SlideShare a Scribd company logo
1 of 36
Medium
Manganese Steels
Mini Project by,
Sohini Mondal (UG 2nd Year)
Enrollment ID - 511119028
Introduction:
• Medium Mn steels establish an important class of novel alloys in the 3rd
generation of advanced high strength steels (AHSS).
• Medium Mn steels usually contain 0.05~0.4 wt.% C and 3~10 wt.% Mn.
• Medium Mn steels show a good combinations of high to ultra-high strength at
quite high total elongation.
• Ultra-fine grained microstructures can be achieved via intercritical annealing,
resulting in a complex multi-phase microstructure consisting of several phases
such as-
 Different types of austenite (retained, partition, stabilized, reverted)
 Martensite
 Ferrite
 Sometimes also delta ferrite.
• C and Mn are both well-known austenite stabilizers in AHSSs, and thus
increasing Mn and C content in steels is expected to be an effective route to
enhance the fraction of Retained austenite.
• The different types of austenite in medium Mn steels promote enhanced ductility
due to the higher strain hardenability enabled by dislocation accumulation, TRIP
effect or even the TWIP effects.
• Adjusting alloy composition and adequate selection of the intercritical annealing
temperature and pre-deformation results in the formation of different types of
beneficial microstructures at room temperature.
• Compared with Quenching and Partitioning steels also having a tempered
martensite matrix, the ultrafine-grained ferrite in medium Mn steels is softer.
Therefore, the strength of medium Mn steels is usually somewhat lower than that
of Q&P steels, but they have a much better elongation due to a higher RA fraction.
Advanced High Strength Steels:
• Advanced high-strength steels (AHSS) constitute a class of high-strength,
formable metallic alloys that are designed mainly as sheet products for the
transportation sector.
• AHSS have often very complex and hierarchical microstructures consisting of
ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase
mixtures of these constituents, sometimes enriched with precipitates. This
complexity makes it challenging to establish reliable and mechanism-based
microstructure–property relationships.
• different types of AHSS : dual-phase steels, complex phase steels, transformation-
induced plasticity steels, twinning-induced plasticity steels, bainitic steels,
quenching and partitioning steels, press hardening steels etc.
The strength-elongation ranges for the AHSSs:
The strength-elongation envelopes for
the various types of AHSSs:
the strength-elongation envelopes for
the various types of AHSSs, classified by their
microstructure:
• The Previous figure clearly illustrates a higher mechanical performance require
both a more complex matrix microstructure and an increasing contribution of the
RA.
• Crashworthiness is another important factor for automotive materials and Dual
phase steels have very good crashworthiness.
• Compared to RA free DP steels at the same strength level, RA in TRIP , Q&P and
medium-Mn steels can further increase the energy absorption at collisions and
improve the crashworthiness through the TRIP effect.
In the figure-
IF: interstitial free steel HSLA: high strength low alloyed steel; DP: dual phase steel;
CP: complex phase steel; Mart: martensitic steel; TRIP: transformation-induced
plasticity steel; TWIP: twinning induced plasticity steel; CFB: carbide-free bainitic
steel; Q&P: quenching and partitioning steel.
The advantage of medium Mn steels compared to
other high strength steels :
Medium Mn steels with 3.12 wt% Mn content emerge as strong candidate alloys
for the 3rd generation of advanced high strength steels, due to:
1. their excellent strength-ductility combination (product of tensile strength
and total elongation up to ~70 GPa%)
2. simple heat treatment process (e.g. intercritical annealing (IA)), and low-
cost alloy ingredients
3. The composite-like microstructure (normally ferrite and metastable
austenite) combined with submicron grain scale differentiates such
materials from other types of alloys.
The typical microstructures
of hot-rolled and cold-rolled medium Mn steels:
• Medium Mn steels usually have an
ultrafine dual phase microstructure,
containing 20~50 vol. % C- and Mn
enriched RA and a ferrite matrix (i.e.
a heavily tempered martensite)
Desired microstructures and required chemical
composition:
• Fig. a and b show the effects of C and Mn additions on the phase diagram of Fe-C-
Mn alloy, respectively. C addition narrows the intercritical annealing temperature
region and promotes carbides precipitation at low temperatures. Mn addition
shifts the intercritical annealing region to a lower temperature region.
• Fig c and d show the effects of Si and Al additions on the phase diagram of Fe-
0.2C-5 Mn alloy, respectively. Besides suppressing carbide formation, Si and Al
both increase the Ae1 and Ae3 temperatures.
• Si addition enhances the tensile strength via solid solution strengthening, while it
deteriorates the surface quality due to the formation of Si enriched oxide, which
negatively influences the Zn coating process.
• High content of Al causes the formation of coarse δ-ferrite during solidification.
Starting microstructures and processing routes:
• The starting microstructure of medium Mn steels is usually fully martensitic due
to the high hardenability of such steels but some medium Mn steels with a very
high Mn content can even contain a small amount of pre-existing austenite in the
martensite matrix.
• The initial martensitic microstructures can be generally divided into two types:
hot-rolled and cold-rolled microstructures, which leads to different final
microstructures and mechanical properties.
• The typical microstructure of hot-rolled medium Mn steels after austenite
reversion treatment consists of lath-shaped austenite and ferrite.
• For cold-rolled medium Mn steels, recrystallization of the heavily deformed
martensite microstructure will proceed simultaneously with austenite formation
during ART, leading to ultrafine globular austenite and ferrite.
• Due to the recrystallization, the dislocation density in ferrite of cold-rolled
medium Mn steels is often lower than that for hot-rolled grades
• In general, two kinds of reverted austenite morphologies, i.e. lath and globular, can be
observed, and the final morphology is strongly affected by the initial microstructure.
• In addition to hot rolling and cold rolling processes, the warm rolling process was also
adopted to control the morphology and sizes of reverted austenite through partial
recrystallization.
• In the conventional ART(Austenite reversion treatment), the selection of intercritical
annealing temperature is essential to control the fraction and stability of the RA.
• At a higher ART temperature, the kinetics of austenite reversion is fast and as a result
the reverted austenite has a relatively low C and Mn content and a larger grain size.
This will lead to a low stability of the reverted austenite, of which some will transform
into fresh martensite during quenching.
• At a lower ART temperature, the fraction of reverted austenite is relatively low,
although the stability is increased due to higher degree of C and Mn enrichment and a
smaller grain size.
• At an optimized ART temperature, a desirable balance between the reverted austenite
fraction and its thermomechanical stability is achieved, and a maximum amount of
austenite upon cooling to ambient temperature can be retained.
• It is important to note that Mn segregation band during solidification is inevitable in
medium Mn steels, which often results in anisotropic mechanical properties and thus
deteriorate the strength or elongation of steels.
• Several variants of the conventional ART, e.g. double annealing, cyclic-ART, flash-
ART, quenching-ART, intercritical annealing Q&P and two-step intercritical annealing
have also been proposed to process medium Mn steels.
• Cementite precipitation could also occur during the processing of medium Mn steels.
Taking the advantage of cementite precipitation before austenite reversion, it was
proposed that a two-step intercritical annealing process to obtain retained austenite in
medium Mn steels.
• In the two-step intercritical annealing process, cementite precipitation is carefully
tailored via annealing at a lower temperature before austenite reversion, and then
reverted austenite can nucleate at the cementite/martensite interfaces during a
shorter intercritical annealing at a higher temperature.
• The reverted austenite is partially transformed into martensite during quenching to
