This study seeks to investigate the variability and presence of trends in the diurnal surface air temperature range
(DTR) over North Carolina (NC) for the period 1950–2009. The significance trend test and the magnitude of trends were determined using the non-parametric Mann–Kendall test and the Theil–Sen approach, respectively.
Statewide significant trends (p b 0.05) of decreasing DTR were found in all seasons and annually during the analysis period. The highest (lowest) temporal DTR trends of magnitude −0.19 (−0.031) °C/decade were found in summer (winter). Potential mechanisms for the presence/absence of trends in DTR have been highlighted. Historical
data sets of the three main moisture components (precipitation, total cloud cover (TCC), and soil moisture) and
the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for
correlation analysis. The DTRs were found to be negatively correlated with the precipitation, TCC, and soil moisture across the state for all the seasons and annual basis. It appears that the moisture components related better to the DTR than to the atmospheric circulation modes.