SlideShare a Scribd company logo
1 of 45
Download to read offline
© 2014 Pearson Education, Inc.
This work is protected by United States copyright laws and is provided solely for
the use of instructors in teaching their courses and assessing student learning.
Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials
from it should never be made available to students except by instructors using
the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and
the needs of other instructors who rely on these materials.
Lecture PowerPoints
Chapter 17
Physics: Principles with
Applications, 7th edition
Giancoli
Chapter 17
Electric Potential
© 2014 Pearson Education, Inc.
Contents of Chapter 17
• Electric Potential Energy and Potential Difference
• Relation between Electric Potential and Electric Field
• Equipotential Lines and Surfaces
• The Electron Volt, a Unit of Energy
• Electric Potential Due to Point Charges
• Potential Due to Electric Dipole; Dipole Moment
© 2014 Pearson Education, Inc.
Contents of Chapter 17
• Capacitance
• Dielectrics
• Storage of Electric Energy
• Digital; Binary Numbers; Signal Voltage
• TV and Computer Monitors: CRT, Flat Screens
• Electrocardiogram (ECG or EKG)
© 2014 Pearson Education, Inc.
17.1 Electric Potential Energy and
Potential Difference
The electrostatic force is
conservative—potential energy
can be defined
Change in electric potential
energy is negative of work done
by electric force:
© 2014 Pearson Education, Inc.
(17-1)
Electric potential is defined as potential energy per unit
charge; analogous to definition of electric field as force
per unit charge:
Unit of electric potential: the volt (V).
1 V = 1 J/C.
17.1 Electric Potential Energy and
Potential Difference
© 2014 Pearson Education, Inc.
(17-2a)
Only changes in potential can be measured, allowing
free assignment of V = 0.
17.1 Electric Potential Energy and
Potential Difference
© 2014 Pearson Education, Inc.
(17-2b)
17.1 Electric Potential Energy and
Potential Difference
Analogy between gravitational and electrical potential
energy. Just as the more massive rock has more potential
energy, so does the larger charge:
© 2014 Pearson Education, Inc.
17.2 Relation between Electric Potential and
Electric Field
Work is charge multiplied by potential:
Work is also force multiplied by distance:
© 2014 Pearson Education, Inc.
Solving for the field,
In general, the electric field in a given direction at any
point in space is equal to the rate at which the electric
potential decreases over distance in that direction.
17.2 Relation between Electric Potential and
Electric Field
© 2014 Pearson Education, Inc.
(17-4b)
17.3 Equipotential Lines and Surfaces
© 2014 Pearson Education, Inc.
An equipotential is a line or surface
over which the potential is constant.
Electric field lines are perpendicular
to equipotentials.
The surface of a conductor is an
equipotential.
17.3 Equipotential Lines and Surfaces
© 2014 Pearson Education, Inc.
Equipotential lines of an electric dipole:
17.4 The Electron Volt, a Unit of Energy
One electron volt (eV) is the energy gained by an
electron moving through a potential difference of
one volt.
© 2014 Pearson Education, Inc.
17.5 Electric Potential Due to Point Charges
The electric potential due to a point charge can be
derived using calculus.
© 2014 Pearson Education, Inc.
(17-5)
17.5 Electric Potential Due to Point Charges
© 2014 Pearson Education, Inc.
These plots show the potential
due to (a) positive and (b)
negative charge.
17.5 Electric Potential Due to Point Charges
Using potentials instead of fields can make solving
problems much easier—potential is a scalar quantity,
whereas the field is a vector.
© 2014 Pearson Education, Inc.
17.6 Potential Due to Electric Dipole;
Dipole Moment
The potential due to an electric dipole is just the
sum of the potentials due to each charge, and can
be calculated exactly.
© 2014 Pearson Education, Inc.
17.6 Potential Due to Electric Dipole;
Dipole Moment
Approximation for potential
far from dipole:
© 2014 Pearson Education, Inc.
(17-6a)
17.6 Potential Due to Electric Dipole;
Dipole Moment
Or, defining the dipole moment p = Ql,
© 2014 Pearson Education, Inc.
(17-6b)
17.7 Capacitance
A capacitor consists of two conductors that are close but
not touching. A capacitor has the ability to store electric
charge.
© 2014 Pearson Education, Inc.
17.7 Capacitance
© 2014 Pearson Education, Inc.
Parallel-plate capacitor connected to battery. (b) is a
circuit diagram.
17.7 Capacitance
When a capacitor is connected to a battery, the charge on
its plates is proportional to the voltage:
The quantity C is called the capacitance.