ambient temperature, which results in a considerable amount of retained austenite
adjacent to martensite. It was found that such a microstructure is beneficial to both
the strength and the ductility of medium Mn steels.
Double annealing treatment:
a first intercritical annealing at a higher temperature is performed to facilitate
C and Mn partitioning into the reverted austenite, resulting in the reverted
austenite having a large grain size.
Due to the insufficient stability, the austenite reverted during the first
intercritical annealing would partially transform into fresh martensite during
quenching to room temperature.
The microstructure after the first intercritical annealing consists of fresh
martensite and the recrystallized globular ferrite.
Subsequently, during the second annealing at a lower temperature, austenite
reverts primarily from the C and Mn enriched fresh martensite, and the newly
formed austenite is stabilized by further C and Mn enrichment.
Medium Mn steels processed by the double annealing treatment have a
hierarchical microstructure consisting of coarse globular ferrite, ultrafine-
grained lath-shaped ferrite and RA.
The double annealing treatment, which fine tunes the stability of the reverted
austenite, was also found to be effective in eliminating the Lüders band
phenomenon in medium Mn steels
Austenite reversion from martensite or martensite-
austenite mixture:
• The kinetics of austenite growth (e.g. the martensite/austenite interface
migration) and alloying elements partitioning during austenite reversion of
medium Mn steels usually have been simulated using the LE model . Fig.a shows
the kinetics of austenite reversion in an Fe-0.2C-5 Mn medium Mn steel
simulated by the LE (Local equilibrium) model.
• (i) NPLE(Negligible partitioning
local equilibrium)-(α′→γ), during
which the kinetics of
martensite/austenite interface
migration is controlled by carbon
diffusion in martensite while a
concentration spike of Mn forms
ahead of the interface. In this stage,
the rate of martensite/austenite
interface migration is very fast and
controlled by carbon diffusion in
martensite ( Fig. b). Although the
NPLE-(α′→γ) stage is very short
(about 10−3
second), the size of the
reverted austenite at the end of this
stage is significantly increased and is
strongly affected by the initial
thickness of martensite lath.
• (ii) PLE(Partitioning local equilibrium)-(α′→γ), during which the kinetics of
martensite/austenite interface migration is controlled by Mn diffusion in
martensite and as a result the Mn concentration in the reverted austenite is
gradually enhanced ( Fig. c). A kinetic plateau was predicted to occur due to the
NPLE/PLE transition.
• (iii) PLE-(γ→α′ ), during which the martensite/austenite interface migrates
backward into the austenite. Its kinetics is very sluggish and controlled by Mn
diffusion in austenite Fig.a & c). Hence, the growing fraction of reverted austenite
first exceeds the full equilibrium fraction and then approaches it by shrinking.
In general, the LE (Local equilibrium) model can qualitatively predict the basic
features of austenite reversion. However, the thickening kinetics of reverted
austenite predicted by the LE model, in particular at the early stage of austenite
reversion, is usually much faster than that measured in experiments. This could
be attributed to the infinite interface mobility of martensite/austenite assumption
in the LE model. The mobility of martensite/austenite interface in medium Mn
steels may not be infinite either, and thus a certain amount of Gibbs energy would
be dissipated due to interface friction.
Influence of Intercritical Annealing on Microstructure and
Mechanical Properties of a Medium Manganese Steel
• This fig. displays the initial
microstructure of the 50 % cold-
rolled medium manganese steel
prior to intercritical annealing. After
hot-rolling, homogenization
annealing, water quenching and cold
rolling, the material exhibits a
deformed α´ martensitic
microstructure as indicated by
EBSD-image quality ( IQ) and EBSD
phase maps. It is noticeable that the
measurements show no austenite or
precipitates prior to intercritical
annealing.
EBSD phase maps of the cold-rolled medium manganese steel
intercritically annealed at 555 °C for (a) 1 min, (b) 1 h and (c) 15 h,
(bcc structure is indicated in red, fcc structure is indicated in green):
• After intercritical annealing of the cold-rolled Fe-12Mn-3Al-0.05C medium
manganese steel at 555 °C with subsequent quenching the microstructure consists
of a α´ martensitic matrix with embedded reversed austenite islands, as evident
from the EBSD phase maps, As shown in Fig.a) an intercritical annealing time of
only 1 min results in a small fraction of reversed austenite of approximately 1 %.
• It is observed that the austenite is formed first in highly deformed regions of the
initial microstructure. Dark contrast in the map indicate low indexing and low
pattern quality due to strain-induced local lattice rotations.
• When increasing the intercritical annealing time to 1 h, the volume fraction of the
reversed austenite increased significantly to 15.7 % (in Fig. b). The austenite is
observed primarily along the high angle α´ martensite grain boundaries, e.g.
deformation bands. This is assumed to be due to manganese and carbon
partitioning during intercritical annealing.
• A further increase of the intercritical annealing time to 15 h results in a continued
increase of the reversed austenite fraction to approximately 34.0 %, being in good
agreement to the calculated reversed austenite fraction in thermodynamic
equilibrium. The austenite grains are homogeneously distributed and observed
also within the martensite grains. Regardless of the varied intercritical annealing
times, no evidence of recrystallization of the initial α´ martensite was observed by
the EBSD measurements at an intercritical annealing temperature of 555 °C.
 Mechanical properties after intercritical annealing
• This shows the engineering
stress-strain curves of cold-rolled
medium manganese steel after
intercritical annealing. The
material intercritically annealed
for only 1 min at 555 °C exhibits a
yield strength (YS) of 810 MPa,
an ultimate tensile strength
(UTS) of 840 MPa and a total
elongation (TE) of approximately
16 %. A pronounced yield point
with a very short yield point
elongation of less than 1 % was
observed
• A longer intercritical annealing time, however, results in a flow curve exhibiting
only continuous yielding, indicating uniform deformation of the specimen. A
substantial increase of the total elongation to 23 % and a slight reduction of the
YS and UTS to 740 MPa and 815 MPa, respectively, was observed for material
intercritically annealed for 1 h.
• Further increase of the intercritical annealing time to 5 h shows a decrease of the
YS and UTS to 715 Mpa and 795 MPa, respectively, while the TE increases to
almost 31 %.
• The YS, UTS and TE of cold-rolled material intercritically annealed for 15 h
amount 640 MPa, 775 MPa, and 30 %, respectively. This indicates a decrease of
strength as well as of ductility of the Fe-12Mn-3Al-0.05C medium manganese
steel in case of a significant further increase of the annealing duration.
Medium Mn steel design criteria:
Hot rolled material:
• The tensile behavior of hot rolled medium Mn steel depends on the intercritical
annealing temperature and time. Austenitization after cold rolling produces a
microstructure similar to that of hot rolled samples. The prior austenite texture
memory effect of 𝛾𝑅 and its spatial alignments are controlling factors influencing
the tensile behavior. Since localization of strain is seen within colonies of 𝛾𝑅
having the same crystallographic orientation and spatial alignment, the following
design criteria are suggested for improving the material’s properties by adjusting
specific process parameters without changing its composition.
1. Prior austenite grain size: One way of increasing the yield stress lies in reducing
the strain localization areas. The size of colonies of similar spatially aligned 𝛾𝑅
are dependent on the martensite packet size within the prior austenite grain.
Reducing the prior austenite grain size would thus reduce the resulting
martensite packet size. This would in turn reduce the size of colonies with
similar spatially aligned and crystallographically oriented 𝛾𝑅 . As a result, this
approach should help reducing zones of premature strain localization, thus
increasing the yield stress.
2. Crystallographic texture: The texture memory effect of the 𝛾𝑅 grains inside the
prior austenite grain plays an important role in controlling strain hardening.
