SlideShare a Scribd company logo
1 of 28
Copyright © Cengage Learning. All rights reserved.
7.4 Matrices and Systems of
Equations
2
What You Should Learn
• Write matrices and identify their dimensions.
• Perform elementary row operations on
matrices.
• Use matrices and Gaussian elimination to solve
systems of linear equations.
• Use matrices and Gauss-Jordan elimination to
solve systems of linear equations.
3
Matrices
4
Matrices
In this section, you will study a streamlined technique for
solving systems of linear equations.
This technique involves the use of a rectangular array of
real numbers called a matrix.
The plural of matrix is matrices.
5
Matrices
6
Matrices
The entry in the i th row and j th column is denoted by the
double subscript notation aij.
For instance, the entry a23 is the entry in the second row
and third column.
A matrix having m rows and n columns is said to be of
dimension m  n. If m = n then the matrix is square of
dimension m  n (or n  n).
For a square matrix, the entries
a11, a22, a33, …
are the main diagonal entries.
7
Example 1 – Dimension of a Matrix
Determine the dimension of each matrix.
a. [2] b. c.
d. e.
8
Example 1 – Solution
a. This matrix has one row and one column. The
dimension of the matrix is 1  1.
b. This matrix has one row and four columns. The
dimension of the matrix is 1  4.
c. This matrix has two rows and two columns. The
dimension of the matrix is 2  2.
d. This matrix has three rows and two columns. The
dimension of the matrix is 3  2.
e. This matrix has three rows and one column. The
dimension of the matrix is 3  1.
9
Matrices
A matrix that has only one row [such as the matrix in
Example 1(b)] is called a row matrix, and a matrix that has
only one column [such as the matrix in Example 1(e)] is
called a column matrix.
A matrix derived from a system of linear equations (each
written in standard form with the constant term on the right)
is the augmented matrix of the system.
Moreover, the matrix derived from the coefficients of the
system (but not including the constant terms) is the
coefficient matrix of the system.
10
Matrices
The matrix derived from the constant terms of the system is
the constant matrix of the system.
x – 4y + 3z = 5
System: – x – 3y – z = –3
2x – 4z = 6
Augmented Matrix:
11
Matrices
Coefficient Matrix:
Constant Matrix:
12
Matrices
Note the use of 0 for the missing coefficient of the
y-variable in the third equation, and also note the fourth
column (of constant terms) in the augmented matrix.
The optional dotted line in the augmented matrix helps to
separate the coefficients of the linear system from the
constant terms.
13
Example 2 – Writing an Augmented Matrix
Write the augmented matrix for the system of linear
equations.
x + 3y = 9
–y + 4z = –2
x – 5z = 0
What is the dimension of the augmented matrix?
14
Example 2 – Solution
Begin by writing the linear system and aligning the
variables.
x + 3y = 9
– y + 4z = –2
x – 5z = 0
Next, use the coefficients and constant terms as the matrix
entries. Include zeros for the coefficients of the missing
variables.
15
Example 2 – Solution
The augmented matrix has three rows and four columns,
so it is a 3  4 matrix.
The notation Rn is used to designate each row in the
matrix. For instance, Row 1 is represented by R1.
cont’d
16
Elementary Row Operations
17
Elementary Row Operations
In matrix terminology, these three operations correspond to
elementary row operations.
An elementary row operation on an augmented matrix of a
given system of linear equations produces a new
augmented matrix corresponding to a new (but equivalent)
system of linear equations.
Two matrices are row-equivalent when one can be
obtained from the other by a sequence of elementary row
operations.
18
Example 3 – Elementary Row Operations
a. Interchange the first and second rows of the original
matrix.
Original Matrix New Row-Equivalent Matrix
b. Multiply the first row of the original matrix by
Original Matrix New Row-Equivalent Matrix
19
Example 3 – Elementary Row Operations
c. Add –2 times the first row of the original matrix to the
third row.
Original Matrix New Row-Equivalent Matrix
Note that the elementary row operation is written beside
the row that is changed.
cont’d
20
Gaussian Elimination with Back-Substitution
The next example demonstrates the matrix version of
Gaussian elimination.
The basic difference between the two methods is that with
matrices we do not need to keep writing the variables.
21
Example 4 – Comparing Linear Systems and Matrix Operations
Linear System Associated Augmented Matrix
x – 2y + 3z = 9
–x + 3y + z = – 2
2x – 5y + 5z = 17
Add the first equation to the Add the first row to the
second equation. second row: R1 + R2.
x – 2y + 3z = 9
y+ 4z = 7
2x – 5y + 5z = 17
22
Example 4 – Comparing Linear Systems and Matrix Operations
Add –2 times the first Add –2 times the first row to the
equation to the third third row: –2R1+R3
equation.
x – 2y + 3z = 9
y + 4z = 7
– y – z = – 1
Add the second equation to Add the second row to the
the third equation. third row: R2 + R3.
x – 2y + 3z = 9
–x + 3y + z = –2
2x – 5y + 5z = 17
cont’d
23
Example 4 – Comparing Linear Systems and Matrix Operations
Multiply the third equation by Multiply the third row by
x – 2y + 3z = 9
y + 4z = 7
z = 2
At this point, you can use back-substitution to find that the
solution is
x = 1, y = –1, and z = 2.
cont’d
24
Gaussian Elimination with Back-Substitution
The last matrix in Example 4 is in row-echelon form.
The term echelon refers to the stair-step pattern formed by
the nonzero elements of the matrix.
25
Gaussian Elimination with Back-Substitution
To be in this form, a matrix must have the following
properties.
26
Gaussian Elimination with Back-Substitution
Gaussian elimination with back-substitution works well for
solving systems of linear equations by hand or with a
computer.
For this algorithm, the order in which the elementary row
operations are performed is important.
We should operate from left to right by columns, using
elementary row operations to obtain zeros in all entries
directly below the leading 1’s.
27
Example 6 – Gaussian Elimination with Back-Substitution
Solve the system of equations.
y + z – 2w = –3
x + 2y – z = 2
2x + 4y + z – 3w = –2
x – 4y – 7z – w = –19
Solution:
Write augmented matrix.
28
Gaussian Elimination with Back-Substitution
The following steps summarize the procedure used in
Example 6.

