SlideShare a Scribd company logo
1 of 47
experiment
Careful observations
precise
Accurate measurement




Quantities
that can be
measured
Quantities
that can be
measured
Examples:
Length
Mass
Time
Weight
Electric current
Force
Velocity
energy
50 kg
Numericalvalue
unit
Describing a physical quantity:
Different units can be used to describe
the same quantity
Example : The height of a person
can be expressed
in feet
In inches
In metres
……
unit
Is the standard use to compare
different magnitudes of the same
physical quantity
Quantity SI unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current Ampere A
Thermodynamic
temperature
Kelvin K
Amount of substance mole mol
Light intensity Candela cd
Base quantity
standard
International Prototype
Metre standard bar made
of platinum-iridium. This
was the standard until
1960
The metre is the length equal to
1650763.73 wavelengths in   
vacuum of the radiation
corresponding to the transition
between the levels 2p10 and
5d5 of the krypton-86 atom
In 1960
The metre is the length of
the path travelled by light
in vacuum during a time
interval of 1⁄299792458 of   
a second.
In 1975
…………………
Prefix Factor Symbol
pico 10-12
p
nano 10-9
n
micro 10-6
µ
Milli 10-3
m
centi 10-2
c
deci 10-1
d
kilo 103
k
Mega 106
M
Giga 109
G
Tera 1012
T
Derived quantities
Is a combination of different base
quantities
Derived unit = the unit for derived quantity
= is obtained by using the
relation between the derived
quantities and base quantities
Derived quantity Derived unit
Area m2
Volume m3
Frequency Hz
Density kg m-3
Velocity m s-1
Acceleration m s-2
Force N or kg m s-2
Pressure Pa
Derived quantity Derived unit
Energy or Work J or Nm
Power W or J s-1
Electric charge C or As
Electric potential V or J C-1
Electric intensity V m-1
Electric resistance Ω Or V A-1
Capacitance F or C V-1
Heat capacity J K-1
Specific heat capacity J kg-1
K-1
Dimensions of Physical quantities
Is the relation between the physical
quantities and the base physical quantities
Example 1 :
Dimension of area = Area
Length x Breadth=
= L x L
= L2
Unit of area = m2
Example 2 :
Dimension of velocity = Velocity
Displacement
Time=
= L
T
= L T-1
Unit of velocity = m s-1
Example 3 :
Dimension of acceleration = Acceleration
Change of velocity
Time=
= L T-1
T
= L T-2
Unit of acceleration = m s-2
Example 4 :
Dimension of force = Force
Mass x Acceleration=
= M x L T-2
= M L T-2
Unit of force = kg m s-2
or N
Example 5 :
Dimension of energy = Energy
Force x Displacement=
= M L T-2
x L
= M L2
T-2
Unit of energy = kg m2
s-2
or J
Example 5 :
Dimension of energy = Energy
Mass x Velocity x Velocity=
= M x L T-1
x L T-1
= M L2
T-2
Unit of energy = kg m2
s-2
or J
OR
Example 6 :
Dimension of electric charge = Charge
Current x Time=
= A x T
= A T
Unit of area = A s
Example 7 :
Dimension of frequency = Frequency
1 .
Period=
= 1
T
= T-1
Unit of frequency = s-1
Example 8 :
Dimension of strain = Strain
Extension
Original length=
= L
L
= 1
Unit of frequency = no unit
dimensionless
Uses of Dimensions
Dimensional homogeneity of a physical
equation
1st
Physical
quantity
2nd
Physical
quantity+
_=
Both have same dimensions
Example :
v2
= u2
+ 2as
v2
= L T-1 2
= L2
T-2
u2
= L T-1 2
= L2
T-2
2as = L T-2
= L2
T-2
L
Every
term has
the same
dimension
The equation is dimensionally consistent
Case 1
Example :
v = u + 2as
v = L T-1
= L T-1
u = L T-1
= L T-1
2as = L T-2
= L2
T-2
L
[v]
=
[u]
≠
[2as]
The dimension is not consistent
The
equation is
incorrect.
Case 2
A physical equation
whose dimensions are
consistent need not
necessary be correct :
Example :
v2
= u2
+ as
v2
= L T-1 2
= L2
T-2
u2
= L T-1 2
= L2
T-2
as = L T-2
= L2
T-2
L
Every
term has
the same
dimension
The equation is
dimensionally consistent
Case 3
The constant of
proportionality is wrong
The
equation is
incorrect.
Example :
v2
= u2
+ 2as +
v2
= L T-1 2
= L2
T-2
u2
= L T-1 2
= L2
T-2
2as = L T-2
= L2
T-2
L
Every
term has
the same
dimension