Breaking the texture memory effect of the 𝛾𝑅 in- side the prior austenite grain,
rendering it closer to the texture spread observed in the cold rolled material, would
increase the strain hard- enability of the hot rolled sample.
Cold rolled material:
• The intercritical annealing temperature and holding times for cold rolled medium
Mn steel are critical factors influencing Lüders band propagation and elongation.
Approaches for eliminating Lüders bands have been to intercritically anneal the
material at high intercritical annealing temperatures where the 𝛾𝑅 is thermally
less stable resulting in back transformation to α′fresh during the quenching stage.
Such treatment would result in loss of ductility though.
• Intercritically annealing the material at low temperatures prevents equiaxed
ferrite formation by martensite recrystallization.
• Increased holding time results in an increase in 𝛾𝑅volume fraction until
compositional partition and volume fraction equilibrium stages are obtained.
When a sufficiently large volume fraction of𝛾𝑅 is present, the flow stresses of𝛾𝑅 is
lower than that of α′temp resulting in continuous yielding and sufficient strain
hardening.
Phase maps of 𝛾𝑅 and 𝛼′𝑡𝑒𝑚𝑝 and corresponding inverse pole figure (IPF) maps
highlighting 𝛾𝑅 of the (a) HRA and (b) CRA material. 3D EBSD IPF snapshots of 𝛾𝑅 in (c)
HRA and (d) CRA material (Supplementary Movie 1 and 2 in the supplementary data). 𝛾𝑅 :
reverted austenite; 𝛼′𝑡𝑒𝑚𝑝 : tempered martensite; HRA: hot rolled and intercritically
annealed; CRA: cold rolled and intercritically annealed.
Strain partitioning and strain localization in
medium manganese steels:
• Designing medium Mn steels by selecting low intercritical annealing
temperatures and long holding times prevents macro- scopical localization of
strain in ferrite and would promote the formation of Lüders bands and thus of a
pronounced yield point.
• Apart from strain partitioning, strain localization is observed in hot rolled
medium Mn steel samples.
• Strain is more homogeneously partitioned within the𝛾𝑅 islands in the cold rolled
medium Mn steel. This is due to the prior austenite grains had been plastically
broken up during cold rolling prior to intercritical annealing.
• The relative grain size effect in hot rolled samples is assumed to cause the
observed lower yield stresses in hot rolled samples compared to the cold rolled
samples in cases where both show continuous yielding.
The role of prior austenite grain boundaries and
microstructural morphology on the impact toughness of
medium Mn steels [Fe-7Mn-0.1C-0.5Si (wt%)] :
• Two types of microstructures were produced:
 hot-rolling plus annealing (HRA)
 cold-rolling plus annealing (CRA).
• Both types of specimens had a dual-phase microstructure consisting of retained
austenite (δ) and ferrite (α) after intercritical annealing.
• Both, the HRA and CRA specimens were characterized by a transition in fracture
mode from ductile and partly quasi cleavage fracture to intergranular fracture
with decreasing impact test temperature from room temperature to -196°C.
• The HRA specimens exhibited a higher ductile to brittle transition temperature
(DBTT) and lower impact energy at low temperatures below -50°C compared to
the CRA specimens.
• The intergranular cracks in HRA specimens propagated primarily along the
boundaries of the prior austenite grains with a size of ~35 μm, but those in the
CRA material propagated along the boundaries of the ferrite and αʹ martensite
grains with a much finer size of ~450 nm.
• The main reason for intergranular cracking along the prior austenite grains in
the HRA specimen was the segregation of Mn and P at the grain boundaries
occurring during homogenization, hot rolling and air-cooling prior to intercritical
annealing. The boundaries of martensitic packets or blocks were decorated only
by C, since substitutional diffusion of Mn and P towards the grain boundaries at
low temperature below the Ms temperature of ~275°C was too slow.
• Cold or warm working prior to intercritical annealing of medium Mn steels
promotes primary recrystallization of their formable αʹ martensite matrix prior to
reverse transformation so that the solute-segregated boundaries of coarse prior
austenite grains can be eliminated. We refer to this effect as ‘prior austenite grain
boundary break-up’ mechanism. It results in the improvement of the low-
temperature impact toughness of medium Mn steels.
Schematic sketch showing the difference in intergranular cracking
occurring during the low-temperature impact test in two types of
specimens with different microstructural morphologies after
annealing:
Role of discontinuous plastic yielding in medium
Mn steels :
• A drawback of medium Mn steels is that they often show a discontinuous plastic
yielding phenomenon. This is characterized by a yield point drop followed by a
stress plateau (also referred to as yield point elongation, YPE) in the tensile
stress-strain curves and the formation of Lüders bands.
• Such localized deformation yielding phenomena can in principle deteriorate the
surface quality during sheet forming operations. From a fundamental perspective,
it is interesting to study this effect in more detail, since discontinuous yielding has
rarely been observed in other multiphase composite-like alloys (e.g. conventional
transformation-induced plasticity (TRIP), dual phase and duplex stainless steels).
The origin of discontinuous plastic yielding in
medium Mn steels:
• Medium Mn steels with an austenite matrix (austenite fraction ~65 vol%) can
exhibit pronounced discontinuous yielding. A combination of multiple in situ
characterization techniques from macroscopic (a few millimeters) down to
nanoscopic scale (below 100 nm) is utilized to investigate this phenomenon. It is
observed that both austenite and ferrite are plastically deformed before the
macroscopic yield point. In this microplastic regime, plastic deformation starts in
the austenite phase before ferrite yields. The austenite-ferrite interfaces act as
preferable nucleation sites for new partial dislocations in austenite and for full
dislocations in ferrite. The large total interface area, caused by the submicron
grain size, can provide a high density of dislocation sources and lead to a rapid
increase of mobile dislocations, which is believed to be the major reason
accounting for discontinuous yielding in such steels.
• The Lüders banding behavior and the local deformation-induced martensite
forming inside the Lüders bands. It is found grain size and the austenite stability
against deformation-driven martensite formation are two important
microstructural factors controlling the Lüders band characteristics in terms of the
number of band nucleation sites and their propagation velocity. These factors
thus govern the early yielding stages of medium Mn steels, due to their crucial
influence on mobile dislocation generations and local work hardening.
Spectral TRIP effect in medium Mn steels:
• Introduction of interlath reverted austenite is an effective method to design
ductile lath medium Mn martensitic steels. The challenge in this concept is that
all reverted austenite films have similar mechanical stability, hence, they all
undergo transformation-induced plasticity (TRIP) at the same strain level.
• A new thermo-mechanical treatment route is developed t0 render martensite
ductile via spreading the micro-mechanical stability of reverted γ grains by
widening the γ nucleation barrier in martensite. When annealed a microstructure
consisting of γ grains with a wide dispersed size distribution and martensite is
developed. This mechanism enables a spectral TRIP effect. The new thermo-
mechanical treatment route leads to enhanced mechanical properties of the TRIP
steel (Fe-9Mn-3Ni-1.4Al-0.01C, mass %).
• Compared to as-quenched martensite, cold-rolled martensite (~70% thickness
reduction) contains a higher density of martensite grain boundaries with a wide
misorientation distribution.
• The widened γ nucleation barrier in cold-rolled martensite results in a sequential
nucleation and growth of γ grains during 600 C annealing. Eventually, a
microstructure consisting of martensite and γ grains with a wide dispersed size
distribution is successfully obtained in the cold-rolled martensite.
• The wide size distribution of γ grains results in an active TRIP effect over a wide
strain regime (spectral TRIP).
• The proposed spectral TRIP strategy leads to yield enhanced strain hardening
behavior in the cold-rolled material.
Source: http://www.dierk-raabe.com/
Thank You.

