SlideShare a Scribd company logo
1 of 40
Download to read offline
Econ 2015 Time Series: Serial Correlation
Sheng-Kai Chang
NTU
Spring 2016
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 1 / 28
1. Properties of OLS Under Serial Correlation
Recall the model written in its usual form:
yt = Ī²0 + Ī²1xt1 + ... + Ī²k xtk + ut
Serial correlation means that the errors, fut : t = 1, 2, ...g are correlated.
Serial correlation has nothing directly to do with unbiasedness or
consistency of OLS. If the expected value of ut does not depend on any of
the explanatory variables in any time period ā€“so the explanatory variables
are strictly exogenous, Assumption TS.3 ā€“then OLS is unbiased.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 2 / 28
If ut is uncorrelated with the explantory variables at time t ā€“the
explanatory variables are contemporaneously exogenous, Assumption TS.30
ā€“then OLS is consistent, provided the time series are weakly dependent.
There is little to worry about with static and ā€¦nite distributed lag
regression models concerning consistency in the presence of serial
correlation.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 3 / 28
But serially correlated errors means the usual OLS statistical inference is
incorrect, even in large samples. In many cases, the inference can be very
misleading. (Heteroskedasticity also invalidates the usual inference in TS
regressions, just as with CS regressions.)
In some cases, we can improve over OLS by modeling the serial
correlation and using a diĀ¤erent estimation method, but additional
assumptions are needed.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 4 / 28
It is commonly thought that serial correlation invalidates R2 and RĢ„2. If
the serial correlation is due to spurious regression ā€“which means fyt g and
some of the explanatory variables have unit roots ā€“then R2 and RĢ„2 are
pretty useless.
But if the data are weakly dependent (perhaps after diĀ¤erencing or using
growth rates), the usual R-squareds are reliable even if there is serial
correlation (and/or heteroskedasticity).
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 5 / 28
2. Computing Standard Errors Robust to Serial Correlation and
Heteroskedasticity
It is increasingly common to treat serial correlation in TS regression like
we often treat heteroskedasticity in CS regression: as a nuisance that
causes the usual inference to be incorrect.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 6 / 28
For heteroskedasticity, we make inference robust to heteroskedasticity of
unknown form:
reg y x1 x2 ... xk, robust
Importantly, if we can rule out serial correlation in the errors, we can use
exactly the same command to make inference robust to heteroskedasticity
with time series.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 7 / 28
It is also possible to compute standard errors, CIs, and test statistics
robust to general forms of serial correlation ā€“at least approximately.
These statistics are also robust to any kind of heteroskedasticity.
The underlying theory is complicated, but it is easy to describe the idea.
For example, we might decide up front to allow ut to be correlated with
ut 1 and ut 2, but not the errors more than two periods apart. See
Wooldridge (5e, Section 12.5) for details.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 8 / 28
The resulting standard errors are usually called Newey-West standard
errors, and are now computed routinely by Stata and other programs.
The standard errors are sometimes called HAC (heteroskedasticity
and autocorrelation consistent) standard errors.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 9 / 28
The N-W standard errors are not as automated as the adjustment for
heteroskedasticity because we have to choose a lag. With annual data, the
lag is usually fairly short ā€“maybe a couple of years, so lag = 2 ā€“but with
quarterly or monthly data we tend to try longer lags, such as lag = 24.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 10 / 28
The command in Stata is
newey y x1 x2 ... xk, lag(q)
where we have to choose q, and probably will experiment a bit to see how
sensitive the standard errors are. If we choose q = 0, it is the same thing
as
reg y x1 x2 ... xk, robust
Important: We are still estimating the parameters by OLS. We are only
changing how we estimate their precision and peform inference.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 11 / 28
Just as with the heteroskedasticity-robust inference, we can apply the
HAC inference whether or not we have evidence of serial correlation. Large
diĀ¤erences in the HAC standard errors and the usual ones suggests serial
correlation (autocorrelation) or heteroskedasticity are problems.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 12 / 28
EXAMPLE: Estimating a Simple Reaction Function for the Federal Funds
Rate (FEDFUND.DTA)
We earlier found evidence that Ā¤ratet is highly persistent. So are
inā€”ation and the GDP gap. So we use changes (diĀ¤erences) of all variables.