The equation is
dimensionally consistent
Case 4
Has extra term
The
equation is
incorrect.
s2
t2
s2
t2
=
L2
T2 = L2
T-2
The truth of a physical
equation can be
confirmed
experimentally :
Example :
The period of vibration t of a tuning fork depends on
the density ρ, Young modulus E and length l of the
tuning fork. Which of the following equation may be
used to relate t with the quantities mentioned?
a) t =
Aρ
E
gl3
b) t =
ρ
EAl c) t =
AE
ρ
l
g
Where A is a dimensionless constant and g is the
acceleration due to gravity. The table below shows
the data obtained from various tuning forks made of
steel and are geometrically identical.
Frequency/Hz 256 288 320 384 480
Length l /cm 12.0 10.6 9.6 8.0 6.4
Use the data above to confirm the choice of the
right equation. Hence, determine the value of the
constant A.
For steel: density ρ = 8500 kg m-3 ,
E = 2.0 x 1011
Nm-2
Solution :
Unit for E = N m-2
= ( ) m-2kg m s-2
= kg m-1
s-2
[E] = M L-1
T-2
a) t =
Aρ
E
gl3
b) t =
ρ
EAl c) t =
AE
ρ
l
g
[t] = T
Aρ
E
gl3 =
M L-1
T-2
½
(L T-2
) L3M L-3
[ρ] =
Mass
volume
=
L-3
L-1
T-2
L2
T-1
= T
+ xx
The equation is
dimensionally consistent
Solution :
a) t =
Aρ
E
gl3
b) t =
ρ
EAl c) t =
AE
ρ
l
g
[t] = T
ρ
EAl = L
½
[ρ] =
Mass
volume
M L-3
M L-1
T-2
= L
½
L-2
T-2
= L
L-1
T-1
= T
Theequationis
dimensionallyconsistent
Solution :
a) t =
Aρ
E
gl3
b) t =
ρ
EAl c) t =
AE
ρ
l
g
[t] = T
AE
ρ
l
g
=
½M L-1
T-2
M L-3
L
L T-2
= L2
T-2 1
T-1
= L2
T-1
The dimension
is not consistent
Hence,
the equation
is incorrect
Solution :
a) t =
Aρ
E
gl3
b) t =
ρ
EAl c) t =
AE
ρ
l
g
Which one is the right equation?
Frequency/Hz 256 288 320 384 480
Length l /cm 12.0 10.6 9.6 8.0 6.4
Plot a grapht against l
3
2
t against l
Frequency
/Hz
256 288 320 384 480
Length l
/cm
12.0 10.6 9.6 8.0 6.4
period, t, s
1
256
3.91x10-3
period = 1
frequency
1
288
3.47x10-3 1
320
3.13x10-3 1
384
2.60x10-3 1
480
2.08x10-3
l
3
2
,s
3
2, cm
( l )3
( 12)3
41.6 ( 10.6)3
34.5 ( 9.6 )3
29.7 ( 8.0 )3
22.6 ( 6.4 )3
16.2
t against l
3
2
Graph of
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
tx10-3
/s
5 10 15 20 25 30 35 40 45
Compare
the graph
with the
equation
a)
a) t =
Aρ
E
gl3
y = mxGeneral equation
c ≠ 0
c = 0
Therefore
the equation
is incorrect
t against l
Graph of
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
tx10-3
/s
2 4 6 8 10 12 14 16 18 20
l /cm
b) t = Al
ρ
E
y = mxGeneral equation
c = 0
c = 0
Therefore
the equation
is correct
Compare
the graph
with the
equation
b)
Use the data above to confirm the choice of the
right equation. Hence, determine the value of the
constant A.
For steel: density ρ = 8500 kg m-3 ,
E = 2.0 x 1011
Nm-2
b) t = Al
ρ
E
y = mx
m = A
ρ
E
m =
3.91x10-3
s
12 cm
= 3.91x10-3
s
12 m
100
= 0.03258333
0.03258333 = A
ρ
E
Use the data above to confirm the choice of the
right equation. Hence, determine the value of the
constant A.
For steel: density ρ = 8500 kg m-3 ,
E = 2.0 x 1011
Nm-2
b) t = Al
ρ
E
y = mx
m = A
ρ
E
0.03258333 = A
ρ
E
0.03258333 = A
8500 .
2.0 x 1011
A = 1.58 x 102
Example :
The dependence of the heat capacity C of a
solid on the temperature T is given by the
equation :
C = αT + βT3
What are the units of α and β in terms of the
base units?
Solution :
C = αT + βT3
All the terms have same unit
Unit for C = J K-1
= kg m s-1 K-1
2
= kg m2
s-2
K-1
Unit for αT == kg m2
s-2
K-1
Unit for α = kg m2
s-2
K-1
unit for T
= kg m2
s-2
K-1
K
= kg m2
s-2
K-2
Solution :
C = αT + βT3
All the terms have same unit
Unit for βT3
== kg m2
s-2
K-1
Unit for β = kg m2
s-2
K-1
unit for T3
kg m2
s-2
K-1
K3
=
= kg m2
s-2
K-4
Example :
A recent theory suggests that time may be
quantized. The quantum or elementary
amount of time is given by the equation :
T =
h
mpc2
where h is the Planck constant,
mp = mass of proton and c = speed of light.
a)What is the dimension for Planck constant?
b)Write the SI unit of Planck constant.
Solution :
a) T =
h
mpc2
h = Tmpc2
h = Tmpc2[ ] [ ]
= T M (L T–1
)2
= M L2
T–1
Unit = kg m2
s-1

