SlideShare a Scribd company logo
1 of 55
An Eulerian Cutting Model for
Unidirectional Fiber-Reinforced
Polymers
A Ph.D. Defense Presentation
10/29/201
6
Title
Student: Shengqi Zhang
Committee: John Strenkowski
Mark Pankow
Kara Peters
Mohammed Zikry
GSR: Jagannadham Kasichainula
Contents
1. Introduction
2. Numerical approach
3. Verification
4. Sensitivity analysis
5. Conclusion
10/29/201
6
Fiber-Reinforced Polymers (FRP)1.1
• Strength / light weight
• Fatigue resistance
• Corrosion resistance
• Design flexibility
Machining of FRP
10/29/201
6
1.2
Issues
 Subsurface damage
 Fiber-pullout
 Fiber buckling
 Matrix crushing
 Matrix cracking
 Delamination
 Tool wear
Iliescu et al. 2010Bhatnagar et al. 2004
Machining of FRP
Experiments
 Time-delay
 Expensive
 Material cost
 Instrument noise/error
 Lack of detailed insight
 Too many parameters
10/29/201
6
1.2
Simulations
 Cheap & fast
 Repeatability
 Entire knowledge
 Different levels of modeling
 Design insights
Iliescu et al. 2010 Zenia et al. 2015
Simulation
 Details
 Expensive
 Short cutting length
 Only possible for 2-D
 Fibers are round
 Does not account imperfections
10/29/201
6
1.3
Micro-mechanics
Rao et al. 2007
Simulation
 Averaged material
properties
 Permits longer
cutting length
 The only affordable
way for 3-D analyses
10/29/201
6
1.3
Soldani et al. 2009
Usui et al. 2014
Equivalent Homogeneous Material
Lasri et al. 2009
Eulerian formulation
 Accommodates large deformations
 Fixed geometry
 No need for an expensive contact algorithm.
 Efficient mesh refinement only at points of interests.
10/29/201
6
1.4
Contents
1. Introduction
2. Numerical approach
3. Verification
4. Sensitivity analysis
5. Conclusion
10/29/201
6
2.1 Problem description
2.2 Damage mechanics
2.3 Fiber bending and
curvature
2.4 Governing diff. eqns
2.5 Lagrangian phase
2.6 Eulerian phase
2.7 Data structure
2.8 Crush regularization
2
Problem description
10/29/201
6
2.1
 2-D plane stress analysis
 Tool as boundary
condition
 Clearance angle not
considered
 Chips not considered after
formation
 Homogeneous equivalent
material
Zhang et al. 2001
Damage model (1)
10/29/201
6
2.2
𝜎1
𝜎2
𝜏6
=
1
𝐷
𝐸1 𝜈21 𝐸1 0
𝜈12 𝐸2 𝐸2 0
0 0 𝐷𝐺12
𝜖1
𝜖2
𝛾6
𝐷 = 1 − 𝑣12 𝜈21
o Fiber tension ( 𝜎1 ≥ 0):
𝑓ft = 𝜎1/𝑋𝑡
2
o Fiber compression ( 𝜎1 < 0):
𝑓fc = 𝜎1/𝑋𝑐
2
o Matrix tension ( 𝜎2 ≥ 0):
𝑓mt = 𝜎2/𝑌𝑡
2
+ 𝜏6/𝑆 𝐿
2
o Matrix compression ( 𝜎2 < 0):
𝑓mc =
𝜎2
2𝑆 𝑇
2
+
𝑌 𝐶
2𝑆 𝑇
2
− 1
𝜎2
𝑌 𝐶
+
𝜏6
𝑆 𝐿
2
Effective stresses
Hashin’s criteria
𝑟𝑖 = 𝐵𝑖 1 −
1
max 𝑓𝑖 − 𝑟𝑖, 1
𝑑𝑖 = min 1,
𝐴𝑖 𝑟𝑖
𝑟𝑖 + 1 (𝐴𝑖 − 1)
𝑖 ∈ ft, fc, mt, mc
Damage evolution
Damage model (2)2.2
𝜎1
𝜎2
𝜏6
=
1
𝐷
1 − 𝑑 𝑓 𝐸1 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈21 𝐸1 0
1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝐸2 1 − 𝑑 𝑚 𝐸2 0
0 0 𝐷 1 − 𝑑 𝑠 𝐺12
𝜖1
𝜖2
𝛾6
𝐷 = 1 − 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝜈21
𝑑 𝑠= 1 − 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡
Damaged material
Validation examples
𝑑𝑖 = min 1,
𝐴𝑖 𝑟𝑖
𝑟𝑖 + 1 (𝐴𝑖 − 1)
𝑟𝑖 = 𝐵𝑖 1 −
1
max 𝑓𝑖 − 𝑟𝑖, 1
𝜖1 = ±5 × 104
/𝑠 𝜖2 = 𝛾6 = ±5 × 104
/𝑠
Fiber bending and rotation2.3
Qi et al. 2015
𝑓 𝑚𝑐 =
𝑓𝑚𝑐
1 + 𝛽 𝜅
𝜅 = cos −𝜃 + 𝜓
𝜕𝜓
𝜕𝑥
+ sin −𝜃 + 𝜓
𝜕𝜓
𝜕𝑦
 Contradicts with Hashin’s criteria
 Experiments needed for
transverse shear
 Affects the entire workpiece
Issue: 𝜃 dependence Idea : track bending
Method: curvature
Rao et al. 2007
Bhatnagar et al. 2004
Governing differential equations
10/29/201
6
2.4
Momentum:
𝜕𝑣𝑖
𝜕𝑡
+ 𝑣𝑗
𝜕𝑣𝑖
𝜕𝑥𝑗
=
1
𝜌