With quarterly data, try FDLs of order 4 in both inf and gdpgap.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 13 / 28
The usual t statistics show signiā€¦cance of both contemporaneous
variables and some lags.
If we try the Newey-West standard errors with lag = 2, the standard
errors generally increase, sometimes by large amounts. For example, cinf
and cinf _3 have have much smaller t statistics.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 14 / 28
Increasing the N-W lag to four does not change much.
The joint test of the fourth lags fails to reject, so we would be justiā€¦ed
in dropping them.
Overall, there seems to be evidence that the Fed increases the FF rate,
phased over a couple of quarters, when inā€”ation increases or when the
GDP gap increases (so actual GDP is above the ideal GDP).
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
. reg cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2
cgdpgap_3 cgdpgap_4
Source | SS df MS Number of obs = 177
-------------+------------------------------ F( 10, 166) = 6.23
Model | 48.562746 10 4.8562746 Prob > F = 0.0000
Residual | 129.427415 166 .779683225 R-squared = 0.2728
-------------+------------------------------ Adj R-squared = 0.2290
Total | 177.990161 176 1.01130774 Root MSE = .883
------------------------------------------------------------------------------
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1635009 .0693821 2.36 0.020 .0265158 .3004861
cinf_1 | .0892447 .0749762 1.19 0.236 -.0587852 .2372746
cinf_2 | .2397011 .0766598 3.13 0.002 .0883473 .3910549
cinf_3 | .1603425 .0742329 2.16 0.032 .0137802 .3069048
cinf_4 | .0188896 .0692756 0.27 0.785 -.1178851 .1556644
cgdpgap | .3419624 .077994 4.38 0.000 .1879743 .4959506
cgdpgap_1 | .2432981 .0796212 3.06 0.003 .0860974 .4004988
cgdpgap_2 | .1016662 .077379 1.31 0.191 -.0511077 .2544401
cgdpgap_3 | .0544501 .0335291 1.62 0.106 -.0117484 .1206486
cgdpgap_4 | -.0874404 .0774749 -1.13 0.261 -.2404035 .0655227
_cons | .0395079 .0670281 0.59 0.556 -.0928297 .1718454
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
. newey cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2
cgdpgap_3 cgdpgap_4, lag(2)
Regression with Newey-West standard errors Number of obs = 177
maximum lag: 2 F( 10, 166) = 5.51
Prob > F = 0.0000
------------------------------------------------------------------------------
| Newey-West
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1635009 .0890041 1.84 0.068 -.012225 .3392269
cinf_1 | .0892447 .1168206 0.76 0.446 -.1414011 .3198905
cinf_2 | .2397011 .1328552 1.80 0.073 -.0226026 .5020048
cinf_3 | .1603425 .1170766 1.37 0.173 -.0708086 .3914936
cinf_4 | .0188896 .0738927 0.26 0.799 -.127001 .1647803
cgdpgap | .3419624 .1068802 3.20 0.002 .1309426 .5529822
cgdpgap_1 | .2432981 .0974424 2.50 0.014 .050912 .4356842
cgdpgap_2 | .1016662 .1466274 0.69 0.489 -.1878288 .3911612
cgdpgap_3 | .0544501 .0405701 1.34 0.181 -.0256499 .1345501
cgdpgap_4 | -.0874404 .07741 -1.13 0.260 -.2402755 .0653947
_cons | .0395079 .0593546 0.67 0.507 -.0776794 .1566951
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
. newey cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2
cgdpgap_3 cgdpgap_4, lag(4)
Regression with Newey-West standard errors Number of obs = 177
maximum lag: 4 F( 10, 166) = 7.51
Prob > F = 0.0000
------------------------------------------------------------------------------
| Newey-West
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1635009 .0913361 1.79 0.075 -.0168292 .343831
cinf_1 | .0892447 .1218877 0.73 0.465 -.1514052 .3298947
cinf_2 | .2397011 .1463759 1.64 0.103 -.0492973 .5286995
cinf_3 | .1603425 .1191334 1.35 0.180 -.0748695 .3955545
cinf_4 | .0188896 .0723094 0.26 0.794 -.1238749 .1616542