More Related Content

What's hot

Soal biologi un 2012 skl no.30 sistem pernapasan
Soal  biologi un 2012 skl no.30 sistem pernapasanSoal  biologi un 2012 skl no.30 sistem pernapasan
Soal biologi un 2012 skl no.30 sistem pernapasan
Ema Rachmawati
 
Presentasi Pemisahan Campuran
Presentasi Pemisahan CampuranPresentasi Pemisahan Campuran
Presentasi Pemisahan Campuran
Ai Roudatul
 
011 bab 10 Energi dan Perubahannya
011 bab 10 Energi dan Perubahannya011 bab 10 Energi dan Perubahannya
011 bab 10 Energi dan Perubahannya
Rizal Physics
 

What's hot (20)

Suhu, pemuaian dan kalor.pptx
Suhu, pemuaian dan kalor.pptxSuhu, pemuaian dan kalor.pptx
Suhu, pemuaian dan kalor.pptx
 
FISIKA MATERI KELAS 12 "USAHA DAN ENERGI" XII MIPA 3
FISIKA MATERI KELAS 12 "USAHA DAN ENERGI" XII MIPA 3FISIKA MATERI KELAS 12 "USAHA DAN ENERGI" XII MIPA 3
FISIKA MATERI KELAS 12 "USAHA DAN ENERGI" XII MIPA 3
 
Zat dan perubahannya
Zat dan perubahannyaZat dan perubahannya
Zat dan perubahannya
 
Suhu & Kalor, Pemuaian.pptx
Suhu & Kalor, Pemuaian.pptxSuhu & Kalor, Pemuaian.pptx
Suhu & Kalor, Pemuaian.pptx
 