Unit of capacitance: the farad (F)
1 F = 1 C/V
© 2014 Pearson Education, Inc.
(17-7)
17.7 Capacitance
The capacitance does not depend on the voltage; it is a
function of the geometry and materials of the capacitor.
For a parallel-plate capacitor:
© 2014 Pearson Education, Inc.
(17-8)
17.8 Dielectrics
A dielectric is an insulator, and is characterized by a
dielectric constant K.
Capacitance of a parallel-plate capacitor filled with
dielectric:
© 2014 Pearson Education, Inc.
(17-9)
Dielectric strength is the
maximum field a dielectric
can experience without
breaking down.
17.8 Dielectrics
© 2014 Pearson Education, Inc.
The molecules in a dielectric tend to become oriented in a
way that reduces the external field.
17.8 Dielectrics
© 2014 Pearson Education, Inc.
This means that the electric field within the dielectric is
less than it would be in air, allowing more charge to be
stored for the same potential.
17.8 Dielectrics
© 2014 Pearson Education, Inc.
A charged capacitor stores electric energy; the energy
stored is equal to the work done to charge the capacitor.
17.9 Storage of Electric Energy
© 2014 Pearson Education, Inc.
(17-10)
17.9 Storage of Electric Energy
The energy density, defined as the energy per unit
volume, is the same no matter the origin of the electric
field:
The sudden discharge of electric energy can be harmful
or fatal. Capacitors can retain their charge indefinitely
even when disconnected from a voltage source—be
careful!
© 2014 Pearson Education, Inc.
(17-11)
17.9 Storage of Electric Energy
Heart defibrillators use electric discharge to “jump-start”
the heart when its beats become irregular, and can
save lives.
© 2014 Pearson Education, Inc.
17.10 Digital; Binary Numbers; Signal Voltage
© 2014 Pearson Education, Inc.
Analog signal voltages vary continuously.
17.10 Digital; Binary Numbers; Signal Voltage
© 2014 Pearson Education, Inc.
Digital signals use binary
numbers to represent numerical
values.
17.10 Digital; Binary Numbers; Signal Voltage
In order to convert an analog signal to digital, the signal
must be sampled. A higher sampling rate reproduces the
signal more precisely.
© 2014 Pearson Education, Inc.
17.10 Digital; Binary Numbers; Signal Voltage
Before it is sent to a loudspeaker or headset, a digital
audio signal must be converted back to analog.
© 2014 Pearson Education, Inc.
17.10 Digital; Binary Numbers; Signal Voltage
Noise can easily corrupt an
analog signal; a digital
signal is much less sensitive
to noise.
© 2014 Pearson Education, Inc.
17.11 TV and Computer Monitors: CRTs,
Flat Screens
A cathode ray tube contains
a wire cathode that, when
heated, emits electrons.
A voltage source causes
the electrons to travel to
the anode.
© 2014 Pearson Education, Inc.
17.11 TV and Computer Monitors: CRTs,
Flat Screens
The electrons can be steered using electric or
magnetic fields.
© 2014 Pearson Education, Inc.
CRT monitors have a large cathode ray tube as their
display. Variations in the field steer the electrons on
their way to the screen.
17.11 TV and Computer Monitors: CRTs,
Flat Screens
© 2014 Pearson Education, Inc.
Flat screens contain tiny pixels in red, green, and blue
whose brightness can be changed.
17.11 TV and Computer Monitors: CRTs,
Flat Screens
© 2014 Pearson Education, Inc.
The array of pixels then
creates an image; this
example has very low
resolution. HD screens
have 1080 × 1920 pixels.
17.11 TV and Computer Monitors: CRTs,
Flat Screens
© 2014 Pearson Education, Inc.
The electrocardiogram detects
heart defects by measuring
changes in potential on the
surface of the heart.
17.12 Electrocardiogram (ECG or EKG)
© 2014 Pearson Education, Inc.
• Electric potential is potential energy per unit charge:
• Electric potential difference: work done to move
charge from one point to another
• Relationship between potential difference and field:
Summary of Chapter 17
© 2014 Pearson Education, Inc.
(17-2a)
(17-4a)
• Equipotential: line or surface along which potential is
the same
• Electric potential of a point charge:
• Electric dipole potential drops off as 1/r2
Summary of Chapter 17
© 2014 Pearson Education, Inc.
(17-5)
• Capacitor: nontouching conductors carrying equal and
opposite charge
• Capacitance:
• Capacitance of a parallel-plate capacitor:
Summary of Chapter 17
© 2014 Pearson Education, Inc.
(17-7)
(17-8)
• A dielectric is an insulator
• Dielectric constant gives ratio of total field to external
field
• Energy density in electric field:
• Digital electronics convert analog signal to digital
approximation using binary numbers
Summary of Chapter 17
© 2014 Pearson Education, Inc.
(17-11)