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗
Strain: 𝜕
𝜕𝑡
𝜖1
𝜖2
𝛾6
+ 𝑣𝑖
𝜕
𝜕𝑥𝑖
𝜖1
𝜖2
𝛾6
= 𝑻
𝜕𝑣 𝑥/𝜕𝑥
𝜕𝑣 𝑦/𝜕𝑦
𝜕𝑣 𝑦/𝜕𝑥 + 𝜕𝑣 𝑥/𝜕𝑦
Rotation: 𝜕𝜓
𝜕𝑡
+ 𝑣𝑖
𝜕𝜓
𝜕𝑥𝑖
=
1
2
𝜕𝑣 𝑦
𝜕𝑥
−
𝜕𝑣 𝑥
𝜕𝑦
Damage:
𝜕𝑟𝑖
𝜕𝑡
+ 𝑣𝑗
𝜕𝑟𝑖
𝜕𝑥𝑗
= 𝐵𝑖 1 −
1
max 𝑓𝑖 − 𝑟𝑖, 1
𝜕𝜙
𝜕𝑡
+ 𝑣𝑖
𝜕𝜙
𝜕𝑥𝑖
= 𝑆
𝜕𝜙 𝐿
𝜕𝑡
= 𝑆
𝜕𝜙 𝐸
𝜕𝑡
+ 𝑣𝑖
𝜕𝜙
𝜕𝑥𝑖
= 0
Lagrangian phase
Eulerian phase
𝜕𝜙
𝜕𝑡
=
𝜕𝜙 𝐿
𝜕𝑡
+
𝜕𝜙 𝐸
𝜕𝑡
Operator Split
Lagrangian phase
10/29/201
6
Momentum
𝜕𝑣𝑖
𝜕𝑡
=
1
𝜌
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗
Strain
𝜕
𝜕𝑡
𝜖1
𝜖2
𝛾6
= 𝑻
𝜕𝑣 𝑥/𝜕𝑥
𝜕𝑣 𝑦/𝜕𝑦
𝜕𝑣 𝑦/𝜕𝑥 + 𝜕𝑣 𝑥/𝜕𝑦
Rotation
𝜕𝜓
𝜕𝑡
+ 𝑣𝑖
𝜕𝜓
𝜕𝑥𝑖
=
1
2
𝜕𝑣 𝑦
𝜕𝑥
−
𝜕𝑣 𝑥
𝜕𝑦
Damage
𝜕𝑟𝑖
𝜕𝑡
= 𝐵𝑖 1 −
1
max 𝑓𝑖 − 𝑟𝑖, 1
 Simplified friction model
 Explicit integration w. Mass scaling
 4-node quads, 2x2 integration pts
 Numerical damping w. viscosity
Standard FEM
Shape functions
Algebra
2.5
Eulerian phase
10/29/201
6
𝜕Φ
𝜕𝑡
+ 𝑣𝑖
𝜕Φ
𝜕𝑥𝑖
= 0
Ω 𝑒
𝛿Φ
𝜕Φ
𝜕𝑡
dΩ +
Ω 𝑒
𝛿Φ𝑣𝑖
𝜕Φ
𝜕𝑥𝑖
dΩ = 0
Γ 𝑒
𝛿ΦΦ𝑣𝑖 𝑛𝑖dΓ
−
Ω 𝑒
Φ
𝜕
𝜕𝑥𝑖
𝛿Φ𝑣𝑖 dΩ
Discretization
 Same mesh w. Lagrangian phase
 3rd order Runge-Kutta explicit time integration
 Invoked by intervals
𝛿Φ
FEM
Upwind
Ω 𝑒
𝛿Φ𝑣𝑖
𝜕Φ
𝜕𝑥𝑖
dΩ
Ω 𝑒
𝜕
𝜕𝑥𝑖
𝛿ΦΦ𝑣𝑖 dΩ
2.6
Data structure
 All variables at nodes
 Multiple nodal values
10/29/201
6
 Velocity at nodes
 Others at intgr. pts
Extrapolation
Interpolation
Averaging
Lagrangian Eulerian
2.7
Crush regularization
𝜖1 = 𝛼 𝜆 − 1 𝜖1 +
𝐸1
𝑋𝑐
− 𝜖1
𝜖2 = 𝛼 𝜆 − 1 𝜖2 +
𝐸2
𝑌𝑐
− 𝜖2
𝛾6 = 𝛼 𝜆 − 1
𝐺12
𝑆 𝐿
− 𝛾6 − 𝛾6 −
𝐺12
𝑆 𝐿
− 𝜖1 − 𝜖2
𝜕𝜆
𝜕𝑡
+ 𝑣𝑖
𝜕𝜆
𝑥𝑖
= 𝜆 2 − 𝜆
𝜕𝑣𝑖
𝜕𝑥𝑖
Issue
Damage
layer
Method
Validation: 1-D test
Aux. var:
𝜖 modifier:
2.8
2. Numerical Approach
10/29/201
6
Questions?
2.1 Problem description
2.2 Damage mechanics
2.3 Fiber bending and curvature
2.4 Governing diff. eqns
2.5 Lagrangian phase
2.6 Eulerian phase
2.7 Data structure
2.8 Crush regularization
2
Contents
1. Introduction
2. Numerical approach
3. Verification
4. Sensitivity analysis
5. Conclusion
10/29/201
6
3.1 Parameters
3.2 Damage modes
3.3 Fiber bending
3.4 Force and damage
3.5 Damage initiation
3.6 Damage completion
3.7 Cutting force vs fiber
angle
3
Cutting and modeling parameters
Material
Cutting
Assumptions
3.1
𝑑𝑖 = min 1,
𝐴𝑖 𝑟𝑖
𝑟𝑖 + 1 (𝐴𝑖 − 1)
𝑟𝑖 = 𝐵𝑖 1 −
1
max 𝑓𝑖 − 𝑟𝑖, 1
10/29/201
6
Damage modes: 𝜃 = 30°
Soldani et al. 2011
3.2
Fiber tension Fiber compression
Matrix tension Matrix compression
Matrix tension
 2 ms -> 0.52 x DOC
 4 modes
 Shear zone
10/29/201
6
Soldani et al. 2011
3.2
Fiber tension Fiber compression
Matrix tension Matrix compression
Damage modes: 𝜃 = 60°
 2 ms -> 0.52 x DOC
 4 modes
 Fiber direction
affects the shear
zone
10/29/201
6
3.2
Fiber tension Fiber compression
Matrix tension Matrix compression
 Damage changes
with 𝜃
 Matrix modes are
dominating
 No need to plot all
modes
 Use 𝑑 𝑠 instead
𝑑 𝑠 = 1 − 1 − 𝑑ft 1 − 𝑑f𝑐 1 − 𝑑mt 1 − 𝑑mc
Damage modes: 𝜃 = 90°
10/29/201
6
Fiber bending
Santiuste et al. 2010
Model prediction
10 ms -> 2.6 x DOC3.3
Forces and damage3.4
A B
C D
A B
C D
10/29/201
6
Video3.4
3.5
𝑑 𝑠 = 1 − 1 − 𝑑ft 1 − 𝑑f𝑐 1 − 𝑑mt 1 − 𝑑mc
𝜃 = 30° 𝜃 = 60° 𝜃 = 90°
𝜃 = 120° 𝜃 = 150°
Chip initiation
10/29/201
6
Chip completion3.6
𝜃 = 30° 𝜃 = 90°
𝜃 = 120° 𝜃 = 150°
𝜃 = 60°
Cutting forces vs Fiber angle3.7
 Good trend
 No clearance face
 Experimental error
 Need longer simulation time
 Complex macroscopic behavior
Wang et al. 1995
300
250
200
150
100
50
0
Force (N/mm)
~100 x DOC
2.6 x DOC
3. Verification
10/29/201
6
Questions?
3.1 Parameters
3.2 Damage modes
3.3 Fiber bending
3.4 Forces and damage
3.5 Damage initiation
3.6 Damage completion