Kumpulan Latihan Soal IPA SMP Kelas VII Lengkap 1 Tahun
Kumpulan Latihan Soal IPA SMP Kelas VII Lengkap 1 TahunKumpulan Latihan Soal IPA SMP Kelas VII Lengkap 1 Tahun
Kumpulan Latihan Soal IPA SMP Kelas VII Lengkap 1 Tahun
 
Ppt hk kekekakan energi mekanik
Ppt hk kekekakan energi mekanikPpt hk kekekakan energi mekanik
Ppt hk kekekakan energi mekanik
 
Kumpulan soal-soal suhu, pemuaian dan kalor UN IPA SMP Kelas 9 Nurul Faela Shufa
Kumpulan soal-soal suhu, pemuaian dan kalor UN IPA SMP Kelas 9 Nurul Faela ShufaKumpulan soal-soal suhu, pemuaian dan kalor UN IPA SMP Kelas 9 Nurul Faela Shufa
Kumpulan soal-soal suhu, pemuaian dan kalor UN IPA SMP Kelas 9 Nurul Faela Shufa
 
GLB DAN GLBB ( X SMA)
GLB DAN GLBB ( X SMA)GLB DAN GLBB ( X SMA)
GLB DAN GLBB ( X SMA)
 
Asam,Basa dan Garam
Asam,Basa dan GaramAsam,Basa dan Garam
Asam,Basa dan Garam
 
Soal biologi un 2012 skl no.30 sistem pernapasan
Soal  biologi un 2012 skl no.30 sistem pernapasanSoal  biologi un 2012 skl no.30 sistem pernapasan
Soal biologi un 2012 skl no.30 sistem pernapasan
 
Kalor SMP
Kalor SMPKalor SMP
Kalor SMP
 
Kohesi – adhesi dan kapilaritas
Kohesi – adhesi dan kapilaritasKohesi – adhesi dan kapilaritas
Kohesi – adhesi dan kapilaritas
 
Energi dan Perubahannya
Energi dan PerubahannyaEnergi dan Perubahannya
Energi dan Perubahannya
 
2. IPA Materi Konversi & Pengukuran KELAS 7.pptx
2. IPA Materi Konversi & Pengukuran KELAS 7.pptx2. IPA Materi Konversi & Pengukuran KELAS 7.pptx
2. IPA Materi Konversi & Pengukuran KELAS 7.pptx
 
Presentasi Pemisahan Campuran
Presentasi Pemisahan CampuranPresentasi Pemisahan Campuran
Presentasi Pemisahan Campuran
 
011 bab 10 Energi dan Perubahannya
011 bab 10 Energi dan Perubahannya011 bab 10 Energi dan Perubahannya
011 bab 10 Energi dan Perubahannya
 
22.kekenyalan
22.kekenyalan22.kekenyalan
22.kekenyalan
 
Makhluk hidup 2
Makhluk hidup 2Makhluk hidup 2
Makhluk hidup 2
 
1.0 Physical Quantities and Measurement
1.0 Physical Quantities and Measurement1.0 Physical Quantities and Measurement
1.0 Physical Quantities and Measurement
 
LKS SUHU DAN PERUBAHANNYA.pptx
LKS SUHU DAN PERUBAHANNYA.pptxLKS SUHU DAN PERUBAHANNYA.pptx
LKS SUHU DAN PERUBAHANNYA.pptx
 

Similar to Physicalquantities

Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8
Walt Disney World
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kinetics
miss j
 
1.2 solutions serway physics 6th edition
1.2 solutions serway physics 6th edition 1.2 solutions serway physics 6th edition
1.2 solutions serway physics 6th edition
luadros
 

Similar to Physicalquantities (20)

Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
 
Chapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSISChapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSIS
 
1_PHYSICAL Quantities to define the laws of physics
1_PHYSICAL Quantities to define the laws of physics1_PHYSICAL Quantities to define the laws of physics
1_PHYSICAL Quantities to define the laws of physics
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
 
Quarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and MeasurementsQuarter 1 Lesson 1 - Physical Quantities and Measurements
Quarter 1 Lesson 1 - Physical Quantities and Measurements
 
Physical Quantities and Measurements
Physical Quantities and MeasurementsPhysical Quantities and Measurements
Physical Quantities and Measurements
 
Basic Quantities,Prefixes&Dimensions.ppt
Basic Quantities,Prefixes&Dimensions.pptBasic Quantities,Prefixes&Dimensions.ppt
Basic Quantities,Prefixes&Dimensions.ppt
 
Reaction Kinetics
Reaction KineticsReaction Kinetics
Reaction Kinetics
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
Thermal diffusivity
Thermal diffusivityThermal diffusivity
Thermal diffusivity
 
units and dimensions
units and dimensionsunits and dimensions
units and dimensions
 
Revision notes on unit and dimensions
Revision notes on unit and dimensionsRevision notes on unit and dimensions
Revision notes on unit and dimensions
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20
 
Es 2017 18
Es 2017 18Es 2017 18
Es 2017 18
 
Serway, raymond a physics for scientists and engineers (6e) solutions
Serway, raymond a   physics for scientists and engineers (6e) solutionsSerway, raymond a   physics for scientists and engineers (6e) solutions
Serway, raymond a physics for scientists and engineers (6e) solutions
 
1.2 solutions serway physics 6th edition
1.2 solutions serway physics 6th edition 1.2 solutions serway physics 6th edition
1.2 solutions serway physics 6th edition
 
Physics .. An introduction
Physics .. An introductionPhysics .. An introduction
Physics .. An introduction
 
NS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptxNS 6141 - Physical quantities.pptx
NS 6141 - Physical quantities.pptx
 
1 2-Solutions Serway Physics 6Th Edition
1 2-Solutions Serway Physics 6Th Edition1 2-Solutions Serway Physics 6Th Edition
1 2-Solutions Serway Physics 6Th Edition
 