More Related Content

Similar to 17_LectureOutline Electric Potential.pdf

basilk-140302115235-phpapp01.pdf
basilk-140302115235-phpapp01.pdfbasilk-140302115235-phpapp01.pdf
basilk-140302115235-phpapp01.pdf
BlessyJoy18
 
Capacitance and capacitor
Capacitance and capacitorCapacitance and capacitor
Capacitance and capacitor
Touqeer Jumani
 

Similar to 17_LectureOutline Electric Potential.pdf (20)

Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Ppa6 Lecture Ch 16
Ppa6 Lecture Ch 16Ppa6 Lecture Ch 16
Ppa6 Lecture Ch 16
 
General Physics- Electricity
General Physics- ElectricityGeneral Physics- Electricity
General Physics- Electricity
 
basilk-140302115235-phpapp01.pdf
basilk-140302115235-phpapp01.pdfbasilk-140302115235-phpapp01.pdf
basilk-140302115235-phpapp01.pdf
 
Diode.ppt
Diode.pptDiode.ppt
Diode.ppt
 
LAWS OF ELECTROSTATICS
LAWS OF ELECTROSTATICSLAWS OF ELECTROSTATICS
LAWS OF ELECTROSTATICS
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
Electrostatic Basic with Bharat Sir
Electrostatic Basic with Bharat Sir Electrostatic Basic with Bharat Sir
Electrostatic Basic with Bharat Sir
 
Electrostatics for Beginners
Electrostatics for Beginners Electrostatics for Beginners
Electrostatics for Beginners
 
Basic Concept of Electrostatics for Beginners
Basic Concept of Electrostatics for Beginners Basic Concept of Electrostatics for Beginners
Basic Concept of Electrostatics for Beginners
 
IIT-JEE : Electrostatic
IIT-JEE : ElectrostaticIIT-JEE : Electrostatic
IIT-JEE : Electrostatic
 
Electrostatic Key terms
Electrostatic Key termsElectrostatic Key terms
Electrostatic Key terms
 
NEET PHYSICS
NEET PHYSICSNEET PHYSICS
NEET PHYSICS
 
Electrostatic
Electrostatic Electrostatic
Electrostatic
 
ELECTROSTATICS
ELECTROSTATICSELECTROSTATICS
ELECTROSTATICS
 
Diploma i boee u 1 electrostatic and capacitance
Diploma i boee u 1 electrostatic and capacitanceDiploma i boee u 1 electrostatic and capacitance
Diploma i boee u 1 electrostatic and capacitance
 
Capacitance and capacitor
Capacitance and capacitorCapacitance and capacitor
Capacitance and capacitor
 
7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow this7. CAPACITOR & DIELECTRICS.pptx follow this
7. CAPACITOR & DIELECTRICS.pptx follow this
 
Capacitor
Capacitor Capacitor
Capacitor
 
Basics of Capacitors
Basics of CapacitorsBasics of Capacitors
Basics of Capacitors
 