3.7 Cutting force vs fiber angle
3
Contents
1. Introduction
2. Numerical approach
3. Verification
4. Sensitivity analysis
5. Conclusion
10/29/201
6
4.1 Convergence
4.2 Elementary effects
4.3 Machining conditions
4
Convergence study
4.1 Mesh refinement
4.2 Mass scale factor
4.3 Eulerian interval
10/29/201
6
4.1
Accurate
Expensive
Inaccurate
Efficient
Mesh refinements
10/29/201
6
4.1.1
1900
6 𝜇𝑚
8600
3.3 𝜇𝑚
3968
4.5 𝜇𝑚
Mesh refinements
10/29/201
6
4.1.1
Fast
Slow
Mass scaling4.1.2 Δ𝑡 𝐿
= 𝑙 𝑚𝑖𝑛
𝜌𝑠 𝑚𝑎𝑠𝑠
𝐸1
Fast
Slow
Large Δ𝑡
Small Δ𝑡
Eulerian interval
10/29/201
6
4.1.3
Fast
Slow
Elementary effects
10/29/201
6
4.2
 22 model parameters
 Analyze effect of each parameter
 3-levels for each parameter
(Low – mid – high)
 322 = 31,381,059,609 model evaluations!
 Need a better method
Elementary effects
10/29/201
6
4.2
 22 model parameters (𝑘 = 22)
 Factorial sampling of 𝒙 (Morris 1991)
 4 samples of each 𝑒𝑖 𝒙
 Mean, standard deviation of 𝑒𝑖 𝒙
𝑒𝑖 𝒙 =
𝑦 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + Δ, 𝑥𝑖+1, … , 𝑥 𝑘 − 𝑦(𝒙)
Δ
𝑥𝑖 ∈ [0, 1]
Definition
𝑦 = 𝑦 𝒙 Scalar model response
𝑘-dimensional input vector
Approx. of 𝜕𝑦(𝒙)
𝜕𝑥𝑖
Elementary effects
10/29/201
6
4.2
 Linear scale --- measured properties
 Log scale --- assumed parameters
 Maximum subsurface damage depth as 𝑦
Elementary effects
10/29/201
6
4.2
Nonlinearity
Influence
Elementary effects
10/29/201
6
4.2
Nonlinearity
Influence
Elementary effects
10/29/201
6
4.2
Nonlinearity
Influence
Elementary effects4.2
 Strong dependency on fiber angle
 Least sensitive for 𝜃 = 30°
 Most nonlinear for 𝜃 = 60°
 More operators are functional at higher fiber
angles
Influence of machining conditions
4.1 Depth of cut
4.2 Rake angle
4.3 Nose radius
10/29/201
6
4.3
Influence of machining conditions
10/29/201
6
4.3.1
Depth of cut
Influence of machining conditions
10/29/201
6
4.3.2
Rake angle
Influence of machining conditions
10/29/201
6
4.3.3
Tool nose radius
Influence of machining conditions
10/29/201
6
4.3.4
 Consitent trend
for 𝜃 = 30°
 Inconsistent for
𝜃 = 60° and 𝜃 =
90°
 Different failure
and chip
formation
mechanisms
Relative nose radius = nose radius/DOC
Sharp Blunt
Influence of machining conditions
10/29/201
6
4.3.5
𝜃 = 30°
1
2
0.169 mm
0.323 mm
Conclusion
 Fiber bending is important
 Damage propagation paths
 Strong fiber angle dependence
 Subsurface damage is influenced by the cutting
conditions
10/29/201
6
5
Major findings
Future work
 Numerical & analytical bending models
 ALE approaches
 Uncertainty quantification
 Parallel computing
Thanks for watching!
Questions?
10/29/201
6
10/29/2016
Coordinate transformation
3.6
Stress in the X-Y coordinate
𝜎𝑥
𝜎 𝑦
𝜏 𝑠
= 𝑇 −1
𝜎1
𝜎2
𝜏6
Constitutive model in the fiber coordinate
𝜎1
𝜎2
𝜎6
=
1
𝐷
1 − 𝑑 𝑓 𝐸1 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈21 𝐸1 0
1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝐸2 1 − 𝑑 𝑚 𝐸2 0
0 0 𝐷 1 − 𝑑 𝑠 𝐺12
𝜖1
𝜖2
𝛾6
Strain in the fiber coordinate
𝜖1
𝜖2
1
2
𝛾6
= 𝑇
𝜖 𝑥
𝜖 𝑦
1
2
𝛾𝑠
𝑇 =
𝑚2 𝑛2 2𝑚𝑛
𝑛2
𝑚2
−2𝑚𝑛
−𝑚𝑛 𝑚𝑛 𝑚2
− 𝑛2
𝑚 = cos 𝜋 − 𝜃
𝑛 = sin(𝜋 − 𝜃)
Elementary effects
10/29/201
6
 22 model parameters
 500 random samples
 4 samples selected using Monte Carlo
𝑒𝑖 𝒙 =
𝑦 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + Δ, 𝑥𝑖+1, … , 𝑥 𝑘 − 𝑦(𝒙)
Δ
0 0 0
1 0 0
1 1 0
1 1 1
𝒙 0 1 0
1 1 0
1 0 0
1 0 1
𝑥𝑖 ∈ [0, 1]
0.2 1 0
0.8 1 0
0.8 0.4 0
0.8 0.4 0.6
Δ = 0.6
𝒙 𝑏𝑎𝑠𝑒 = 0.2 0.4 0
𝑒1
𝑒3
𝑒2
Definition
Factorial sampling: example
All random processes
Friction
10/29/201
6
55

More Related Content

What's hot

Size effect on shear behavior of high strength rc
Size effect on shear behavior of high strength rcSize effect on shear behavior of high strength rc
Size effect on shear behavior of high strength rceSAT Publishing House
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsNehem Tudu
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defenseguestc121aae
 
Ansys Workbench-Chapter03
Ansys Workbench-Chapter03Ansys Workbench-Chapter03
Ansys Workbench-Chapter03Bui Vinh
 
IRJET-Finite Element Analysis of Glazed Surface
IRJET-Finite Element Analysis of Glazed SurfaceIRJET-Finite Element Analysis of Glazed Surface
IRJET-Finite Element Analysis of Glazed SurfaceIRJET Journal
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...researchinventy
 
Simulation and Experimental Studies on Composite Beams
Simulation and Experimental Studies on Composite BeamsSimulation and Experimental Studies on Composite Beams
Simulation and Experimental Studies on Composite BeamsIJERA Editor
 
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear Strength
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear StrengthParametric Study of Multi-Spot Welded Lap Shear Specimen for Shear Strength
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear StrengthIJERA Editor
 
Sample solved questions in fatigue
Sample solved questions in fatigueSample solved questions in fatigue
Sample solved questions in fatigueJames Mutua
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALOmar Latifi
 
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...IRJET Journal
 
FEA Analysis & Re-Design of a Bicycle Crank Arm
FEA Analysis & Re-Design of a Bicycle Crank ArmFEA Analysis & Re-Design of a Bicycle Crank Arm
FEA Analysis & Re-Design of a Bicycle Crank ArmAusten Leversage
 
Bending stress numericals unit 1 part 2
Bending stress numericals unit 1 part 2Bending stress numericals unit 1 part 2
Bending stress numericals unit 1 part 2GLA UNIVERSITY MATHURA
 

What's hot (18)

Size effect on shear behavior of high strength rc
Size effect on shear behavior of high strength rcSize effect on shear behavior of high strength rc
Size effect on shear behavior of high strength rc
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
PhD Dissertation Defense
PhD Dissertation DefensePhD Dissertation Defense
PhD Dissertation Defense
 
Sandwich composite
Sandwich compositeSandwich composite
Sandwich composite
 
Ansys Workbench-Chapter03
Ansys Workbench-Chapter03Ansys Workbench-Chapter03
Ansys Workbench-Chapter03
 
Fatigue lab
Fatigue labFatigue lab
Fatigue lab
 
MMAE 594_Report
MMAE 594_ReportMMAE 594_Report
MMAE 594_Report
 
IRJET-Finite Element Analysis of Glazed Surface
IRJET-Finite Element Analysis of Glazed SurfaceIRJET-Finite Element Analysis of Glazed Surface
IRJET-Finite Element Analysis of Glazed Surface
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...
 
Mcq module 1 on pure bending
Mcq module 1  on pure bendingMcq module 1  on pure bending
Mcq module 1 on pure bending
 
Simulation and Experimental Studies on Composite Beams
Simulation and Experimental Studies on Composite BeamsSimulation and Experimental Studies on Composite Beams
Simulation and Experimental Studies on Composite Beams
 
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear Strength
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear StrengthParametric Study of Multi-Spot Welded Lap Shear Specimen for Shear Strength
Parametric Study of Multi-Spot Welded Lap Shear Specimen for Shear Strength
 
Sample solved questions in fatigue
Sample solved questions in fatigueSample solved questions in fatigue
Sample solved questions in fatigue
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
 
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...
IRJET- Comparative Study of Super-Structure Stability Systems for Economic Co...
 
FEA Analysis & Re-Design of a Bicycle Crank Arm
FEA Analysis & Re-Design of a Bicycle Crank ArmFEA Analysis & Re-Design of a Bicycle Crank Arm
FEA Analysis & Re-Design of a Bicycle Crank Arm
 
8 iiste photo 7
8 iiste photo 78 iiste photo 7
8 iiste photo 7
 
Bending stress numericals unit 1 part 2
Bending stress numericals unit 1 part 2Bending stress numericals unit 1 part 2
Bending stress numericals unit 1 part 2
 

Viewers also liked

Michael Forbes updated CV
Michael Forbes updated CVMichael Forbes updated CV
Michael Forbes updated CVMichael Forbes
 
Aadil Rasheed - Mech Engr Piping.
Aadil Rasheed - Mech Engr  Piping.Aadil Rasheed - Mech Engr  Piping.
Aadil Rasheed - Mech Engr Piping.nnaaz
 
Risks, Rewards and Advantages of Niche Blogs
Risks, Rewards and Advantages of Niche BlogsRisks, Rewards and Advantages of Niche Blogs
Risks, Rewards and Advantages of Niche BlogsAffiliate Summit
 
Community building and doing together
Community building and doing togetherCommunity building and doing together
Community building and doing togetherJaakko Blomberg
 
World Religions: Egyptian, Greek, and Roman Religions
World Religions: Egyptian, Greek, and Roman ReligionsWorld Religions: Egyptian, Greek, and Roman Religions
World Religions: Egyptian, Greek, and Roman ReligionsBropaw2004
 

Viewers also liked (11)

Chemiebeurs 300915 investors in people
Chemiebeurs 300915 investors in peopleChemiebeurs 300915 investors in people
Chemiebeurs 300915 investors in people
 
Resume
ResumeResume
Resume
 
Audience feedback
Audience feedbackAudience feedback
Audience feedback
 
Michael Forbes updated CV
Michael Forbes updated CVMichael Forbes updated CV
Michael Forbes updated CV
 
Faizan Current Resume
Faizan Current ResumeFaizan Current Resume
Faizan Current Resume
 
Aadil Rasheed - Mech Engr Piping.
Aadil Rasheed - Mech Engr  Piping.Aadil Rasheed - Mech Engr  Piping.
Aadil Rasheed - Mech Engr Piping.
 
Risks, Rewards and Advantages of Niche Blogs
Risks, Rewards and Advantages of Niche BlogsRisks, Rewards and Advantages of Niche Blogs
Risks, Rewards and Advantages of Niche Blogs
 
UMAR FAROOQ CV
UMAR FAROOQ CVUMAR FAROOQ CV
UMAR FAROOQ CV
 
Community building and doing together
Community building and doing togetherCommunity building and doing together
Community building and doing together
 
CSR and CR 2016
CSR and CR 2016CSR and CR 2016
CSR and CR 2016
 
World Religions: Egyptian, Greek, and Roman Religions
World Religions: Egyptian, Greek, and Roman ReligionsWorld Religions: Egyptian, Greek, and Roman Religions
World Religions: Egyptian, Greek, and Roman Religions
 

Similar to Presentation_Shengqi

On the use of machine learning for investigating the toughness of ceramic nan...
On the use of machine learning for investigating the toughness of ceramic nan...On the use of machine learning for investigating the toughness of ceramic nan...
On the use of machine learning for investigating the toughness of ceramic nan...Christos E. Athanasiou
 
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...IRJET Journal
 
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...Altair
 
ICAM3D-2014 BMG experiments and modelling -
ICAM3D-2014 BMG experiments and modelling - ICAM3D-2014 BMG experiments and modelling -
ICAM3D-2014 BMG experiments and modelling - Aravinda Abeygunawardane
 
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...IRJET Journal
 
Experimental & Numerical Analysis of Composites with Delaminations
Experimental & Numerical Analysis of Composites with DelaminationsExperimental & Numerical Analysis of Composites with Delaminations
Experimental & Numerical Analysis of Composites with DelaminationsIRJET Journal
 
B03403007011
B03403007011B03403007011
B03403007011theijes
 
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...ijceronline
 
2016 befib pp_textiles_final_a
2016 befib pp_textiles_final_a2016 befib pp_textiles_final_a
2016 befib pp_textiles_final_aAsuSSEBENA
 
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...IAEME Publication
 
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET Journal
 
Cl31377380
Cl31377380Cl31377380
Cl31377380IJMER
 
Cl31377380
Cl31377380Cl31377380
Cl31377380IJMER
 
Composite failure analysis
Composite failure analysisComposite failure analysis
Composite failure analysisCARD_G6
 

Similar to Presentation_Shengqi (20)

Ge Wang_Research and demonstration of long-span bridges made by engineered ba...
Ge Wang_Research and demonstration of long-span bridges made by engineered ba...Ge Wang_Research and demonstration of long-span bridges made by engineered ba...
Ge Wang_Research and demonstration of long-span bridges made by engineered ba...
 
On the use of machine learning for investigating the toughness of ceramic nan...
On the use of machine learning for investigating the toughness of ceramic nan...On the use of machine learning for investigating the toughness of ceramic nan...
On the use of machine learning for investigating the toughness of ceramic nan...
 
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...
Comparative Study of Ferrocement Panels Under Blast Loading by Finite Element...
 
WCCM11 BMG experiments and modelling
WCCM11 BMG experiments and modellingWCCM11 BMG experiments and modelling
WCCM11 BMG experiments and modelling
 
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...
Impact and Post Impact Delamination Evolution of Toughened Aero Grade Benzoxa...
 
ICAM3D-2014 BMG experiments and modelling -
ICAM3D-2014 BMG experiments and modelling - ICAM3D-2014 BMG experiments and modelling -
ICAM3D-2014 BMG experiments and modelling -
 
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
 
Experimental & Numerical Analysis of Composites with Delaminations
Experimental & Numerical Analysis of Composites with DelaminationsExperimental & Numerical Analysis of Composites with Delaminations
Experimental & Numerical Analysis of Composites with Delaminations
 
Irjet v4 i8427
Irjet v4 i8427Irjet v4 i8427
Irjet v4 i8427
 
B03403007011
B03403007011B03403007011
B03403007011
 
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...
Multi-Response Optimization of WEDM Process Parameters of Monel 400 using Int...
 
Final_Latest
Final_LatestFinal_Latest
Final_Latest
 
2016 befib pp_textiles_final_a
2016 befib pp_textiles_final_a2016 befib pp_textiles_final_a
2016 befib pp_textiles_final_a
 
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...
APPLICATION OF GREY RELATIONAL ANALYSIS FOR MULTI VARIABLE OPTIMIZATION OF PR...
 
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
 
Micromec2014
Micromec2014Micromec2014
Micromec2014
 
Cl31377380
Cl31377380Cl31377380
Cl31377380
 
Cl31377380
Cl31377380Cl31377380
Cl31377380
 
Composite failure analysis
Composite failure analysisComposite failure analysis
Composite failure analysis
 
Gy3113381349
Gy3113381349Gy3113381349
Gy3113381349
 

Presentation_Shengqi

  • 1. An Eulerian Cutting Model for Unidirectional Fiber-Reinforced Polymers A Ph.D. Defense Presentation 10/29/201 6 Title Student: Shengqi Zhang Committee: John Strenkowski Mark Pankow Kara Peters Mohammed Zikry GSR: Jagannadham Kasichainula
  • 2. Contents 1. Introduction 2. Numerical approach 3. Verification 4. Sensitivity analysis 5. Conclusion 10/29/201 6
  • 3. Fiber-Reinforced Polymers (FRP)1.1 • Strength / light weight • Fatigue resistance • Corrosion resistance • Design flexibility
  • 4. Machining of FRP 10/29/201 6 1.2 Issues  Subsurface damage  Fiber-pullout  Fiber buckling  Matrix crushing  Matrix cracking  Delamination  Tool wear Iliescu et al. 2010Bhatnagar et al. 2004
  • 5. Machining of FRP Experiments  Time-delay  Expensive  Material cost  Instrument noise/error  Lack of detailed insight  Too many parameters 10/29/201 6 1.2 Simulations  Cheap & fast  Repeatability  Entire knowledge  Different levels of modeling  Design insights Iliescu et al. 2010 Zenia et al. 2015
  • 6. Simulation  Details  Expensive  Short cutting length  Only possible for 2-D  Fibers are round  Does not account imperfections 10/29/201 6 1.3 Micro-mechanics Rao et al. 2007
  • 7. Simulation  Averaged material properties  Permits longer cutting length  The only affordable way for 3-D analyses 10/29/201 6 1.3 Soldani et al. 2009 Usui et al. 2014 Equivalent Homogeneous Material Lasri et al. 2009
  • 8. Eulerian formulation  Accommodates large deformations  Fixed geometry  No need for an expensive contact algorithm.  Efficient mesh refinement only at points of interests. 10/29/201 6 1.4
  • 9. Contents 1. Introduction 2. Numerical approach 3. Verification 4. Sensitivity analysis 5. Conclusion 10/29/201 6 2.1 Problem description 2.2 Damage mechanics 2.3 Fiber bending and curvature 2.4 Governing diff. eqns 2.5 Lagrangian phase 2.6 Eulerian phase 2.7 Data structure 2.8 Crush regularization 2
  • 10. Problem description 10/29/201 6 2.1  2-D plane stress analysis  Tool as boundary condition  Clearance angle not considered  Chips not considered after formation  Homogeneous equivalent material Zhang et al. 2001
  • 11. Damage model (1) 10/29/201 6 2.2 𝜎1 𝜎2 𝜏6 = 1 𝐷 𝐸1 𝜈21 𝐸1 0 𝜈12 𝐸2 𝐸2 0 0 0 𝐷𝐺12 𝜖1 𝜖2 𝛾6 𝐷 = 1 − 𝑣12 𝜈21 o Fiber tension ( 𝜎1 ≥ 0): 𝑓ft = 𝜎1/𝑋𝑡 2 o Fiber compression ( 𝜎1 < 0): 𝑓fc = 𝜎1/𝑋𝑐 2 o Matrix tension ( 𝜎2 ≥ 0): 𝑓mt = 𝜎2/𝑌𝑡 2 + 𝜏6/𝑆 𝐿 2 o Matrix compression ( 𝜎2 < 0): 𝑓mc = 𝜎2 2𝑆 𝑇 2 + 𝑌 𝐶 2𝑆 𝑇 2 − 1 𝜎2 𝑌 𝐶 + 𝜏6 𝑆 𝐿 2 Effective stresses Hashin’s criteria 𝑟𝑖 = 𝐵𝑖 1 − 1 max 𝑓𝑖 − 𝑟𝑖, 1 𝑑𝑖 = min 1, 𝐴𝑖 𝑟𝑖 𝑟𝑖 + 1 (𝐴𝑖 − 1) 𝑖 ∈ ft, fc, mt, mc Damage evolution
  • 12. Damage model (2)2.2 𝜎1 𝜎2 𝜏6 = 1 𝐷 1 − 𝑑 𝑓 𝐸1 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈21 𝐸1 0 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝐸2 1 − 𝑑 𝑚 𝐸2 0 0 0 𝐷 1 − 𝑑 𝑠 𝐺12 𝜖1 𝜖2 𝛾6 𝐷 = 1 − 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝜈21 𝑑 𝑠= 1 − 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡 1 − 𝑑 𝑓𝑡 Damaged material Validation examples 𝑑𝑖 = min 1, 𝐴𝑖 𝑟𝑖 𝑟𝑖 + 1 (𝐴𝑖 − 1) 𝑟𝑖 = 𝐵𝑖 1 − 1 max 𝑓𝑖 − 𝑟𝑖, 1 𝜖1 = ±5 × 104 /𝑠 𝜖2 = 𝛾6 = ±5 × 104 /𝑠
  • 13. Fiber bending and rotation2.3 Qi et al. 2015 𝑓 𝑚𝑐 = 𝑓𝑚𝑐 1 + 𝛽 𝜅 𝜅 = cos −𝜃 + 𝜓 𝜕𝜓 𝜕𝑥 + sin −𝜃 + 𝜓 𝜕𝜓 𝜕𝑦  Contradicts with Hashin’s criteria  Experiments needed for transverse shear  Affects the entire workpiece Issue: 𝜃 dependence Idea : track bending Method: curvature Rao et al. 2007 Bhatnagar et al. 2004
  • 14. Governing differential equations 10/29/201 6 2.4 Momentum: 𝜕𝑣𝑖 𝜕𝑡 + 𝑣𝑗 𝜕𝑣𝑖 𝜕𝑥𝑗 = 1 𝜌 𝜕𝜎𝑖𝑗 𝜕𝑥𝑗 Strain: 𝜕 𝜕𝑡 𝜖1 𝜖2 𝛾6 + 𝑣𝑖 𝜕 𝜕𝑥𝑖 𝜖1 𝜖2 𝛾6 = 𝑻 𝜕𝑣 𝑥/𝜕𝑥 𝜕𝑣 𝑦/𝜕𝑦 𝜕𝑣 𝑦/𝜕𝑥 + 𝜕𝑣 𝑥/𝜕𝑦 Rotation: 𝜕𝜓 𝜕𝑡 + 𝑣𝑖 𝜕𝜓 𝜕𝑥𝑖 = 1 2 𝜕𝑣 𝑦 𝜕𝑥 − 𝜕𝑣 𝑥 𝜕𝑦 Damage: 𝜕𝑟𝑖 𝜕𝑡 + 𝑣𝑗 𝜕𝑟𝑖 𝜕𝑥𝑗 = 𝐵𝑖 1 − 1 max 𝑓𝑖 − 𝑟𝑖, 1 𝜕𝜙 𝜕𝑡 + 𝑣𝑖 𝜕𝜙 𝜕𝑥𝑖 = 𝑆 𝜕𝜙 𝐿 𝜕𝑡 = 𝑆 𝜕𝜙 𝐸 𝜕𝑡 + 𝑣𝑖 𝜕𝜙 𝜕𝑥𝑖 = 0 Lagrangian phase Eulerian phase 𝜕𝜙 𝜕𝑡 = 𝜕𝜙 𝐿 𝜕𝑡 + 𝜕𝜙 𝐸 𝜕𝑡 Operator Split
  • 15. Lagrangian phase 10/29/201 6 Momentum 𝜕𝑣𝑖 𝜕𝑡 = 1 𝜌 𝜕𝜎𝑖𝑗 𝜕𝑥𝑗 Strain 𝜕 𝜕𝑡 𝜖1 𝜖2 𝛾6 = 𝑻 𝜕𝑣 𝑥/𝜕𝑥 𝜕𝑣 𝑦/𝜕𝑦 𝜕𝑣 𝑦/𝜕𝑥 + 𝜕𝑣 𝑥/𝜕𝑦 Rotation 𝜕𝜓 𝜕𝑡 + 𝑣𝑖 𝜕𝜓 𝜕𝑥𝑖 = 1 2 𝜕𝑣 𝑦 𝜕𝑥 − 𝜕𝑣 𝑥 𝜕𝑦 Damage 𝜕𝑟𝑖 𝜕𝑡 = 𝐵𝑖 1 − 1 max 𝑓𝑖 − 𝑟𝑖, 1  Simplified friction model  Explicit integration w. Mass scaling  4-node quads, 2x2 integration pts  Numerical damping w. viscosity Standard FEM Shape functions Algebra 2.5
  • 16. Eulerian phase 10/29/201 6 𝜕Φ 𝜕𝑡 + 𝑣𝑖 𝜕Φ 𝜕𝑥𝑖 = 0 Ω 𝑒 𝛿Φ 𝜕Φ 𝜕𝑡 dΩ + Ω 𝑒 𝛿Φ𝑣𝑖 𝜕Φ 𝜕𝑥𝑖 dΩ = 0 Γ 𝑒 𝛿ΦΦ𝑣𝑖 𝑛𝑖dΓ − Ω 𝑒 Φ 𝜕 𝜕𝑥𝑖 𝛿Φ𝑣𝑖 dΩ Discretization  Same mesh w. Lagrangian phase  3rd order Runge-Kutta explicit time integration  Invoked by intervals 𝛿Φ FEM Upwind Ω 𝑒 𝛿Φ𝑣𝑖 𝜕Φ 𝜕𝑥𝑖 dΩ Ω 𝑒 𝜕 𝜕𝑥𝑖 𝛿ΦΦ𝑣𝑖 dΩ 2.6
  • 17. Data structure  All variables at nodes  Multiple nodal values 10/29/201 6  Velocity at nodes  Others at intgr. pts Extrapolation Interpolation Averaging Lagrangian Eulerian 2.7
  • 18. Crush regularization 𝜖1 = 𝛼 𝜆 − 1 𝜖1 + 𝐸1 𝑋𝑐 − 𝜖1 𝜖2 = 𝛼 𝜆 − 1 𝜖2 + 𝐸2 𝑌𝑐 − 𝜖2 𝛾6 = 𝛼 𝜆 − 1 𝐺12 𝑆 𝐿 − 𝛾6 − 𝛾6 − 𝐺12 𝑆 𝐿 − 𝜖1 − 𝜖2 𝜕𝜆 𝜕𝑡 + 𝑣𝑖 𝜕𝜆 𝑥𝑖 = 𝜆 2 − 𝜆 𝜕𝑣𝑖 𝜕𝑥𝑖 Issue Damage layer Method Validation: 1-D test Aux. var: 𝜖 modifier: 2.8
  • 19. 2. Numerical Approach 10/29/201 6 Questions? 2.1 Problem description 2.2 Damage mechanics 2.3 Fiber bending and curvature 2.4 Governing diff. eqns 2.5 Lagrangian phase 2.6 Eulerian phase 2.7 Data structure 2.8 Crush regularization 2
  • 20. Contents 1. Introduction 2. Numerical approach 3. Verification 4. Sensitivity analysis 5. Conclusion 10/29/201 6 3.1 Parameters 3.2 Damage modes 3.3 Fiber bending 3.4 Force and damage 3.5 Damage initiation 3.6 Damage completion 3.7 Cutting force vs fiber angle 3
  • 21. Cutting and modeling parameters Material Cutting Assumptions 3.1 𝑑𝑖 = min 1, 𝐴𝑖 𝑟𝑖 𝑟𝑖 + 1 (𝐴𝑖 − 1) 𝑟𝑖 = 𝐵𝑖 1 − 1 max 𝑓𝑖 − 𝑟𝑖, 1
  • 22. 10/29/201 6 Damage modes: 𝜃 = 30° Soldani et al. 2011 3.2 Fiber tension Fiber compression Matrix tension Matrix compression Matrix tension  2 ms -> 0.52 x DOC  4 modes  Shear zone
  • 23. 10/29/201 6 Soldani et al. 2011 3.2 Fiber tension Fiber compression Matrix tension Matrix compression Damage modes: 𝜃 = 60°  2 ms -> 0.52 x DOC  4 modes  Fiber direction affects the shear zone
  • 24. 10/29/201 6 3.2 Fiber tension Fiber compression Matrix tension Matrix compression  Damage changes with 𝜃  Matrix modes are dominating  No need to plot all modes  Use 𝑑 𝑠 instead 𝑑 𝑠 = 1 − 1 − 𝑑ft 1 − 𝑑f𝑐 1 − 𝑑mt 1 − 𝑑mc Damage modes: 𝜃 = 90°
  • 25. 10/29/201 6 Fiber bending Santiuste et al. 2010 Model prediction 10 ms -> 2.6 x DOC3.3
  • 26. Forces and damage3.4 A B C D A B C D
  • 28. 3.5 𝑑 𝑠 = 1 − 1 − 𝑑ft 1 − 𝑑f𝑐 1 − 𝑑mt 1 − 𝑑mc 𝜃 = 30° 𝜃 = 60° 𝜃 = 90° 𝜃 = 120° 𝜃 = 150° Chip initiation
  • 29. 10/29/201 6 Chip completion3.6 𝜃 = 30° 𝜃 = 90° 𝜃 = 120° 𝜃 = 150° 𝜃 = 60°
  • 30. Cutting forces vs Fiber angle3.7  Good trend  No clearance face  Experimental error  Need longer simulation time  Complex macroscopic behavior Wang et al. 1995 300 250 200 150 100 50 0 Force (N/mm) ~100 x DOC 2.6 x DOC
  • 31. 3. Verification 10/29/201 6 Questions? 3.1 Parameters 3.2 Damage modes 3.3 Fiber bending 3.4 Forces and damage 3.5 Damage initiation 3.6 Damage completion 3.7 Cutting force vs fiber angle 3
  • 32. Contents 1. Introduction 2. Numerical approach 3. Verification 4. Sensitivity analysis 5. Conclusion 10/29/201 6 4.1 Convergence 4.2 Elementary effects 4.3 Machining conditions 4
  • 33. Convergence study 4.1 Mesh refinement 4.2 Mass scale factor 4.3 Eulerian interval 10/29/201 6 4.1 Accurate Expensive Inaccurate Efficient
  • 36. Mass scaling4.1.2 Δ𝑡 𝐿 = 𝑙 𝑚𝑖𝑛 𝜌𝑠 𝑚𝑎𝑠𝑠 𝐸1 Fast Slow Large Δ𝑡 Small Δ𝑡
  • 38. Elementary effects 10/29/201 6 4.2  22 model parameters  Analyze effect of each parameter  3-levels for each parameter (Low – mid – high)  322 = 31,381,059,609 model evaluations!  Need a better method
  • 39. Elementary effects 10/29/201 6 4.2  22 model parameters (𝑘 = 22)  Factorial sampling of 𝒙 (Morris 1991)  4 samples of each 𝑒𝑖 𝒙  Mean, standard deviation of 𝑒𝑖 𝒙 𝑒𝑖 𝒙 = 𝑦 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + Δ, 𝑥𝑖+1, … , 𝑥 𝑘 − 𝑦(𝒙) Δ 𝑥𝑖 ∈ [0, 1] Definition 𝑦 = 𝑦 𝒙 Scalar model response 𝑘-dimensional input vector Approx. of 𝜕𝑦(𝒙) 𝜕𝑥𝑖
  • 40. Elementary effects 10/29/201 6 4.2  Linear scale --- measured properties  Log scale --- assumed parameters  Maximum subsurface damage depth as 𝑦
  • 44. Elementary effects4.2  Strong dependency on fiber angle  Least sensitive for 𝜃 = 30°  Most nonlinear for 𝜃 = 60°  More operators are functional at higher fiber angles
  • 45. Influence of machining conditions 4.1 Depth of cut 4.2 Rake angle 4.3 Nose radius 10/29/201 6 4.3
  • 46. Influence of machining conditions 10/29/201 6 4.3.1 Depth of cut
  • 47. Influence of machining conditions 10/29/201 6 4.3.2 Rake angle
  • 48. Influence of machining conditions 10/29/201 6 4.3.3 Tool nose radius
  • 49. Influence of machining conditions 10/29/201 6 4.3.4  Consitent trend for 𝜃 = 30°  Inconsistent for 𝜃 = 60° and 𝜃 = 90°  Different failure and chip formation mechanisms Relative nose radius = nose radius/DOC Sharp Blunt
  • 50. Influence of machining conditions 10/29/201 6 4.3.5 𝜃 = 30° 1 2 0.169 mm 0.323 mm
  • 51. Conclusion  Fiber bending is important  Damage propagation paths  Strong fiber angle dependence  Subsurface damage is influenced by the cutting conditions 10/29/201 6 5 Major findings Future work  Numerical & analytical bending models  ALE approaches  Uncertainty quantification  Parallel computing
  • 53. 10/29/2016 Coordinate transformation 3.6 Stress in the X-Y coordinate 𝜎𝑥 𝜎 𝑦 𝜏 𝑠 = 𝑇 −1 𝜎1 𝜎2 𝜏6 Constitutive model in the fiber coordinate 𝜎1 𝜎2 𝜎6 = 1 𝐷 1 − 𝑑 𝑓 𝐸1 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈21 𝐸1 0 1 − 𝑑 𝑓 1 − 𝑑 𝑚 𝜈12 𝐸2 1 − 𝑑 𝑚 𝐸2 0 0 0 𝐷 1 − 𝑑 𝑠 𝐺12 𝜖1 𝜖2 𝛾6 Strain in the fiber coordinate 𝜖1 𝜖2 1 2 𝛾6 = 𝑇 𝜖 𝑥 𝜖 𝑦 1 2 𝛾𝑠 𝑇 = 𝑚2 𝑛2 2𝑚𝑛 𝑛2 𝑚2 −2𝑚𝑛 −𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2 𝑚 = cos 𝜋 − 𝜃 𝑛 = sin(𝜋 − 𝜃)
  • 54. Elementary effects 10/29/201 6  22 model parameters  500 random samples  4 samples selected using Monte Carlo 𝑒𝑖 𝒙 = 𝑦 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + Δ, 𝑥𝑖+1, … , 𝑥 𝑘 − 𝑦(𝒙) Δ 0 0 0 1 0 0 1 1 0 1 1 1 𝒙 0 1 0 1 1 0 1 0 0 1 0 1 𝑥𝑖 ∈ [0, 1] 0.2 1 0 0.8 1 0 0.8 0.4 0 0.8 0.4 0.6 Δ = 0.6 𝒙 𝑏𝑎𝑠𝑒 = 0.2 0.4 0 𝑒1 𝑒3 𝑒2 Definition Factorial sampling: example All random processes

Editor's Notes

  1. Committee members More space between title letters
  2. larger
  3. Fuel savings 70% Lighter than steel, 40% lighter than aluminum The 787 has composite fuselage, wings, and most other airframe components VW XL1
  4. Damage---roughness/life Fluorescent dye---UV
  5. Increasing costs
  6. Damage variables Shows only the fiber damage
  7. How the load is applied
  8. Single material point Different levels of validation
  9. For EHM Go back for fmc Validated later Only affects large strain zone
  10. Solved individually at each time step
  11. What are fi’s and ri’s
  12. Check colors
  13. Auxiliary variable for material loss during crushing
  14. Larger font size for the section title
  15. Where does data come from
  16. Line size is fine
  17. Line size is fine
  18. Explain oscillations
  19. Damage initiation plots
  20. Temp strainrate
  21. Looks ugly
  22. Explain \mu Optimize the visualization---not clear
  23. Larger legend, larger line weights
  24. Include references for the images?