Physicalquantities

  • 2. Quantities that can be measured Examples: Length Mass Time Weight Electric current Force Velocity energy 50 kg Numericalvalue unit Describing a physical quantity:
  • 3. Different units can be used to describe the same quantity Example : The height of a person can be expressed in feet In inches In metres ……
  • 4. unit Is the standard use to compare different magnitudes of the same physical quantity
  • 5. Quantity SI unit Symbol Length metre m Mass kilogram kg Time second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance mole mol Light intensity Candela cd Base quantity standard
  • 6.
  • 7. International Prototype Metre standard bar made of platinum-iridium. This was the standard until 1960 The metre is the length equal to 1650763.73 wavelengths in    vacuum of the radiation corresponding to the transition between the levels 2p10 and 5d5 of the krypton-86 atom In 1960
  • 8. The metre is the length of the path travelled by light in vacuum during a time interval of 1⁄299792458 of    a second. In 1975 …………………
  • 9. Prefix Factor Symbol pico 10-12 p nano 10-9 n micro 10-6 µ Milli 10-3 m centi 10-2 c deci 10-1 d kilo 103 k Mega 106 M Giga 109 G Tera 1012 T
  • 10. Derived quantities Is a combination of different base quantities Derived unit = the unit for derived quantity = is obtained by using the relation between the derived quantities and base quantities
  • 11. Derived quantity Derived unit Area m2 Volume m3 Frequency Hz Density kg m-3 Velocity m s-1 Acceleration m s-2 Force N or kg m s-2 Pressure Pa
  • 12. Derived quantity Derived unit Energy or Work J or Nm Power W or J s-1 Electric charge C or As Electric potential V or J C-1 Electric intensity V m-1 Electric resistance Ω Or V A-1 Capacitance F or C V-1 Heat capacity J K-1 Specific heat capacity J kg-1 K-1
  • 13. Dimensions of Physical quantities Is the relation between the physical quantities and the base physical quantities Example 1 : Dimension of area = Area Length x Breadth= = L x L = L2 Unit of area = m2
  • 14. Example 2 : Dimension of velocity = Velocity Displacement Time= = L T = L T-1 Unit of velocity = m s-1
  • 15. Example 3 : Dimension of acceleration = Acceleration Change of velocity Time= = L T-1 T = L T-2 Unit of acceleration = m s-2
  • 16. Example 4 : Dimension of force = Force Mass x Acceleration= = M x L T-2 = M L T-2 Unit of force = kg m s-2 or N
  • 17. Example 5 : Dimension of energy = Energy Force x Displacement= = M L T-2 x L = M L2 T-2 Unit of energy = kg m2 s-2 or J
  • 18. Example 5 : Dimension of energy = Energy Mass x Velocity x Velocity= = M x L T-1 x L T-1 = M L2 T-2 Unit of energy = kg m2 s-2 or J OR
  • 19. Example 6 : Dimension of electric charge = Charge Current x Time= = A x T = A T Unit of area = A s
  • 20. Example 7 : Dimension of frequency = Frequency 1 . Period= = 1 T = T-1 Unit of frequency = s-1
  • 21. Example 8 : Dimension of strain = Strain Extension Original length= = L L = 1 Unit of frequency = no unit dimensionless
  • 22. Uses of Dimensions Dimensional homogeneity of a physical equation 1st Physical quantity 2nd Physical quantity+ _= Both have same dimensions
  • 23. Example : v2 = u2 + 2as v2 = L T-1 2 = L2 T-2 u2 = L T-1 2 = L2 T-2 2as = L T-2 = L2 T-2 L Every term has the same dimension The equation is dimensionally consistent Case 1
  • 24. Example : v = u + 2as v = L T-1 = L T-1 u = L T-1 = L T-1 2as = L T-2 = L2 T-2 L [v] = [u] ≠ [2as] The dimension is not consistent The equation is incorrect. Case 2
  • 25. A physical equation whose dimensions are consistent need not necessary be correct :
  • 26. Example : v2 = u2 + as v2 = L T-1 2 = L2 T-2 u2 = L T-1 2 = L2 T-2 as = L T-2 = L2 T-2 L Every term has the same dimension The equation is dimensionally consistent Case 3 The constant of proportionality is wrong The equation is incorrect.
  • 27. Example : v2 = u2 + 2as + v2 = L T-1 2 = L2 T-2 u2 = L T-1 2 = L2 T-2 2as = L T-2 = L2 T-2 L Every term has the same dimension The equation is dimensionally consistent Case 4 Has extra term The equation is incorrect. s2 t2 s2 t2 = L2 T2 = L2 T-2