cgdpgap | .3419624 .1126093 3.04 0.003 .1196314 .5642934
cgdpgap_1 | .2432981 .0966048 2.52 0.013 .0525656 .4340306
cgdpgap_2 | .1016662 .1455609 0.70 0.486 -.1857231 .3890555
cgdpgap_3 | .0544501 .040057 1.36 0.176 -.0246368 .133537
cgdpgap_4 | -.0874404 .0724511 -1.21 0.229 -.2304848 .055604
_cons | .0395079 .0584588 0.68 0.500 -.0759106 .1549264
------------------------------------------------------------------------------
. test cinf_4 cgdpgap_4
( 1) cinf_4 = 0
( 2) cgdpgap_4 = 0
F( 2, 166) = 0.74
Prob > F = 0.4771
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
. newey cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2
cgdpgap_3, lag(4)
Regression with Newey-West standard errors Number of obs = 178
maximum lag: 4 F( 8, 169) = 9.85
Prob > F = 0.0000
------------------------------------------------------------------------------
| Newey-West
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1529545 .090034 1.70 0.091 -.0247817 .3306907
cinf_1 | .0711862 .1073547 0.66 0.508 -.1407427 .2831152
cinf_2 | .2244522 .1375701 1.63 0.105 -.047125 .4960295
cinf_3 | .1428366 .0961857 1.49 0.139 -.0470436 .3327168
cgdpgap | .3387203 .1090373 3.11 0.002 .1234698 .5539708
cgdpgap_1 | .2413696 .0972818 2.48 0.014 .0493255 .4334136
cgdpgap_2 | .0886014 .1476462 0.60 0.549 -.202867 .3800698
cgdpgap_3 | .0502603 .0376323 1.34 0.183 -.0240297 .1245503
_cons | .038079 .0584926 0.65 0.516 -.0773912 .1535493
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
3. Testing for Serial Correlation
We specify simple alternative models that allow the errors to be serially
correlated, and then use the model to test the null that the errors are not
serially correlated.
The most common is an AR(1) model:
ut = Ļut 1 + et
where fet g is serially uncorrelated, has a zero mean, and (usually) a
constant variance.
Then the null is
H0 : Ļ = 0
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 16 / 28
Often Ļ > 0 when there is serial correlation, but we usually use a
two-sided alternative.
If we could observe fut g, we would just estimate a simple AR(1) model
for ut and test Ļ = 0. [Because E(ut ) = 0, this is one case we would not
have to include a constant.]
But we do not observe the errors. Instead, we base a test on the OLS
residuals, uĢ‚t . (Think back to the case of testing for heteroskedasticity,
where we used uĢ‚2
t in place of u2
t .)
Remember the diĀ¤erence between uĢ‚t and ut : the former depends on the
estimators, Ī²Ģ‚j .
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 17 / 28
Strictly Exogenous Regressors
If the fxtj g are strictly exogenous (Assumption TS.3) then we can use a
simple test. In fact, it suĀ¢ ces that
E(ut jxt , xt+1) = 0,
so ut is uncorrelated with regressors in this time period and next time
period.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 18 / 28
Testing for Serial Correlation under Strict Exogeneity
1. Estimate the equation
yt = Ī²0 + Ī²1xt1 + ... + Ī²k xtk + ut , t = 1, 2, ..., n
by OLS, and save the residuals, fuĢ‚t : t = 1, 2, ..., ng.
2. Run the AR(1) regression
uĢ‚t on uĢ‚t 1, t = 2, ..., n
It is not necessary to estimate an intercept ā€“after all, the averages of uĢ‚t
and uĢ‚t 1 are almost zero over t = 2, ..., n ā€“but it is harmless to do so.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 19 / 28
3. Compute the usual or heteroskedasticity-robust t statistic for ĻĢ‚, and
carry out the test H0 : Ļ = 0 in the usual way.
The test has large-sample justiā€¦cation and tends to work well. It is often
applied to static and FDL models because strict exogeneity can be true.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 20 / 28
With large n, we might reject Ļ = 0 even if ĻĢ‚ is ā€œsmall.ā€ (The test can
have a lot of power with large n.) With small n, we might not reject even
if ĻