SlideShare a Scribd company logo
1 of 16
Download to read offline
Pedosphere 27(1): 1–16, 2017
doi:10.1016/S1002-0160(15)60106-0
ISSN 1002-0160/CN 32-1315/P
c⃝ 2017 Soil Science Society of China
Published by Elsevier B.V. and Science Press
Biosolid Application to Agricultural Land—a Contribution to
Global Phosphorus Recycle: A Review
Silvana Irene TORRI1,∗
, Rodrigo Studart CORRˆEA2
and Giancarlo RENELLA3
1Department of Natural Resources and Environment, School of Agriculture, University of Buenos Aires, Avenue San Martin 4453,
Buenos Aires 1417 DSE (Argentina)
2University of Bras´ılia-UnB/PPGCA, Campus Darcy Ribeiro, Caixa Postal 04.401, 70910-970 DF (Brazil)
3Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, Florence 50144
(Italy)
(Received June 30, 2016; revised November 10, 2016)
ABSTRACT
Phosphorus (P) is an essential nutrient required for plant development. Continuous population growth and rising global demand
for food are expected to increase the demand for phosphate fertilizers. However, high-quality phosphate rock reserves are progressively
becoming scarce. Part of the increased pressure on P resources could be alleviated by recycling P present in biosolids. Therefore, it is
crucial to understand the dynamics of P in biosolid-amended soils, the effects of residual biosolid-borne P in soils, the way in which
microorganisms may control P dynamics in biosolid-amended soils and the environmental implications of the use of biosolids as a
source of P. Further research is needed to maximize biosolid-borne P uptake by crops and minimize its loss from biosolid-amended
soils. The analysis of the microbiological control of P dynamics in biosolid-amended soils indicates interactions of biosolid P with
other nutrients such as carbon (C) and nitrogen (N), suggesting that harmonization of the current regulation on the use of biosolids
in agriculture, mainly based on total N and pollutant contents, is needed to better recycle P in agriculture.
Key Words: anthropogenic P, phosphate, P availability, P biogeocycle, P uptake, runoff P
Citation: Torri S I, Corrˆea R S, Renella G. 2017. Biosolid application to agricultural land—a contribution to global phosphorus
recycle: A review. Pedosphere. 27(1): 1–16.
INTRODUCTION
Phosphorus (P) is an essential nutrient for all forms
of life. Biomolecules containing P are present in cellu-
lar components, including membranes (phospholipids),
genetic material (DNA and RNA), and energy storage
(ATP and ADP), among others (Elser, 2012). While
humans and animals satisfy their need for P via food
intake, plants have to absorb it from soils. In spite of
its wide distribution in nature, P is one of the least
available mineral nutrients to plants (Goldstein et al.,
1988), and P uptake is usually a growth-limiting fac-
tor (Grant et al., 2005). Unlike nitrogen (N), the bio-
geochemical cycle of P does not include a significant
gaseous component, since its annual atmospheric de-
position rates are in the order of 0.25 kg P ha−1
year−1
(Liu Y et al., 2008). In natural ecosystems, P is entire-
ly supplied from the weathering of parent materials
(Schlesinger and Bernhardt, 1997), and the amount
of total P is preserved because it is released back to
the soil system through plant residues, animal excreta
or when organisms die. In agricultural systems, crop
removal represents the primary route by which P is
lost from soils. Unless P sources are artificially incor-
porated to agricultural soils, both total and available
P stocks steadily decrease with time to the point that
the soil can no longer adequately supply plant P needs
(Van Vuuren et al., 2010). In the course of time, soil P
depletion may lead to loss of soil fertility and produc-
tivity.
Mineral phosphate fertilizers are the primary so-
urce of P input to agricultural lands. Even though the
use of rock phosphate-based fertilizers was introduced
in the 1820s, it was not until the late 1940s that P
fertilizers were increasingly requested. In 2011, global
phosphate fertilizer production resulted in the deple-
tion of approximately 20 Mt of P from phosphate rock
(Jasinski, 2013). The demand for P is expected to in-
crease in the following years due to continuous popu-
lation growth and rising global demand for food, with
a predicted increase to approximately 257 Mt by 2017
(Heffer, 2013; Jasinski, 2013). Economic, high-quality
∗Corresponding author. E-mail: torri@agro.uba.ar.
2 S. I. TORRI et al.
phosphate rock reserves are progressively becoming
scarce (Cordell and Neset, 2014). Although reserves of
phosphate rock are found in several countries and new
reserves have been identified (Midgley, 2012), phos-
phate rock is a finite, non-renewable resource. Accor-
ding to the U.S. Geological Survey, phosphate deposits
will last about 50 years at the current rate of extrac-
tion (Kelly and Matos, 2013). Therefore, there is an
increasing concern regarding phosphate rock reserves
to become depleted.
Part of the increased pressure on P resources could
be alleviated by recycling P present in various agricul-
tural and urban wastes (Frossard et al., 2009; Mac-
Donald et al., 2011). However, the joint effects of poor
knowledge of P status and the lack of a clear regulation
on manure or organic waste agricultural management
still limits P recycling potential in agriculture. This
paper reviews the availability and environmental fate
of P present in biosolids and envisages some possible
strategies for its sustainable management.
BIOSOLIDS AS A SOURCE OF P
Land application of organic by-products is an eco-
nomically attractive waste management strategy, lar-
gely promoted by scientists and regulating organisms.
Furthermore, it has been a socially accepted practice
for decades in many parts of the world (Tsadilas, 2011;
Larney and Angers, 2012; Lu et al., 2012).
The term biosolid was introduced in the early 1990s
to designate the solid, semi-solid or liquid materials
generated from the treatment of domestic sewage slu-
dge that has been sufficiently processed to be safely
land-applied. Biosolids contain organic carbon (C), N,
P, potassium (K), sulphur (S), calcium (Ca), magne-
sium (Mg), and microelements necessary for plants and
soil fauna to live. Nutrient contents in biosolids depend
on the untreated water source, chemicals used for pu-
rification, and types of unit operations used, and were
reported to be in the ranges of 1–210 g N kg−1
, 1–
150 g P kg−1
, 1–65 g K kg−1
, 5–170 g Ca kg−1
, and
2–94.5 g Mg kg−1
(Hansen and Chaney, 1984; Solis-
Mejia et al., 2012). Application of biosolids on agricul-
tural and degraded lands is one of the most promising
alternatives of disposal, because it offers the possibility
of recycling plant nutrients and organic matter (Gar-
c´ıa-Orenes et al., 2005; Torri and Lavado, 2009a, b;
Kowaljow et al., 2010). This practise may also con-
tribute to soil C sequestration, reducing greenhouse gas
emissions (Haynes et al., 2009; Tian et al., 2009; Torri
and Lavado, 2011; Torri et al., 2014). However, bio-
solids may contain undesirable hazardous substances
such as potentially toxic trace elements ranging from
less than 1 to over 1 000 mg kg−1
, polychlorinated
biphenyls (PCBs), polycyclic aromatic hydrocarbons
(PAHs), and dioxins (Abad et al., 2005; Mart´ınez et
al., 2007; Torri, 2009; Ahumada et al., 2014; Jord´an et
al., 2016). Consequently, biosolids have to be properly
treated and disposed to prevent health risk and en-
vironmental contamination (Kroiss, 2004). Although
to date experimental results indicate a low level of
risk for crops or pastures (Torri and Lavado, 2009a,
b; Cogger et al., 2013a), application of biosolids onto
non-agricultural land is usually preferred to avoid the
risk of hazardous substances entering the food chain
(Magesan and Wang, 2003; Athamenh et al., 2015).
In the European Union, a global regulation on
biosolid use in agriculture relies on the Water Frame-
work Directive (2000/60/EC) (EC, 2000) and the sub-
sequent Groundwater Directive (2006/118/EC) (EC,
2006), which have resumed all the previous specific
Directives on bathing waters, sewages sludge, urban
wastes and nitrates, and limit the potential recycle of
any biosolids in agriculture to their impacts on surface
water, groundwater, and atmosphere caused by exces-
sive nutrient, organic and inorganic pollutants. While
most organic pollutants can be degraded and excessive
N may be volatilized during sludge treatment, trace
elements are generally concentrated and may exceed
the mandatory limits for sludge application to agri-
cultural soils (CEC, 1986). Elevated contents of trace
elements prevent the use of sludge as a soil amendment
because of their negative impacts on soil microbial di-
versity and microbial activity (Renella et al., 2007a;
Gomes et al., 2010).
In wastewater, P is mainly found as orthophos-
phates, usually linked to small amounts of organic P
(Tran et al., 2012). Phosphorus removal is performed
by biological treatment or physiochemical precipita-
tion. In both cases, the soluble forms of P are con-
verted into a solid fraction, which can be an insolu-
ble salt or microbial biomass (De-Bashan and Bashan,
2004). Physiochemical precipitation removes dissolved
P phosphates by the addition of aluminium (Al),
iron (Fe), or calcium (Ca) compounds (Lee and Lin,
2007). The reaction is probably a combination of sur-
face adsorption onto metal hydroxides with chemi-
cal precipitation of the metal phosphate, producing
low P concentrations in the liquid phase (Elliott and
O’Connor, 2007). Biological P removal (BPR) pro-
cess relies on the use of a specific group of bacteria
that take up P in excess for their growth requirements
(Chen et al., 2013; Keating et al., 2016). The excess of
P is stored as intracellular granules of polyphosphate
(Grady et al., 2011), concentrating diluted P in waste-
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 3
water by 10–50 times in bacterial aggregates (Yuan et
al., 2012).
Depending on the pre- or post-treatment used,
mean total P in biosolids was reported to be in the
range of 3.7–72.6 g P kg−1
on a dry weight base (Bar-
barick and Ippolito, 2007; Cordell, 2010). The addition
of some type of liming agent to stabilize biosolids may
result in lower total P (Christie et al., 2001). Since
more stringent N and P discharge limits have been im-
plemented on wastewater treatment plants (WWTP)
in environmentally sensitive areas, total P in biosolids
is expected to increase from current values (Clark et
al., 2010; Qin et al., 2015).
In biosolids, P exists in both soluble and insolu-
ble organic and inorganic P compounds (Tian et al.,
2012). Inorganic P is the predominant form, represen-
ting 70%–90% of total P (O’Connor et al., 2004; He
et al., 2010). Most P in biosolids is commonly in the
forms of aluminium phosphate (Shannon and Verghese,
1976), adsorbed onto ferric hydroxo-phosphate surfaces
(Jenkins et al., 1971), and hydroxyapatite or tricalcium
phosphate (Stumm and Morgan, 1970), with relatively
low water-soluble P as compared to total P (Brandt
et al., 2004). Organic P is mainly found as orthophos-
phate monoesters, orthophosphate diesters, phospho-
nates, phytates, and phospholipids (Hinedi et al., 1989;
He et al., 2010; Torri and Alberti, 2012).
It is well known that availability of P to plants
depends on the replenishment of labile P in the soil
solution from diverse soil fractions (Beck and Sanchez,
1994). In a general sense, P availability is defined as
those P compounds that are present in the correct
chemical forms to be taken up by plants during their
life cycle or taken up and used by living biological
organisms. The most significant P compound in terms
of availability is the orthophosphate anion, which is
associated with readily accessible short-term availabi-
lity for plants (Montalvo et al., 2015; Anand et al.,
2016). Phosphorus precipitation and dissolution reac-
tions greatly influence its concentration in the soil so-
lution, whereas organic P has to be hydrolyzed and
mineralized by microbial biomass to release orthophos-
phate anions. Hence, the importance of insoluble P
compounds rests entirely on their ability to buffer P
solution concentration or to become soluble in the soil
environment (McLaughlin, 1984).
Phosphorus availability in biosolids is strongly in-
fluenced by the wastewater treatment (WWT) proces-
ses (O’Connor et al., 2004; Elliott et al., 2005; White
et al., 2010). Sludge treatment with high Al and/or Fe
doses results in biosolids having low available P con-
centrations, with Fe and Al phosphates as dominant
P forms (Shober and Sims, 2007). Taking into account
that the solubility kinetics of these phosphate mine-
rals is extremely slow, it is unlikely that such mine-
rals, once formed, would readily release P into the
soil solution (Strawn et al., 2015). In fact, P in bio-
solids treated with Al and Fe was found to be less
soluble than P in untreated biosolids or commercial
fertilizers (Kyle and McClintock, 1995). Addition of
lime was reported to increase biosolid pH and decrease
the solubility of P by the formation of recalcitrant Ca-
phosphate minerals (Maguire et al., 2006; Shober et
al., 2006; Islas-Espinoza et al., 2014). Conversely, bio-
solids obtained by BPR exhibit both elevated total P
and water-extractable P when exposed to anaerobic
conditions (Stratful et al., 1999; Penn and Sim, 2002;
Ebeling et al., 2003). As the latter achieves effluent P
standards without the use of metal salts, the resultant
biosolids are typically low in Al and Fe contents and
their water-soluble P is higher than that of the other
treatments (Penn and Sims 2002; Brandt et al., 2004).
Heat-dried biosolids (non-BPR) were reported to
have the lowest P availability of all WWT processes.
Heat drying has been seen to reduce P extractability
by an average of 75% compared to dewatered proces-
ses (Smith et al., 2002a). Sarkar and O’Connor (2004)
found that heat-dried biosolids containing high levels
of Al and Fe have less than 10% water-soluble P. Ot-
her researchers reported that water-soluble P in heat-
dried biosolids was relatively low, in the range of 0.2%–
38%, as compared to total P (Frossard et al., 1996a;
Brandt et al., 2004). Smith et al. (2002b) indicated
that heat drying changes available P forms into low
soluble crystalline P minerals such as hydroxyapatite
and iron pyrophosphate. It was hypothesized that
the relatively low P bioavailability may be partly
attributed to slow physical breakdown of the pellets
(O’Connor and Sarkar, 1999; Smith et al., 2002b). In
the light of all these, O’Connor et al. (2004) suggested
grouping biosolids into three categories according to
biosolid-borne P availability relative to the inorganic
fertilizer triple superphosphate (TSP): low (< 25% of
TSP), moderate (25%–75% of TSP), and high (> 75%
of TSP). Their study identified biosolids produced with
conventional WWT processes as being in the moderate
category, BPR biosolids as being in the high category,
and biosolids with high total Fe and Al as being in the
low category. Current potential techniques for direct
speciation of P in soil and organic matrices have been
reviewed by Kruse et al. (2015).
DYNAMICS OF P IN BIOSOLID-AMENDED SOILS
The dynamics of biosolid-borne P differs from that
4 S. I. TORRI et al.
of mineral fertilizer P because not all the P in bio-
solids is phytoavailable in soil (Penn and Sims, 2002;
Codling, 2014). As mentioned above, biosolid P phy-
toavailability is closely related to its chemical forms in
the solid phase (Akhtar et al., 2005), which depends on
the composition of the wastewater entering the treat-
ment plant and the type of treatment process used (Sa-
blayrolles et al., 2010). Biosolid-borne P is often less
soluble and less plant available compared to soluble
phosphate fertilizer P (Tian et al., 2009). Jenkins et
al. (2000) estimated that almost 50% of phosphate in
most biosolid products is available for plant uptake du-
ring the first year.
When biosolids are land applied, different processes
occur, such as P sorption/desorption, microbial decom-
position of organic P, and dissolution/precipitation of
mineral P phases. Thus, changes in the forms and con-
centrations of biosolid-borne P occur upon biosolid in-
corporation. Depending on the biological and physico-
chemical properties of a soil, the rate of one of these
processes may be higher than the other one.
Several studies have reported an increase in bio-
available P levels in biosolid-amended soils in line with
biosolid application rates (Akhtar et al., 2012; Alleoni
et al., 2012; Hosseinpur and Pashamokhtari, 2013; Sha-
heen and Tsadilas, 2013). This increase may be at-
tributed to the high concentration of inorganic P in
the biosolids. However, these differences seem to be
less pronounced in P-enriched soils or soils that have
high affinity to retain P, such as those derived from cal-
careous parent material (Sarkar and O’Connor, 2004;
Ippolito et al., 2007). Other researchers reported that
the shift of biosolid-borne P from less labile to more
labile forms may also contribute to increases in soil P
availability to plants (Sui et al., 1999; Haney et al.,
2015).
Calcium-dominated biosolids result in higher con-
centrations of water-soluble P in biosolid-amended
soils (Brandt et al., 2004). Moreover, alkaline-stabi-
lized biosolids exhibit mean percentages of water-
extractable P statistically higher than conventionally
stabilized biosolids, which may be attributed to the
mineralization of organic P in biosolids. Many studies
have found that lime amendments increase soil orga-
nic C mineralization (Wong and Su, 1997; Torri et al.,
2003). Jokinen (1990) studied the influence of treat-
ment process on available soil P in biosolid-amended
soils and concluded that Al treatment reduces soil P
availability, whereas Ca treatment increases soil P ava-
ilability. Recently, Withers et al. (2015) observed that
Fe-treated and thermally dried biosolids give the lowest
increases (3%–6%), whereas lime-treated biosolids pro-
duce the largest increases in available P (11%–12%).
Past research has shown that P availability in soils
amended with chemically treated, anaerobically diges-
ted biosolids followed the order: Ca treatment > Fe
treatment > Al treatment (Soon and Bates, 1982). An
explanation to this is that P is bound to soil Ca sur-
faces with lower binding energy compared with Fe or
Al surfaces which bind P more strongly (Delgado and
Torrent, 1997; Elliot et al., 2002b). Therefore, chemi-
cal addition of Al, Fe, and Ca during wastewater and
biosolid processing is of main importance in determi-
ning P dynamics in biosolid-amended soils. Moreover,
if biosolids had undergone thermal treatment, the re-
activity of Fe-bound P minerals in biosolids is consi-
derably reduced and, consequently, the release of avai-
lable P is restricted (Hogan et al., 2001).
Biosolid soil application may also enhance P mi-
neralization, which would contribute to releases of or-
ganic biosolid-borne P and thus lead to an increase
in extractable P levels in the soil (O’Connor et al.,
2004). The positive correlations between soil respira-
tion and labile organic C and N in biosolid-amended
soils suggest that the stimulation of the activity of both
soil and biosolid-borne microbial communities can e-
xert a general solubilizing effect towards biosolid nutri-
ents (S´anchez-Monedero et al., 2004; Jin et al., 2011),
including P (Haney et al., 2015). However, the inte-
raction between biosolid degradation and P availability
may be more complex. For instance, in a leaching ex-
periment, Silveira and O’Connor (2013) reported that
dissolved organic C (DOC) released through biosolid
mineralization does not follow the same pattern as P
in leachates. Their results suggest that part of the mi-
neralized P is sorbed onto Al and Fe oxides present in
the soil, masking any relationship between DOC and
water-extractable P concentrations.
Land application of biosolids also incorporates non-
crystalline, colloidal amorphous forms of Fe and Al
oxides with a large specific surface area (Shober et
al., 2006). These amorphous complexes of Fe and Al
oxides can effectively adsorb or bind native soil phos-
phates (Nanzyo, 1986). Most research results have
shown that land application of biosolids modifies not
only soil P adsorption capacity (Maguire et al., 2000;
Lu and O’Connor, 2001), but also certain soil proper-
ties, such as dissolved organic matter, electrical con-
ductivity, pH and biological properties (Silveira et al.,
2003; Gilmour et al., 2003; Torri, 2009; Scharenbroch
et al., 2013). Biosolid organic matter was found to have
an indirect effect on phosphate adsorption, through in-
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 5
hibiting Al oxide crystallization and even through in-
creasing the amorphous nature of Al (Bøen et al.,
2013; Maguire et al., 2000). This effect was similar,
but less pronounced, for Fe compounds (Borggaard
et al., 1990). In addition, P availability in biosolid-
amended soils may be also modified by environmental
conditions, such as temperature and moisture content.
Specific reactions between biosolid-borne P and the
soil matrix increase with time and, thus, P extractabi-
lity may be considerably reduced. For example, Silve-
ira and O’Connor (2013) observed that P becomes
less bioavailable with time due to increased P sorp-
tion. Consequently, it is very complicated to predict
the dynamics and availability of biosolid-borne P in
biosolid-amended soils.
EFFECT OF RESIDUAL BIOSOLID P IN SOILS
Phosphorus from biosolids has been applied in ex-
cess to soils at N-based rates because sewage materials
have a much higher P:N ratio (0.5–1.1) than required
by plants (0.07–0.14) (Mitchell et al., 2000). Even
though the fate of P after biosolid N exhaustion is
still an unsolved matter in the management of sewage
materials in soils (Corrˆea, 2004). Nutrients from bio-
solids and chemical fertilizers may continue to act in
soils beyond the period they are supposed to promote
plant growth (Weatherley et al., 1988). Such a linge-
ring effect to nourish plants decreases with time (Cor-
rˆea and Silva, 2016) to a negligible level considered
as residual effect (Barrow and Campbell, 1972). Seve-
ral studies have measured residual effects of fertilizers,
but only few have done it for biosolids (Michael et al.,
1991). Residual effects of biosolid P left in soils can
be measured in various ways including by means of
plant yield, providing that all other nutrients for plant
growth are sufficiently supplied (Barrow and Camp-
bell, 1972). In this case, biosolid P remaining in soils
after N depletion may further enhance plant yields if
N fertilizer is again supplied to plants (Pascual et al.,
1999).
Nutrient availability for plant uptake depends on
soil chemical, biological, and physical conditions. Or-
ganic matter, organisms, and nutrients that remain in
biosolid-amended soils after N depletion may improve
soil conditions (Corrˆea and Bento, 2010) and further
increase plant absorption of nutrients if N is applied on
the top of residual biosolids (Corrˆea et al., 2005). Posi-
tive effects of residual biosolid P and organic matter in
a Spodosol have been indirectly measured through di-
fferences in plant production between chemically ferti-
lized soils (control) and soils containing residual ter-
tiary domestic sewage sludge that were applied with
urea N (Fig. 1) (Corrˆea, 2002). Plant yields were 2–3
times higher in the Spodosol containing residual bio-
solids than in the control (Fig. 1). The application of
chemical P to the Spodosol containing residual bioso-
lids did not enhance plant yields, since P was not in
shortage in this soil after N exhaustion (Barrow and
Bolland, 1990; Corrˆea, 2004).
Differently from the Spodosol, an Oxisol contai-
ning the same residual tertiary domestic sewage sludge
showed detrimental effect on plant yields after recei-
ving urea N (Fig. 2) (Corrˆea, 2002). Such an effect sug-
gests shortage of available P because the Oxisol chemi-
cally fertilized at 20 mg P kg−1
(control) responded
well to increasing rates of urea N. Oxisols have a high
P-fixing capacity due to their high contents of Fe and
Al oxides (Smyth and Sanchez, 1980), which decrease
P availability to plants by means of phosphate adsorp-
tion onto soil particles (Barrow and Campbell, 1972).
As previously mentioned, tertiary sewage sludge is con-
Fig. 1 Plant yields (dry weight) at different rates of urea N applied to a Spodosol chemically fertilized at 20 mg P kg−1 (control)
and to the same Spodosol containing residual tertiary sewage sludge previously applied at rates of 1, 3, and 5 t ha−1 (Corrˆea, 2002).
6 S. I. TORRI et al.
Fig. 2 Plant yields (dry weight) at different rates of urea N applied to an Oxisol chemically fertilized at 20 mg P kg−1 (control) and
to the same Oxisol containing residual tertiary sewage sludge previously applied at rates of 1, 3, and 5 t ha−1 (Corrˆea, 2002).
ditioned with Al and Fe salts that can further increase
phosphate-retention capacity of soils (Whitehead et al.,
2001). Scharer et al. (2001) reported that the applica-
tion of Al and Fe oxides to a soil at 10 mg kg−1
in-
creased its P-sorption capacity by 1.6 times, with pro-
portional decrease in P availability in soil solution. As
a result, up to 90% of P in biosolids conditioned with
Al and Fe salts can not be taken up by plants (Corrˆea,
2004; Sarkar and O’Connor, 2004). The incorporation
of tertiary sewage sludge into soils naturally rich in Fe
and Al like the Oxisol may turn the edaphic environ-
ment into a P sink. When it happens, P sources applied
at rates high enough to exceed P sorption capacity of
biosolid-amended soil can overcome shortage of avai-
lable P for plant growth (Maguire et al., 2000). A-
gricultural lime (CaCO3 or CaMg(CO3)2) amendment
can decrease soil P-sorption capacity for a while, but
P application is more effective in increasing P availabi-
lity in soils than lime amendment (Smyth and Sanchez,
1980).
Contrary to the Spodosol, plant yields respon-
ded well to the application of P fertilizer to the Oxi-
sol containing residual tertiary sewage sludge (Corrˆea,
2002), which confirms the hypothesis of shortage of
available P in the last soil. Studies have generally re-
ported decreases in plant P uptake from soils amen-
ded with biosolids conditioned with Al and Fe salts
(Saarela, 1998; Esteller et al., 2009). Investigation on
P sorption revealed that both P isotherm slopes and
equilibrium P concentrations have unfavorably been al-
tered in the Oxisol containing residual tertiary sewage
sludge in comparison to the control Oxisol, which was
not amended with sewage sludge (Corrˆea, 2002). Par-
ticular behaviors of biosolid P in different soils make it
difficult to generalize an optimal biosolid use for a self-
sustained positive residual effect. A specific aspect of
P dynamics in biosolid-amended soils is that the flexi-
bility of soil microorganisms influence P uptake and
immobilization rates, in particular in relation to C and
N availability by altering the C:N:P ratio (Frossard
et al., 1996b; Maguire et al., 2000). There are several
mechanisms of nutrient interactions in soils, and plant
responses to N are often dependent upon the availabi-
lity of P (Walworth and Summer, 1988).
The magnitude of P adsorption to soil particles is
also related to timing after a soil receiving phosphate
application (Burkitt et al., 2001; Whitehead et al.,
2001). Thus, biosolid P left in some soil types after N
exhaustion may not be useful for plant production after
a certain time due to soil P fixation. In other soils like
the Spodosol, plant yields were significantly enhanced
when chemical N was applied on the top of residual
biosolid P (Corrˆea, 2002), which continues to be valu-
able for plant production. Among various minerals and
substances present in soils, Fe and Al oxides lead to the
highest P-fixing capacity due to the increasing number
of sorption sites (Celi et al., 2001; Scharer et al., 2001;
Liu Z et al., 2008). In this regard, a promising alter-
native to the use of Al and Fe salts in WWT process
is recovering N and P as struvite (MgNH4PO4·6H2O),
a slow-release fertilizer that precipitates when Mg and
lime (CaO or Ca(OH)2) are added to wastewater or
sewage sludge (Liu Z et al., 2008). This can increase
the efficiency of biosolid P use by plants (Corrˆea, 2004)
and enhance the recycling of P from wastes in soils.
MICROBIOLOGICAL CONTROL OF P DYNAMICS
IN BIOSOLID-AMENDED SOILS
The existence of a microbial P turnover in soils is
long known and its relation with C and N cycles has
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 7
been proven in the past (Johnson and Broadbent,
1952). There is a general consensus that biosolid-borne
P undergoes a slower turnover rate than P from chemi-
cal fertilizers. This is mainly due to the complexity of
biosolid matrix that becomes more recalcitrant during
decomposition. Moreover, biosolid particle allocation
within the soil aggregates also contributes to different
partition among the different biotic and abiotic pools
(Fig. 3), as hypothesized by Hens and Merckx (2001).
Soil microorganisms as well as plant roots actively
or passively release extracellular enzymes to mineralize
C, N, P, and S from complex substrates to make them
bioavailable (Nannipieri et al., 2012). Biochemical hy-
drolysis of organic phosphate esters in soils is main-
ly catalyzed by phosphomonoesterase and phospho-
diesterase, which release orthophosphate anions, the
preferentially assimilated P form by plants and soil
microorganisms. It has been reported that phosphomo-
noesterase activity in the rhizosphere is the main me-
chanism for P acquisition by plants (Gilbert et al.,
1999), catalyzing P released by a wide range of or-
thophosphate esters and anhydrides (Gellatly et al.,
1994). More complex P solubilization mechanisms, me-
diated by the release of specific secondary metabo-
lites such as polyphenols in legume plants, have al-
so been reported (Tomasi et al., 2008). In forest
soils phosphatase activity responds mainly to seaso-
nal changes of soil temperature and moisture, whereas
in arable soils, phosphatase activity mainly responds
to agricultural practices (Dick and Tabatabai, 1992)
and to the release of root exudates by crops (Renel-
la et al., 2007b). Phosphatase activity can be inhibi-
ted in soils fertilized with N, P, and K, whereas in
biosolid-amended soils, P is added together with ot-
her nutrients (e.g., C, N, and S), used as energy
sources by soil microorganisms for the synthesis of
several hydrolytic enzymes according to the economic
theory (Allison and Vitousek, 2005; Renella et al.,
2007c). This makes the major difference in P dynamics
between biosolid amendment and inorganic P fertiliza-
tion. In any case, high phosphatase activity genera-
lly observed in biosolid-amended soils does not neces-
sarily imply high P availability, as variable values of
phosphatase:microbial biomass ratio have been found
in different agro-ecosystems (Carpenter-Boggs et al.,
2003).
Increasing acid phosphomonoesterase activity has
been previously reported in agricultural soils amended
with biosolids (Dodor and Tabatabai 2003), and it is
likely related to the increases of soil microbial biomass
and activity in response to higher nutrient contents.
Different production and persistence rates of various
soil enzyme activities in different soils have also been
previously reported (Renella et al., 2007c). Biosolid-
amended soils may also undergo changes in pH-bu-
ffering capacity, which may change phosphatase acti-
vity (Renella et al., 2006). Phosphomonoesterase and
phosphodiesterase activities in biosolid-amended soils
Fig. 3 Phosphorus cycle in agricultural soils amended with chemical P fertilizers or biosolids. The thickness of the arrows and of the
boxes represent the relative importance of the pools and processes in the P cycle, respectively.
8 S. I. TORRI et al.
can be considered as indicators of potential P release
from sewage sludge because these biosolids genera-
lly contain various P forms, with a predominant pro-
portion of phospholipids (Stott and Tabatabai, 1985).
Competition between plants and microorganisms for
P in the rhizosphere mainly depends on P demand by
crops, which in turn depends on plant development
stage. Previous studies have shown that the higher the
P demand by crops, the higher the acid phosphomo-
noesterase activity, either of plant or microbial origin
(Moorhead and Sinsabaugh, 2000). Bioavailability is
the potential for a substance or molecule to be trans-
ported across the cell layer. In complex natural bodies
like soil, this pool can be determined by the use of
whole cell biosensors. Whole cell biosensors are soil-
borne bacterial strains inserted with genes producing
a detectable signal (e.g., lux for bioluminescence and
gfp for autofluorescent proteins) upon assimilation of
specific molecules (van der Meer et al., 2004). Micro-
bial biosensors responding to C, N, and P in soil have
been constructed and used to monitor the bioavaila-
ble C, N, and P pools in plant rhizosphere and bulk
soil (Kragelund et al., 1997; Darwent et al., 2003). The
use of whole cell biosensor, although not routine and
standardized methods, hold the potential to finely as-
sess P dynamics in biosolid-amended soils, where more
chemical P forms are present compared to soils ferti-
lized with inorganic P. Moreover, the development of
whole cell biosensors with multiple gene insertions and
of signaling availability for different nutrients (Koch
et al., 2001) or the use of simultaneous biosensors re-
sponding to C, N, and P (Standing et al., 2003) allows
the study of P bioavailability in function of C and N
bioavailability, which may reveal how P dynamics is
interactively influenced by C and N bioavailability. In
particular, their use may be useful to better under-
stand how C and N bioavailability influences biosolid
P mineralization/immobilization dynamics, taking in-
to account that different biosolids may widely vary in
their C:N:P ratios both at the time of application or
during decomposition (Cleveland and Liptzin, 2007).
ENVIRONMENTAL IMPLICATIONS OF BIOSO-
LID USE
In most legislation, annual application rates of bio-
solids are determined by crop N requirements. The rea-
son for this is to prevent N leaching to groundwater
(Corrˆea et al., 2012; Al-Dhumri et al., 2013). Howe-
ver, the relatively low N/P ratio of biosolids has led
to a significant over application of P at the N-based
rate. As the amounts of P applied often exceed crop
removal (Shober and Sims, 2003; Schroder et al., 2008;
Cogger et al., 2013b), more than 95% of biosolid-borne
P remains in soils (Corrˆea, 2004). Surplus soil P from
biosolids is not detrimental to plants. Many soils in
developed nations nowadays contain adequate to ex-
cessive P due to years of application of P fertilizers or
organic materials containing P (O’Connor and China-
ult, 2006), but soil P sorption capacity may become
saturated with time (Smith et al., 2006; Withers et al.,
2009). Maguire et al. (2000) reported increased soil P
and increased P saturation in soils receiving long-term
biosolid amendment relative to unamended soils. Past
research has shown that soils that are more saturated
with P have less capacity to retain added P, which may
increase the more labile forms of soil P, with the risk
of P loss in runoff or by leaching (Hooda et al., 2000;
Pautler and Sims, 2000). The problem arises when ru-
noff waters or subsurface flows contain environmen-
tally unacceptable contents of dissolved P forms, or
when highly P-enriched soil particles are eroded in-
to water bodies (Maguire et al., 2005). Diffuse P pol-
lution is directly associated with the development of
water body eutrophication in agricultural ecosystems
(Withers and Jarvie, 2008; Quinton et al., 2010). Al-
though both P and N contribute to eutrophication, P
is the primary agent in freshwater eutrophication be-
cause many algae are able to obtain N from the at-
mosphere (Schindler, 1977). Soluble P as low as 0.02
mg L−1
is sufficient to induce water body eutrophica-
tion (Sharpley and Rekolainen, 1997). Eutrophication
brings a series of adverse ecological and water quality
problems such as fish death, shifts in species compo-
sition, blooms of harmful algae, and hypoxia in water
body, together with the presence of toxins, taste and
odour in drinking water (Hilton et al., 2006; Lowe et
al., 2008).
Research has shown that not all biosolids have the
same potential to affect the environment when land
applied. The solubility of P in biosolids exerts a ma-
jor influence on the potential for off-site P migration
at land application sites. As mentioned above, WWT
processes govern soil P solubility because of several
factors, including biosolid treatment (especially heat
drying) and biosolid chemical composition (especially
contents of Fe, Al, and Ca). Several studies have re-
ported a relationship between low P solubility in bioso-
lids and a high content of total or amorphous Fe and Al
(Maguire et al., 2001; O’Connor et al., 2004; Krogstad
et al., 2005). Biosolid treatments that produce rela-
tively dry biosolids, like heat drying, tend to reduce
water-extractable P (WEP) (Brandt et al., 2004). Si-
nce only a small fraction of P from most conventionally
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 9
produced biosolids is soluble, biosolid P should be less
likely to negatively affect the environment compared
with soluble P sources like mineral fertilizers or ma-
nures.
Even though the solubility of P in the soil increa-
ses with biosolid application rates, off-site P migration
may not necessarily increase, since a number of bin-
ding compounds incorporated through biosolids coun-
teract the leaching process. For example, Withers et
al. (2001) measured runoff P from field plots that had
previously received P from different sources, and con-
cluded that there was a lower risk of P runoff follo-
wing application of biosolid compared with other agri-
cultural P amendments at similar P application rates.
Al- and Fe-rich biosolids have been found to increase
the amorphous soil fraction, which is considered to be
a measure of the P sorption capacity of acidic soils
(Pote et al., 1996; Maguire et al., 2000). In calcareous
soils, P solubility is also influenced by Ca precipita-
tion (Pierzynski et al., 2005). Therefore, biosolids can
increase not only total P content of the soil but also
its P sorption capacity. Addition of wastes rich in Fe
and Al was also found to dramatically reduce biosolid
P leaching and runoff from high-P soils (Haustein et
al., 2000; Elliott et al., 2002b).
Different studies showed that WEP is highly cor-
related to runoff P and leachate P in manures and
manure-amended soils, and has been proposed as a
useful indicator of environmental P loss from waste-
amended soils (Kleinman et al., 2002; Brandt and
Elliott, 2003; Brandt et al., 2004). As total P varies
among organic amendments, percent WEP (PWEP
= WEP × 100/total P) is used to compare the en-
vironmentally relevant P in relation to total P. For
most biosolids, PWEP is found to be less than 5%
(Brandt et al., 2004), while Fe or Al-produced bioso-
lids have PWEP values of less than 0.5% (Brandt et al.,
2004). Conversely, BPR biosolids typically have greater
soluble P and PWEP (≥ 14%) than conventionally
produced biosolids (Brandt et al., 2004). O’Connor
and Chinault (2008) concluded that biosolid PWEP
is a very good indicator of the way that biosolid P
may affect the environment when land applied, and
proposed that biosolids with PWEP values higher
than 14% should be assumed to have a larger poten-
tial negative environmental impact than biosolids with
PWEP values less than 14%.
Until recently, P has been thought to be so strong-
ly bound to the soil matrix that its vertical movement
through the soil profile is insignificant (Kostyanovsky
et al., 2011; Oladeji et al., 2013). Since most soils have
an appreciable P-sorbing capacity, P that may move
down the soil profile generally becomes fixed in the
subsoil. Hence, P leaching is not considered an im-
portant P loss mechanism (Miller, 2008). Therefore,
numerous studies concluded that P vertical movement
through the soil profile in biosolid-amended soils was
negligible, despite the high rates of P applied or soil
texture. However, over application of P to soils with
low P sorption capacity may significantly increase P
vertical movement and leaching. Leaching of P from
organic amendments may occur in both organic and
inorganic forms (Eghball et al., 1996). Complexation
of P with mobile organic compounds may favour the
deep transport of organic forms of P, even through lay-
ers with a great P adsorption capacity. In a column
experiment using a fine sandy soil amended with six
conventional treated biosolids at N-based rates, P lea-
ching was less than 1% of P applied, and not statistical-
ly different from unamended soils. In contrast, 21% of
the P applied was found to leach in columns amended
with TSP (Elliott et al., 2002a). Rydin and Otabbong
(1997) leached 35 mm of water through soils amended
with either Fe- or Al-treated biosolids and found that
less P was released from Fe-treated biosolids compared
with Al-treated biosolids. When only biological treat-
ment processes are involved, biosolids are usually re-
ported to have a relatively high risk of P leaching than
soils amended with biosolids stabilized with high levels
of Fe or Al (Kyle and McClintock, 1995). This varia-
tion is most likely due to differences in solubility in the
forms of inorganic P resulting from different WWTPs.
Thermal treatment of biosolids was also found to sig-
nificantly reduce P leaching in sandy soils (O’Connor
et al., 2002), because heating increases the rate of reac-
tion of simple, readily dissolvable phosphate minerals
to more complex, less soluble forms.
Runoff losses of P may occur in particulate and
soluble P forms. Particulate P is associated with soil
particles, such as minerals or organic matter. Runoff
of particulate P may be decreased through different
management practices (Kleinman et al., 2011; Dodd
and Sharpley, 2015), but soluble inorganic P loss is of
concern, especially in low P-retaining soils (McDowell
et al., 2004; Shober and Sims, 2007). Penn and Sims
(2002) noted that runoff P is very high (0.064 mg L−1
)
from soils amended with BPR biosolids, followed by Fe
and lime-treated biosolids (0.039 mg L−1
), no-Fe and
no-lime biosolids (0.014 9 mg L−1
), and Fe-treated and
no-lime biosolids (0.002 mg L−1
) at equal rates of to-
tal P (200 kg ha−1
). The reason for this situation is
that P amendments which do not add P-binding ele-
ments (e.g., BPR) can be expected to increase P sa-
turation, reduce P-binding strength, and release more
10 S. I. TORRI et al.
P to runoff (Holford et al., 1997; Siddique and Robin-
son, 2003). When only biological treatment processes
are involved, biosolids are usually reported to have a
relatively high risk of off-site P migration than those
stabilized with high levels of Fe or Al (Kyle and Mc-
Clintock, 1995). Field studies of White et al. (2010)
have shown that runoff P for the soils amended with
Fe-treated biosolids is not significantly different from
that for the unamended control soil despite biosolid
application rates. The soils amended with lime-treated
biosolids produce the largest runoff P, the soils amen-
ded with Fe and lime-treated biosolid are intermediate,
and those amended with Fe-treated biosolids are the
lowest. These have been attributed to the dissolution
of calcium-bound P (Ca-P) species in acidic soils af-
ter land application of biosolids (Leytem et al., 2004;
White et al., 2010). Most research has shown that the
addition of metal salts at the WWTP reduces solu-
ble P losses by runoff (Penn and Sims, 2002; Agyin-
Birikorang et al., 2008; Alleoni et al., 2008). Elliott et
al. (2005) reported that with additions of Fe and/or Al
during WWT processes, like heat drying, runoff P los-
ses produced are not statistically different between the
amended and unamended soils. Other researchers re-
ported that some biosolid-amended soils produced less
runoff P losses than the unamended soils (Brandt and
Elliott, 2003; O’Connor and Elliott, 2006).
A peculiar environmental behaviour of soil P dy-
namics is the so-called P leaching breakpoint, first
observed in the long-term Broadbalk Experiment at
Rothamsted, UK (Heckrath et al., 1995). The P lea-
ching breakpoint indicates an abrupt change occurring
in the Olsen P fraction when it is in the range of 21–104
mg P kg−1
. The occurrence of a P leaching breakpoint
has been confirmed for other soils under various mana-
gement practices (Brookes and Hesketh, 1998; Jordan
et al., 2000). To our knowledge, the existence of a P
leaching breakpoint in biosolid-amended soils has not
been studied. This aspect may be important from the
perspective of utilizing biosolid P, as the higher or-
ganic matter content of biosolid-amended soils should
theoretically saturate P sorption sites, leading to po-
tentially greater P losses compared to those of the soils
amended with chemical fertilizers.
CONCLUSIONS AND PERSPECTIVES
Phosphate rock is a finite, non-renewable resource,
and its reserves are progressively becoming scarce. Re-
cycling P from biosolids is a valuable feedstock for
agronomic purposes to enhance and sustain society,
and represents the best environmental option so far.
However, land application of biosolids is becoming in-
creasingly constrained by the amounts of P addition in
sensitive agronomic scenarios. It is generally accepted
that leaching of P from biosolid-amended soils is mini-
mal. However, the risk of soluble inorganic P transport
in surface runoff after land application of biosolids is
of major concern. The WWT processes clearly influ-
ence differences in soil P solubility and soil P speci-
ation after land application of biosolids. In sensitive
scenarios, Fe- or Al-treated biosolids reduce the risk
of P transport. However, if runoff P is not a major
concern and biosolids are primarily applied to provide
available P to crops, the standard BPR process or a
process that involves the addition of lime instead of
Fe and Al oxides may be adequate. In all cases, it is
critical to control sources of nonpoint P pollution of
surface- and groundwater. While in natural soils, the
phosphatase activity likely plays an important role in
P mineralization and phytoavailability, other microbio-
logical and biochemical activities likely play predomi-
nant roles in P mineralization and fate. The use of
whole cell biosensors specifically signalling to P up-
take by soil microorganisms is a promising biotech-
nology for the assessment of the P bioavailability in
soil which can improve understanding of P released by
biosolid application. Further research on P forms in
the various biosolids, the use of biotechnologies for the
assessment of the P bioavailable fractions such as the
whole cell biosensors, and the analysis of genetic plant
responses to soil biosolid amendment can improve the
understanding of potential P uptake by crops and opti-
mal use of P-rich biosolids for sustainable agriculture.
Harmonization of the regulation on the use of bioso-
lids in agriculture, currently mainly based on N and
pollutant contents, may also contribute to a better P
balance in agriculture.
REFERENCES
Abad E, Mart´ınez K, Planas C, Palacios O, Caixach J, Rivera
J. 2005. Priority organic pollutant assessment of sludges for
agricultural purposes. Chemosphere. 61: 1358–1369.
Agyin-Birikorang S, O’Connor G A, Brinton S R. 2008. Evalu-
ating phosphorus losses from a Florida spodosol as affected
by phosphorus-source application methods. J Environ Qual.
37: 1180–1189.
Ahumada I, Sep´ulveda K, Fern´andez P, Ascar L, Pedraza C,
Richter P, Brown S. 2014. Effect of biosolid application to
Mollisol Chilean soils on the bioavailability of heavy metals
(Cu, Cr, Ni, and Zn) as assessed by bioassays with sunflower
(Helianthus annuus) and DGT measurements. J Soil Sedi-
ment. 14: 886–896.
Akhtar M, McCallister D L, Francis D D, Schepers J S. 2005.
Manure source effect on soil phosphorus fractions and their
distribution. Soil Sci. 170: 183–190.
Akhtar N, Inam A, Khan N A. 2012. Effects of city wastewater
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 11
on the characteristics of wheat with varying doses of nitro-
gen, phosphorus, and potassium. Recent Res Sci Technol. 4:
18–29.
Al-Dhumri S, Beshah F H, Porter N A, Meehan B, Wrigley R.
2013. An assessment of the guidelines in Victoria, Austra-
lia, for land application of biosolids based on plant-available
nitrogen. Soil Res. 51: 529–538.
Alleoni L R F, Brinton S R, O’Connor G A. 2008. Runoff and
leachate losses of phosphorus in a sandy Spodosol amended
with biosolids. J Environ Qual. 37: 259–265.
Alleoni L R F, Fernandes A R, Jord˜ao C B. 2012. Phosphorus
availability in an Oxisol amended with biosolids in a long-
term field experiment. Soil Sci Soc Am J. 76: 1678–1684.
Allison S D, Vitousek P M. 2005. Responses of extracellular
enzymes to simple and complex nutrient inputs. Soil Biol
Biochem. 37: 937–944.
Anand K, Kumari B, Mallick M A. 2016. Phosphate solubilizing
microbes: An effective and alternative approach as biofertili-
zers. J Pharm Pharm Sci. 8: 37–40.
Athamenh B M, Salem N M, El-Zuraiqi S M, Suleiman W, Rusan
M J. 2015. Combined land application of treated wastewa-
ter and biosolids enhances crop production and soil fertility.
Desalin Water Treat. 53: 3283–3294.
Barbarick K A, Ippolito J A. 2007. Nutrient assessment of a
dryland wheat agroecosystem after 12 years of biosolids ap-
plications. Agron J. 99: 715–722.
Barrow N J, Bolland M D A. 1990. A comparison of methods
for measuring the effect of level of application on the relative
effectiveness of two fertilizers. Fert Res. 26: 1–10.
Barrow N J, Campbell N A. 1972. Methods of measuring resi-
dual value of fertilisers. Aust J Exp Agr. 12: 502–510.
Beck M A, Sanchez P A. 1994. Soil phosphorus fractions dyna-
mics during 18 years of cultivation on a Typic Paleudult. Soil
Sci Soc Am J. 58: 1424–1431.
Bøen A, Haraldsen T K, Krogstad T. 2013. Large differences in
soil phosphorus solubility after the application of compost
and biosolids at high rates. Acta Agr Scand B. 63: 473–482.
Borggaard O K, Jørgensen S S, Moberg J P, Raben-Lange B.
1990. Influence of organic matter on phosphate adsorption
by aluminium and iron oxides in sandy soils. J Soil Sci. 41:
443–449.
Brandt R C, Elliott H A, O’Connor G A. 2004. Water-extra-
ctable phosphorus in biosolids: Implications for land-based
recycling. Water Environ Res. 76: 121–129.
Brandt R C, Elliott H A. 2003. Phosphorus runoff losses from
surface-applied biosolids and dairy manure. In Water Envi-
ronment Federation (ed.) Proc. 17th Annual Residuals and
Biosolids Manage. Conf., Baltimore. Water Environment Fe-
deration, Alexandria. pp. 19–22.
Brookes P C, Hesketh N. 1998. Developing an indicator to pre-
dict the risk of soil phosphorus movement in drainage water.
In Foy R H, Dils R (eds.) Practical and innovative Measures
for the Control of Agricultural Phosphorus Losses to Water.
OECD Workshop, 16–19 June 1998. OECD, Antrim. pp. 16–
21.
Burkitt L, Gourley C, Sale P. 2001. Temporal changes in Olsen
phosphorus (P) concentrations when P fertiliser rates were
applied to nine different soil types of varying P buffering ca-
pacity. In Haygarth P M, Condron L M, Butler P J, Chisholm
J S (eds.) Connecting Phosphorus Transfer from Agriculture
to Impacts in Surface Waters. Proceedings of the Interna-
tional Phosphorus Transfer Workshop (IPTW 2001). Insti-
tute of Grassland and Environmental Research, Plymouth
University, Devon. pp. 30–31.
Carpenter-Boggs L, Stahl P D, Lindstrom M J, Schumacher T E.
2003. Soil microbial properties under permanent grass, con-
ventional tillage, and no-till management in South Dakota.
Soil Till Res. 71: 15–23.
Celi L, Marsan A, Barberis E. 2001. Some molecular aspects
of organic phosphorus dynamics in soil. In Haygarth P M,
Condron L M, Butler P J, Chisholm, J S (eds.) Connecting
Phosphorus Transfer from Agriculture to Impacts in Surface
Waters. Proceedings of the International Phosphorus Trans-
fer Workshop (IPTW 2001). Institute of Grassland and En-
vironmental Research, Plymouth University, Devon. pp. 33–
34.
Chen H, Wang D, Li X, Yang Q, Luo K, Zeng G. 2013. Biolo-
gical phosphorus removal from real wastewater in a sequen-
cing batch reactor operated as aerobic/extended-idle regime.
Biochem Eng J. 77: 147–153.
Christie P, Easson D L, Picton J R, Love S C P. 2001. Agro-
nomic value of alkaline-stabilized biosolids for spring barley.
Agron J. 93: 144–151.
Clark D L, Hunt G, Kasch M S, Lemonds P J, Moen G M, Neeth-
ling J. 2010. Nutrient Management: Regulatory Approach-
es to Protect Water Quality. Volume 1. Review of Existing
Practices. Water Environment & Reuse Foundation (WER-
F), Alexandria. pp. 5830–5835.
Cleveland C C, Liptzin D. 2007. C:N:P stoichiometry in soil: is
there a “Redfield ratio” for the microbial biomass? Biogeo-
chemistry. 85: 235–252.
Codling E E. 2014. Long-term effects of biosolid-amended soils
on phosphorus, copper, manganese and zinc uptake by wheat.
Soil Sci. 179: 21–27.
Cogger C G, Bary A I, Kennedy A C, Fortuna A M. 2013a.
Long-term crop and soil response to biosolids applications in
dryland wheat. J Environ Qual. 42: 1872–1880.
Cogger C G, Bary A I, Myhre E A, Fortuna A M. 2013b. Bio-
solids applications to tall fescue have long-term influence on
soil nitrogen, carbon, and phosphorus. J Environ Qual. 42:
516–522.
Cordell D, Neset T S. 2014. Phosphorus vulnerability: a quali-
tative framework for assessing the vulnerability of national
and regional food systems to the multi-dimensional stressors
of phosphorus scarcity. Global Environ Chang. 24: 108–122.
Cordell D. 2010. The Story of Phosphorus: Sustainability im-
plications of Global Phosphorus Scarcity for Food Security.
Doctoral Thesis. Collaborative Ph.D. between the Institute
for Sustainable Futures, University of Technology, Sydney
(UTS) and Department of Water and Environmental Studies,
Link¨oping University, Sweden. Link¨oping University Press,
Link¨oping.
Corrˆea R S. 2002. Beneficial use of biosolids based on their N and
P fertilising value. Ph.D. Thesis, University of Melbourne.
Corrˆea R S. 2004. Efficiency of five biosolids to supply nitro-
gen and phosphorus to ryegrass. Pesqui Agropecu Bras. 39:
1133–1139.
Corrˆea R S, Bento M A B. 2010. Quality of a revegetated mine
spoil in the Federal District of Brazil. Rev Bras Cien Solo.
34: 1435–1443.
Corrˆea R S, Silva D J. 2016. Effectiveness of five biosolids as
nitrogen sources to produce single and cumulative ryegrass
harvests in two Australian soils. Rev Bras Cien Solo. 40:
e0150216.
Corrˆea R S, White R E, Weatherley A J. 2005. Biosolids effec-
tiveness to yield ryegrass based on their nitrogen content.
Sci Agr. 62: 274–280.
Corrˆea R S, White R E, Weatherley A J. 2012. Effects of sewage
sludge stabilization on organic-N mineralization in two soils.
12 S. I. TORRI et al.
Soil Use Manage. 28: 12–18.
Commission of the European Communities (CEC). 1986. Coun-
cil Directive of 12 June 1986 on the Protection of the Envi-
ronment, and in Particular of the Soil, when Sewage Sludge
is Used in Agriculture (86/278/EEC). Official Journal of the
European Communities No. L 181. Office for Official Publi-
cations of the European Communities, Luxembourg.
Darwent M J, Paterson E, McDonald A J S, Tomos A D. 2003.
Biosensor reporting of root exudation from Hordeum vulgare
in relation to shoot nitrate concentration. J Exp Bot. 54:
325–334.
De-Bashan L E, Bashan Y. 2004. Recent advanced in removing
phosphorus from wastewater and its future use as fertilizer
(1997–2003). Water Res. 38: 4222–4246.
Delgado A, Torrent J. 1997. Phosphate-rich soils in the European
Union: estimating total plant-available phosphorus. Eur J
Agron. 6: 205–214.
Dick W A, Tabatabai M A. 1992. Significance and potential u-
ses of soil enzymes. In Metting F B Jr (ed.) Soil Microbial
Ecology. Marcel Dekker, New York. pp. 95–127.
Dodd R J, Sharpley A N. 2015. Conservation practice effective-
ness and adoption: unintended consequences and implica-
tions for sustainable phosphorus management. Nutr Cycl A-
groecosys. 104: 1–20.
Dodor D E, Tabatabai M A. 2003. Effect of cropping systems on
phosphatases in soils. J Plant Nutr Soil Sci. 66: 7–13.
Ebeling A M, Cooperband L R, Bundy L G. 2003. Phosphorus
availability to wheat from manures, biosolids, and an inor-
ganic fertilizer. Commun Soil Sci Plant Anal. 34: 1347–1365.
European Communities (EC). 2000. Directive 2000/60/EC of
the European Parliament and of the Council of 23 October
2000 Establishing a Framework for Community Action in
the Field of Water Policy. Official Journal of the European
Communities No. L 327. Office for Official Publications of
the European Communities, Luxembourg.
European Communities (EC). 2006. Directive 2006/118/EC of
the European Parliament and the Council of 12th of Decem-
ber 2006 on the Protection of Ground Water against Pol-
lution and Deterioration. Official Journal of the European
Communities No. L 372/19. Office for Official Publications
of the European Communities, Luxembourg.
Eghball, B, Binford G D, Baltensperger D D. 1996. Phospho-
rus movement and adsorption in a soil receiving long-term
manure and fertilizer application. J Environ Qual. 25: 1339–
1343.
Elliott H A, O’Connor G A, Brinton S. 2002a. Phosphorus lea-
ching from biosolids-amended sandy soils. J Environ Qual.
31: 681–689.
Elliot H A, O’Connor G A, Lu P, Brinton S. 2002b. Influence
of water treatment residuals on phosphorus solubility and
leaching. J Environ Qual. 31: 1362–1369.
Elliott H A, Brandt R C, O’Connor G A. 2005. Runoff phospho-
rus losses from surface-applied biosolids. J Environ Qual. 34:
1632–1639.
Elliott H A, O’Connor G. 2007. Phosphorus management for
sustainable biosolids recycling in the United States. Soil Bi-
ol Biochem. 39: 1318-1327.
Elser J J. 2012. Phosphorus: A limiting nutrient for humanity?
Curr Opin Biotechnol. 23: 833–838.
Esteller M V, Mart´ınez-Vald´es H, Garrido S, Uribe Q. 2009.
Nitrate and phosphate leaching in a Phaeozem soil treated
with biosolids, composted biosolids and inorganic fertilizers.
Waste Manage. 29: 1936–1944.
Frossard E, B¨unemann E, Jansa J, Oberson A, Feller C. 2009.
Concepts and practices of nutrient management in agro-
ecosystems: can we draw lessons from history to design fu-
ture sustainable agricultural production systems? Die Bo-
denkultur. 60: 43–60.
Frossard E, Sinaj S, Dufour P. 1996a. Phosphorus in urban
sewage sludges as assessed by isotopic exchange. Soil Sci Soc
Am J. 60: 179–182.
Frossard E, Sinaj S, Zhang L M, Morel J L. 1996b. The fate of
sludge phosphorus in soil-plant systems. Soil Sci Soc Am J.
60: 1248–1253.
Garc´ıa-Orenes F, Guerrero C, Mataix-Solera J, Navarro-Pedre˜no
J, G´omez I, Mataix-Beneyto J. 2005. Factors controlling the
aggregate stability and bulk density in two different degraded
soils amended with biosolids. Soil Till Res. 82: 65–76.
Gellatly K S, Moorhead G B G, Duff S M G, Lefebvre D D,
Plaxton W C. 1994. Purification and characterization of a
potato tuber acid phosphatase having significant phosphoty-
rosine phosphatase activity. Plant Physiol. 106: 223–232.
Gilbert G A, Knight J D, Vance C P, Allan D L. 1999. Acid phos-
phatase activity in phosphorus-deficient white lupin roots.
Plant Cell Environ. 22: 801–810.
Gilmour J T, Cogger C G, Jacobs L W, Evanylo G K, Sullivan
D M. 2003. Decomposition and plant-available nitrogen in
biosolids. J Environ Qual. 32: 1498–1507.
Goldstein A H, Baertlein D A, McDaniel R G. 1988. Phosphate
starvation inducible metabolism in Lycopersicon esculentum.
Plant Physiol. 87: 711–715.
Gomes N C M, Landi L, Smalla K, Nannipieri P, Brookes P
C, Renella G. 2010. Effects of Cd and Zn enriched sewage
sludge on soil bacterial and fungal com-munities. Ecotox En-
viron Safe. 73: 1255–1263.
Grady C P L Jr, Daigger G T, Love N G, Filipe C D M. 2011. Bi-
ological Wastewater Treatment. 3rd Edn. CRC Press, New
York.
Grant C, Bittman S, Montreal M, Plenchette C, Morel C. 2005.
Soil and fertilizer phosphorus: effects on plant P supply and
mycorrhizal development. Can J Plant Sci. 85: 3–14.
Haney C H, Samuel B S, Bush J, Ausubel F M. 2015. Asso-
ciations with rhizosphere bacteria can confer an adaptive ad-
vantage to plants. Nat Plants. 1: 15051.
Hansen L G, Chaney R L. 1984. Environmental and food chain
effects of the agricultural use of sewage sludges. In Hodges R
D (ed.) Reviews in Environmental Toxicology. Elsevier Sci.
Publ., Amsterdam. pp. 103–172.
Haustein G K, Daniel T C, Miller D M, Moore P A Jr, McNew
R W. 2000. Aluminum-containing residuals influence high-
phosphorus soils and runoff water quality. J Environ Qual.
29: 1954–1959.
Haynes R J, Murtaza G, Naidu R. 2009. Inorganic and organic
constituents and contaminants of biosolids: implications for
land application. Adv Agron. 104: 165–267.
He Z, Zhang H, Toor G S, Dou Z, Honeycutt C W, Haggard B
E, Reiter M S. 2010. Phosphorus distribution in sequentially
extracted fractions of biosolids, poultry litter, and granulated
products. Soil Sci. 175: 154–161.
Heckrath G., Brookes P C, Poulton P R, Goulding K W T. 1995.
Phosphorus leaching from soils containing different phospho-
rus concentrations in the Broadbalk experiment. J Environ
Qual. 4: 904–910.
Heffer P. 2013. Phosphate Policy Issues from the Industry’s Per-
spective. The 1st Global TraPs Conference, Beijing.
Hens M, Merckx R. 2001. Funcional charatcertization of collo-
idal phosphorus species in the soil solution of sandy soils.
Environ Sci Technol. 35: 493–500.
Hilton J, O’Hare M, Bowes M J, Jones J I. 2006. How green is
my river? A new paradigm of eutrophication in rivers. Sci
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 13
Total Environ. 365: 66–83.
Hinedi Z R, Chang A C, Lee R W K. 1989. Characterization of
phosphorus in sludge extracts using phosphorus-31 nuclear
magnetic resonance spectroscopy. J Environ Qual. 18: 323–
329.
Hogan F, McHugh M, Morton S. 2001. Phosphorus availability
for beneficial use in biosolids products. Environ Technol. 22:
1347–1353.
Holford I C R, Hird C, Lawrie R. 1997. Effects of animal efflu-
ents on the phosphorus sorption characteristics of soils. Aust
J Soil Res. 35: 365–373.
Hooda P S, Rendell A R, Edwards A C, Withers P J A, Aitken
M N, Truesdale V W. 2000. Relating soil phosphorus indices
to potential phosphorus release to water. J Enviro Qual. 29:
1166–1171.
Hosseinpur A, Pashamokhtari H. 2013. The effects of incubation
on phosphorus desorption properties, phosphorus availabi-
lity, and salinity of biosolids-amended soils. Environ Earth
Sci. 69: 899–908.
Ippolito J A, Barbarick K A, Norvell K L. 2007. Biosolids impact
soil phosphorus accountability, fractionation, and potential
environmental risk. J Environ Qual. 36: 764–772.
Islas-Espinoza M, Sol´ıs-Mej´ıa L, Esteller M V. 2014. Phosphorus
release kinetics in a soil amended with biosolids and vermi-
compost. Environ Earth Sci. 71: 1441–1451.
Jasinski S M. 2013. Phosphate rock. In U.S. Geological Survey
(ed.) Mineral. Yearbook. U.S. Government Publishing Of-
fice, Washington, D.C. pp. 56.1–56.11.
Jenkins D, Ferguson J F, Menar A B. 1971. Chemical processes
for phosphorus removal. Water Res. 5: 369–387.
Jenkins D, Horwath W R, Stutz-McDonald S. 2000. Phosphate
leaching from biosolids/soils mixtures. In Water Environ-
ment Federation (ed.) Proceedings of the Water Environment
Federation, Anaheim, CA., 14–18 Oct. 2000. Water Environ-
ment Federation, Alexandria. pp. 56–70.
Jin V L, Johnson M V V, Haney R L, Arnold J G. 2011. Po-
tential carbon and nitrogen mineralization in soils from a
perennial forage production system amended with class B
biosolids. Agr Ecosyst Environ. 141: 461–465.
Johnson D D, Broadbent F E. 1952. Microbial turnover of phos-
phorus in soil. Soil Sci Soc Am J. 16: 56–59.
Jokinen R. 1990. Effect of phosphorus precipitation chemicals
on characteristics and agricultural value of municipal sewage
sludges. Acta Agr Scand. 40: 141–147.
Jordan C, McGuckin S O, Smith R V. 2000. Increased predicted
losses of phosphorus to surface waters from soils with high
Olsen-P concentrations. Soil Use Manage. 16: 27–35.
Jord´an M M, Rinc´on-Mora B, Almendro-Candel M B. 2016.
Heavy metal distribution and electrical conductivity mea-
surements in biosolid pellets. J Soil Sediment. 16: 1176–
1182.
Keating C, Chin J P, Hughes D, Manesiotis P, Cysneiros
D, Mahony T, Smith C J, McGrath J W, O’Flaherty V.
2016. Biological phosphorus removal during high-rate, low-
temperature, anaerobic digestion of wastewater. Front Mi-
crobiol. 7: 226–239.
Kelly T D, Matos G R. 2013. Historical statistics for mineral and
material commodities in the United States. U.S. Geological
Survey Data Series 140. Available online at http://pubs.
usgs.gov/ds/2005/140/ (verified on November 10, 2016).
Kleinman P J A, Sharpley A N, Moyer B G, Elwinger G F. 2002.
Effect of mineral and manure phosphorus sources on runoff
phosphorus. J Environ Manage. 31: 2026–2033.
Kleinman P J A, Sharpley A N, Buda A R, McDowell R W, Allen
A L. 2011. Soil controls of phosphorus in runoff: Management
barriers and opportunities. Can J Soil Sci. 91: 329–338.
Koch B, Worm J, Jensen L E, Højberg O, Nybroe O. 2001.
Carbon limitation induces S-dependent gene expression in
Pseudomonas fluorescens in soil. Appl Environ Microb. 67:
3363–3370.
Kostyanovsky K I, Evanylo G K, Lasley K K, Daniels W L,
Shang C. 2011. Leaching potential and forms of phosphorus
in deep row applied biosolids underlying hybrid poplar. Ecol
Eng. 37: 1765–1771.
Kowaljow E, Mazzarino M J, Satti P, Jim´enez-Rodr´ıguez C.
2010. Organic and inorganic fertilizer effects on a degraded
Patagonian rangeland. Plant Soil. 332: 135–145.
Kragelund L, Hosbond C, Nybroe O. 1997. Distribution of
metabolic activity and phosphate starvation response of lux-
tagged Pseudomonas fluorescens reporter bacteria in the bar-
ley rhizosphere. Appl Environ Microb. 63: 4920–4928.
Krogstad T, Sogn T A, Asdal A, Sæbø A. 2005. Influence of
chemically and biologically stabilized sewage sludge on plant-
available phosphorus in soil. Ecol Eng. 25: 51–60.
Kroiss H. 2004. What is the potential for using the resources in
sludge? Water Sci Technol. 49: 1–10.
Kruse J, Abraham M, Amelung W, Baum C, Bol R, K¨uhn O,
Lewandowski H, Niederberger J, Oelmann Y, R¨uger C, Sant-
ner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts
A, Leinweber P. 2015. Innovative methods in soil phosphorus
research: A review. J Plant Nutr Soil Sci. 178: 43–88.
Kyle M A, McClintock S A. 1995. The availability of phosphorus
in municipal wastewater sludge as a function of the phospho-
rus removal process and the sludge treatment method. Water
Environ Res. 67: 282–299.
Larney F J, Angers D A. 2012. The role of organic amendments
in soil reclamation: a review. Can J Soil Sci. 92: 19–38.
Lee C C, Lin S D. 2007. Handbook of Environmental Enginee-
ring Calculations. McGraw-Hill Professional, New York.
Leytem A B, Sims J T, Coale F J. 2004. Determination of phos-
phorus source coefficients for organic phosphorus sources:
Laboratory studies. J Environ Qual. 33: 380–388.
Liu Y, Villalba G, Ayres R U, Schroder H. 2008. Global phos-
phorus flows and environmental impacts from a consumption
perspective. J Ind Ecol. 12: 229–247.
Liu Z, Zhao Q, Lee D J, Yang N. 2008. Enhancing phospho-
rus recovery by a new internal recycle seeding MAP reactor.
Bioresource Technol. 99: 6488–6493.
Lowe J J, Rasmussen S O, Bjorck S, Hoek W Z, Steffensen J
P, Walker M J C, Yu Z C, Grp I. 2008. Synchronisation of
palaeoenvironmental events in the North Atlantic region du-
ring the Last Termination: A revised protocol recommended
by the INTIMATE group. Quaternary Sci Rev. 27: 6–17.
Lu P, O’Connor G A. 2001. Biosolids effects on phosphorus re-
tention and release in some sandy soils. J Environ Qual. 30:
1059–1063.
Lu Q, He Z L, Stoffella P J. 2012. Land application of biosolids
in the USA: a review. Appl Environ Soil Sci. 1: 1–11.
MacDonald G K, Bennett E M, Potter P A, Ramankutty N.
2011. Agronomic phosphorus imbalances across the world’s
croplands. Proc Natl Acad Sci USA. 108: 3086–3091.
Magesan G N, Wang H. 2003. Application of municipal and in-
dustrial residuals in New Zealand forests: an overview. Aust
J Soil Res. 41: 557–569.
Maguire R O, Chardon W J, Simard R R. 2005. Assessing po-
tential environmental impacts of soil phosphorus by soil tes-
ting. In Sims J T, Sharpley A N (eds.) Phosphorus: Agricul-
ture and the Environment. American Society of Agronomy
(ASA), Crop Science Society of America (CSSA) and Soil
Science Society of America (SSSA), Madison. pp. 145–180.
14 S. I. TORRI et al.
Maguire R O, Hesterberg D L, Gernat A, Anderson K, Wineland
M, Grimes J. 2006. Liming poultry litter manures to decrease
soluble phosphorus and suppress the bacteria population. J
Environ Qual. 35: 849–857.
Maguire R O, Sims J T, Coale F J. 2000. Phosphorus solubility
in biosolids-amended farm soils in the mid-Atlantic region of
the USA. J Environ Qual. 29: 1225–1233.
Maguire R O, Sims J T, Dentel S K, Coale F J, Mah J T. 2001.
Relationships between biosolids treatment process and soil
phosphorus availability. J Environ Qual. 30: 1023–1033.
Mart´ınez K, Abad E, Palacios O, Caixach J, Rivera J. 2007.
Assessment of polychlorinated dibenzo-p-dioxins and diben-
zofurans in sludges according to the European environmental
policy. Environ Int. 33: 1040–1047.
McDowell R W, Biggs B J F, Sharpley A N, Nguyen L. 2004.
Connecting phosphorus loss from agricultural landscapes to
surface water quality. Chem Ecol. 20: 1–40.
McLaughlin M J. 1984. Land application of sewage sludge: Phos-
phorus considerations. S Afr J Plant Soil. 1: 21–29.
Michael N, Bradshaw A D, Hall J E. 1991. The value of fertili-
zer, surface applied and injected sewage sludge to vegetation
established on reclaimed colliery spoil suffering from regres-
sion. Soil Use Manage. 7: 233–239.
Midgley J F. 2012. Proposed Recovery of Phosphate Enriched
Sediments from the Marine Mining Licence Area no. 170
off Walvis Bay Namibia. Sandpiper Project. Appendix 5.
Namibian Marine Phosphate (PTY) Ltd. J Midgley & Asso-
ciates, Whindoek.
Miller M. 2008. Characterizing the long-term lability of biosolids-
phosphorus. M.S. Thesis, University of Florida.
Mitchell D S, Edwards A C, Ferrier R C. 2000. Changes in fluxes
of N and P in water draining a stand of Scots pine treated
with sewage sludge. Forest Ecol Manag. 139: 203–213.
Montalvo D, Degryse F, McLaughlin M J. 2015. Natural col-
loidal P and its contribution to plant P uptake. Environ Sci
Technol. 49: 3427–3434.
Moorhead D L, Sinsabaugh R L. 2000. Simulated patterns of lit-
ter decay predict patterns of extracellular enzyme activities.
Appl Soil Ecol. 14: 71–79.
Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Mas-
ciandaro G, Fornasier F, Marinari S. 2012. Soil enzymology:
Classical and molecular approaches. Biol Fert Soils. 48: 743–
762.
Nanzyo M. 1986. Infrared spectra of phosphate sorbed on iron
hydroxide gel and the sorption products. Soil Sci Plant Nutr.
32: 51–58.
O’Connor G A, Chinault S L. 2006. Environmental impacts of
land applying biosolids. Fla Wat Res J. 5: 50–54.
O’Connor G A, Elliott H A, Sarkar D, Graetz D R. 2002. Chara-
cterizing Forms, Solubilities, Bioavailabilities, and Minera-
lization Rates of Phosphorus in Biosolids, Commercial Fer-
tilizers, and Manures. Interim Report, Project 99-PUM-2T.
Water Environment Research Foundation, Alexandria.
O’Connor G A, Sarkar D. 1999. Fate of Land Applied Residuals-
Bound Phosphorus. DEP WM 661. Florida Environmental
Protection Agency, Tallahassee.
O’Connor G A, Elliott H A. 2006. The Agronomic and Environ-
mental Availability of Biosolids-P (Phase II). Rep. 99-PUM-
2T. Water Environment Research Foundation, Alexandria.
O’Connor G A, Sarkar D, Brinton S R, Elliott H A, Martin F G.
2004. Phytoavailability of biosolids phosphorus. J Environ
Qual. 33: 703–712.
Oladeji O O, Tian G, Cox A E, Granato T C, O’Connor C,
Abedin Z, Pietz R I. 2013. Effect of long-term application of
biosolids for mine land reclamation on groundwater chemi-
stry: Nutrients and other selected qualities. J Environ Qual.
42: 94–102.
Pascual J A, Garc´ıa C, Hernandez T. 1999. Lasting microbio-
logical and biochemical effects of the addition of municipal
solid waste to an arid soil. Biol Fert Soils. 30: 1–6.
Pautler M C, Sims J T. 2000. Relationships between soil test
phosphorus, soluble phosphorus, and phosphorus saturation
in Delaware soils. Soil Sci Soc Am J. 64: 765–773.
Penn C J, Sim J T. 2002. Phosphorus forms in biosolids-amended
soils and losses in runoff: effects of wastewater treatment pro-
cess. J Environ Qual. 31: 1349–1361.
Pierzynski G M, McDowell R W, Sims J T. 2005. Chemistry,
cycling, and potential movement of inorganic phosphorus in
soils. In Sims J T, Sharpley A N (eds.) Phosphorus: Agricul-
ture and the Environment. American Society of Agronomy,
Madison. pp. 53–86.
Pote D H, Daniel T C, Sharpley A N, Moore P A, Edwards D
R, Nichols D J. 1996. Relating extractable soil phosphorus to
phosphorus losses in runoff. Soil Sci Soc Am J. 60: 855–859.
Qin C, Liu H, Liu L, Smith S, Sedlak D L, Gu A Z. 2015. Bio-
availability and characterization of dissolved organic nitrogen
and dissolved organic phosphorus in wastewater effluents. Sci
Total Environ. 511: 47–53.
Quinton J N, Govers G, Oost K V, Bardgett R D. 2010. The
impact of agricultural soil erosion on biogeochemical cycling.
Nat Geosci. 3: 311–314.
Renella G, Chaudri A M, Falloon C M, Landi L, Nannipieri P,
Brookes P C. 2007a. Effects of Cd, or Zn, or both on soil
microbial biomass and activity in a clay loamsoil. Biol Fert
Soils. 43: 751–758.
Renella G, Landi L, Ascher J, Ceccherini M T, Pietramellara
G, Nannipieri P. 2006. Phosphomonoesterase production and
persistence and composition of bacterial communities during
plant material decomposition in soils with different pH va-
lues. Soil Biol Biochem. 38: 795–802.
Renella G, Landi L, Valori F, Nannipieri P. 2007b. Microbial
and hydrolase activity after release of low molecular weight
organic compounds by a model root surface in a clayey and
a sandy soil. Appl Soil Ecol. 36: 124–129.
Renella G, Szukics U, Landi L, Nannipieri P. 2007c. Quantita-
tive assessment of hydrolase production and persistence in
soil. Biol Fert Soils. 44: 321–329.
Rydin E, Otabbong E. 1997. Potential release of phosphorus
from soil mixed with sewage sludge. J Environ Qual. 26:
529–534.
Saarela I. 1998. Availability of phosphorus in different ashes,
manures and sewage sludges. In Agerlid G (ed.) Phosphorus
Balance and Utilization in Agriculture—towards Sustainabi-
lity. Kungl. Skogs-och Lantbruksakademien, Stockholm. pp.
157–163.
Sablayrolles C, Gabrielle B, Montrejaud-Vignoles M. 2010. Life
cycle assessment of biosolids land application and evaluation
of the factor impacting human toxicity through plant uptake.
J Ind Ecol. 14: 231–241.
S´anchez-Monedero M A, Mondini C, de Nobili M, Leita L, Roig
A. 2004. Land application of biosolids. Soil response to di-
fferent stabilization degree of the treated organic matter.
Waste Manage. 24: 325–332.
Sarkar D, O’Connor G A. 2004. Plant and soil responses to
biosolids-phosphorus in two Florida soils with high phospho-
rus content. Commun Soil Sci Plant Anal. 35: 1569–1589.
Scharenbroch B C, Meza E N, Catania M, Fite K. 2013. Biochar
and biosolids increase tree growth and improve soil quality
for urban landscapes. J Environ Qual. 42: 1372–1385.
BIOSOLID APPLICATION AND GLOBAL P RECYCLE 15
Scharer M, Sinaj S, Moosbauer G, Favre G, Vollmer T, Stamm
C, Frossard E. 2001. Effect of phospahte sorbing amend-
ments on phosphate availability in two soils. In Haygarth
P M, Condron L M, Butler P J, Chisholm J S (eds.) Con-
necting Phosphorus Transfer from Agriculture to Impacts in
Surface Waters. Proceedings of the International Phosphorus
Transfer Workshop (IPTW 2001). Institute of Grassland and
Environmental Research, Plymouth University, Devon. pp.
57–64.
Schindler D W. 1977. Evolution of phosphorus limitation in la-
kes. Science. 195: 260–262.
Schlesinger W H, Bernhardt E S (eds.). 1997. Biogeochemistry:
An Analysis of Global Change. Academic Press, San Diego.
Schroder J L, Zhang H, Zhou D, Basta N, Raun W R, Payton M
E, Zazulak A. 2008. The effect of long-term annual applica-
tion of biosolids on soil properties, phosphorus, and metals.
Soil Sci Soc Am J. 72: 73–82.
Shaheen S, Tsadilas C. 2013. Phosphorus sorption and availabi-
lity to canola grown in an Alfisol amended with various soil
amendments. Commun Soil Sci Plan. 44: 89–103.
Shannon E E, Verghese K I. 1976. Utilisation of alumized red
mud solids for phosphorus removal. J Water Pollut Control
Fed. 48: 1948–1954.
Sharpley A N, Rekolainen S. 1997. Phosphorus in agriculture
and its environmental implications. In Tunney H, Carton O
T, Brooks P C, Johnston A E (eds.) Phosphorus Loss from
Soil to Water. CABI Publ., Cambridge. pp. 1–54.
Shober A L, Hesterberg D L, Sims J T, Gardner S. 2006. Chara-
cterization of phosphorus species in biosolids and manures
using XANES spectroscopy. J Environ Qual. 35: 1983–1993.
Shober A L, Sims J T. 2003. Phosphorus restrictions for land
application of biosolids: Current status and future trends. J
Environ Qual. 32: 1955–1964.
Shober A L, Sims J T. 2007. Integrating phosphorus source and
soil properties into risk assessments for phosphorus loss. Soil
Sci Soc Am J. 71: 551–560.
Siddique M T, Robinson J S. 2003. Phosphorus sorption and ava-
ilability in soils amended with animal manures and sewage
sludge. J Environ Qual. 32: 1114–1121.
Silveira M L, Ferracci´u Alleoni L R, Guimar˜aes Guilherme L
R. 2003. Biosolids and heavy metals in soils. Sci Agr. 60:
793–806.
Silveira M L, O’Connor G A. 2013. Temperature effects on phos-
phorus release from a biosolids-amended soil. Appl Environ
Soil Sci. 2013: 981715.
Smith M T E, Cade-Menun B J, Tibbett M. 2006. Soil phospho-
rus dynamics and phytoavailability from sewage sludge at
different stages in a treatment stream. Biol Fert Soils. 42:
186–197.
Smith S R, Bellett-Travers D M, Morris R, Bell J N B.
2002a. Fertilizer value of enhanced treated and convention-
al biosolids products. In Chartered Inst. Water and Environ.
Mgmt. (ed.) Proceedings of the Chartered Institute of Wa-
ter and Environmental Management (CI-WEM). Biosolids:
The Risks and Benefits. Chartered Inst. Water and Environ.
Mgmt., London. pp. 70–75.
Smith S R, Triner N G, Knight J J. 2002b. Phosphorus release
and fertiliser value of enhanced-treated and nutrient-removal
biosolids. Water Environ J. 16: 127–134.
Smyth T J, Sanchez P A. 1980. Effects of lime, silicate, and
phosphorus applications to an Oxisol on phosphorus sorp-
tion and ion retention. Soil Sci Soc Am J. 44: 500–505.
Solis-Mejia L, Islas-Espinoza M, Esteller M V. 2012. Vermicom-
posting of sewage sludge: earthworm population and agro-
nomic advantages. Compost Sci Util. 20: 11–17.
Soon Y K, Bates T E. 1982. Extractability and solubility of
phosphate in soils amended with chemically treated sewage
sludges. Soil Sci. 134: 89–96.
Standing D, Meharg A A, Killham K. 2003. A tripartite micro-
bial reporter gene system for real-time assays of soil nutrient
status. FEMS Microbiol Lett. 220: 35–39.
Stott D E, Tabatabai M A. 1985. Identification of phospholi-
pids in soils and sewage sludges by high performance liquid
chromatography. J Environ Qual. 14: 107–110.
Stratful I, Brett S, Scrimshaw M B, Lester J N. 1999. Biological
phosphorus removal: its role in phosphorus recycling. Envi-
ron Technol. 20: 681–695.
Strawn D G, Bohn H L, O’Connor G A. 2015. Soil Chemistry.
4th Edn. Wiley-Blackwell, New York.
Stumm W, Morgan J J. 1970. Aquatic Chemistry. lst Edn.
Wiley-lnterscience, New York.
Sui Y, Thompson M L, Shang C. 1999. Fractionation of phos-
phorus in a Mollisol amended with biosolids. Soil Sci Soc Am
J. 63: 1174–1180.
Tian G, Granato T C, Cox A E, Pietz R I, Carlson C R Jr, Abe-
din Z. 2009. Soil carbon sequestration resulting from long-
term application of biosolids for land reclamation. J Environ
Qual. 38: 61–74.
Tian H Q, Lu C Q, Melillo J, Ren W, Huang Y, Xu X F, Liu M
L, Zhang C, Chen G S, Pan S F, Liu J Y, Reilly J. 2012. Food
benefit and climate warming potential of nitrogen fertilizer
uses in China. Environ Res Lett. 7: 1–8.
Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varani-
ni Z, Nannipieri P, Torrent J, Martinoia E, Cesco S. 2008.
Flavonoids of white lupin roots participate in phosphorus
mobilization from soil. Soil Biol Biochem. 40: 1971–1974.
Torri S I, Alberti C. 2012. Characterization of organic com-
pounds from biosolids of Buenos Aires City. J Soil Sci Plant
Nutr. 12: 143–152.
Torri S I, Corrˆea R S, Renella G. 2014. Soil carbon sequestration
resulting from biosolids application. Appl Environ Soil Sci.
38: 61–64.
Torri S, Alvarez R, Lavado R. 2003. Mineralization of carbon
from sewage sludge in three soils of the Argentine pampas.
Commun Soil Sci Plant Anal. 34: 2035–2043.
Torri S, Lavado R. 2009a. Fate of cadmium, copper, lead and
zinc on soils after the application of different treated sewage
sludge in soils of the Pampas region. In Stephens A, Fuller M
(eds.) Sewage Treatment: Uses, Processes and Impact. Nova
Science Publishers, Inc., Hauppauge. pp. 95–123.
Torri S, Lavado R. 2009b. Plant absorption of trace elements
in sludge amended soils and correlation with soil chemical
speciation. J Hazard Mater. 166: 1459–1465.
Torri S, Lavado R. 2011. Carbon sequestration through the use
of biosolids in soils of the Pampas region, Argentina. In
Dupont H C (ed.) Environmental Management: Systems,
Sustainability and Current Issues. Nova Science Publishers,
Inc., Hauppauge. pp. 221–236.
Torri S. 2009. Feasibility of using a mixture of sewage sludge
and incinerated sewage sludge as a soil amendment. In Baily
R E (ed.) Sludge: Types, Treatment Processes and Dispo-
sal. Nova Science Publishers, Inc., Hauppauge. pp. 187–208,
317.
Tran N, Drogui P, Blais J F, Mercier G. 2012. Phosphorus re-
moval from spiked municipal wastewater using either elec-
trochemical coagulation or chemical coagulation as tertiary
treatment. Sep Purif Technol. 95: 16–25.
Tsadilas C D. 2011. Heavy metals forms in biosolids, soils and
biosolid-amended soils. In Selim H M (ed.) Dynamics and
16 S. I. TORRI et al.
Bioavailability of Heavy Metals in the Rootzone. CRC Press,
Taylor and Francis Group, Boca Raton. pp. 271–291.
van der Meer J R, Tropel D, Jaspers M. 2004. Illuminating the
detection chain of bacterial bioreporters. Environ Microbiol.
6: 1005–1020
Van Vuuren D P, Bouwman A F, Beusen A H W. 2010. Phospho-
rus demand for the 1970–2100 period: A scenario analysis of
resource depletion. Global Environ Chang. 20: 428–439.
Walworth J L, Summer M E. 1988. Foliar diagnosis: a review.
In Lauchli A (ed.) Advances in Plant Nutrition. Praeger Pub-
lishers, New York. pp. 193–241, 245.
Weatherley A J, Bolland M D A, Gilkes R J. 1988. A com-
parison of values for initial and residual effectiviness of rock
phosphates measured in pot and field experiments. Aust J
Exp Agr. 28: 753–763.
White J W, Coale F J, Sims J T, Shober A L. 2010. Phospho-
rus runoff from waste water treatment biosolids and poultry
litter applied to agricultural soils. J Environ Qual. 39: 314–
323.
Whitehead P, Chadwick D R, Haygarth P M, Robinson J S. 2001.
Dairy slurry effects on phosphate retention and release in four
UK grassland soils. In Haygarth P M, Condron L M, Butler
P J, Chisholm J S (eds.) Connecting Phosphorus Transfer
from Agriculture to Impacts in Surface Waters. Proceedings
of the International Phosphorus Transfer Workshop (IPTW
2001). Institute of Grassland and Environmental Research,
Plymouth University, Devon. pp. 65–76
Withers P J A, Clay S D, Breeze V G. 2001. Phosphorus trans-
fer in runoff following application of fertilizer, manure, and
sewage sludge. J Environ Qual. 30: 180–188.
Withers P J A, Hartikainen H, Barberis E, Flynn N J, War-
ren G P. 2009. The effect of soil phosphorus on particulate
phosphorus in land runoff. Eur J Soil Sci. 60: 994–1004.
Withers P J A, Jarvie H P. 2008. Delivery and cycling of phos-
phorus in rivers: a review. Sci Total Environ. 400: 379–395.
Withers P J A, van Dijk K C, Neset, T S S, Nesme T, Oene-
ma O, Rubæk G H, Schoumans O F, Smit B, Pellerin S.
2015. Stewardship to tackle global phosphorus inefficiency:
the case of Europe. Ambio. 44: 193–206.
Wong J W C, Su D C. 1997. Reutilization of coal fly-ash and
sewage sludge as an artificial soil-mix: Effects of preincuba-
tion on soil physico-chemical properties. Bioresource Tech-
nol. 59: 97–102.
Yuan Z, Pratt S, Batstone D J. 2012. Phosphorus recovery from
wastewater through microbial processes. Curr Opin Biotech.
23: 878–883.

More Related Content

What's hot

Soil plant-animal relationship
Soil plant-animal relationshipSoil plant-animal relationship
Soil plant-animal relationshipDr. Raju J
 
Soybean and Corn crop response to enhanced efficiency phosphate fertilizer
Soybean and Corn crop response to enhanced efficiency phosphate fertilizerSoybean and Corn crop response to enhanced efficiency phosphate fertilizer
Soybean and Corn crop response to enhanced efficiency phosphate fertilizerAI Publications
 
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...National Institute of Food and Agriculture
 
Sustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsSustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsFAO
 
Evaluation of physicochemical properties of irrigated soil
Evaluation of physicochemical properties of irrigated soilEvaluation of physicochemical properties of irrigated soil
Evaluation of physicochemical properties of irrigated soilAlexander Decker
 
Surface and ground water pollution in abata ogun agricultural wetland
Surface and ground water pollution in abata ogun agricultural wetlandSurface and ground water pollution in abata ogun agricultural wetland
Surface and ground water pollution in abata ogun agricultural wetlandAlexander Decker
 
Assessing soil nutrient depletion to household food insecurity in the smallho...
Assessing soil nutrient depletion to household food insecurity in the smallho...Assessing soil nutrient depletion to household food insecurity in the smallho...
Assessing soil nutrient depletion to household food insecurity in the smallho...Alexander Decker
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...FAO
 
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...CIAT
 
Soil Organic Carbon – devising a single proxy measure for the sustainability ...
Soil Organic Carbon – devising a single proxy measure for the sustainability ...Soil Organic Carbon – devising a single proxy measure for the sustainability ...
Soil Organic Carbon – devising a single proxy measure for the sustainability ...CIAT
 
Downward movement of potentially toxic elements in biosolids amended soils,
Downward movement of potentially toxic elements in biosolids amended soils,Downward movement of potentially toxic elements in biosolids amended soils,
Downward movement of potentially toxic elements in biosolids amended soils,Silvana Torri
 
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty  Ecology - Foundation Course Semester 2- Prof. Karishma Shetty
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty KarishmaShetty16
 
Assignm ent of env.t degradtion and restoration
Assignm ent of env.t degradtion and restorationAssignm ent of env.t degradtion and restoration
Assignm ent of env.t degradtion and restorationmowlid hassan hirsi
 
Effect of biochar on soil properties.
Effect of biochar on soil properties.Effect of biochar on soil properties.
Effect of biochar on soil properties.stanzinKhenrab
 
Solomon Project Final 11
Solomon Project Final 11Solomon Project Final 11
Solomon Project Final 11Solomon Habu
 

What's hot (18)

Soil plant-animal relationship
Soil plant-animal relationshipSoil plant-animal relationship
Soil plant-animal relationship
 
Ppt seminar
Ppt seminarPpt seminar
Ppt seminar
 
Soybean and Corn crop response to enhanced efficiency phosphate fertilizer
Soybean and Corn crop response to enhanced efficiency phosphate fertilizerSoybean and Corn crop response to enhanced efficiency phosphate fertilizer
Soybean and Corn crop response to enhanced efficiency phosphate fertilizer
 
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
Peptide/Protein Stabilization and C and N Sequestration in Soils: Contributio...
 
Sustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investmentsSustainable soil management through proper soil governance and sound investments
Sustainable soil management through proper soil governance and sound investments
 
Evaluation of physicochemical properties of irrigated soil
Evaluation of physicochemical properties of irrigated soilEvaluation of physicochemical properties of irrigated soil
Evaluation of physicochemical properties of irrigated soil
 
The Effects of Varying Coffee Ground Amounts on Earthworm
The Effects of Varying Coffee Ground Amounts on EarthwormThe Effects of Varying Coffee Ground Amounts on Earthworm
The Effects of Varying Coffee Ground Amounts on Earthworm
 
Surface and ground water pollution in abata ogun agricultural wetland
Surface and ground water pollution in abata ogun agricultural wetlandSurface and ground water pollution in abata ogun agricultural wetland
Surface and ground water pollution in abata ogun agricultural wetland
 
Assessing soil nutrient depletion to household food insecurity in the smallho...
Assessing soil nutrient depletion to household food insecurity in the smallho...Assessing soil nutrient depletion to household food insecurity in the smallho...
Assessing soil nutrient depletion to household food insecurity in the smallho...
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
 
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...
Soil Organic Matter for Climate Change Mitigation: Boon or Bane for Food Secu...
 
Soil Health in Relation to Soil Biological Indicators
Soil Health in Relation to Soil Biological IndicatorsSoil Health in Relation to Soil Biological Indicators
Soil Health in Relation to Soil Biological Indicators
 
Soil Organic Carbon – devising a single proxy measure for the sustainability ...
Soil Organic Carbon – devising a single proxy measure for the sustainability ...Soil Organic Carbon – devising a single proxy measure for the sustainability ...
Soil Organic Carbon – devising a single proxy measure for the sustainability ...
 
Downward movement of potentially toxic elements in biosolids amended soils,
Downward movement of potentially toxic elements in biosolids amended soils,Downward movement of potentially toxic elements in biosolids amended soils,
Downward movement of potentially toxic elements in biosolids amended soils,
 
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty  Ecology - Foundation Course Semester 2- Prof. Karishma Shetty
Ecology - Foundation Course Semester 2- Prof. Karishma Shetty
 
Assignm ent of env.t degradtion and restoration
Assignm ent of env.t degradtion and restorationAssignm ent of env.t degradtion and restoration
Assignm ent of env.t degradtion and restoration
 
Effect of biochar on soil properties.
Effect of biochar on soil properties.Effect of biochar on soil properties.
Effect of biochar on soil properties.
 
Solomon Project Final 11
Solomon Project Final 11Solomon Project Final 11
Solomon Project Final 11
 

Similar to Biosolids application to agricultural land: a contribution to global phosphorus recycle,

agronomy-12-02539.pdf
agronomy-12-02539.pdfagronomy-12-02539.pdf
agronomy-12-02539.pdframblicas
 
Effects_of_application_of_biochar_and_straw_on_sus.pdf
Effects_of_application_of_biochar_and_straw_on_sus.pdfEffects_of_application_of_biochar_and_straw_on_sus.pdf
Effects_of_application_of_biochar_and_straw_on_sus.pdfssuser60a3ba2
 
No-tillage on Legacy phosphorus
No-tillage on Legacy phosphorusNo-tillage on Legacy phosphorus
No-tillage on Legacy phosphorusJaison M
 
P recycling in organic farming
P recycling in organic farmingP recycling in organic farming
P recycling in organic farmingRAJESWARI DAS
 
Enhancement of phosphorus utilization and availability in the mountainous reg...
Enhancement of phosphorus utilization and availability in the mountainous reg...Enhancement of phosphorus utilization and availability in the mountainous reg...
Enhancement of phosphorus utilization and availability in the mountainous reg...Open Access Research Paper
 
Sustainable phosphate use
Sustainable phosphate useSustainable phosphate use
Sustainable phosphate useObinnauke2
 
Management of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationManagement of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationAndrew Hutabarat
 
Comparison of PROM and Chemical fertilizer on the fodder Quality of Alfalfa
Comparison of PROM and Chemical fertilizer on the fodder Quality of AlfalfaComparison of PROM and Chemical fertilizer on the fodder Quality of Alfalfa
Comparison of PROM and Chemical fertilizer on the fodder Quality of AlfalfaUsman Khawaja
 
Drivers of soil pollution in agricultural fields
Drivers of soil pollution in agricultural fieldsDrivers of soil pollution in agricultural fields
Drivers of soil pollution in agricultural fieldsExternalEvents
 
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...Umair Riaz
 
Biofertilizewr chapter 141 (1)
Biofertilizewr chapter 141 (1)Biofertilizewr chapter 141 (1)
Biofertilizewr chapter 141 (1)NMurugesan
 
1 s2.0-s2095311914607607-main
1 s2.0-s2095311914607607-main1 s2.0-s2095311914607607-main
1 s2.0-s2095311914607607-mainwajid hussaini
 
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soil
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soilEnhanced efficiency phosphorous fertilizers on the coffee crop in sandy soil
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soilAI Publications
 
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Agriculture Journal IJOEAR
 

Similar to Biosolids application to agricultural land: a contribution to global phosphorus recycle, (20)

agronomy-12-02539.pdf
agronomy-12-02539.pdfagronomy-12-02539.pdf
agronomy-12-02539.pdf
 
Simha_RP
Simha_RPSimha_RP
Simha_RP
 
Effects_of_application_of_biochar_and_straw_on_sus.pdf
Effects_of_application_of_biochar_and_straw_on_sus.pdfEffects_of_application_of_biochar_and_straw_on_sus.pdf
Effects_of_application_of_biochar_and_straw_on_sus.pdf
 
Phosphorus
PhosphorusPhosphorus
Phosphorus
 
No-tillage on Legacy phosphorus
No-tillage on Legacy phosphorusNo-tillage on Legacy phosphorus
No-tillage on Legacy phosphorus
 
P recycling in organic farming
P recycling in organic farmingP recycling in organic farming
P recycling in organic farming
 
Enhancement of phosphorus utilization and availability in the mountainous reg...
Enhancement of phosphorus utilization and availability in the mountainous reg...Enhancement of phosphorus utilization and availability in the mountainous reg...
Enhancement of phosphorus utilization and availability in the mountainous reg...
 
314730
314730314730
314730
 
Sustainable phosphate use
Sustainable phosphate useSustainable phosphate use
Sustainable phosphate use
 
The story of phosporus
The story of phosporusThe story of phosporus
The story of phosporus
 
Management of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptationManagement of soil phosphorus and plant adaptation
Management of soil phosphorus and plant adaptation
 
Comparison of PROM and Chemical fertilizer on the fodder Quality of Alfalfa
Comparison of PROM and Chemical fertilizer on the fodder Quality of AlfalfaComparison of PROM and Chemical fertilizer on the fodder Quality of Alfalfa
Comparison of PROM and Chemical fertilizer on the fodder Quality of Alfalfa
 
Drivers of soil pollution in agricultural fields
Drivers of soil pollution in agricultural fieldsDrivers of soil pollution in agricultural fields
Drivers of soil pollution in agricultural fields
 
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...
Inorganic and Organic Constituents and Contaminants of Biosolids: Implication...
 
Biofertilizewr chapter 141 (1)
Biofertilizewr chapter 141 (1)Biofertilizewr chapter 141 (1)
Biofertilizewr chapter 141 (1)
 
Potato sugarcane 2012
Potato sugarcane 2012Potato sugarcane 2012
Potato sugarcane 2012
 
1 s2.0-s2095311914607607-main
1 s2.0-s2095311914607607-main1 s2.0-s2095311914607607-main
1 s2.0-s2095311914607607-main
 
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soil
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soilEnhanced efficiency phosphorous fertilizers on the coffee crop in sandy soil
Enhanced efficiency phosphorous fertilizers on the coffee crop in sandy soil
 
BIO-CHEMICAL CHANGES OF NUTRIENTS IN RICE PLANT UNDER SODIC SOILS
BIO-CHEMICAL CHANGES OF NUTRIENTS IN RICE PLANT UNDER SODIC SOILSBIO-CHEMICAL CHANGES OF NUTRIENTS IN RICE PLANT UNDER SODIC SOILS
BIO-CHEMICAL CHANGES OF NUTRIENTS IN RICE PLANT UNDER SODIC SOILS
 
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
 

More from Silvana Torri

Silvana Torri et al. 2009
Silvana Torri et al.  2009Silvana Torri et al.  2009
Silvana Torri et al. 2009Silvana Torri
 
Biosolids application to agricultural land: a contribution to global phosphor...
Biosolids application to agricultural land: a contribution to global phosphor...Biosolids application to agricultural land: a contribution to global phosphor...
Biosolids application to agricultural land: a contribution to global phosphor...Silvana Torri
 
Characterization of organic compounds from biosolids of Buenos Aires City,
Characterization of organic compounds from biosolids of Buenos Aires City, Characterization of organic compounds from biosolids of Buenos Aires City,
Characterization of organic compounds from biosolids of Buenos Aires City, Silvana Torri
 
Use of vermiculture technology for waste management and environmental remedia...
Use of vermiculture technology for waste management and environmental remedia...Use of vermiculture technology for waste management and environmental remedia...
Use of vermiculture technology for waste management and environmental remedia...Silvana Torri
 
Potential of Discaria Americana for metal immobilization on soils amended wit...
Potential of Discaria Americana for metal immobilization on soils amended wit...Potential of Discaria Americana for metal immobilization on soils amended wit...
Potential of Discaria Americana for metal immobilization on soils amended wit...Silvana Torri
 
Plant absorption of trace elements in sludge amended soils and correlation wi...
Plant absorption of trace elements in sludge amended soils and correlation wi...Plant absorption of trace elements in sludge amended soils and correlation wi...
Plant absorption of trace elements in sludge amended soils and correlation wi...Silvana Torri
 
Estimation of leaf area in pecan cultivars (Carya illinoinensis),
Estimation of leaf area in pecan cultivars (Carya illinoinensis), Estimation of leaf area in pecan cultivars (Carya illinoinensis),
Estimation of leaf area in pecan cultivars (Carya illinoinensis), Silvana Torri
 
Zn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeZn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeSilvana Torri
 
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeDynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeSilvana Torri
 
Remediación de suelos contaminados con elementos traza mediante el uso de bio...
Remediación de suelos contaminados con elementos traza mediante el uso de bio...Remediación de suelos contaminados con elementos traza mediante el uso de bio...
Remediación de suelos contaminados con elementos traza mediante el uso de bio...Silvana Torri
 
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...Silvana Torri
 
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...Silvana Torri
 
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivosMicronutrientes. En: Fertilidad de suelos y fertilización de cultivos
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivosSilvana Torri
 
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.Silvana Torri
 
Plants response to high soil Zn availability. Feasibility of biotechnological...
Plants response to high soil Zn availability. Feasibility of biotechnological...Plants response to high soil Zn availability. Feasibility of biotechnological...
Plants response to high soil Zn availability. Feasibility of biotechnological...Silvana Torri
 
Zinc availability to forage crops in soils of the pampas region, Argentina.
Zinc availability to forage crops in soils of the pampas region, Argentina.Zinc availability to forage crops in soils of the pampas region, Argentina.
Zinc availability to forage crops in soils of the pampas region, Argentina.Silvana Torri
 

More from Silvana Torri (20)

S Torri et al. 2009
S Torri et al.  2009S Torri et al.  2009
S Torri et al. 2009
 
Silvana Torri et al. 2009
Silvana Torri et al.  2009Silvana Torri et al.  2009
Silvana Torri et al. 2009
 
Torri et al. 2009
Torri et al.  2009Torri et al.  2009
Torri et al. 2009
 
Torri et al 2009
Torri et al 2009Torri et al 2009
Torri et al 2009
 
Torri et al 2017
Torri et al 2017Torri et al 2017
Torri et al 2017
 
Biosolids application to agricultural land: a contribution to global phosphor...
Biosolids application to agricultural land: a contribution to global phosphor...Biosolids application to agricultural land: a contribution to global phosphor...
Biosolids application to agricultural land: a contribution to global phosphor...
 
Characterization of organic compounds from biosolids of Buenos Aires City,
Characterization of organic compounds from biosolids of Buenos Aires City, Characterization of organic compounds from biosolids of Buenos Aires City,
Characterization of organic compounds from biosolids of Buenos Aires City,
 
Use of vermiculture technology for waste management and environmental remedia...
Use of vermiculture technology for waste management and environmental remedia...Use of vermiculture technology for waste management and environmental remedia...
Use of vermiculture technology for waste management and environmental remedia...
 
Potential of Discaria Americana for metal immobilization on soils amended wit...
Potential of Discaria Americana for metal immobilization on soils amended wit...Potential of Discaria Americana for metal immobilization on soils amended wit...
Potential of Discaria Americana for metal immobilization on soils amended wit...
 
Plant absorption of trace elements in sludge amended soils and correlation wi...
Plant absorption of trace elements in sludge amended soils and correlation wi...Plant absorption of trace elements in sludge amended soils and correlation wi...
Plant absorption of trace elements in sludge amended soils and correlation wi...
 
Estimation of leaf area in pecan cultivars (Carya illinoinensis),
Estimation of leaf area in pecan cultivars (Carya illinoinensis), Estimation of leaf area in pecan cultivars (Carya illinoinensis),
Estimation of leaf area in pecan cultivars (Carya illinoinensis),
 
Zn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludgeZn distribution in soils amended with different kinds of sewage sludge
Zn distribution in soils amended with different kinds of sewage sludge
 
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludgeDynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge
 
Remediación de suelos contaminados con elementos traza mediante el uso de bio...
Remediación de suelos contaminados con elementos traza mediante el uso de bio...Remediación de suelos contaminados con elementos traza mediante el uso de bio...
Remediación de suelos contaminados con elementos traza mediante el uso de bio...
 
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...
Mineralization of Carbon from Sewage sludge in three soils of the Argentine p...
 
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...
Distribución y disponibilidad de elementos potencialmente tóxicos en suelos r...
 
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivosMicronutrientes. En: Fertilidad de suelos y fertilización de cultivos
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos
 
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.
Micronutrientes. En: Fertilidad de suelos y fertilización de cultivos.
 
Plants response to high soil Zn availability. Feasibility of biotechnological...
Plants response to high soil Zn availability. Feasibility of biotechnological...Plants response to high soil Zn availability. Feasibility of biotechnological...
Plants response to high soil Zn availability. Feasibility of biotechnological...
 
Zinc availability to forage crops in soils of the pampas region, Argentina.
Zinc availability to forage crops in soils of the pampas region, Argentina.Zinc availability to forage crops in soils of the pampas region, Argentina.
Zinc availability to forage crops in soils of the pampas region, Argentina.
 

Recently uploaded

Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...nirzagarg
 
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...HyderabadDolls
 
Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...kumargunjan9515
 
Vastral Call Girls Book Now 7737669865 Top Class Escort Service Available
Vastral Call Girls Book Now 7737669865 Top Class Escort Service AvailableVastral Call Girls Book Now 7737669865 Top Class Escort Service Available
Vastral Call Girls Book Now 7737669865 Top Class Escort Service Availablegargpaaro
 
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridih
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime GiridihGiridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridih
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridihmeghakumariji156
 
Case Study 4 Where the cry of rebellion happen?
Case Study 4 Where the cry of rebellion happen?Case Study 4 Where the cry of rebellion happen?
Case Study 4 Where the cry of rebellion happen?RemarkSemacio
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteedamy56318795
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...HyderabadDolls
 
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...HyderabadDolls
 
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi ArabiaIn Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabiaahmedjiabur940
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...gajnagarg
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Klinik kandungan
 
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...gajnagarg
 
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...HyderabadDolls
 
Dubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls DubaiDubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls Dubaikojalkojal131
 
Ranking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRanking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRajesh Mondal
 
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...HyderabadDolls
 
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...nirzagarg
 

Recently uploaded (20)

Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hapur [ 7014168258 ] Call Me For Genuine Models We ...
 
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
Charbagh + Female Escorts Service in Lucknow | Starting ₹,5K To @25k with A/C...
 
Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...Top Call Girls in Balaghat  9332606886Call Girls Advance Cash On Delivery Ser...
Top Call Girls in Balaghat 9332606886Call Girls Advance Cash On Delivery Ser...
 
Vastral Call Girls Book Now 7737669865 Top Class Escort Service Available
Vastral Call Girls Book Now 7737669865 Top Class Escort Service AvailableVastral Call Girls Book Now 7737669865 Top Class Escort Service Available
Vastral Call Girls Book Now 7737669865 Top Class Escort Service Available
 
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridih
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime GiridihGiridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridih
Giridih Escorts Service Girl ^ 9332606886, WhatsApp Anytime Giridih
 
Case Study 4 Where the cry of rebellion happen?
Case Study 4 Where the cry of rebellion happen?Case Study 4 Where the cry of rebellion happen?
Case Study 4 Where the cry of rebellion happen?
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
Sealdah % High Class Call Girls Kolkata - 450+ Call Girl Cash Payment 8005736...
 
Call Girls in G.T.B. Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in G.T.B. Nagar  (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in G.T.B. Nagar  (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in G.T.B. Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
Gomti Nagar & best call girls in Lucknow | 9548273370 Independent Escorts & D...
 
Abortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
Abortion pills in Doha {{ QATAR }} +966572737505) Get CytotecAbortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
Abortion pills in Doha {{ QATAR }} +966572737505) Get Cytotec
 
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi ArabiaIn Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
In Riyadh ((+919101817206)) Cytotec kit @ Abortion Pills Saudi Arabia
 
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In bhavnagar [ 7014168258 ] Call Me For Genuine Models...
 
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
Jual obat aborsi Bandung ( 085657271886 ) Cytote pil telat bulan penggugur ka...
 
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...
Top profile Call Girls In Chandrapur [ 7014168258 ] Call Me For Genuine Model...
 
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...
Belur $ Female Escorts Service in Kolkata (Adult Only) 8005736733 Escort Serv...
 
Dubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls DubaiDubai Call Girls Peeing O525547819 Call Girls Dubai
Dubai Call Girls Peeing O525547819 Call Girls Dubai
 
Ranking and Scoring Exercises for Research
Ranking and Scoring Exercises for ResearchRanking and Scoring Exercises for Research
Ranking and Scoring Exercises for Research
 
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
Nirala Nagar / Cheap Call Girls In Lucknow Phone No 9548273370 Elite Escort S...
 
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Begusarai [ 7014168258 ] Call Me For Genuine Models...
 

Biosolids application to agricultural land: a contribution to global phosphorus recycle,

  • 1. Pedosphere 27(1): 1–16, 2017 doi:10.1016/S1002-0160(15)60106-0 ISSN 1002-0160/CN 32-1315/P c⃝ 2017 Soil Science Society of China Published by Elsevier B.V. and Science Press Biosolid Application to Agricultural Land—a Contribution to Global Phosphorus Recycle: A Review Silvana Irene TORRI1,∗ , Rodrigo Studart CORRˆEA2 and Giancarlo RENELLA3 1Department of Natural Resources and Environment, School of Agriculture, University of Buenos Aires, Avenue San Martin 4453, Buenos Aires 1417 DSE (Argentina) 2University of Bras´ılia-UnB/PPGCA, Campus Darcy Ribeiro, Caixa Postal 04.401, 70910-970 DF (Brazil) 3Department of Agrifood Production and Environmental Sciences, University of Florence, Piazzale delle Cascine 18, Florence 50144 (Italy) (Received June 30, 2016; revised November 10, 2016) ABSTRACT Phosphorus (P) is an essential nutrient required for plant development. Continuous population growth and rising global demand for food are expected to increase the demand for phosphate fertilizers. However, high-quality phosphate rock reserves are progressively becoming scarce. Part of the increased pressure on P resources could be alleviated by recycling P present in biosolids. Therefore, it is crucial to understand the dynamics of P in biosolid-amended soils, the effects of residual biosolid-borne P in soils, the way in which microorganisms may control P dynamics in biosolid-amended soils and the environmental implications of the use of biosolids as a source of P. Further research is needed to maximize biosolid-borne P uptake by crops and minimize its loss from biosolid-amended soils. The analysis of the microbiological control of P dynamics in biosolid-amended soils indicates interactions of biosolid P with other nutrients such as carbon (C) and nitrogen (N), suggesting that harmonization of the current regulation on the use of biosolids in agriculture, mainly based on total N and pollutant contents, is needed to better recycle P in agriculture. Key Words: anthropogenic P, phosphate, P availability, P biogeocycle, P uptake, runoff P Citation: Torri S I, Corrˆea R S, Renella G. 2017. Biosolid application to agricultural land—a contribution to global phosphorus recycle: A review. Pedosphere. 27(1): 1–16. INTRODUCTION Phosphorus (P) is an essential nutrient for all forms of life. Biomolecules containing P are present in cellu- lar components, including membranes (phospholipids), genetic material (DNA and RNA), and energy storage (ATP and ADP), among others (Elser, 2012). While humans and animals satisfy their need for P via food intake, plants have to absorb it from soils. In spite of its wide distribution in nature, P is one of the least available mineral nutrients to plants (Goldstein et al., 1988), and P uptake is usually a growth-limiting fac- tor (Grant et al., 2005). Unlike nitrogen (N), the bio- geochemical cycle of P does not include a significant gaseous component, since its annual atmospheric de- position rates are in the order of 0.25 kg P ha−1 year−1 (Liu Y et al., 2008). In natural ecosystems, P is entire- ly supplied from the weathering of parent materials (Schlesinger and Bernhardt, 1997), and the amount of total P is preserved because it is released back to the soil system through plant residues, animal excreta or when organisms die. In agricultural systems, crop removal represents the primary route by which P is lost from soils. Unless P sources are artificially incor- porated to agricultural soils, both total and available P stocks steadily decrease with time to the point that the soil can no longer adequately supply plant P needs (Van Vuuren et al., 2010). In the course of time, soil P depletion may lead to loss of soil fertility and produc- tivity. Mineral phosphate fertilizers are the primary so- urce of P input to agricultural lands. Even though the use of rock phosphate-based fertilizers was introduced in the 1820s, it was not until the late 1940s that P fertilizers were increasingly requested. In 2011, global phosphate fertilizer production resulted in the deple- tion of approximately 20 Mt of P from phosphate rock (Jasinski, 2013). The demand for P is expected to in- crease in the following years due to continuous popu- lation growth and rising global demand for food, with a predicted increase to approximately 257 Mt by 2017 (Heffer, 2013; Jasinski, 2013). Economic, high-quality ∗Corresponding author. E-mail: torri@agro.uba.ar.
  • 2. 2 S. I. TORRI et al. phosphate rock reserves are progressively becoming scarce (Cordell and Neset, 2014). Although reserves of phosphate rock are found in several countries and new reserves have been identified (Midgley, 2012), phos- phate rock is a finite, non-renewable resource. Accor- ding to the U.S. Geological Survey, phosphate deposits will last about 50 years at the current rate of extrac- tion (Kelly and Matos, 2013). Therefore, there is an increasing concern regarding phosphate rock reserves to become depleted. Part of the increased pressure on P resources could be alleviated by recycling P present in various agricul- tural and urban wastes (Frossard et al., 2009; Mac- Donald et al., 2011). However, the joint effects of poor knowledge of P status and the lack of a clear regulation on manure or organic waste agricultural management still limits P recycling potential in agriculture. This paper reviews the availability and environmental fate of P present in biosolids and envisages some possible strategies for its sustainable management. BIOSOLIDS AS A SOURCE OF P Land application of organic by-products is an eco- nomically attractive waste management strategy, lar- gely promoted by scientists and regulating organisms. Furthermore, it has been a socially accepted practice for decades in many parts of the world (Tsadilas, 2011; Larney and Angers, 2012; Lu et al., 2012). The term biosolid was introduced in the early 1990s to designate the solid, semi-solid or liquid materials generated from the treatment of domestic sewage slu- dge that has been sufficiently processed to be safely land-applied. Biosolids contain organic carbon (C), N, P, potassium (K), sulphur (S), calcium (Ca), magne- sium (Mg), and microelements necessary for plants and soil fauna to live. Nutrient contents in biosolids depend on the untreated water source, chemicals used for pu- rification, and types of unit operations used, and were reported to be in the ranges of 1–210 g N kg−1 , 1– 150 g P kg−1 , 1–65 g K kg−1 , 5–170 g Ca kg−1 , and 2–94.5 g Mg kg−1 (Hansen and Chaney, 1984; Solis- Mejia et al., 2012). Application of biosolids on agricul- tural and degraded lands is one of the most promising alternatives of disposal, because it offers the possibility of recycling plant nutrients and organic matter (Gar- c´ıa-Orenes et al., 2005; Torri and Lavado, 2009a, b; Kowaljow et al., 2010). This practise may also con- tribute to soil C sequestration, reducing greenhouse gas emissions (Haynes et al., 2009; Tian et al., 2009; Torri and Lavado, 2011; Torri et al., 2014). However, bio- solids may contain undesirable hazardous substances such as potentially toxic trace elements ranging from less than 1 to over 1 000 mg kg−1 , polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and dioxins (Abad et al., 2005; Mart´ınez et al., 2007; Torri, 2009; Ahumada et al., 2014; Jord´an et al., 2016). Consequently, biosolids have to be properly treated and disposed to prevent health risk and en- vironmental contamination (Kroiss, 2004). Although to date experimental results indicate a low level of risk for crops or pastures (Torri and Lavado, 2009a, b; Cogger et al., 2013a), application of biosolids onto non-agricultural land is usually preferred to avoid the risk of hazardous substances entering the food chain (Magesan and Wang, 2003; Athamenh et al., 2015). In the European Union, a global regulation on biosolid use in agriculture relies on the Water Frame- work Directive (2000/60/EC) (EC, 2000) and the sub- sequent Groundwater Directive (2006/118/EC) (EC, 2006), which have resumed all the previous specific Directives on bathing waters, sewages sludge, urban wastes and nitrates, and limit the potential recycle of any biosolids in agriculture to their impacts on surface water, groundwater, and atmosphere caused by exces- sive nutrient, organic and inorganic pollutants. While most organic pollutants can be degraded and excessive N may be volatilized during sludge treatment, trace elements are generally concentrated and may exceed the mandatory limits for sludge application to agri- cultural soils (CEC, 1986). Elevated contents of trace elements prevent the use of sludge as a soil amendment because of their negative impacts on soil microbial di- versity and microbial activity (Renella et al., 2007a; Gomes et al., 2010). In wastewater, P is mainly found as orthophos- phates, usually linked to small amounts of organic P (Tran et al., 2012). Phosphorus removal is performed by biological treatment or physiochemical precipita- tion. In both cases, the soluble forms of P are con- verted into a solid fraction, which can be an insolu- ble salt or microbial biomass (De-Bashan and Bashan, 2004). Physiochemical precipitation removes dissolved P phosphates by the addition of aluminium (Al), iron (Fe), or calcium (Ca) compounds (Lee and Lin, 2007). The reaction is probably a combination of sur- face adsorption onto metal hydroxides with chemi- cal precipitation of the metal phosphate, producing low P concentrations in the liquid phase (Elliott and O’Connor, 2007). Biological P removal (BPR) pro- cess relies on the use of a specific group of bacteria that take up P in excess for their growth requirements (Chen et al., 2013; Keating et al., 2016). The excess of P is stored as intracellular granules of polyphosphate (Grady et al., 2011), concentrating diluted P in waste-
  • 3. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 3 water by 10–50 times in bacterial aggregates (Yuan et al., 2012). Depending on the pre- or post-treatment used, mean total P in biosolids was reported to be in the range of 3.7–72.6 g P kg−1 on a dry weight base (Bar- barick and Ippolito, 2007; Cordell, 2010). The addition of some type of liming agent to stabilize biosolids may result in lower total P (Christie et al., 2001). Since more stringent N and P discharge limits have been im- plemented on wastewater treatment plants (WWTP) in environmentally sensitive areas, total P in biosolids is expected to increase from current values (Clark et al., 2010; Qin et al., 2015). In biosolids, P exists in both soluble and insolu- ble organic and inorganic P compounds (Tian et al., 2012). Inorganic P is the predominant form, represen- ting 70%–90% of total P (O’Connor et al., 2004; He et al., 2010). Most P in biosolids is commonly in the forms of aluminium phosphate (Shannon and Verghese, 1976), adsorbed onto ferric hydroxo-phosphate surfaces (Jenkins et al., 1971), and hydroxyapatite or tricalcium phosphate (Stumm and Morgan, 1970), with relatively low water-soluble P as compared to total P (Brandt et al., 2004). Organic P is mainly found as orthophos- phate monoesters, orthophosphate diesters, phospho- nates, phytates, and phospholipids (Hinedi et al., 1989; He et al., 2010; Torri and Alberti, 2012). It is well known that availability of P to plants depends on the replenishment of labile P in the soil solution from diverse soil fractions (Beck and Sanchez, 1994). In a general sense, P availability is defined as those P compounds that are present in the correct chemical forms to be taken up by plants during their life cycle or taken up and used by living biological organisms. The most significant P compound in terms of availability is the orthophosphate anion, which is associated with readily accessible short-term availabi- lity for plants (Montalvo et al., 2015; Anand et al., 2016). Phosphorus precipitation and dissolution reac- tions greatly influence its concentration in the soil so- lution, whereas organic P has to be hydrolyzed and mineralized by microbial biomass to release orthophos- phate anions. Hence, the importance of insoluble P compounds rests entirely on their ability to buffer P solution concentration or to become soluble in the soil environment (McLaughlin, 1984). Phosphorus availability in biosolids is strongly in- fluenced by the wastewater treatment (WWT) proces- ses (O’Connor et al., 2004; Elliott et al., 2005; White et al., 2010). Sludge treatment with high Al and/or Fe doses results in biosolids having low available P con- centrations, with Fe and Al phosphates as dominant P forms (Shober and Sims, 2007). Taking into account that the solubility kinetics of these phosphate mine- rals is extremely slow, it is unlikely that such mine- rals, once formed, would readily release P into the soil solution (Strawn et al., 2015). In fact, P in bio- solids treated with Al and Fe was found to be less soluble than P in untreated biosolids or commercial fertilizers (Kyle and McClintock, 1995). Addition of lime was reported to increase biosolid pH and decrease the solubility of P by the formation of recalcitrant Ca- phosphate minerals (Maguire et al., 2006; Shober et al., 2006; Islas-Espinoza et al., 2014). Conversely, bio- solids obtained by BPR exhibit both elevated total P and water-extractable P when exposed to anaerobic conditions (Stratful et al., 1999; Penn and Sim, 2002; Ebeling et al., 2003). As the latter achieves effluent P standards without the use of metal salts, the resultant biosolids are typically low in Al and Fe contents and their water-soluble P is higher than that of the other treatments (Penn and Sims 2002; Brandt et al., 2004). Heat-dried biosolids (non-BPR) were reported to have the lowest P availability of all WWT processes. Heat drying has been seen to reduce P extractability by an average of 75% compared to dewatered proces- ses (Smith et al., 2002a). Sarkar and O’Connor (2004) found that heat-dried biosolids containing high levels of Al and Fe have less than 10% water-soluble P. Ot- her researchers reported that water-soluble P in heat- dried biosolids was relatively low, in the range of 0.2%– 38%, as compared to total P (Frossard et al., 1996a; Brandt et al., 2004). Smith et al. (2002b) indicated that heat drying changes available P forms into low soluble crystalline P minerals such as hydroxyapatite and iron pyrophosphate. It was hypothesized that the relatively low P bioavailability may be partly attributed to slow physical breakdown of the pellets (O’Connor and Sarkar, 1999; Smith et al., 2002b). In the light of all these, O’Connor et al. (2004) suggested grouping biosolids into three categories according to biosolid-borne P availability relative to the inorganic fertilizer triple superphosphate (TSP): low (< 25% of TSP), moderate (25%–75% of TSP), and high (> 75% of TSP). Their study identified biosolids produced with conventional WWT processes as being in the moderate category, BPR biosolids as being in the high category, and biosolids with high total Fe and Al as being in the low category. Current potential techniques for direct speciation of P in soil and organic matrices have been reviewed by Kruse et al. (2015). DYNAMICS OF P IN BIOSOLID-AMENDED SOILS The dynamics of biosolid-borne P differs from that
  • 4. 4 S. I. TORRI et al. of mineral fertilizer P because not all the P in bio- solids is phytoavailable in soil (Penn and Sims, 2002; Codling, 2014). As mentioned above, biosolid P phy- toavailability is closely related to its chemical forms in the solid phase (Akhtar et al., 2005), which depends on the composition of the wastewater entering the treat- ment plant and the type of treatment process used (Sa- blayrolles et al., 2010). Biosolid-borne P is often less soluble and less plant available compared to soluble phosphate fertilizer P (Tian et al., 2009). Jenkins et al. (2000) estimated that almost 50% of phosphate in most biosolid products is available for plant uptake du- ring the first year. When biosolids are land applied, different processes occur, such as P sorption/desorption, microbial decom- position of organic P, and dissolution/precipitation of mineral P phases. Thus, changes in the forms and con- centrations of biosolid-borne P occur upon biosolid in- corporation. Depending on the biological and physico- chemical properties of a soil, the rate of one of these processes may be higher than the other one. Several studies have reported an increase in bio- available P levels in biosolid-amended soils in line with biosolid application rates (Akhtar et al., 2012; Alleoni et al., 2012; Hosseinpur and Pashamokhtari, 2013; Sha- heen and Tsadilas, 2013). This increase may be at- tributed to the high concentration of inorganic P in the biosolids. However, these differences seem to be less pronounced in P-enriched soils or soils that have high affinity to retain P, such as those derived from cal- careous parent material (Sarkar and O’Connor, 2004; Ippolito et al., 2007). Other researchers reported that the shift of biosolid-borne P from less labile to more labile forms may also contribute to increases in soil P availability to plants (Sui et al., 1999; Haney et al., 2015). Calcium-dominated biosolids result in higher con- centrations of water-soluble P in biosolid-amended soils (Brandt et al., 2004). Moreover, alkaline-stabi- lized biosolids exhibit mean percentages of water- extractable P statistically higher than conventionally stabilized biosolids, which may be attributed to the mineralization of organic P in biosolids. Many studies have found that lime amendments increase soil orga- nic C mineralization (Wong and Su, 1997; Torri et al., 2003). Jokinen (1990) studied the influence of treat- ment process on available soil P in biosolid-amended soils and concluded that Al treatment reduces soil P availability, whereas Ca treatment increases soil P ava- ilability. Recently, Withers et al. (2015) observed that Fe-treated and thermally dried biosolids give the lowest increases (3%–6%), whereas lime-treated biosolids pro- duce the largest increases in available P (11%–12%). Past research has shown that P availability in soils amended with chemically treated, anaerobically diges- ted biosolids followed the order: Ca treatment > Fe treatment > Al treatment (Soon and Bates, 1982). An explanation to this is that P is bound to soil Ca sur- faces with lower binding energy compared with Fe or Al surfaces which bind P more strongly (Delgado and Torrent, 1997; Elliot et al., 2002b). Therefore, chemi- cal addition of Al, Fe, and Ca during wastewater and biosolid processing is of main importance in determi- ning P dynamics in biosolid-amended soils. Moreover, if biosolids had undergone thermal treatment, the re- activity of Fe-bound P minerals in biosolids is consi- derably reduced and, consequently, the release of avai- lable P is restricted (Hogan et al., 2001). Biosolid soil application may also enhance P mi- neralization, which would contribute to releases of or- ganic biosolid-borne P and thus lead to an increase in extractable P levels in the soil (O’Connor et al., 2004). The positive correlations between soil respira- tion and labile organic C and N in biosolid-amended soils suggest that the stimulation of the activity of both soil and biosolid-borne microbial communities can e- xert a general solubilizing effect towards biosolid nutri- ents (S´anchez-Monedero et al., 2004; Jin et al., 2011), including P (Haney et al., 2015). However, the inte- raction between biosolid degradation and P availability may be more complex. For instance, in a leaching ex- periment, Silveira and O’Connor (2013) reported that dissolved organic C (DOC) released through biosolid mineralization does not follow the same pattern as P in leachates. Their results suggest that part of the mi- neralized P is sorbed onto Al and Fe oxides present in the soil, masking any relationship between DOC and water-extractable P concentrations. Land application of biosolids also incorporates non- crystalline, colloidal amorphous forms of Fe and Al oxides with a large specific surface area (Shober et al., 2006). These amorphous complexes of Fe and Al oxides can effectively adsorb or bind native soil phos- phates (Nanzyo, 1986). Most research results have shown that land application of biosolids modifies not only soil P adsorption capacity (Maguire et al., 2000; Lu and O’Connor, 2001), but also certain soil proper- ties, such as dissolved organic matter, electrical con- ductivity, pH and biological properties (Silveira et al., 2003; Gilmour et al., 2003; Torri, 2009; Scharenbroch et al., 2013). Biosolid organic matter was found to have an indirect effect on phosphate adsorption, through in-
  • 5. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 5 hibiting Al oxide crystallization and even through in- creasing the amorphous nature of Al (Bøen et al., 2013; Maguire et al., 2000). This effect was similar, but less pronounced, for Fe compounds (Borggaard et al., 1990). In addition, P availability in biosolid- amended soils may be also modified by environmental conditions, such as temperature and moisture content. Specific reactions between biosolid-borne P and the soil matrix increase with time and, thus, P extractabi- lity may be considerably reduced. For example, Silve- ira and O’Connor (2013) observed that P becomes less bioavailable with time due to increased P sorp- tion. Consequently, it is very complicated to predict the dynamics and availability of biosolid-borne P in biosolid-amended soils. EFFECT OF RESIDUAL BIOSOLID P IN SOILS Phosphorus from biosolids has been applied in ex- cess to soils at N-based rates because sewage materials have a much higher P:N ratio (0.5–1.1) than required by plants (0.07–0.14) (Mitchell et al., 2000). Even though the fate of P after biosolid N exhaustion is still an unsolved matter in the management of sewage materials in soils (Corrˆea, 2004). Nutrients from bio- solids and chemical fertilizers may continue to act in soils beyond the period they are supposed to promote plant growth (Weatherley et al., 1988). Such a linge- ring effect to nourish plants decreases with time (Cor- rˆea and Silva, 2016) to a negligible level considered as residual effect (Barrow and Campbell, 1972). Seve- ral studies have measured residual effects of fertilizers, but only few have done it for biosolids (Michael et al., 1991). Residual effects of biosolid P left in soils can be measured in various ways including by means of plant yield, providing that all other nutrients for plant growth are sufficiently supplied (Barrow and Camp- bell, 1972). In this case, biosolid P remaining in soils after N depletion may further enhance plant yields if N fertilizer is again supplied to plants (Pascual et al., 1999). Nutrient availability for plant uptake depends on soil chemical, biological, and physical conditions. Or- ganic matter, organisms, and nutrients that remain in biosolid-amended soils after N depletion may improve soil conditions (Corrˆea and Bento, 2010) and further increase plant absorption of nutrients if N is applied on the top of residual biosolids (Corrˆea et al., 2005). Posi- tive effects of residual biosolid P and organic matter in a Spodosol have been indirectly measured through di- fferences in plant production between chemically ferti- lized soils (control) and soils containing residual ter- tiary domestic sewage sludge that were applied with urea N (Fig. 1) (Corrˆea, 2002). Plant yields were 2–3 times higher in the Spodosol containing residual bio- solids than in the control (Fig. 1). The application of chemical P to the Spodosol containing residual bioso- lids did not enhance plant yields, since P was not in shortage in this soil after N exhaustion (Barrow and Bolland, 1990; Corrˆea, 2004). Differently from the Spodosol, an Oxisol contai- ning the same residual tertiary domestic sewage sludge showed detrimental effect on plant yields after recei- ving urea N (Fig. 2) (Corrˆea, 2002). Such an effect sug- gests shortage of available P because the Oxisol chemi- cally fertilized at 20 mg P kg−1 (control) responded well to increasing rates of urea N. Oxisols have a high P-fixing capacity due to their high contents of Fe and Al oxides (Smyth and Sanchez, 1980), which decrease P availability to plants by means of phosphate adsorp- tion onto soil particles (Barrow and Campbell, 1972). As previously mentioned, tertiary sewage sludge is con- Fig. 1 Plant yields (dry weight) at different rates of urea N applied to a Spodosol chemically fertilized at 20 mg P kg−1 (control) and to the same Spodosol containing residual tertiary sewage sludge previously applied at rates of 1, 3, and 5 t ha−1 (Corrˆea, 2002).
  • 6. 6 S. I. TORRI et al. Fig. 2 Plant yields (dry weight) at different rates of urea N applied to an Oxisol chemically fertilized at 20 mg P kg−1 (control) and to the same Oxisol containing residual tertiary sewage sludge previously applied at rates of 1, 3, and 5 t ha−1 (Corrˆea, 2002). ditioned with Al and Fe salts that can further increase phosphate-retention capacity of soils (Whitehead et al., 2001). Scharer et al. (2001) reported that the applica- tion of Al and Fe oxides to a soil at 10 mg kg−1 in- creased its P-sorption capacity by 1.6 times, with pro- portional decrease in P availability in soil solution. As a result, up to 90% of P in biosolids conditioned with Al and Fe salts can not be taken up by plants (Corrˆea, 2004; Sarkar and O’Connor, 2004). The incorporation of tertiary sewage sludge into soils naturally rich in Fe and Al like the Oxisol may turn the edaphic environ- ment into a P sink. When it happens, P sources applied at rates high enough to exceed P sorption capacity of biosolid-amended soil can overcome shortage of avai- lable P for plant growth (Maguire et al., 2000). A- gricultural lime (CaCO3 or CaMg(CO3)2) amendment can decrease soil P-sorption capacity for a while, but P application is more effective in increasing P availabi- lity in soils than lime amendment (Smyth and Sanchez, 1980). Contrary to the Spodosol, plant yields respon- ded well to the application of P fertilizer to the Oxi- sol containing residual tertiary sewage sludge (Corrˆea, 2002), which confirms the hypothesis of shortage of available P in the last soil. Studies have generally re- ported decreases in plant P uptake from soils amen- ded with biosolids conditioned with Al and Fe salts (Saarela, 1998; Esteller et al., 2009). Investigation on P sorption revealed that both P isotherm slopes and equilibrium P concentrations have unfavorably been al- tered in the Oxisol containing residual tertiary sewage sludge in comparison to the control Oxisol, which was not amended with sewage sludge (Corrˆea, 2002). Par- ticular behaviors of biosolid P in different soils make it difficult to generalize an optimal biosolid use for a self- sustained positive residual effect. A specific aspect of P dynamics in biosolid-amended soils is that the flexi- bility of soil microorganisms influence P uptake and immobilization rates, in particular in relation to C and N availability by altering the C:N:P ratio (Frossard et al., 1996b; Maguire et al., 2000). There are several mechanisms of nutrient interactions in soils, and plant responses to N are often dependent upon the availabi- lity of P (Walworth and Summer, 1988). The magnitude of P adsorption to soil particles is also related to timing after a soil receiving phosphate application (Burkitt et al., 2001; Whitehead et al., 2001). Thus, biosolid P left in some soil types after N exhaustion may not be useful for plant production after a certain time due to soil P fixation. In other soils like the Spodosol, plant yields were significantly enhanced when chemical N was applied on the top of residual biosolid P (Corrˆea, 2002), which continues to be valu- able for plant production. Among various minerals and substances present in soils, Fe and Al oxides lead to the highest P-fixing capacity due to the increasing number of sorption sites (Celi et al., 2001; Scharer et al., 2001; Liu Z et al., 2008). In this regard, a promising alter- native to the use of Al and Fe salts in WWT process is recovering N and P as struvite (MgNH4PO4·6H2O), a slow-release fertilizer that precipitates when Mg and lime (CaO or Ca(OH)2) are added to wastewater or sewage sludge (Liu Z et al., 2008). This can increase the efficiency of biosolid P use by plants (Corrˆea, 2004) and enhance the recycling of P from wastes in soils. MICROBIOLOGICAL CONTROL OF P DYNAMICS IN BIOSOLID-AMENDED SOILS The existence of a microbial P turnover in soils is long known and its relation with C and N cycles has
  • 7. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 7 been proven in the past (Johnson and Broadbent, 1952). There is a general consensus that biosolid-borne P undergoes a slower turnover rate than P from chemi- cal fertilizers. This is mainly due to the complexity of biosolid matrix that becomes more recalcitrant during decomposition. Moreover, biosolid particle allocation within the soil aggregates also contributes to different partition among the different biotic and abiotic pools (Fig. 3), as hypothesized by Hens and Merckx (2001). Soil microorganisms as well as plant roots actively or passively release extracellular enzymes to mineralize C, N, P, and S from complex substrates to make them bioavailable (Nannipieri et al., 2012). Biochemical hy- drolysis of organic phosphate esters in soils is main- ly catalyzed by phosphomonoesterase and phospho- diesterase, which release orthophosphate anions, the preferentially assimilated P form by plants and soil microorganisms. It has been reported that phosphomo- noesterase activity in the rhizosphere is the main me- chanism for P acquisition by plants (Gilbert et al., 1999), catalyzing P released by a wide range of or- thophosphate esters and anhydrides (Gellatly et al., 1994). More complex P solubilization mechanisms, me- diated by the release of specific secondary metabo- lites such as polyphenols in legume plants, have al- so been reported (Tomasi et al., 2008). In forest soils phosphatase activity responds mainly to seaso- nal changes of soil temperature and moisture, whereas in arable soils, phosphatase activity mainly responds to agricultural practices (Dick and Tabatabai, 1992) and to the release of root exudates by crops (Renel- la et al., 2007b). Phosphatase activity can be inhibi- ted in soils fertilized with N, P, and K, whereas in biosolid-amended soils, P is added together with ot- her nutrients (e.g., C, N, and S), used as energy sources by soil microorganisms for the synthesis of several hydrolytic enzymes according to the economic theory (Allison and Vitousek, 2005; Renella et al., 2007c). This makes the major difference in P dynamics between biosolid amendment and inorganic P fertiliza- tion. In any case, high phosphatase activity genera- lly observed in biosolid-amended soils does not neces- sarily imply high P availability, as variable values of phosphatase:microbial biomass ratio have been found in different agro-ecosystems (Carpenter-Boggs et al., 2003). Increasing acid phosphomonoesterase activity has been previously reported in agricultural soils amended with biosolids (Dodor and Tabatabai 2003), and it is likely related to the increases of soil microbial biomass and activity in response to higher nutrient contents. Different production and persistence rates of various soil enzyme activities in different soils have also been previously reported (Renella et al., 2007c). Biosolid- amended soils may also undergo changes in pH-bu- ffering capacity, which may change phosphatase acti- vity (Renella et al., 2006). Phosphomonoesterase and phosphodiesterase activities in biosolid-amended soils Fig. 3 Phosphorus cycle in agricultural soils amended with chemical P fertilizers or biosolids. The thickness of the arrows and of the boxes represent the relative importance of the pools and processes in the P cycle, respectively.
  • 8. 8 S. I. TORRI et al. can be considered as indicators of potential P release from sewage sludge because these biosolids genera- lly contain various P forms, with a predominant pro- portion of phospholipids (Stott and Tabatabai, 1985). Competition between plants and microorganisms for P in the rhizosphere mainly depends on P demand by crops, which in turn depends on plant development stage. Previous studies have shown that the higher the P demand by crops, the higher the acid phosphomo- noesterase activity, either of plant or microbial origin (Moorhead and Sinsabaugh, 2000). Bioavailability is the potential for a substance or molecule to be trans- ported across the cell layer. In complex natural bodies like soil, this pool can be determined by the use of whole cell biosensors. Whole cell biosensors are soil- borne bacterial strains inserted with genes producing a detectable signal (e.g., lux for bioluminescence and gfp for autofluorescent proteins) upon assimilation of specific molecules (van der Meer et al., 2004). Micro- bial biosensors responding to C, N, and P in soil have been constructed and used to monitor the bioavaila- ble C, N, and P pools in plant rhizosphere and bulk soil (Kragelund et al., 1997; Darwent et al., 2003). The use of whole cell biosensor, although not routine and standardized methods, hold the potential to finely as- sess P dynamics in biosolid-amended soils, where more chemical P forms are present compared to soils ferti- lized with inorganic P. Moreover, the development of whole cell biosensors with multiple gene insertions and of signaling availability for different nutrients (Koch et al., 2001) or the use of simultaneous biosensors re- sponding to C, N, and P (Standing et al., 2003) allows the study of P bioavailability in function of C and N bioavailability, which may reveal how P dynamics is interactively influenced by C and N bioavailability. In particular, their use may be useful to better under- stand how C and N bioavailability influences biosolid P mineralization/immobilization dynamics, taking in- to account that different biosolids may widely vary in their C:N:P ratios both at the time of application or during decomposition (Cleveland and Liptzin, 2007). ENVIRONMENTAL IMPLICATIONS OF BIOSO- LID USE In most legislation, annual application rates of bio- solids are determined by crop N requirements. The rea- son for this is to prevent N leaching to groundwater (Corrˆea et al., 2012; Al-Dhumri et al., 2013). Howe- ver, the relatively low N/P ratio of biosolids has led to a significant over application of P at the N-based rate. As the amounts of P applied often exceed crop removal (Shober and Sims, 2003; Schroder et al., 2008; Cogger et al., 2013b), more than 95% of biosolid-borne P remains in soils (Corrˆea, 2004). Surplus soil P from biosolids is not detrimental to plants. Many soils in developed nations nowadays contain adequate to ex- cessive P due to years of application of P fertilizers or organic materials containing P (O’Connor and China- ult, 2006), but soil P sorption capacity may become saturated with time (Smith et al., 2006; Withers et al., 2009). Maguire et al. (2000) reported increased soil P and increased P saturation in soils receiving long-term biosolid amendment relative to unamended soils. Past research has shown that soils that are more saturated with P have less capacity to retain added P, which may increase the more labile forms of soil P, with the risk of P loss in runoff or by leaching (Hooda et al., 2000; Pautler and Sims, 2000). The problem arises when ru- noff waters or subsurface flows contain environmen- tally unacceptable contents of dissolved P forms, or when highly P-enriched soil particles are eroded in- to water bodies (Maguire et al., 2005). Diffuse P pol- lution is directly associated with the development of water body eutrophication in agricultural ecosystems (Withers and Jarvie, 2008; Quinton et al., 2010). Al- though both P and N contribute to eutrophication, P is the primary agent in freshwater eutrophication be- cause many algae are able to obtain N from the at- mosphere (Schindler, 1977). Soluble P as low as 0.02 mg L−1 is sufficient to induce water body eutrophica- tion (Sharpley and Rekolainen, 1997). Eutrophication brings a series of adverse ecological and water quality problems such as fish death, shifts in species compo- sition, blooms of harmful algae, and hypoxia in water body, together with the presence of toxins, taste and odour in drinking water (Hilton et al., 2006; Lowe et al., 2008). Research has shown that not all biosolids have the same potential to affect the environment when land applied. The solubility of P in biosolids exerts a ma- jor influence on the potential for off-site P migration at land application sites. As mentioned above, WWT processes govern soil P solubility because of several factors, including biosolid treatment (especially heat drying) and biosolid chemical composition (especially contents of Fe, Al, and Ca). Several studies have re- ported a relationship between low P solubility in bioso- lids and a high content of total or amorphous Fe and Al (Maguire et al., 2001; O’Connor et al., 2004; Krogstad et al., 2005). Biosolid treatments that produce rela- tively dry biosolids, like heat drying, tend to reduce water-extractable P (WEP) (Brandt et al., 2004). Si- nce only a small fraction of P from most conventionally
  • 9. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 9 produced biosolids is soluble, biosolid P should be less likely to negatively affect the environment compared with soluble P sources like mineral fertilizers or ma- nures. Even though the solubility of P in the soil increa- ses with biosolid application rates, off-site P migration may not necessarily increase, since a number of bin- ding compounds incorporated through biosolids coun- teract the leaching process. For example, Withers et al. (2001) measured runoff P from field plots that had previously received P from different sources, and con- cluded that there was a lower risk of P runoff follo- wing application of biosolid compared with other agri- cultural P amendments at similar P application rates. Al- and Fe-rich biosolids have been found to increase the amorphous soil fraction, which is considered to be a measure of the P sorption capacity of acidic soils (Pote et al., 1996; Maguire et al., 2000). In calcareous soils, P solubility is also influenced by Ca precipita- tion (Pierzynski et al., 2005). Therefore, biosolids can increase not only total P content of the soil but also its P sorption capacity. Addition of wastes rich in Fe and Al was also found to dramatically reduce biosolid P leaching and runoff from high-P soils (Haustein et al., 2000; Elliott et al., 2002b). Different studies showed that WEP is highly cor- related to runoff P and leachate P in manures and manure-amended soils, and has been proposed as a useful indicator of environmental P loss from waste- amended soils (Kleinman et al., 2002; Brandt and Elliott, 2003; Brandt et al., 2004). As total P varies among organic amendments, percent WEP (PWEP = WEP × 100/total P) is used to compare the en- vironmentally relevant P in relation to total P. For most biosolids, PWEP is found to be less than 5% (Brandt et al., 2004), while Fe or Al-produced bioso- lids have PWEP values of less than 0.5% (Brandt et al., 2004). Conversely, BPR biosolids typically have greater soluble P and PWEP (≥ 14%) than conventionally produced biosolids (Brandt et al., 2004). O’Connor and Chinault (2008) concluded that biosolid PWEP is a very good indicator of the way that biosolid P may affect the environment when land applied, and proposed that biosolids with PWEP values higher than 14% should be assumed to have a larger poten- tial negative environmental impact than biosolids with PWEP values less than 14%. Until recently, P has been thought to be so strong- ly bound to the soil matrix that its vertical movement through the soil profile is insignificant (Kostyanovsky et al., 2011; Oladeji et al., 2013). Since most soils have an appreciable P-sorbing capacity, P that may move down the soil profile generally becomes fixed in the subsoil. Hence, P leaching is not considered an im- portant P loss mechanism (Miller, 2008). Therefore, numerous studies concluded that P vertical movement through the soil profile in biosolid-amended soils was negligible, despite the high rates of P applied or soil texture. However, over application of P to soils with low P sorption capacity may significantly increase P vertical movement and leaching. Leaching of P from organic amendments may occur in both organic and inorganic forms (Eghball et al., 1996). Complexation of P with mobile organic compounds may favour the deep transport of organic forms of P, even through lay- ers with a great P adsorption capacity. In a column experiment using a fine sandy soil amended with six conventional treated biosolids at N-based rates, P lea- ching was less than 1% of P applied, and not statistical- ly different from unamended soils. In contrast, 21% of the P applied was found to leach in columns amended with TSP (Elliott et al., 2002a). Rydin and Otabbong (1997) leached 35 mm of water through soils amended with either Fe- or Al-treated biosolids and found that less P was released from Fe-treated biosolids compared with Al-treated biosolids. When only biological treat- ment processes are involved, biosolids are usually re- ported to have a relatively high risk of P leaching than soils amended with biosolids stabilized with high levels of Fe or Al (Kyle and McClintock, 1995). This varia- tion is most likely due to differences in solubility in the forms of inorganic P resulting from different WWTPs. Thermal treatment of biosolids was also found to sig- nificantly reduce P leaching in sandy soils (O’Connor et al., 2002), because heating increases the rate of reac- tion of simple, readily dissolvable phosphate minerals to more complex, less soluble forms. Runoff losses of P may occur in particulate and soluble P forms. Particulate P is associated with soil particles, such as minerals or organic matter. Runoff of particulate P may be decreased through different management practices (Kleinman et al., 2011; Dodd and Sharpley, 2015), but soluble inorganic P loss is of concern, especially in low P-retaining soils (McDowell et al., 2004; Shober and Sims, 2007). Penn and Sims (2002) noted that runoff P is very high (0.064 mg L−1 ) from soils amended with BPR biosolids, followed by Fe and lime-treated biosolids (0.039 mg L−1 ), no-Fe and no-lime biosolids (0.014 9 mg L−1 ), and Fe-treated and no-lime biosolids (0.002 mg L−1 ) at equal rates of to- tal P (200 kg ha−1 ). The reason for this situation is that P amendments which do not add P-binding ele- ments (e.g., BPR) can be expected to increase P sa- turation, reduce P-binding strength, and release more
  • 10. 10 S. I. TORRI et al. P to runoff (Holford et al., 1997; Siddique and Robin- son, 2003). When only biological treatment processes are involved, biosolids are usually reported to have a relatively high risk of off-site P migration than those stabilized with high levels of Fe or Al (Kyle and Mc- Clintock, 1995). Field studies of White et al. (2010) have shown that runoff P for the soils amended with Fe-treated biosolids is not significantly different from that for the unamended control soil despite biosolid application rates. The soils amended with lime-treated biosolids produce the largest runoff P, the soils amen- ded with Fe and lime-treated biosolid are intermediate, and those amended with Fe-treated biosolids are the lowest. These have been attributed to the dissolution of calcium-bound P (Ca-P) species in acidic soils af- ter land application of biosolids (Leytem et al., 2004; White et al., 2010). Most research has shown that the addition of metal salts at the WWTP reduces solu- ble P losses by runoff (Penn and Sims, 2002; Agyin- Birikorang et al., 2008; Alleoni et al., 2008). Elliott et al. (2005) reported that with additions of Fe and/or Al during WWT processes, like heat drying, runoff P los- ses produced are not statistically different between the amended and unamended soils. Other researchers re- ported that some biosolid-amended soils produced less runoff P losses than the unamended soils (Brandt and Elliott, 2003; O’Connor and Elliott, 2006). A peculiar environmental behaviour of soil P dy- namics is the so-called P leaching breakpoint, first observed in the long-term Broadbalk Experiment at Rothamsted, UK (Heckrath et al., 1995). The P lea- ching breakpoint indicates an abrupt change occurring in the Olsen P fraction when it is in the range of 21–104 mg P kg−1 . The occurrence of a P leaching breakpoint has been confirmed for other soils under various mana- gement practices (Brookes and Hesketh, 1998; Jordan et al., 2000). To our knowledge, the existence of a P leaching breakpoint in biosolid-amended soils has not been studied. This aspect may be important from the perspective of utilizing biosolid P, as the higher or- ganic matter content of biosolid-amended soils should theoretically saturate P sorption sites, leading to po- tentially greater P losses compared to those of the soils amended with chemical fertilizers. CONCLUSIONS AND PERSPECTIVES Phosphate rock is a finite, non-renewable resource, and its reserves are progressively becoming scarce. Re- cycling P from biosolids is a valuable feedstock for agronomic purposes to enhance and sustain society, and represents the best environmental option so far. However, land application of biosolids is becoming in- creasingly constrained by the amounts of P addition in sensitive agronomic scenarios. It is generally accepted that leaching of P from biosolid-amended soils is mini- mal. However, the risk of soluble inorganic P transport in surface runoff after land application of biosolids is of major concern. The WWT processes clearly influ- ence differences in soil P solubility and soil P speci- ation after land application of biosolids. In sensitive scenarios, Fe- or Al-treated biosolids reduce the risk of P transport. However, if runoff P is not a major concern and biosolids are primarily applied to provide available P to crops, the standard BPR process or a process that involves the addition of lime instead of Fe and Al oxides may be adequate. In all cases, it is critical to control sources of nonpoint P pollution of surface- and groundwater. While in natural soils, the phosphatase activity likely plays an important role in P mineralization and phytoavailability, other microbio- logical and biochemical activities likely play predomi- nant roles in P mineralization and fate. The use of whole cell biosensors specifically signalling to P up- take by soil microorganisms is a promising biotech- nology for the assessment of the P bioavailability in soil which can improve understanding of P released by biosolid application. Further research on P forms in the various biosolids, the use of biotechnologies for the assessment of the P bioavailable fractions such as the whole cell biosensors, and the analysis of genetic plant responses to soil biosolid amendment can improve the understanding of potential P uptake by crops and opti- mal use of P-rich biosolids for sustainable agriculture. Harmonization of the regulation on the use of bioso- lids in agriculture, currently mainly based on N and pollutant contents, may also contribute to a better P balance in agriculture. REFERENCES Abad E, Mart´ınez K, Planas C, Palacios O, Caixach J, Rivera J. 2005. Priority organic pollutant assessment of sludges for agricultural purposes. Chemosphere. 61: 1358–1369. Agyin-Birikorang S, O’Connor G A, Brinton S R. 2008. Evalu- ating phosphorus losses from a Florida spodosol as affected by phosphorus-source application methods. J Environ Qual. 37: 1180–1189. Ahumada I, Sep´ulveda K, Fern´andez P, Ascar L, Pedraza C, Richter P, Brown S. 2014. Effect of biosolid application to Mollisol Chilean soils on the bioavailability of heavy metals (Cu, Cr, Ni, and Zn) as assessed by bioassays with sunflower (Helianthus annuus) and DGT measurements. J Soil Sedi- ment. 14: 886–896. Akhtar M, McCallister D L, Francis D D, Schepers J S. 2005. Manure source effect on soil phosphorus fractions and their distribution. Soil Sci. 170: 183–190. Akhtar N, Inam A, Khan N A. 2012. Effects of city wastewater
  • 11. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 11 on the characteristics of wheat with varying doses of nitro- gen, phosphorus, and potassium. Recent Res Sci Technol. 4: 18–29. Al-Dhumri S, Beshah F H, Porter N A, Meehan B, Wrigley R. 2013. An assessment of the guidelines in Victoria, Austra- lia, for land application of biosolids based on plant-available nitrogen. Soil Res. 51: 529–538. Alleoni L R F, Brinton S R, O’Connor G A. 2008. Runoff and leachate losses of phosphorus in a sandy Spodosol amended with biosolids. J Environ Qual. 37: 259–265. Alleoni L R F, Fernandes A R, Jord˜ao C B. 2012. Phosphorus availability in an Oxisol amended with biosolids in a long- term field experiment. Soil Sci Soc Am J. 76: 1678–1684. Allison S D, Vitousek P M. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem. 37: 937–944. Anand K, Kumari B, Mallick M A. 2016. Phosphate solubilizing microbes: An effective and alternative approach as biofertili- zers. J Pharm Pharm Sci. 8: 37–40. Athamenh B M, Salem N M, El-Zuraiqi S M, Suleiman W, Rusan M J. 2015. Combined land application of treated wastewa- ter and biosolids enhances crop production and soil fertility. Desalin Water Treat. 53: 3283–3294. Barbarick K A, Ippolito J A. 2007. Nutrient assessment of a dryland wheat agroecosystem after 12 years of biosolids ap- plications. Agron J. 99: 715–722. Barrow N J, Bolland M D A. 1990. A comparison of methods for measuring the effect of level of application on the relative effectiveness of two fertilizers. Fert Res. 26: 1–10. Barrow N J, Campbell N A. 1972. Methods of measuring resi- dual value of fertilisers. Aust J Exp Agr. 12: 502–510. Beck M A, Sanchez P A. 1994. Soil phosphorus fractions dyna- mics during 18 years of cultivation on a Typic Paleudult. Soil Sci Soc Am J. 58: 1424–1431. Bøen A, Haraldsen T K, Krogstad T. 2013. Large differences in soil phosphorus solubility after the application of compost and biosolids at high rates. Acta Agr Scand B. 63: 473–482. Borggaard O K, Jørgensen S S, Moberg J P, Raben-Lange B. 1990. Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. J Soil Sci. 41: 443–449. Brandt R C, Elliott H A, O’Connor G A. 2004. Water-extra- ctable phosphorus in biosolids: Implications for land-based recycling. Water Environ Res. 76: 121–129. Brandt R C, Elliott H A. 2003. Phosphorus runoff losses from surface-applied biosolids and dairy manure. In Water Envi- ronment Federation (ed.) Proc. 17th Annual Residuals and Biosolids Manage. Conf., Baltimore. Water Environment Fe- deration, Alexandria. pp. 19–22. Brookes P C, Hesketh N. 1998. Developing an indicator to pre- dict the risk of soil phosphorus movement in drainage water. In Foy R H, Dils R (eds.) Practical and innovative Measures for the Control of Agricultural Phosphorus Losses to Water. OECD Workshop, 16–19 June 1998. OECD, Antrim. pp. 16– 21. Burkitt L, Gourley C, Sale P. 2001. Temporal changes in Olsen phosphorus (P) concentrations when P fertiliser rates were applied to nine different soil types of varying P buffering ca- pacity. In Haygarth P M, Condron L M, Butler P J, Chisholm J S (eds.) Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. Proceedings of the Interna- tional Phosphorus Transfer Workshop (IPTW 2001). Insti- tute of Grassland and Environmental Research, Plymouth University, Devon. pp. 30–31. Carpenter-Boggs L, Stahl P D, Lindstrom M J, Schumacher T E. 2003. Soil microbial properties under permanent grass, con- ventional tillage, and no-till management in South Dakota. Soil Till Res. 71: 15–23. Celi L, Marsan A, Barberis E. 2001. Some molecular aspects of organic phosphorus dynamics in soil. In Haygarth P M, Condron L M, Butler P J, Chisholm, J S (eds.) Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. Proceedings of the International Phosphorus Trans- fer Workshop (IPTW 2001). Institute of Grassland and En- vironmental Research, Plymouth University, Devon. pp. 33– 34. Chen H, Wang D, Li X, Yang Q, Luo K, Zeng G. 2013. Biolo- gical phosphorus removal from real wastewater in a sequen- cing batch reactor operated as aerobic/extended-idle regime. Biochem Eng J. 77: 147–153. Christie P, Easson D L, Picton J R, Love S C P. 2001. Agro- nomic value of alkaline-stabilized biosolids for spring barley. Agron J. 93: 144–151. Clark D L, Hunt G, Kasch M S, Lemonds P J, Moen G M, Neeth- ling J. 2010. Nutrient Management: Regulatory Approach- es to Protect Water Quality. Volume 1. Review of Existing Practices. Water Environment & Reuse Foundation (WER- F), Alexandria. pp. 5830–5835. Cleveland C C, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeo- chemistry. 85: 235–252. Codling E E. 2014. Long-term effects of biosolid-amended soils on phosphorus, copper, manganese and zinc uptake by wheat. Soil Sci. 179: 21–27. Cogger C G, Bary A I, Kennedy A C, Fortuna A M. 2013a. Long-term crop and soil response to biosolids applications in dryland wheat. J Environ Qual. 42: 1872–1880. Cogger C G, Bary A I, Myhre E A, Fortuna A M. 2013b. Bio- solids applications to tall fescue have long-term influence on soil nitrogen, carbon, and phosphorus. J Environ Qual. 42: 516–522. Cordell D, Neset T S. 2014. Phosphorus vulnerability: a quali- tative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Global Environ Chang. 24: 108–122. Cordell D. 2010. The Story of Phosphorus: Sustainability im- plications of Global Phosphorus Scarcity for Food Security. Doctoral Thesis. Collaborative Ph.D. between the Institute for Sustainable Futures, University of Technology, Sydney (UTS) and Department of Water and Environmental Studies, Link¨oping University, Sweden. Link¨oping University Press, Link¨oping. Corrˆea R S. 2002. Beneficial use of biosolids based on their N and P fertilising value. Ph.D. Thesis, University of Melbourne. Corrˆea R S. 2004. Efficiency of five biosolids to supply nitro- gen and phosphorus to ryegrass. Pesqui Agropecu Bras. 39: 1133–1139. Corrˆea R S, Bento M A B. 2010. Quality of a revegetated mine spoil in the Federal District of Brazil. Rev Bras Cien Solo. 34: 1435–1443. Corrˆea R S, Silva D J. 2016. Effectiveness of five biosolids as nitrogen sources to produce single and cumulative ryegrass harvests in two Australian soils. Rev Bras Cien Solo. 40: e0150216. Corrˆea R S, White R E, Weatherley A J. 2005. Biosolids effec- tiveness to yield ryegrass based on their nitrogen content. Sci Agr. 62: 274–280. Corrˆea R S, White R E, Weatherley A J. 2012. Effects of sewage sludge stabilization on organic-N mineralization in two soils.
  • 12. 12 S. I. TORRI et al. Soil Use Manage. 28: 12–18. Commission of the European Communities (CEC). 1986. Coun- cil Directive of 12 June 1986 on the Protection of the Envi- ronment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture (86/278/EEC). Official Journal of the European Communities No. L 181. Office for Official Publi- cations of the European Communities, Luxembourg. Darwent M J, Paterson E, McDonald A J S, Tomos A D. 2003. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. J Exp Bot. 54: 325–334. De-Bashan L E, Bashan Y. 2004. Recent advanced in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 38: 4222–4246. Delgado A, Torrent J. 1997. Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. Eur J Agron. 6: 205–214. Dick W A, Tabatabai M A. 1992. Significance and potential u- ses of soil enzymes. In Metting F B Jr (ed.) Soil Microbial Ecology. Marcel Dekker, New York. pp. 95–127. Dodd R J, Sharpley A N. 2015. Conservation practice effective- ness and adoption: unintended consequences and implica- tions for sustainable phosphorus management. Nutr Cycl A- groecosys. 104: 1–20. Dodor D E, Tabatabai M A. 2003. Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci. 66: 7–13. Ebeling A M, Cooperband L R, Bundy L G. 2003. Phosphorus availability to wheat from manures, biosolids, and an inor- ganic fertilizer. Commun Soil Sci Plant Anal. 34: 1347–1365. European Communities (EC). 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities No. L 327. Office for Official Publications of the European Communities, Luxembourg. European Communities (EC). 2006. Directive 2006/118/EC of the European Parliament and the Council of 12th of Decem- ber 2006 on the Protection of Ground Water against Pol- lution and Deterioration. Official Journal of the European Communities No. L 372/19. Office for Official Publications of the European Communities, Luxembourg. Eghball, B, Binford G D, Baltensperger D D. 1996. Phospho- rus movement and adsorption in a soil receiving long-term manure and fertilizer application. J Environ Qual. 25: 1339– 1343. Elliott H A, O’Connor G A, Brinton S. 2002a. Phosphorus lea- ching from biosolids-amended sandy soils. J Environ Qual. 31: 681–689. Elliot H A, O’Connor G A, Lu P, Brinton S. 2002b. Influence of water treatment residuals on phosphorus solubility and leaching. J Environ Qual. 31: 1362–1369. Elliott H A, Brandt R C, O’Connor G A. 2005. Runoff phospho- rus losses from surface-applied biosolids. J Environ Qual. 34: 1632–1639. Elliott H A, O’Connor G. 2007. Phosphorus management for sustainable biosolids recycling in the United States. Soil Bi- ol Biochem. 39: 1318-1327. Elser J J. 2012. Phosphorus: A limiting nutrient for humanity? Curr Opin Biotechnol. 23: 833–838. Esteller M V, Mart´ınez-Vald´es H, Garrido S, Uribe Q. 2009. Nitrate and phosphate leaching in a Phaeozem soil treated with biosolids, composted biosolids and inorganic fertilizers. Waste Manage. 29: 1936–1944. Frossard E, B¨unemann E, Jansa J, Oberson A, Feller C. 2009. Concepts and practices of nutrient management in agro- ecosystems: can we draw lessons from history to design fu- ture sustainable agricultural production systems? Die Bo- denkultur. 60: 43–60. Frossard E, Sinaj S, Dufour P. 1996a. Phosphorus in urban sewage sludges as assessed by isotopic exchange. Soil Sci Soc Am J. 60: 179–182. Frossard E, Sinaj S, Zhang L M, Morel J L. 1996b. The fate of sludge phosphorus in soil-plant systems. Soil Sci Soc Am J. 60: 1248–1253. Garc´ıa-Orenes F, Guerrero C, Mataix-Solera J, Navarro-Pedre˜no J, G´omez I, Mataix-Beneyto J. 2005. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil Till Res. 82: 65–76. Gellatly K S, Moorhead G B G, Duff S M G, Lefebvre D D, Plaxton W C. 1994. Purification and characterization of a potato tuber acid phosphatase having significant phosphoty- rosine phosphatase activity. Plant Physiol. 106: 223–232. Gilbert G A, Knight J D, Vance C P, Allan D L. 1999. Acid phos- phatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ. 22: 801–810. Gilmour J T, Cogger C G, Jacobs L W, Evanylo G K, Sullivan D M. 2003. Decomposition and plant-available nitrogen in biosolids. J Environ Qual. 32: 1498–1507. Goldstein A H, Baertlein D A, McDaniel R G. 1988. Phosphate starvation inducible metabolism in Lycopersicon esculentum. Plant Physiol. 87: 711–715. Gomes N C M, Landi L, Smalla K, Nannipieri P, Brookes P C, Renella G. 2010. Effects of Cd and Zn enriched sewage sludge on soil bacterial and fungal com-munities. Ecotox En- viron Safe. 73: 1255–1263. Grady C P L Jr, Daigger G T, Love N G, Filipe C D M. 2011. Bi- ological Wastewater Treatment. 3rd Edn. CRC Press, New York. Grant C, Bittman S, Montreal M, Plenchette C, Morel C. 2005. Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci. 85: 3–14. Haney C H, Samuel B S, Bush J, Ausubel F M. 2015. Asso- ciations with rhizosphere bacteria can confer an adaptive ad- vantage to plants. Nat Plants. 1: 15051. Hansen L G, Chaney R L. 1984. Environmental and food chain effects of the agricultural use of sewage sludges. In Hodges R D (ed.) Reviews in Environmental Toxicology. Elsevier Sci. Publ., Amsterdam. pp. 103–172. Haustein G K, Daniel T C, Miller D M, Moore P A Jr, McNew R W. 2000. Aluminum-containing residuals influence high- phosphorus soils and runoff water quality. J Environ Qual. 29: 1954–1959. Haynes R J, Murtaza G, Naidu R. 2009. Inorganic and organic constituents and contaminants of biosolids: implications for land application. Adv Agron. 104: 165–267. He Z, Zhang H, Toor G S, Dou Z, Honeycutt C W, Haggard B E, Reiter M S. 2010. Phosphorus distribution in sequentially extracted fractions of biosolids, poultry litter, and granulated products. Soil Sci. 175: 154–161. Heckrath G., Brookes P C, Poulton P R, Goulding K W T. 1995. Phosphorus leaching from soils containing different phospho- rus concentrations in the Broadbalk experiment. J Environ Qual. 4: 904–910. Heffer P. 2013. Phosphate Policy Issues from the Industry’s Per- spective. The 1st Global TraPs Conference, Beijing. Hens M, Merckx R. 2001. Funcional charatcertization of collo- idal phosphorus species in the soil solution of sandy soils. Environ Sci Technol. 35: 493–500. Hilton J, O’Hare M, Bowes M J, Jones J I. 2006. How green is my river? A new paradigm of eutrophication in rivers. Sci
  • 13. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 13 Total Environ. 365: 66–83. Hinedi Z R, Chang A C, Lee R W K. 1989. Characterization of phosphorus in sludge extracts using phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual. 18: 323– 329. Hogan F, McHugh M, Morton S. 2001. Phosphorus availability for beneficial use in biosolids products. Environ Technol. 22: 1347–1353. Holford I C R, Hird C, Lawrie R. 1997. Effects of animal efflu- ents on the phosphorus sorption characteristics of soils. Aust J Soil Res. 35: 365–373. Hooda P S, Rendell A R, Edwards A C, Withers P J A, Aitken M N, Truesdale V W. 2000. Relating soil phosphorus indices to potential phosphorus release to water. J Enviro Qual. 29: 1166–1171. Hosseinpur A, Pashamokhtari H. 2013. The effects of incubation on phosphorus desorption properties, phosphorus availabi- lity, and salinity of biosolids-amended soils. Environ Earth Sci. 69: 899–908. Ippolito J A, Barbarick K A, Norvell K L. 2007. Biosolids impact soil phosphorus accountability, fractionation, and potential environmental risk. J Environ Qual. 36: 764–772. Islas-Espinoza M, Sol´ıs-Mej´ıa L, Esteller M V. 2014. Phosphorus release kinetics in a soil amended with biosolids and vermi- compost. Environ Earth Sci. 71: 1441–1451. Jasinski S M. 2013. Phosphate rock. In U.S. Geological Survey (ed.) Mineral. Yearbook. U.S. Government Publishing Of- fice, Washington, D.C. pp. 56.1–56.11. Jenkins D, Ferguson J F, Menar A B. 1971. Chemical processes for phosphorus removal. Water Res. 5: 369–387. Jenkins D, Horwath W R, Stutz-McDonald S. 2000. Phosphate leaching from biosolids/soils mixtures. In Water Environ- ment Federation (ed.) Proceedings of the Water Environment Federation, Anaheim, CA., 14–18 Oct. 2000. Water Environ- ment Federation, Alexandria. pp. 56–70. Jin V L, Johnson M V V, Haney R L, Arnold J G. 2011. Po- tential carbon and nitrogen mineralization in soils from a perennial forage production system amended with class B biosolids. Agr Ecosyst Environ. 141: 461–465. Johnson D D, Broadbent F E. 1952. Microbial turnover of phos- phorus in soil. Soil Sci Soc Am J. 16: 56–59. Jokinen R. 1990. Effect of phosphorus precipitation chemicals on characteristics and agricultural value of municipal sewage sludges. Acta Agr Scand. 40: 141–147. Jordan C, McGuckin S O, Smith R V. 2000. Increased predicted losses of phosphorus to surface waters from soils with high Olsen-P concentrations. Soil Use Manage. 16: 27–35. Jord´an M M, Rinc´on-Mora B, Almendro-Candel M B. 2016. Heavy metal distribution and electrical conductivity mea- surements in biosolid pellets. J Soil Sediment. 16: 1176– 1182. Keating C, Chin J P, Hughes D, Manesiotis P, Cysneiros D, Mahony T, Smith C J, McGrath J W, O’Flaherty V. 2016. Biological phosphorus removal during high-rate, low- temperature, anaerobic digestion of wastewater. Front Mi- crobiol. 7: 226–239. Kelly T D, Matos G R. 2013. Historical statistics for mineral and material commodities in the United States. U.S. Geological Survey Data Series 140. Available online at http://pubs. usgs.gov/ds/2005/140/ (verified on November 10, 2016). Kleinman P J A, Sharpley A N, Moyer B G, Elwinger G F. 2002. Effect of mineral and manure phosphorus sources on runoff phosphorus. J Environ Manage. 31: 2026–2033. Kleinman P J A, Sharpley A N, Buda A R, McDowell R W, Allen A L. 2011. Soil controls of phosphorus in runoff: Management barriers and opportunities. Can J Soil Sci. 91: 329–338. Koch B, Worm J, Jensen L E, Højberg O, Nybroe O. 2001. Carbon limitation induces S-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microb. 67: 3363–3370. Kostyanovsky K I, Evanylo G K, Lasley K K, Daniels W L, Shang C. 2011. Leaching potential and forms of phosphorus in deep row applied biosolids underlying hybrid poplar. Ecol Eng. 37: 1765–1771. Kowaljow E, Mazzarino M J, Satti P, Jim´enez-Rodr´ıguez C. 2010. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant Soil. 332: 135–145. Kragelund L, Hosbond C, Nybroe O. 1997. Distribution of metabolic activity and phosphate starvation response of lux- tagged Pseudomonas fluorescens reporter bacteria in the bar- ley rhizosphere. Appl Environ Microb. 63: 4920–4928. Krogstad T, Sogn T A, Asdal A, Sæbø A. 2005. Influence of chemically and biologically stabilized sewage sludge on plant- available phosphorus in soil. Ecol Eng. 25: 51–60. Kroiss H. 2004. What is the potential for using the resources in sludge? Water Sci Technol. 49: 1–10. Kruse J, Abraham M, Amelung W, Baum C, Bol R, K¨uhn O, Lewandowski H, Niederberger J, Oelmann Y, R¨uger C, Sant- ner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Leinweber P. 2015. Innovative methods in soil phosphorus research: A review. J Plant Nutr Soil Sci. 178: 43–88. Kyle M A, McClintock S A. 1995. The availability of phosphorus in municipal wastewater sludge as a function of the phospho- rus removal process and the sludge treatment method. Water Environ Res. 67: 282–299. Larney F J, Angers D A. 2012. The role of organic amendments in soil reclamation: a review. Can J Soil Sci. 92: 19–38. Lee C C, Lin S D. 2007. Handbook of Environmental Enginee- ring Calculations. McGraw-Hill Professional, New York. Leytem A B, Sims J T, Coale F J. 2004. Determination of phos- phorus source coefficients for organic phosphorus sources: Laboratory studies. J Environ Qual. 33: 380–388. Liu Y, Villalba G, Ayres R U, Schroder H. 2008. Global phos- phorus flows and environmental impacts from a consumption perspective. J Ind Ecol. 12: 229–247. Liu Z, Zhao Q, Lee D J, Yang N. 2008. Enhancing phospho- rus recovery by a new internal recycle seeding MAP reactor. Bioresource Technol. 99: 6488–6493. Lowe J J, Rasmussen S O, Bjorck S, Hoek W Z, Steffensen J P, Walker M J C, Yu Z C, Grp I. 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region du- ring the Last Termination: A revised protocol recommended by the INTIMATE group. Quaternary Sci Rev. 27: 6–17. Lu P, O’Connor G A. 2001. Biosolids effects on phosphorus re- tention and release in some sandy soils. J Environ Qual. 30: 1059–1063. Lu Q, He Z L, Stoffella P J. 2012. Land application of biosolids in the USA: a review. Appl Environ Soil Sci. 1: 1–11. MacDonald G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA. 108: 3086–3091. Magesan G N, Wang H. 2003. Application of municipal and in- dustrial residuals in New Zealand forests: an overview. Aust J Soil Res. 41: 557–569. Maguire R O, Chardon W J, Simard R R. 2005. Assessing po- tential environmental impacts of soil phosphorus by soil tes- ting. In Sims J T, Sharpley A N (eds.) Phosphorus: Agricul- ture and the Environment. American Society of Agronomy (ASA), Crop Science Society of America (CSSA) and Soil Science Society of America (SSSA), Madison. pp. 145–180.
  • 14. 14 S. I. TORRI et al. Maguire R O, Hesterberg D L, Gernat A, Anderson K, Wineland M, Grimes J. 2006. Liming poultry litter manures to decrease soluble phosphorus and suppress the bacteria population. J Environ Qual. 35: 849–857. Maguire R O, Sims J T, Coale F J. 2000. Phosphorus solubility in biosolids-amended farm soils in the mid-Atlantic region of the USA. J Environ Qual. 29: 1225–1233. Maguire R O, Sims J T, Dentel S K, Coale F J, Mah J T. 2001. Relationships between biosolids treatment process and soil phosphorus availability. J Environ Qual. 30: 1023–1033. Mart´ınez K, Abad E, Palacios O, Caixach J, Rivera J. 2007. Assessment of polychlorinated dibenzo-p-dioxins and diben- zofurans in sludges according to the European environmental policy. Environ Int. 33: 1040–1047. McDowell R W, Biggs B J F, Sharpley A N, Nguyen L. 2004. Connecting phosphorus loss from agricultural landscapes to surface water quality. Chem Ecol. 20: 1–40. McLaughlin M J. 1984. Land application of sewage sludge: Phos- phorus considerations. S Afr J Plant Soil. 1: 21–29. Michael N, Bradshaw A D, Hall J E. 1991. The value of fertili- zer, surface applied and injected sewage sludge to vegetation established on reclaimed colliery spoil suffering from regres- sion. Soil Use Manage. 7: 233–239. Midgley J F. 2012. Proposed Recovery of Phosphate Enriched Sediments from the Marine Mining Licence Area no. 170 off Walvis Bay Namibia. Sandpiper Project. Appendix 5. Namibian Marine Phosphate (PTY) Ltd. J Midgley & Asso- ciates, Whindoek. Miller M. 2008. Characterizing the long-term lability of biosolids- phosphorus. M.S. Thesis, University of Florida. Mitchell D S, Edwards A C, Ferrier R C. 2000. Changes in fluxes of N and P in water draining a stand of Scots pine treated with sewage sludge. Forest Ecol Manag. 139: 203–213. Montalvo D, Degryse F, McLaughlin M J. 2015. Natural col- loidal P and its contribution to plant P uptake. Environ Sci Technol. 49: 3427–3434. Moorhead D L, Sinsabaugh R L. 2000. Simulated patterns of lit- ter decay predict patterns of extracellular enzyme activities. Appl Soil Ecol. 14: 71–79. Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Mas- ciandaro G, Fornasier F, Marinari S. 2012. Soil enzymology: Classical and molecular approaches. Biol Fert Soils. 48: 743– 762. Nanzyo M. 1986. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products. Soil Sci Plant Nutr. 32: 51–58. O’Connor G A, Chinault S L. 2006. Environmental impacts of land applying biosolids. Fla Wat Res J. 5: 50–54. O’Connor G A, Elliott H A, Sarkar D, Graetz D R. 2002. Chara- cterizing Forms, Solubilities, Bioavailabilities, and Minera- lization Rates of Phosphorus in Biosolids, Commercial Fer- tilizers, and Manures. Interim Report, Project 99-PUM-2T. Water Environment Research Foundation, Alexandria. O’Connor G A, Sarkar D. 1999. Fate of Land Applied Residuals- Bound Phosphorus. DEP WM 661. Florida Environmental Protection Agency, Tallahassee. O’Connor G A, Elliott H A. 2006. The Agronomic and Environ- mental Availability of Biosolids-P (Phase II). Rep. 99-PUM- 2T. Water Environment Research Foundation, Alexandria. O’Connor G A, Sarkar D, Brinton S R, Elliott H A, Martin F G. 2004. Phytoavailability of biosolids phosphorus. J Environ Qual. 33: 703–712. Oladeji O O, Tian G, Cox A E, Granato T C, O’Connor C, Abedin Z, Pietz R I. 2013. Effect of long-term application of biosolids for mine land reclamation on groundwater chemi- stry: Nutrients and other selected qualities. J Environ Qual. 42: 94–102. Pascual J A, Garc´ıa C, Hernandez T. 1999. Lasting microbio- logical and biochemical effects of the addition of municipal solid waste to an arid soil. Biol Fert Soils. 30: 1–6. Pautler M C, Sims J T. 2000. Relationships between soil test phosphorus, soluble phosphorus, and phosphorus saturation in Delaware soils. Soil Sci Soc Am J. 64: 765–773. Penn C J, Sim J T. 2002. Phosphorus forms in biosolids-amended soils and losses in runoff: effects of wastewater treatment pro- cess. J Environ Qual. 31: 1349–1361. Pierzynski G M, McDowell R W, Sims J T. 2005. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In Sims J T, Sharpley A N (eds.) Phosphorus: Agricul- ture and the Environment. American Society of Agronomy, Madison. pp. 53–86. Pote D H, Daniel T C, Sharpley A N, Moore P A, Edwards D R, Nichols D J. 1996. Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci Soc Am J. 60: 855–859. Qin C, Liu H, Liu L, Smith S, Sedlak D L, Gu A Z. 2015. Bio- availability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents. Sci Total Environ. 511: 47–53. Quinton J N, Govers G, Oost K V, Bardgett R D. 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci. 3: 311–314. Renella G, Chaudri A M, Falloon C M, Landi L, Nannipieri P, Brookes P C. 2007a. Effects of Cd, or Zn, or both on soil microbial biomass and activity in a clay loamsoil. Biol Fert Soils. 43: 751–758. Renella G, Landi L, Ascher J, Ceccherini M T, Pietramellara G, Nannipieri P. 2006. Phosphomonoesterase production and persistence and composition of bacterial communities during plant material decomposition in soils with different pH va- lues. Soil Biol Biochem. 38: 795–802. Renella G, Landi L, Valori F, Nannipieri P. 2007b. Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Appl Soil Ecol. 36: 124–129. Renella G, Szukics U, Landi L, Nannipieri P. 2007c. Quantita- tive assessment of hydrolase production and persistence in soil. Biol Fert Soils. 44: 321–329. Rydin E, Otabbong E. 1997. Potential release of phosphorus from soil mixed with sewage sludge. J Environ Qual. 26: 529–534. Saarela I. 1998. Availability of phosphorus in different ashes, manures and sewage sludges. In Agerlid G (ed.) Phosphorus Balance and Utilization in Agriculture—towards Sustainabi- lity. Kungl. Skogs-och Lantbruksakademien, Stockholm. pp. 157–163. Sablayrolles C, Gabrielle B, Montrejaud-Vignoles M. 2010. Life cycle assessment of biosolids land application and evaluation of the factor impacting human toxicity through plant uptake. J Ind Ecol. 14: 231–241. S´anchez-Monedero M A, Mondini C, de Nobili M, Leita L, Roig A. 2004. Land application of biosolids. Soil response to di- fferent stabilization degree of the treated organic matter. Waste Manage. 24: 325–332. Sarkar D, O’Connor G A. 2004. Plant and soil responses to biosolids-phosphorus in two Florida soils with high phospho- rus content. Commun Soil Sci Plant Anal. 35: 1569–1589. Scharenbroch B C, Meza E N, Catania M, Fite K. 2013. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. J Environ Qual. 42: 1372–1385.
  • 15. BIOSOLID APPLICATION AND GLOBAL P RECYCLE 15 Scharer M, Sinaj S, Moosbauer G, Favre G, Vollmer T, Stamm C, Frossard E. 2001. Effect of phospahte sorbing amend- ments on phosphate availability in two soils. In Haygarth P M, Condron L M, Butler P J, Chisholm J S (eds.) Con- necting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. Proceedings of the International Phosphorus Transfer Workshop (IPTW 2001). Institute of Grassland and Environmental Research, Plymouth University, Devon. pp. 57–64. Schindler D W. 1977. Evolution of phosphorus limitation in la- kes. Science. 195: 260–262. Schlesinger W H, Bernhardt E S (eds.). 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego. Schroder J L, Zhang H, Zhou D, Basta N, Raun W R, Payton M E, Zazulak A. 2008. The effect of long-term annual applica- tion of biosolids on soil properties, phosphorus, and metals. Soil Sci Soc Am J. 72: 73–82. Shaheen S, Tsadilas C. 2013. Phosphorus sorption and availabi- lity to canola grown in an Alfisol amended with various soil amendments. Commun Soil Sci Plan. 44: 89–103. Shannon E E, Verghese K I. 1976. Utilisation of alumized red mud solids for phosphorus removal. J Water Pollut Control Fed. 48: 1948–1954. Sharpley A N, Rekolainen S. 1997. Phosphorus in agriculture and its environmental implications. In Tunney H, Carton O T, Brooks P C, Johnston A E (eds.) Phosphorus Loss from Soil to Water. CABI Publ., Cambridge. pp. 1–54. Shober A L, Hesterberg D L, Sims J T, Gardner S. 2006. Chara- cterization of phosphorus species in biosolids and manures using XANES spectroscopy. J Environ Qual. 35: 1983–1993. Shober A L, Sims J T. 2003. Phosphorus restrictions for land application of biosolids: Current status and future trends. J Environ Qual. 32: 1955–1964. Shober A L, Sims J T. 2007. Integrating phosphorus source and soil properties into risk assessments for phosphorus loss. Soil Sci Soc Am J. 71: 551–560. Siddique M T, Robinson J S. 2003. Phosphorus sorption and ava- ilability in soils amended with animal manures and sewage sludge. J Environ Qual. 32: 1114–1121. Silveira M L, Ferracci´u Alleoni L R, Guimar˜aes Guilherme L R. 2003. Biosolids and heavy metals in soils. Sci Agr. 60: 793–806. Silveira M L, O’Connor G A. 2013. Temperature effects on phos- phorus release from a biosolids-amended soil. Appl Environ Soil Sci. 2013: 981715. Smith M T E, Cade-Menun B J, Tibbett M. 2006. Soil phospho- rus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream. Biol Fert Soils. 42: 186–197. Smith S R, Bellett-Travers D M, Morris R, Bell J N B. 2002a. Fertilizer value of enhanced treated and convention- al biosolids products. In Chartered Inst. Water and Environ. Mgmt. (ed.) Proceedings of the Chartered Institute of Wa- ter and Environmental Management (CI-WEM). Biosolids: The Risks and Benefits. Chartered Inst. Water and Environ. Mgmt., London. pp. 70–75. Smith S R, Triner N G, Knight J J. 2002b. Phosphorus release and fertiliser value of enhanced-treated and nutrient-removal biosolids. Water Environ J. 16: 127–134. Smyth T J, Sanchez P A. 1980. Effects of lime, silicate, and phosphorus applications to an Oxisol on phosphorus sorp- tion and ion retention. Soil Sci Soc Am J. 44: 500–505. Solis-Mejia L, Islas-Espinoza M, Esteller M V. 2012. Vermicom- posting of sewage sludge: earthworm population and agro- nomic advantages. Compost Sci Util. 20: 11–17. Soon Y K, Bates T E. 1982. Extractability and solubility of phosphate in soils amended with chemically treated sewage sludges. Soil Sci. 134: 89–96. Standing D, Meharg A A, Killham K. 2003. A tripartite micro- bial reporter gene system for real-time assays of soil nutrient status. FEMS Microbiol Lett. 220: 35–39. Stott D E, Tabatabai M A. 1985. Identification of phospholi- pids in soils and sewage sludges by high performance liquid chromatography. J Environ Qual. 14: 107–110. Stratful I, Brett S, Scrimshaw M B, Lester J N. 1999. Biological phosphorus removal: its role in phosphorus recycling. Envi- ron Technol. 20: 681–695. Strawn D G, Bohn H L, O’Connor G A. 2015. Soil Chemistry. 4th Edn. Wiley-Blackwell, New York. Stumm W, Morgan J J. 1970. Aquatic Chemistry. lst Edn. Wiley-lnterscience, New York. Sui Y, Thompson M L, Shang C. 1999. Fractionation of phos- phorus in a Mollisol amended with biosolids. Soil Sci Soc Am J. 63: 1174–1180. Tian G, Granato T C, Cox A E, Pietz R I, Carlson C R Jr, Abe- din Z. 2009. Soil carbon sequestration resulting from long- term application of biosolids for land reclamation. J Environ Qual. 38: 61–74. Tian H Q, Lu C Q, Melillo J, Ren W, Huang Y, Xu X F, Liu M L, Zhang C, Chen G S, Pan S F, Liu J Y, Reilly J. 2012. Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ Res Lett. 7: 1–8. Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varani- ni Z, Nannipieri P, Torrent J, Martinoia E, Cesco S. 2008. Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem. 40: 1971–1974. Torri S I, Alberti C. 2012. Characterization of organic com- pounds from biosolids of Buenos Aires City. J Soil Sci Plant Nutr. 12: 143–152. Torri S I, Corrˆea R S, Renella G. 2014. Soil carbon sequestration resulting from biosolids application. Appl Environ Soil Sci. 38: 61–64. Torri S, Alvarez R, Lavado R. 2003. Mineralization of carbon from sewage sludge in three soils of the Argentine pampas. Commun Soil Sci Plant Anal. 34: 2035–2043. Torri S, Lavado R. 2009a. Fate of cadmium, copper, lead and zinc on soils after the application of different treated sewage sludge in soils of the Pampas region. In Stephens A, Fuller M (eds.) Sewage Treatment: Uses, Processes and Impact. Nova Science Publishers, Inc., Hauppauge. pp. 95–123. Torri S, Lavado R. 2009b. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation. J Hazard Mater. 166: 1459–1465. Torri S, Lavado R. 2011. Carbon sequestration through the use of biosolids in soils of the Pampas region, Argentina. In Dupont H C (ed.) Environmental Management: Systems, Sustainability and Current Issues. Nova Science Publishers, Inc., Hauppauge. pp. 221–236. Torri S. 2009. Feasibility of using a mixture of sewage sludge and incinerated sewage sludge as a soil amendment. In Baily R E (ed.) Sludge: Types, Treatment Processes and Dispo- sal. Nova Science Publishers, Inc., Hauppauge. pp. 187–208, 317. Tran N, Drogui P, Blais J F, Mercier G. 2012. Phosphorus re- moval from spiked municipal wastewater using either elec- trochemical coagulation or chemical coagulation as tertiary treatment. Sep Purif Technol. 95: 16–25. Tsadilas C D. 2011. Heavy metals forms in biosolids, soils and biosolid-amended soils. In Selim H M (ed.) Dynamics and
  • 16. 16 S. I. TORRI et al. Bioavailability of Heavy Metals in the Rootzone. CRC Press, Taylor and Francis Group, Boca Raton. pp. 271–291. van der Meer J R, Tropel D, Jaspers M. 2004. Illuminating the detection chain of bacterial bioreporters. Environ Microbiol. 6: 1005–1020 Van Vuuren D P, Bouwman A F, Beusen A H W. 2010. Phospho- rus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environ Chang. 20: 428–439. Walworth J L, Summer M E. 1988. Foliar diagnosis: a review. In Lauchli A (ed.) Advances in Plant Nutrition. Praeger Pub- lishers, New York. pp. 193–241, 245. Weatherley A J, Bolland M D A, Gilkes R J. 1988. A com- parison of values for initial and residual effectiviness of rock phosphates measured in pot and field experiments. Aust J Exp Agr. 28: 753–763. White J W, Coale F J, Sims J T, Shober A L. 2010. Phospho- rus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils. J Environ Qual. 39: 314– 323. Whitehead P, Chadwick D R, Haygarth P M, Robinson J S. 2001. Dairy slurry effects on phosphate retention and release in four UK grassland soils. In Haygarth P M, Condron L M, Butler P J, Chisholm J S (eds.) Connecting Phosphorus Transfer from Agriculture to Impacts in Surface Waters. Proceedings of the International Phosphorus Transfer Workshop (IPTW 2001). Institute of Grassland and Environmental Research, Plymouth University, Devon. pp. 65–76 Withers P J A, Clay S D, Breeze V G. 2001. Phosphorus trans- fer in runoff following application of fertilizer, manure, and sewage sludge. J Environ Qual. 30: 180–188. Withers P J A, Hartikainen H, Barberis E, Flynn N J, War- ren G P. 2009. The effect of soil phosphorus on particulate phosphorus in land runoff. Eur J Soil Sci. 60: 994–1004. Withers P J A, Jarvie H P. 2008. Delivery and cycling of phos- phorus in rivers: a review. Sci Total Environ. 400: 379–395. Withers P J A, van Dijk K C, Neset, T S S, Nesme T, Oene- ma O, Rubæk G H, Schoumans O F, Smit B, Pellerin S. 2015. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio. 44: 193–206. Wong J W C, Su D C. 1997. Reutilization of coal fly-ash and sewage sludge as an artificial soil-mix: Effects of preincuba- tion on soil physico-chemical properties. Bioresource Tech- nol. 59: 97–102. Yuan Z, Pratt S, Batstone D J. 2012. Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotech. 23: 878–883.