  • 28. The truth of a physical equation can be confirmed experimentally :
  • 29. Example : The period of vibration t of a tuning fork depends on the density ρ, Young modulus E and length l of the tuning fork. Which of the following equation may be used to relate t with the quantities mentioned? a) t = Aρ E gl3 b) t = ρ EAl c) t = AE ρ l g Where A is a dimensionless constant and g is the acceleration due to gravity. The table below shows the data obtained from various tuning forks made of steel and are geometrically identical. Frequency/Hz 256 288 320 384 480 Length l /cm 12.0 10.6 9.6 8.0 6.4
  • 30. Use the data above to confirm the choice of the right equation. Hence, determine the value of the constant A. For steel: density ρ = 8500 kg m-3 , E = 2.0 x 1011 Nm-2
  • 31. Solution : Unit for E = N m-2 = ( ) m-2kg m s-2 = kg m-1 s-2 [E] = M L-1 T-2 a) t = Aρ E gl3 b) t = ρ EAl c) t = AE ρ l g [t] = T Aρ E gl3 = M L-1 T-2 ½ (L T-2 ) L3M L-3 [ρ] = Mass volume = L-3 L-1 T-2 L2 T-1 = T + xx The equation is dimensionally consistent
  • 32. Solution : a) t = Aρ E gl3 b) t = ρ EAl c) t = AE ρ l g [t] = T ρ EAl = L ½ [ρ] = Mass volume M L-3 M L-1 T-2 = L ½ L-2 T-2 = L L-1 T-1 = T Theequationis dimensionallyconsistent
  • 33. Solution : a) t = Aρ E gl3 b) t = ρ EAl c) t = AE ρ l g [t] = T AE ρ l g = ½M L-1 T-2 M L-3 L L T-2 = L2 T-2 1 T-1 = L2 T-1 The dimension is not consistent Hence, the equation is incorrect
  • 34. Solution : a) t = Aρ E gl3 b) t = ρ EAl c) t = AE ρ l g Which one is the right equation? Frequency/Hz 256 288 320 384 480 Length l /cm 12.0 10.6 9.6 8.0 6.4 Plot a grapht against l 3 2 t against l
  • 35. Frequency /Hz 256 288 320 384 480 Length l /cm 12.0 10.6 9.6 8.0 6.4 period, t, s 1 256 3.91x10-3 period = 1 frequency 1 288 3.47x10-3 1 320 3.13x10-3 1 384 2.60x10-3 1 480 2.08x10-3
  • 36. l 3 2 ,s 3 2, cm ( l )3 ( 12)3 41.6 ( 10.6)3 34.5 ( 9.6 )3 29.7 ( 8.0 )3 22.6 ( 6.4 )3 16.2
  • 37. t against l 3 2 Graph of 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 tx10-3 /s 5 10 15 20 25 30 35 40 45
  • 38. Compare the graph with the equation a) a) t = Aρ E gl3 y = mxGeneral equation c ≠ 0 c = 0 Therefore the equation is incorrect
  • 39. t against l Graph of 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 tx10-3 /s 2 4 6 8 10 12 14 16 18 20 l /cm
  • 40. b) t = Al ρ E y = mxGeneral equation c = 0 c = 0 Therefore the equation is correct Compare the graph with the equation b)
  • 41. Use the data above to confirm the choice of the right equation. Hence, determine the value of the constant A. For steel: density ρ = 8500 kg m-3 , E = 2.0 x 1011 Nm-2 b) t = Al ρ E y = mx m = A ρ E m = 3.91x10-3 s 12 cm = 3.91x10-3 s 12 m 100 = 0.03258333 0.03258333 = A ρ E
  • 42. Use the data above to confirm the choice of the right equation. Hence, determine the value of the constant A. For steel: density ρ = 8500 kg m-3 , E = 2.0 x 1011 Nm-2 b) t = Al ρ E y = mx m = A ρ E 0.03258333 = A ρ E 0.03258333 = A 8500 . 2.0 x 1011 A = 1.58 x 102
  • 43. Example : The dependence of the heat capacity C of a solid on the temperature T is given by the equation : C = αT + βT3 What are the units of α and β in terms of the base units?
  • 44. Solution : C = αT + βT3 All the terms have same unit Unit for C = J K-1 = kg m s-1 K-1 2 = kg m2 s-2 K-1 Unit for αT == kg m2 s-2 K-1 Unit for α = kg m2 s-2 K-1 unit for T = kg m2 s-2 K-1 K = kg m2 s-2 K-2
  • 45. Solution : C = αT + βT3 All the terms have same unit Unit for βT3 == kg m2 s-2 K-1 Unit for β = kg m2 s-2 K-1 unit for T3 kg m2 s-2 K-1 K3 = = kg m2 s-2 K-4
  • 46. Example : A recent theory suggests that time may be quantized. The quantum or elementary amount of time is given by the equation : T = h mpc2 where h is the Planck constant, mp = mass of proton and c = speed of light. a)What is the dimension for Planck constant? b)Write the SI unit of Planck constant.
  • 47. Solution : a) T = h mpc2 h = Tmpc2 h = Tmpc2[ ] [ ] = T M (L T–1 )2 = M L2 T–1 Unit = kg m2 s-1