More Related Content

Similar to Section-7.4-PC.ppt

chapter7_Sec1.ppt
chapter7_Sec1.pptchapter7_Sec1.ppt
chapter7_Sec1.pptvinnisart
 
7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Eliminationsmiller5
 
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, AMIR HASSAN
 
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeksBeginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeksJinTaek Seo
 
Chapter 3: Linear Systems and Matrices - Part 1/Slides
Chapter 3: Linear Systems and Matrices - Part 1/SlidesChapter 3: Linear Systems and Matrices - Part 1/Slides
Chapter 3: Linear Systems and Matrices - Part 1/SlidesChaimae Baroudi
 
36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptxmath260
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMohammad Imran
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebramath260
 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraMUHAMMADUSMAN93058
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIADheeraj Kataria
 
Linear equations
Linear equationsLinear equations
Linear equationsNisarg Amin
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsMaria Fernanda
 
IB Maths SL Matrices
IB Maths SL Matrices IB Maths SL Matrices
IB Maths SL Matrices estelav
 
Solving using systems
Solving using systemsSolving using systems
Solving using systemsholmsted
 

Similar to Section-7.4-PC.ppt (20)

chapter7_Sec1.ppt
chapter7_Sec1.pptchapter7_Sec1.ppt
chapter7_Sec1.ppt
 
7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination7.6 Solving Systems with Gaussian Elimination
7.6 Solving Systems with Gaussian Elimination
 
