).     u   The  seasonal  LULCC  induced  changes  in  the  simulated  of  surface  albedo  between  the  PD   and  PI  in  the  two  regions  defined  in  Sahel  and  Guinea  are  shown  in  the  Figure  7.  In  most   models  and  seasons,  the  mean  land  surface  albedo  is  higher  under  modern  land  cover   than  in  preindustrial  Lmes.    The  decrease  of  land  surface  albedo  in  ARPEGE-­‐ISBA  model  is   due  to  an  extent  of  crops  and  pastures  fracLon  which  are  occurred  to  the  detriment  of   bar  soil  in  the  Sahel.  The  CABLE  (CCAM)  LSM  shows  no  change  in  albedo  despite  the   prescribed  changes  of  LULCC.  In  this  version  of  the  model,  the  parameters  used  in   calculaLng  canopy  albedo  do  not  vary  as  a  funcLon  of  plant  funcLonal  type  (Sellers  et  al.   1992),  making  the  model  albedo  insensiLve  to  changes  in  the  vegetaLon  structure  (this   has  been  revised  in  more  recent  versions  of  the  model).  In  the  Sahel,  a  few  changes  of   surface  albedo  are  simulated  by  LSM  variant  of  around  0  to  0.6  %  due  to  a  very  few   changes  of  LULCC  imposed  in  LSM.                                        In  Guinea  area,  except  CABLE  (CCAM)  model,  the  albedo  changes  are  roughly                    proporLonal  to  the  deforestaLon  scale  with  a  parLcular  average  albedo  increase  of  4%            for  the  JSBACH  (ECHAM5)  model  and  about  0  to  1%  for  six  other  models.  The  amplitude            of  changes  in  surface  albedo  varies  in  magnitude  from  model  to  model  following  at  first            order  the  intensity  of  forest  fracLon  changes  prescribed.     u The  figure  8  illustrate    the  seasonal  mean  LULCC-­‐induced  changes  in  leaf  area  index  (LAI)   over  Sahel  and  Guinea.  In  both  regions,    the  seasonal  paXerns  of  LAI  changes  in  the  Sahel   and  the  Guinea  area  are  not  homogeneous  among  the  models.  The  most  part  of  LSMs   show  LAI  decreases  during  the  most  of  the  year  (figure  8).  In  Guinea,  all  LSMs  except   CABLE  and  JSBACH  show  decreased  foliage  development  during  all  year  because  forests   fracLon  have  commonly  been  replaced  by  crops  and  grasslands,  which  have  negligible   foliage  development.  Others  LSMs  show  an  increased  LAI  during  all  year  (ISBA,  CABLE)   and  others  during  the  season  (JSBACH,  ORCHIDEE)  in  the  Sahel  region.       Discussion  1         Discussion  2         Discussion  3         Discussion  4     Figure  8:  As  in  Fig.  7,  but  for  changes  in  the  simulated  Leaf  Area  Index  (LAI)  (%)     u The  mean  summer  LULCC-­‐induced  changes  in  QT  ploXed  against  the  mean  summer  changes  in  QA  in  both  region  are  shown  in  the  figure  9a  and  b,  the  longwave  radiaLon  emiXed            by  the  surface  (QLU)  ploXed  against  the  changes  in  the  difference  between  QA  and  QT  are  also  illustrates  in  the  figure  9c,d.  In  the  Sahel,  the  simulated  decrease  of  QA  in  ARPEGE,  CCAM,              ECHAM5  and  SPEEDY  (as  well  as  CCSM,  IPSL,  SPEEDY  in  Guinea  area)  is  accompanied  in  summer  by  a  decrease  in  turbulent  fluxes  (QT)    (figs  9a,b).  In  contrast,  in  the  case  of  CCSM  in  Sahel              (as  well  as  ARPEGE  and  ECEARTH  in  Guinea),  the  slight  simulated  increase  of  available  energy  is  accompanied  by  a  slight  increase  in  turbulent  fluxes.  In  Sahel,  in  others  models  the          simulated  increase  of  QA  in  the  summer  suggests  that  deforestaLon  leads  to  an  increased  porLon  of  QA  that  is  used  to  warm  up  the  land  surface  (reduced  longwave  cooling),  while  the          turbulent  fluxes  decrease.     u For  most  models  in  the  Sahel  (CCAM  parLcularly)  the  summerLme  change  in  turbulent  fluxes  is  smaller  than  the  change  in  QA.  This  suggests  that  the  remaining  energy  decrease  has   been  used  to  cool  down  the  land  surface,  resulLng  in  reduced  emiXed  thermal  radiaLon  as  illustrated  by  Figs.  9c,d.  In  Guinea  (ECHAM5-­‐JSBACH  parLcularly),  the  simulated  parLcular   decrease  of  available  energy  is  compensated  by  increased  turbulent  fluxes  and  a  slight  increase  in  emiXed  thermal  radiaLon  that  is  used  in  surface  warming.    Four  of  the  seven  models   in  Sahel  (and  all  in  Guinea)  the  amplitude  of  QT  change  is  not  similar  than  QA,  therefore  the  relaLve  change  (ΔQT/ΔQA)  varies  from  one  model  to  the  other,  depending  on  how  land  cover   perturbaLon  and  associated  characterisLcs  that  have  led  to  a  change  in  the  funcLoning  of  the  Soil-­‐VegetaLon-­‐Atmosphere.       u The  comparison  between  the  simulated  regional  climate  changes  induced  by  LULCC  and  the  ones  induced  by  CO2SST  is  illustrated  in  Fig  10.  This  figure  shows  the  seasonal  changes  in   available  energy  QA  and  T2m  averaged  over  two  regions  defined  in  the  Sahel  and  the  Guinea  region  resulLng  from  both  driver.    The  signal  of  LULCC  induced  QA  and  T2m  changes  in  both   regions  shown  by  the  ensemble  mean  of  LUCID  simulaLons,  are  very  small  and  opposite  in  sign  to  the  esLmated  responses  of  increasing  GHG  concentraLon  over  the  regions.  The   changes  of  CO2SST  lead  to  an  increase  in  QA  at  the  surface    [2  -­‐  5Wm-­‐2]  in  the  Sahel  [5  -­‐  10Wm-­‐2  in  Guinea]  with  larger  values  during  summerLme  when  incoming  radiaLon  is  the  highest   (Figs  10c,d).  This  increase  is  caused  mainly  by  increased  incoming  infrared  radiaLon  (QLD)  associated  with  the  higher  atmospheric  CO2.    This  increased  QA  is  associated  with  a  surface   warming  [0.2°C  -­‐  0.6°C]  in  Sahel  and  [0.6°C  -­‐  0.7°C  in  Guinea]  (Figs.  10c,d)  over  all  seasons  with  slightly  larger  values  during  summerLme  parLcularly  in  the  Sahel.  In  Guinea  region  there   is  a  no  seasonal  cycle  in  the  increased  in  QA  and  the  surface  warming  and  the  spread  among  the  models  is  larger  in  this  region  compared  to  Sahel  region.     This  posters  extends  the  studies  of  Pitman  et  al.  (2009),  de  Noblet-­‐Ducoudré  et  al.  (2012)  and  Boisier  et  al.  (2012),  that  invesLgated  the  robust  responses  of  the  surface  climate  to  the  land-­‐use  induced  land-­‐cover  change  (LULCC)  since  pre-­‐ industrial  Lmes  in  the  temperate  regions.  This  study  describes  the  biogeophysical  effect  on  the  surface  climate  of  land-­‐use  changes  over  two  areas  defined  in  West  African  Monsoon  regions  (fig3).     One  of  the  important  conclusion  of  this  study  lies  to  the  low  impact  simulated  by  seven  climate  models  due  to  a  low  LULCC  forcing  imposed  in  the  West  African  region.  Therefore,  the  quesLons  being  asked  in  this  study  is  that  the  historical   LULCC    forcing  imposed  in  these  regions  are  they  realisLc?   Within  the  LUCID  models,  most  of  the  seven  models  simulate  a  small  change  during  a  most  part  of  the  year  in  both  regions  due  to  small  land  cover  change  imposed.  The  amplitude  and  the  sign  of  the  responses  of  land  use  change  vary  among   the  models  depending  on  different    land  surface  perturbaLon.  The  small  changes  of  temperature  and  Net  shortwave  radiaLon  simulated  by  the  seven  climate  models  are  due  to  the  insignificant  past  land  use  change  imposed  in  Sahel  and   Guinea  region,  except  CCAM  in  the  Sahel  and  ECAHM5  Guinea  area  that  simulates  parLcularly  changes.  The  cooling  simulated  by  the  majority  of  seven  climate  models  throughout  the  year  is  dominated  by  a  consistent  decrease  in  available   energy  at  the  surface.  The  simulated  decrease  of  available  energy  in  the  major  part  of  seven  climate  models  is  accompanied  during  the  summer  by  a  decrease  in  turbulent  fluxes  (Figs  9a,b),  but  a  different  amplitude.       Another  important  conclusion  of  this  study  results  from  the  spread  among  the  models  that  is  larger  in  Guinea  region.  In  this  region,  the  spread  result  of  the  absence  of  consistent  change  among  the  various  models  regarding  the  impact  of   land  cover  type  on  the  parLLoning  of  QA  between  QT  and  QLU  on  the  surface  energy  balance  (Fig  10).  Nevertheless,  our  results  suggest  that  the  cooling  surface  (and  decrease  in  QA)  induced  by  the  biogeophysical  effects  of  LULCC  are   insignificant  compared  to  surface  warming  (and  increase  in  QA)  induced  by  the  regional  significance  effect  of  CO2SST  due  to  a  small  LULCC  imposed.    In  contrast,  our  results  suggest  that  the  decrease  of  surface  water  balance  resulLng  from   LULCC  effect  are  a  similar  sign  to  those  resulLng  from  CO2SST  during  the  most  part  of  the  year,  but  the  signal  resulLng  from  the  biogeophysical  effects  of  LULCC  is  stronger  than  the  regional  CO2SST  effect  (Not  shown).       In  addiLon  to  several  limitaLons  listed  in  Pitman  et  al  2009,  the  small  LULCC  imposed  in  tropical  region  give  the  necessity  to  revalue  the  LULCC  forcing  used  in  LUCID  projet  for  more  confidence  on  the  land  use  forcings  use  was  good  in  the  this   region.