More Related Content

What's hot

Martensitic Transformations in steels
Martensitic Transformations in steelsMartensitic Transformations in steels
Martensitic Transformations in steelsAwais Qadir
 
High temperature materials
High temperature materialsHigh temperature materials
High temperature materialsRahul Dhibar
 
Dispersion strengthening
Dispersion strengtheningDispersion strengthening
Dispersion strengtheningsanjeeviitbhu
 
Manufacturing & Applications of Stainless Steels
Manufacturing & Applications of Stainless SteelsManufacturing & Applications of Stainless Steels
Manufacturing & Applications of Stainless SteelsVenkataraman Bandaru
 
Non-Ferrous Alloy
Non-Ferrous AlloyNon-Ferrous Alloy
Non-Ferrous AlloyAkash Patel
 
Metals and alloys for high temperature applications
Metals and alloys for high temperature applicationsMetals and alloys for high temperature applications
Metals and alloys for high temperature applicationsmohannad hameed
 
Maraging steel
Maraging steelMaraging steel
Maraging steelRaja P
 
Sidheshwar's presentation on Nickel based super alloy.
Sidheshwar's presentation on Nickel based super alloy.Sidheshwar's presentation on Nickel based super alloy.
Sidheshwar's presentation on Nickel based super alloy.sidheshwar1988
 
Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Gud Mould Industry Limited
 
Application of Ceramic Composite Materials in Aviation
Application of Ceramic Composite Materials in AviationApplication of Ceramic Composite Materials in Aviation
Application of Ceramic Composite Materials in AviationRaja Manojkumar
 
Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Sazzad Hossain
 

What's hot (20)

Martensitic Transformations in steels
Martensitic Transformations in steelsMartensitic Transformations in steels
Martensitic Transformations in steels
 
Dual phase steels (1)
Dual phase steels (1)Dual phase steels (1)
Dual phase steels (1)
 
Nickel base superalloys
Nickel base superalloysNickel base superalloys
Nickel base superalloys
 
Alloy steels
Alloy steelsAlloy steels
Alloy steels
 
Cast Iron
Cast IronCast Iron
Cast Iron
 
High temperature materials
High temperature materialsHigh temperature materials
High temperature materials
 
Dispersion strengthening
Dispersion strengtheningDispersion strengthening
Dispersion strengthening
 
Manufacturing & Applications of Stainless Steels
Manufacturing & Applications of Stainless SteelsManufacturing & Applications of Stainless Steels
Manufacturing & Applications of Stainless Steels
 
Non-Ferrous Alloy
Non-Ferrous AlloyNon-Ferrous Alloy
Non-Ferrous Alloy
 
Metals and alloys for high temperature applications
Metals and alloys for high temperature applicationsMetals and alloys for high temperature applications
Metals and alloys for high temperature applications
 
High entropy alloys
High entropy alloysHigh entropy alloys
High entropy alloys
 
Magnesium and its alloys
Magnesium and its alloysMagnesium and its alloys
Magnesium and its alloys
 
Maraging steel
Maraging steelMaraging steel
Maraging steel
 
Ferrous Metals
Ferrous MetalsFerrous Metals
Ferrous Metals
 
Superalloys
SuperalloysSuperalloys
Superalloys
 
Sidheshwar's presentation on Nickel based super alloy.
Sidheshwar's presentation on Nickel based super alloy.Sidheshwar's presentation on Nickel based super alloy.
Sidheshwar's presentation on Nickel based super alloy.
 
Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?Quenching, tempering, normalizing, annealing, do you know clearly?
Quenching, tempering, normalizing, annealing, do you know clearly?
 