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES, INTRODUCTION TO MATRICES, TYPES OF MATRICES,
INTRODUCTION TO MATRICES, TYPES OF MATRICES,
 
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeksBeginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
 
matricesMrtices
matricesMrticesmatricesMrtices
matricesMrtices
 
Chapter 3: Linear Systems and Matrices - Part 1/Slides
Chapter 3: Linear Systems and Matrices - Part 1/SlidesChapter 3: Linear Systems and Matrices - Part 1/Slides
Chapter 3: Linear Systems and Matrices - Part 1/Slides
 
36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
 
Ses 2 matrix opt
Ses 2 matrix optSes 2 matrix opt
Ses 2 matrix opt
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear Algebra
 
Linear Algebra and its use in finance:
Linear Algebra and its use in finance:Linear Algebra and its use in finance:
Linear Algebra and its use in finance:
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Linear equations
Linear equationsLinear equations
Linear equations
 
Matrix.
Matrix.Matrix.
Matrix.
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
 
IB Maths SL Matrices
IB Maths SL Matrices IB Maths SL Matrices
IB Maths SL Matrices
 
Mathematics PPT.pptx
Mathematics PPT.pptxMathematics PPT.pptx
Mathematics PPT.pptx
 
Solving using systems
Solving using systemsSolving using systems
Solving using systems
 
Ma3bfet par 10.5 31 julie 2014
Ma3bfet par 10.5 31 julie 2014Ma3bfet par 10.5 31 julie 2014
Ma3bfet par 10.5 31 julie 2014
 

Recently uploaded

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 

Recently uploaded (20)