Recently uploaded

Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 

17_LectureOutline Electric Potential.pdf

  • 1. © 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture PowerPoints Chapter 17 Physics: Principles with Applications, 7th edition Giancoli
  • 2. Chapter 17 Electric Potential © 2014 Pearson Education, Inc.
  • 3. Contents of Chapter 17 • Electric Potential Energy and Potential Difference • Relation between Electric Potential and Electric Field • Equipotential Lines and Surfaces • The Electron Volt, a Unit of Energy • Electric Potential Due to Point Charges • Potential Due to Electric Dipole; Dipole Moment © 2014 Pearson Education, Inc.
  • 4. Contents of Chapter 17 • Capacitance • Dielectrics • Storage of Electric Energy • Digital; Binary Numbers; Signal Voltage • TV and Computer Monitors: CRT, Flat Screens • Electrocardiogram (ECG or EKG) © 2014 Pearson Education, Inc.
  • 5. 17.1 Electric Potential Energy and Potential Difference The electrostatic force is conservative—potential energy can be defined Change in electric potential energy is negative of work done by electric force: © 2014 Pearson Education, Inc. (17-1)
  • 6. Electric potential is defined as potential energy per unit charge; analogous to definition of electric field as force per unit charge: Unit of electric potential: the volt (V). 1 V = 1 J/C. 17.1 Electric Potential Energy and Potential Difference © 2014 Pearson Education, Inc. (17-2a)
  • 7. Only changes in potential can be measured, allowing free assignment of V = 0. 17.1 Electric Potential Energy and Potential Difference © 2014 Pearson Education, Inc. (17-2b)
  • 8. 17.1 Electric Potential Energy and Potential Difference Analogy between gravitational and electrical potential energy. Just as the more massive rock has more potential energy, so does the larger charge: © 2014 Pearson Education, Inc.
  • 9. 17.2 Relation between Electric Potential and Electric Field Work is charge multiplied by potential: Work is also force multiplied by distance: © 2014 Pearson Education, Inc.
  • 10. Solving for the field, In general, the electric field in a given direction at any point in space is equal to the rate at which the electric potential decreases over distance in that direction. 17.2 Relation between Electric Potential and Electric Field © 2014 Pearson Education, Inc. (17-4b)
  • 11. 17.3 Equipotential Lines and Surfaces © 2014 Pearson Education, Inc. An equipotential is a line or surface over which the potential is constant. Electric field lines are perpendicular to equipotentials. The surface of a conductor is an equipotential.
  • 12. 17.3 Equipotential Lines and Surfaces © 2014 Pearson Education, Inc. Equipotential lines of an electric dipole:
  • 13. 17.4 The Electron Volt, a Unit of Energy One electron volt (eV) is the energy gained by an electron moving through a potential difference of one volt. © 2014 Pearson Education, Inc.
  • 14. 17.5 Electric Potential Due to Point Charges The electric potential due to a point charge can be derived using calculus. © 2014 Pearson Education, Inc. (17-5)
  • 15. 17.5 Electric Potential Due to Point Charges © 2014 Pearson Education, Inc. These plots show the potential due to (a) positive and (b) negative charge.
  • 16. 17.5 Electric Potential Due to Point Charges Using potentials instead of fields can make solving problems much easier—potential is a scalar quantity, whereas the field is a vector. © 2014 Pearson Education, Inc.
  • 17. 17.6 Potential Due to Electric Dipole; Dipole Moment The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated exactly. © 2014 Pearson Education, Inc.
  • 18. 17.6 Potential Due to Electric Dipole; Dipole Moment Approximation for potential far from dipole: © 2014 Pearson Education, Inc. (17-6a)
  • 19. 17.6 Potential Due to Electric Dipole; Dipole Moment Or, defining the dipole moment p = Ql, © 2014 Pearson Education, Inc. (17-6b)
  • 20. 17.7 Capacitance A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. © 2014 Pearson Education, Inc.
  • 21. 17.7 Capacitance © 2014 Pearson Education, Inc. Parallel-plate capacitor connected to battery. (b) is a circuit diagram.
  • 22. 17.7 Capacitance When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: The quantity C is called the capacitance. Unit of capacitance: the farad (F) 1 F = 1 C/V © 2014 Pearson Education, Inc. (17-7)
  • 23. 17.7 Capacitance The capacitance does not depend on the voltage; it is a function of the geometry and materials of the capacitor. For a parallel-plate capacitor: © 2014 Pearson Education, Inc. (17-8)
  • 24. 17.8 Dielectrics A dielectric is an insulator, and is characterized by a dielectric constant K. Capacitance of a parallel-plate capacitor filled with dielectric: © 2014 Pearson Education, Inc. (17-9)
  • 25. Dielectric strength is the maximum field a dielectric can experience without breaking down. 17.8 Dielectrics © 2014 Pearson Education, Inc.
  • 26. The molecules in a dielectric tend to become oriented in a way that reduces the external field. 17.8 Dielectrics © 2014 Pearson Education, Inc.
  • 27. This means that the electric field within the dielectric is less than it would be in air, allowing more charge to be stored for the same potential. 17.8 Dielectrics © 2014 Pearson Education, Inc.
  • 28. A charged capacitor stores electric energy; the energy stored is equal to the work done to charge the capacitor. 17.9 Storage of Electric Energy © 2014 Pearson Education, Inc. (17-10)
  • 29. 17.9 Storage of Electric Energy The energy density, defined as the energy per unit volume, is the same no matter the origin of the electric field: The sudden discharge of electric energy can be harmful or fatal. Capacitors can retain their charge indefinitely even when disconnected from a voltage source—be careful! © 2014 Pearson Education, Inc. (17-11)
  • 30. 17.9 Storage of Electric Energy Heart defibrillators use electric discharge to “jump-start” the heart when its beats become irregular, and can save lives. © 2014 Pearson Education, Inc.
  • 31. 17.10 Digital; Binary Numbers; Signal Voltage © 2014 Pearson Education, Inc. Analog signal voltages vary continuously.
  • 32. 17.10 Digital; Binary Numbers; Signal Voltage © 2014 Pearson Education, Inc. Digital signals use binary numbers to represent numerical values.
  • 33. 17.10 Digital; Binary Numbers; Signal Voltage In order to convert an analog signal to digital, the signal must be sampled. A higher sampling rate reproduces the signal more precisely. © 2014 Pearson Education, Inc.
  • 34. 17.10 Digital; Binary Numbers; Signal Voltage Before it is sent to a loudspeaker or headset, a digital audio signal must be converted back to analog. © 2014 Pearson Education, Inc.
  • 35. 17.10 Digital; Binary Numbers; Signal Voltage Noise can easily corrupt an analog signal; a digital signal is much less sensitive to noise. © 2014 Pearson Education, Inc.
  • 36. 17.11 TV and Computer Monitors: CRTs, Flat Screens A cathode ray tube contains a wire cathode that, when heated, emits electrons. A voltage source causes the electrons to travel to the anode. © 2014 Pearson Education, Inc.
  • 37. 17.11 TV and Computer Monitors: CRTs, Flat Screens The electrons can be steered using electric or magnetic fields. © 2014 Pearson Education, Inc.
  • 38. CRT monitors have a large cathode ray tube as their display. Variations in the field steer the electrons on their way to the screen. 17.11 TV and Computer Monitors: CRTs, Flat Screens © 2014 Pearson Education, Inc.
  • 39. Flat screens contain tiny pixels in red, green, and blue whose brightness can be changed. 17.11 TV and Computer Monitors: CRTs, Flat Screens © 2014 Pearson Education, Inc.
  • 40. The array of pixels then creates an image; this example has very low resolution. HD screens have 1080 × 1920 pixels. 17.11 TV and Computer Monitors: CRTs, Flat Screens © 2014 Pearson Education, Inc.
  • 41. The electrocardiogram detects heart defects by measuring changes in potential on the surface of the heart. 17.12 Electrocardiogram (ECG or EKG) © 2014 Pearson Education, Inc.
  • 42. • Electric potential is potential energy per unit charge: • Electric potential difference: work done to move charge from one point to another • Relationship between potential difference and field: Summary of Chapter 17 © 2014 Pearson Education, Inc. (17-2a) (17-4a)
  • 43. • Equipotential: line or surface along which potential is the same • Electric potential of a point charge: • Electric dipole potential drops off as 1/r2 Summary of Chapter 17 © 2014 Pearson Education, Inc. (17-5)
  • 44. • Capacitor: nontouching conductors carrying equal and opposite charge • Capacitance: • Capacitance of a parallel-plate capacitor: Summary of Chapter 17 © 2014 Pearson Education, Inc. (17-7) (17-8)
  • 45. • A dielectric is an insulator • Dielectric constant gives ratio of total field to external field • Energy density in electric field: • Digital electronics convert analog signal to digital approximation using binary numbers Summary of Chapter 17 © 2014 Pearson Education, Inc. (17-11)