Trip steel
Trip steelTrip steel
Trip steel
 
Application of Ceramic Composite Materials in Aviation
Application of Ceramic Composite Materials in AviationApplication of Ceramic Composite Materials in Aviation
Application of Ceramic Composite Materials in Aviation
 
Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)
 

Similar to Medium manganese steels

Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfMohamedshabana38
 
Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materialsDivagar S
 
Effect of austemperig on ductile iron
Effect of austemperig on ductile ironEffect of austemperig on ductile iron
Effect of austemperig on ductile ironPratik Rathod
 
عرض تقديمي من Microsoft PowerPoint جديد (2).pptx
عرض تقديمي من Microsoft PowerPoint جديد (2).pptxعرض تقديمي من Microsoft PowerPoint جديد (2).pptx
عرض تقديمي من Microsoft PowerPoint جديد (2).pptxssuser26e605
 
Metallurgical properties of cast irons
Metallurgical properties of cast ironsMetallurgical properties of cast irons
Metallurgical properties of cast ironsGulfam Hussain
 
Effect of martemperig on ductile iron
Effect of martemperig on ductile ironEffect of martemperig on ductile iron
Effect of martemperig on ductile ironPratik Rathod
 
Unit i classification of steel and cast iron microstructure
Unit i  classification of steel and cast iron microstructureUnit i  classification of steel and cast iron microstructure
Unit i classification of steel and cast iron microstructureS.DHARANI KUMAR
 
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...CrimsonPublishersRDMS
 
ME8491 ENGINEERING METALLURGY - UNIT 1
ME8491 ENGINEERING METALLURGY - UNIT 1ME8491 ENGINEERING METALLURGY - UNIT 1
ME8491 ENGINEERING METALLURGY - UNIT 1karthi keyan
 
NiTi (in endodontics)
NiTi (in endodontics)NiTi (in endodontics)
NiTi (in endodontics)shadanAltayar
 
Metallurgical properties of cast irons
Metallurgical properties of cast irons Metallurgical properties of cast irons
Metallurgical properties of cast irons Yanie Hadzir
 

Similar to Medium manganese steels (20)

Part1.ppt
Part1.pptPart1.ppt
Part1.ppt
 
Part1
Part1Part1
Part1
 
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdfCable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
Cable Engineering for Local Area Networks (Barry J. Elliott) (Z-Library).pdf
 
Modern metallic materials
Modern metallic materialsModern metallic materials
Modern metallic materials
 
Phase Transformation in Steel-Lecture C.pdf
Phase Transformation in Steel-Lecture C.pdfPhase Transformation in Steel-Lecture C.pdf
Phase Transformation in Steel-Lecture C.pdf
 
Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materials
 
Effect of austemperig on ductile iron
Effect of austemperig on ductile ironEffect of austemperig on ductile iron
Effect of austemperig on ductile iron
 
Heat Treating Basics
Heat Treating BasicsHeat Treating Basics
Heat Treating Basics
 
عرض تقديمي من Microsoft PowerPoint جديد (2).pptx
عرض تقديمي من Microsoft PowerPoint جديد (2).pptxعرض تقديمي من Microsoft PowerPoint جديد (2).pptx
عرض تقديمي من Microsoft PowerPoint جديد (2).pptx
 
PG Industrial Metallurgy chapter 2
PG Industrial Metallurgy chapter 2PG Industrial Metallurgy chapter 2
PG Industrial Metallurgy chapter 2
 
Steel
SteelSteel
Steel
 
tempering
 tempering tempering
tempering
 
Metallurgical properties of cast irons
Metallurgical properties of cast ironsMetallurgical properties of cast irons
Metallurgical properties of cast irons
 
Effect of martemperig on ductile iron
Effect of martemperig on ductile ironEffect of martemperig on ductile iron
Effect of martemperig on ductile iron
 
Unit i classification of steel and cast iron microstructure
Unit i  classification of steel and cast iron microstructureUnit i  classification of steel and cast iron microstructure
Unit i classification of steel and cast iron microstructure
 
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...
Additive Manufacturing by MMA Welding Process Characteristics and Microstruct...
 
ME8491 ENGINEERING METALLURGY - UNIT 1
ME8491 ENGINEERING METALLURGY - UNIT 1ME8491 ENGINEERING METALLURGY - UNIT 1
ME8491 ENGINEERING METALLURGY - UNIT 1
 
Aceros avanzados .pptx
Aceros avanzados .pptxAceros avanzados .pptx
Aceros avanzados .pptx
 
NiTi (in endodontics)
NiTi (in endodontics)NiTi (in endodontics)
NiTi (in endodontics)
 
Metallurgical properties of cast irons
Metallurgical properties of cast irons Metallurgical properties of cast irons
Metallurgical properties of cast irons
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 

Medium manganese steels

  • 1. Medium Manganese Steels Mini Project by, Sohini Mondal (UG 2nd Year) Enrollment ID - 511119028
  • 2. Introduction: • Medium Mn steels establish an important class of novel alloys in the 3rd generation of advanced high strength steels (AHSS). • Medium Mn steels usually contain 0.05~0.4 wt.% C and 3~10 wt.% Mn. • Medium Mn steels show a good combinations of high to ultra-high strength at quite high total elongation. • Ultra-fine grained microstructures can be achieved via intercritical annealing, resulting in a complex multi-phase microstructure consisting of several phases such as-  Different types of austenite (retained, partition, stabilized, reverted)  Martensite  Ferrite  Sometimes also delta ferrite.
  • 3. • C and Mn are both well-known austenite stabilizers in AHSSs, and thus increasing Mn and C content in steels is expected to be an effective route to enhance the fraction of Retained austenite. • The different types of austenite in medium Mn steels promote enhanced ductility due to the higher strain hardenability enabled by dislocation accumulation, TRIP effect or even the TWIP effects. • Adjusting alloy composition and adequate selection of the intercritical annealing temperature and pre-deformation results in the formation of different types of beneficial microstructures at room temperature. • Compared with Quenching and Partitioning steels also having a tempered martensite matrix, the ultrafine-grained ferrite in medium Mn steels is softer. Therefore, the strength of medium Mn steels is usually somewhat lower than that of Q&P steels, but they have a much better elongation due to a higher RA fraction.
  • 4. Advanced High Strength Steels: • Advanced high-strength steels (AHSS) constitute a class of high-strength, formable metallic alloys that are designed mainly as sheet products for the transportation sector. • AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. • different types of AHSS : dual-phase steels, complex phase steels, transformation- induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels etc.
  • 5. The strength-elongation ranges for the AHSSs: The strength-elongation envelopes for the various types of AHSSs: the strength-elongation envelopes for the various types of AHSSs, classified by their microstructure:
  • 6. • The Previous figure clearly illustrates a higher mechanical performance require both a more complex matrix microstructure and an increasing contribution of the RA. • Crashworthiness is another important factor for automotive materials and Dual phase steels have very good crashworthiness. • Compared to RA free DP steels at the same strength level, RA in TRIP , Q&P and medium-Mn steels can further increase the energy absorption at collisions and improve the crashworthiness through the TRIP effect. In the figure- IF: interstitial free steel HSLA: high strength low alloyed steel; DP: dual phase steel; CP: complex phase steel; Mart: martensitic steel; TRIP: transformation-induced plasticity steel; TWIP: twinning induced plasticity steel; CFB: carbide-free bainitic steel; Q&P: quenching and partitioning steel.
  • 7. The advantage of medium Mn steels compared to other high strength steels : Medium Mn steels with 3.12 wt% Mn content emerge as strong candidate alloys for the 3rd generation of advanced high strength steels, due to: 1. their excellent strength-ductility combination (product of tensile strength and total elongation up to ~70 GPa%) 2. simple heat treatment process (e.g. intercritical annealing (IA)), and low- cost alloy ingredients 3. The composite-like microstructure (normally ferrite and metastable austenite) combined with submicron grain scale differentiates such materials from other types of alloys.
  • 8. The typical microstructures of hot-rolled and cold-rolled medium Mn steels: • Medium Mn steels usually have an ultrafine dual phase microstructure, containing 20~50 vol. % C- and Mn enriched RA and a ferrite matrix (i.e. a heavily tempered martensite)
  • 9. Desired microstructures and required chemical composition:
  • 10. • Fig. a and b show the effects of C and Mn additions on the phase diagram of Fe-C- Mn alloy, respectively. C addition narrows the intercritical annealing temperature region and promotes carbides precipitation at low temperatures. Mn addition shifts the intercritical annealing region to a lower temperature region. • Fig c and d show the effects of Si and Al additions on the phase diagram of Fe- 0.2C-5 Mn alloy, respectively. Besides suppressing carbide formation, Si and Al both increase the Ae1 and Ae3 temperatures. • Si addition enhances the tensile strength via solid solution strengthening, while it deteriorates the surface quality due to the formation of Si enriched oxide, which negatively influences the Zn coating process. • High content of Al causes the formation of coarse δ-ferrite during solidification.
  • 11. Starting microstructures and processing routes: • The starting microstructure of medium Mn steels is usually fully martensitic due to the high hardenability of such steels but some medium Mn steels with a very high Mn content can even contain a small amount of pre-existing austenite in the martensite matrix. • The initial martensitic microstructures can be generally divided into two types: hot-rolled and cold-rolled microstructures, which leads to different final microstructures and mechanical properties. • The typical microstructure of hot-rolled medium Mn steels after austenite reversion treatment consists of lath-shaped austenite and ferrite. • For cold-rolled medium Mn steels, recrystallization of the heavily deformed martensite microstructure will proceed simultaneously with austenite formation during ART, leading to ultrafine globular austenite and ferrite. • Due to the recrystallization, the dislocation density in ferrite of cold-rolled medium Mn steels is often lower than that for hot-rolled grades
  • 12. • In general, two kinds of reverted austenite morphologies, i.e. lath and globular, can be observed, and the final morphology is strongly affected by the initial microstructure. • In addition to hot rolling and cold rolling processes, the warm rolling process was also adopted to control the morphology and sizes of reverted austenite through partial recrystallization. • In the conventional ART(Austenite reversion treatment), the selection of intercritical annealing temperature is essential to control the fraction and stability of the RA. • At a higher ART temperature, the kinetics of austenite reversion is fast and as a result the reverted austenite has a relatively low C and Mn content and a larger grain size. This will lead to a low stability of the reverted austenite, of which some will transform into fresh martensite during quenching. • At a lower ART temperature, the fraction of reverted austenite is relatively low, although the stability is increased due to higher degree of C and Mn enrichment and a smaller grain size. • At an optimized ART temperature, a desirable balance between the reverted austenite fraction and its thermomechanical stability is achieved, and a maximum amount of austenite upon cooling to ambient temperature can be retained.
  • 13. • It is important to note that Mn segregation band during solidification is inevitable in medium Mn steels, which often results in anisotropic mechanical properties and thus deteriorate the strength or elongation of steels. • Several variants of the conventional ART, e.g. double annealing, cyclic-ART, flash- ART, quenching-ART, intercritical annealing Q&P and two-step intercritical annealing have also been proposed to process medium Mn steels. • Cementite precipitation could also occur during the processing of medium Mn steels. Taking the advantage of cementite precipitation before austenite reversion, it was proposed that a two-step intercritical annealing process to obtain retained austenite in medium Mn steels. • In the two-step intercritical annealing process, cementite precipitation is carefully tailored via annealing at a lower temperature before austenite reversion, and then reverted austenite can nucleate at the cementite/martensite interfaces during a shorter intercritical annealing at a higher temperature. • The reverted austenite is partially transformed into martensite during quenching to ambient temperature, which results in a considerable amount of retained austenite adjacent to martensite. It was found that such a microstructure is beneficial to both the strength and the ductility of medium Mn steels.
  • 14. Double annealing treatment: a first intercritical annealing at a higher temperature is performed to facilitate C and Mn partitioning into the reverted austenite, resulting in the reverted austenite having a large grain size. Due to the insufficient stability, the austenite reverted during the first intercritical annealing would partially transform into fresh martensite during quenching to room temperature. The microstructure after the first intercritical annealing consists of fresh martensite and the recrystallized globular ferrite. Subsequently, during the second annealing at a lower temperature, austenite reverts primarily from the C and Mn enriched fresh martensite, and the newly formed austenite is stabilized by further C and Mn enrichment. Medium Mn steels processed by the double annealing treatment have a hierarchical microstructure consisting of coarse globular ferrite, ultrafine- grained lath-shaped ferrite and RA. The double annealing treatment, which fine tunes the stability of the reverted austenite, was also found to be effective in eliminating the Lüders band phenomenon in medium Mn steels
  • 15. Austenite reversion from martensite or martensite- austenite mixture: • The kinetics of austenite growth (e.g. the martensite/austenite interface migration) and alloying elements partitioning during austenite reversion of medium Mn steels usually have been simulated using the LE model . Fig.a shows the kinetics of austenite reversion in an Fe-0.2C-5 Mn medium Mn steel simulated by the LE (Local equilibrium) model.
  • 16. • (i) NPLE(Negligible partitioning local equilibrium)-(α′→γ), during which the kinetics of martensite/austenite interface migration is controlled by carbon diffusion in martensite while a concentration spike of Mn forms ahead of the interface. In this stage, the rate of martensite/austenite interface migration is very fast and controlled by carbon diffusion in martensite ( Fig. b). Although the NPLE-(α′→γ) stage is very short (about 10−3 second), the size of the reverted austenite at the end of this stage is significantly increased and is strongly affected by the initial thickness of martensite lath.
  • 17.
  • 18. • (ii) PLE(Partitioning local equilibrium)-(α′→γ), during which the kinetics of martensite/austenite interface migration is controlled by Mn diffusion in martensite and as a result the Mn concentration in the reverted austenite is gradually enhanced ( Fig. c). A kinetic plateau was predicted to occur due to the NPLE/PLE transition. • (iii) PLE-(γ→α′ ), during which the martensite/austenite interface migrates backward into the austenite. Its kinetics is very sluggish and controlled by Mn diffusion in austenite Fig.a & c). Hence, the growing fraction of reverted austenite first exceeds the full equilibrium fraction and then approaches it by shrinking. In general, the LE (Local equilibrium) model can qualitatively predict the basic features of austenite reversion. However, the thickening kinetics of reverted austenite predicted by the LE model, in particular at the early stage of austenite reversion, is usually much faster than that measured in experiments. This could be attributed to the infinite interface mobility of martensite/austenite assumption in the LE model. The mobility of martensite/austenite interface in medium Mn steels may not be infinite either, and thus a certain amount of Gibbs energy would be dissipated due to interface friction.
  • 19. Influence of Intercritical Annealing on Microstructure and Mechanical Properties of a Medium Manganese Steel • This fig. displays the initial microstructure of the 50 % cold- rolled medium manganese steel prior to intercritical annealing. After hot-rolling, homogenization annealing, water quenching and cold rolling, the material exhibits a deformed α´ martensitic microstructure as indicated by EBSD-image quality ( IQ) and EBSD phase maps. It is noticeable that the measurements show no austenite or precipitates prior to intercritical annealing.
  • 20. EBSD phase maps of the cold-rolled medium manganese steel intercritically annealed at 555 °C for (a) 1 min, (b) 1 h and (c) 15 h, (bcc structure is indicated in red, fcc structure is indicated in green):
  • 21. • After intercritical annealing of the cold-rolled Fe-12Mn-3Al-0.05C medium manganese steel at 555 °C with subsequent quenching the microstructure consists of a α´ martensitic matrix with embedded reversed austenite islands, as evident from the EBSD phase maps, As shown in Fig.a) an intercritical annealing time of only 1 min results in a small fraction of reversed austenite of approximately 1 %. • It is observed that the austenite is formed first in highly deformed regions of the initial microstructure. Dark contrast in the map indicate low indexing and low pattern quality due to strain-induced local lattice rotations. • When increasing the intercritical annealing time to 1 h, the volume fraction of the reversed austenite increased significantly to 15.7 % (in Fig. b). The austenite is observed primarily along the high angle α´ martensite grain boundaries, e.g. deformation bands. This is assumed to be due to manganese and carbon partitioning during intercritical annealing. • A further increase of the intercritical annealing time to 15 h results in a continued increase of the reversed austenite fraction to approximately 34.0 %, being in good agreement to the calculated reversed austenite fraction in thermodynamic equilibrium. The austenite grains are homogeneously distributed and observed also within the martensite grains. Regardless of the varied intercritical annealing times, no evidence of recrystallization of the initial α´ martensite was observed by the EBSD measurements at an intercritical annealing temperature of 555 °C.
  • 22.  Mechanical properties after intercritical annealing • This shows the engineering stress-strain curves of cold-rolled medium manganese steel after intercritical annealing. The material intercritically annealed for only 1 min at 555 °C exhibits a yield strength (YS) of 810 MPa, an ultimate tensile strength (UTS) of 840 MPa and a total elongation (TE) of approximately 16 %. A pronounced yield point with a very short yield point elongation of less than 1 % was observed
  • 23. • A longer intercritical annealing time, however, results in a flow curve exhibiting only continuous yielding, indicating uniform deformation of the specimen. A substantial increase of the total elongation to 23 % and a slight reduction of the YS and UTS to 740 MPa and 815 MPa, respectively, was observed for material intercritically annealed for 1 h. • Further increase of the intercritical annealing time to 5 h shows a decrease of the YS and UTS to 715 Mpa and 795 MPa, respectively, while the TE increases to almost 31 %. • The YS, UTS and TE of cold-rolled material intercritically annealed for 15 h amount 640 MPa, 775 MPa, and 30 %, respectively. This indicates a decrease of strength as well as of ductility of the Fe-12Mn-3Al-0.05C medium manganese steel in case of a significant further increase of the annealing duration.
  • 24. Medium Mn steel design criteria: Hot rolled material: • The tensile behavior of hot rolled medium Mn steel depends on the intercritical annealing temperature and time. Austenitization after cold rolling produces a microstructure similar to that of hot rolled samples. The prior austenite texture memory effect of 𝛾𝑅 and its spatial alignments are controlling factors influencing the tensile behavior. Since localization of strain is seen within colonies of 𝛾𝑅 having the same crystallographic orientation and spatial alignment, the following design criteria are suggested for improving the material’s properties by adjusting specific process parameters without changing its composition. 1. Prior austenite grain size: One way of increasing the yield stress lies in reducing the strain localization areas. The size of colonies of similar spatially aligned 𝛾𝑅 are dependent on the martensite packet size within the prior austenite grain. Reducing the prior austenite grain size would thus reduce the resulting martensite packet size. This would in turn reduce the size of colonies with similar spatially aligned and crystallographically oriented 𝛾𝑅 . As a result, this approach should help reducing zones of premature strain localization, thus increasing the yield stress.