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

Section-7.4-PC.ppt

  • 1. Copyright © Cengage Learning. All rights reserved. 7.4 Matrices and Systems of Equations
  • 2. 2 What You Should Learn • Write matrices and identify their dimensions. • Perform elementary row operations on matrices. • Use matrices and Gaussian elimination to solve systems of linear equations. • Use matrices and Gauss-Jordan elimination to solve systems of linear equations.
  • 4. 4 Matrices In this section, you will study a streamlined technique for solving systems of linear equations. This technique involves the use of a rectangular array of real numbers called a matrix. The plural of matrix is matrices.
  • 6. 6 Matrices The entry in the i th row and j th column is denoted by the double subscript notation aij. For instance, the entry a23 is the entry in the second row and third column. A matrix having m rows and n columns is said to be of dimension m  n. If m = n then the matrix is square of dimension m  n (or n  n). For a square matrix, the entries a11, a22, a33, … are the main diagonal entries.
  • 7. 7 Example 1 – Dimension of a Matrix Determine the dimension of each matrix. a. [2] b. c. d. e.
  • 8. 8 Example 1 – Solution a. This matrix has one row and one column. The dimension of the matrix is 1  1. b. This matrix has one row and four columns. The dimension of the matrix is 1  4. c. This matrix has two rows and two columns. The dimension of the matrix is 2  2. d. This matrix has three rows and two columns. The dimension of the matrix is 3  2. e. This matrix has three rows and one column. The dimension of the matrix is 3  1.
  • 9. 9 Matrices A matrix that has only one row [such as the matrix in Example 1(b)] is called a row matrix, and a matrix that has only one column [such as the matrix in Example 1(e)] is called a column matrix. A matrix derived from a system of linear equations (each written in standard form with the constant term on the right) is the augmented matrix of the system. Moreover, the matrix derived from the coefficients of the system (but not including the constant terms) is the coefficient matrix of the system.
  • 10. 10 Matrices The matrix derived from the constant terms of the system is the constant matrix of the system. x – 4y + 3z = 5 System: – x – 3y – z = –3 2x – 4z = 6 Augmented Matrix:
  • 12. 12 Matrices Note the use of 0 for the missing coefficient of the y-variable in the third equation, and also note the fourth column (of constant terms) in the augmented matrix. The optional dotted line in the augmented matrix helps to separate the coefficients of the linear system from the constant terms.
  • 13. 13 Example 2 – Writing an Augmented Matrix Write the augmented matrix for the system of linear equations. x + 3y = 9 –y + 4z = –2 x – 5z = 0 What is the dimension of the augmented matrix?
  • 14. 14 Example 2 – Solution Begin by writing the linear system and aligning the variables. x + 3y = 9 – y + 4z = –2 x – 5z = 0 Next, use the coefficients and constant terms as the matrix entries. Include zeros for the coefficients of the missing variables.
  • 15. 15 Example 2 – Solution The augmented matrix has three rows and four columns, so it is a 3  4 matrix. The notation Rn is used to designate each row in the matrix. For instance, Row 1 is represented by R1. cont’d
  • 17. 17 Elementary Row Operations In matrix terminology, these three operations correspond to elementary row operations. An elementary row operation on an augmented matrix of a given system of linear equations produces a new augmented matrix corresponding to a new (but equivalent) system of linear equations. Two matrices are row-equivalent when one can be obtained from the other by a sequence of elementary row operations.
  • 18. 18 Example 3 – Elementary Row Operations a. Interchange the first and second rows of the original matrix. Original Matrix New Row-Equivalent Matrix b. Multiply the first row of the original matrix by Original Matrix New Row-Equivalent Matrix
  • 19. 19 Example 3 – Elementary Row Operations c. Add –2 times the first row of the original matrix to the third row. Original Matrix New Row-Equivalent Matrix Note that the elementary row operation is written beside the row that is changed. cont’d
  • 20. 20 Gaussian Elimination with Back-Substitution The next example demonstrates the matrix version of Gaussian elimination. The basic difference between the two methods is that with matrices we do not need to keep writing the variables.
  • 21. 21 Example 4 – Comparing Linear Systems and Matrix Operations Linear System Associated Augmented Matrix x – 2y + 3z = 9 –x + 3y + z = – 2 2x – 5y + 5z = 17 Add the first equation to the Add the first row to the second equation. second row: R1 + R2. x – 2y + 3z = 9 y+ 4z = 7 2x – 5y + 5z = 17
  • 22. 22 Example 4 – Comparing Linear Systems and Matrix Operations Add –2 times the first Add –2 times the first row to the equation to the third third row: –2R1+R3 equation. x – 2y + 3z = 9 y + 4z = 7 – y – z = – 1 Add the second equation to Add the second row to the the third equation. third row: R2 + R3. x – 2y + 3z = 9 –x + 3y + z = –2 2x – 5y + 5z = 17 cont’d
  • 23. 23 Example 4 – Comparing Linear Systems and Matrix Operations Multiply the third equation by Multiply the third row by x – 2y + 3z = 9 y + 4z = 7 z = 2 At this point, you can use back-substitution to find that the solution is x = 1, y = –1, and z = 2. cont’d
  • 24. 24 Gaussian Elimination with Back-Substitution The last matrix in Example 4 is in row-echelon form. The term echelon refers to the stair-step pattern formed by the nonzero elements of the matrix.
  • 25. 25 Gaussian Elimination with Back-Substitution To be in this form, a matrix must have the following properties.
  • 26. 26 Gaussian Elimination with Back-Substitution Gaussian elimination with back-substitution works well for solving systems of linear equations by hand or with a computer. For this algorithm, the order in which the elementary row operations are performed is important. We should operate from left to right by columns, using elementary row operations to obtain zeros in all entries directly below the leading 1’s.
  • 27. 27 Example 6 – Gaussian Elimination with Back-Substitution Solve the system of equations. y + z – 2w = –3 x + 2y – z = 2 2x + 4y + z – 3w = –2 x – 4y – 7z – w = –19 Solution: Write augmented matrix.
  • 28. 28 Gaussian Elimination with Back-Substitution The following steps summarize the procedure used in Example 6.