  • 25. 2. Crystallographic texture: The texture memory effect of the 𝛾𝑅 grains inside the prior austenite grain plays an important role in controlling strain hardening. Breaking the texture memory effect of the 𝛾𝑅 in- side the prior austenite grain, rendering it closer to the texture spread observed in the cold rolled material, would increase the strain hard- enability of the hot rolled sample. Cold rolled material: • The intercritical annealing temperature and holding times for cold rolled medium Mn steel are critical factors influencing Lüders band propagation and elongation. Approaches for eliminating Lüders bands have been to intercritically anneal the material at high intercritical annealing temperatures where the 𝛾𝑅 is thermally less stable resulting in back transformation to α′fresh during the quenching stage. Such treatment would result in loss of ductility though. • Intercritically annealing the material at low temperatures prevents equiaxed ferrite formation by martensite recrystallization. • Increased holding time results in an increase in 𝛾𝑅volume fraction until compositional partition and volume fraction equilibrium stages are obtained. When a sufficiently large volume fraction of𝛾𝑅 is present, the flow stresses of𝛾𝑅 is lower than that of α′temp resulting in continuous yielding and sufficient strain hardening.
  • 26. Phase maps of 𝛾𝑅 and 𝛼′𝑡𝑒𝑚𝑝 and corresponding inverse pole figure (IPF) maps highlighting 𝛾𝑅 of the (a) HRA and (b) CRA material. 3D EBSD IPF snapshots of 𝛾𝑅 in (c) HRA and (d) CRA material (Supplementary Movie 1 and 2 in the supplementary data). 𝛾𝑅 : reverted austenite; 𝛼′𝑡𝑒𝑚𝑝 : tempered martensite; HRA: hot rolled and intercritically annealed; CRA: cold rolled and intercritically annealed.
  • 27. Strain partitioning and strain localization in medium manganese steels: • Designing medium Mn steels by selecting low intercritical annealing temperatures and long holding times prevents macro- scopical localization of strain in ferrite and would promote the formation of Lüders bands and thus of a pronounced yield point. • Apart from strain partitioning, strain localization is observed in hot rolled medium Mn steel samples. • Strain is more homogeneously partitioned within the𝛾𝑅 islands in the cold rolled medium Mn steel. This is due to the prior austenite grains had been plastically broken up during cold rolling prior to intercritical annealing. • The relative grain size effect in hot rolled samples is assumed to cause the observed lower yield stresses in hot rolled samples compared to the cold rolled samples in cases where both show continuous yielding.
  • 28. The role of prior austenite grain boundaries and microstructural morphology on the impact toughness of medium Mn steels [Fe-7Mn-0.1C-0.5Si (wt%)] : • Two types of microstructures were produced:  hot-rolling plus annealing (HRA)  cold-rolling plus annealing (CRA). • Both types of specimens had a dual-phase microstructure consisting of retained austenite (δ) and ferrite (α) after intercritical annealing. • Both, the HRA and CRA specimens were characterized by a transition in fracture mode from ductile and partly quasi cleavage fracture to intergranular fracture with decreasing impact test temperature from room temperature to -196°C. • The HRA specimens exhibited a higher ductile to brittle transition temperature (DBTT) and lower impact energy at low temperatures below -50°C compared to the CRA specimens.
  • 29. • The intergranular cracks in HRA specimens propagated primarily along the boundaries of the prior austenite grains with a size of ~35 μm, but those in the CRA material propagated along the boundaries of the ferrite and αʹ martensite grains with a much finer size of ~450 nm. • The main reason for intergranular cracking along the prior austenite grains in the HRA specimen was the segregation of Mn and P at the grain boundaries occurring during homogenization, hot rolling and air-cooling prior to intercritical annealing. The boundaries of martensitic packets or blocks were decorated only by C, since substitutional diffusion of Mn and P towards the grain boundaries at low temperature below the Ms temperature of ~275°C was too slow. • Cold or warm working prior to intercritical annealing of medium Mn steels promotes primary recrystallization of their formable αʹ martensite matrix prior to reverse transformation so that the solute-segregated boundaries of coarse prior austenite grains can be eliminated. We refer to this effect as ‘prior austenite grain boundary break-up’ mechanism. It results in the improvement of the low- temperature impact toughness of medium Mn steels.
  • 30. Schematic sketch showing the difference in intergranular cracking occurring during the low-temperature impact test in two types of specimens with different microstructural morphologies after annealing:
  • 31. Role of discontinuous plastic yielding in medium Mn steels : • A drawback of medium Mn steels is that they often show a discontinuous plastic yielding phenomenon. This is characterized by a yield point drop followed by a stress plateau (also referred to as yield point elongation, YPE) in the tensile stress-strain curves and the formation of Lüders bands. • Such localized deformation yielding phenomena can in principle deteriorate the surface quality during sheet forming operations. From a fundamental perspective, it is interesting to study this effect in more detail, since discontinuous yielding has rarely been observed in other multiphase composite-like alloys (e.g. conventional transformation-induced plasticity (TRIP), dual phase and duplex stainless steels).
  • 32. The origin of discontinuous plastic yielding in medium Mn steels: • Medium Mn steels with an austenite matrix (austenite fraction ~65 vol%) can exhibit pronounced discontinuous yielding. A combination of multiple in situ characterization techniques from macroscopic (a few millimeters) down to nanoscopic scale (below 100 nm) is utilized to investigate this phenomenon. It is observed that both austenite and ferrite are plastically deformed before the macroscopic yield point. In this microplastic regime, plastic deformation starts in the austenite phase before ferrite yields. The austenite-ferrite interfaces act as preferable nucleation sites for new partial dislocations in austenite and for full dislocations in ferrite. The large total interface area, caused by the submicron grain size, can provide a high density of dislocation sources and lead to a rapid increase of mobile dislocations, which is believed to be the major reason accounting for discontinuous yielding in such steels. • The Lüders banding behavior and the local deformation-induced martensite forming inside the Lüders bands. It is found grain size and the austenite stability against deformation-driven martensite formation are two important microstructural factors controlling the Lüders band characteristics in terms of the number of band nucleation sites and their propagation velocity. These factors thus govern the early yielding stages of medium Mn steels, due to their crucial influence on mobile dislocation generations and local work hardening.
  • 33. Spectral TRIP effect in medium Mn steels: • Introduction of interlath reverted austenite is an effective method to design ductile lath medium Mn martensitic steels. The challenge in this concept is that all reverted austenite films have similar mechanical stability, hence, they all undergo transformation-induced plasticity (TRIP) at the same strain level. • A new thermo-mechanical treatment route is developed t0 render martensite ductile via spreading the micro-mechanical stability of reverted γ grains by widening the γ nucleation barrier in martensite. When annealed a microstructure consisting of γ grains with a wide dispersed size distribution and martensite is developed. This mechanism enables a spectral TRIP effect. The new thermo- mechanical treatment route leads to enhanced mechanical properties of the TRIP steel (Fe-9Mn-3Ni-1.4Al-0.01C, mass %).
  • 34. • Compared to as-quenched martensite, cold-rolled martensite (~70% thickness reduction) contains a higher density of martensite grain boundaries with a wide misorientation distribution. • The widened γ nucleation barrier in cold-rolled martensite results in a sequential nucleation and growth of γ grains during 600 C annealing. Eventually, a microstructure consisting of martensite and γ grains with a wide dispersed size distribution is successfully obtained in the cold-rolled martensite. • The wide size distribution of γ grains results in an active TRIP effect over a wide strain regime (spectral TRIP). • The proposed spectral TRIP strategy leads to yield enhanced strain hardening behavior in the cold-rolled material.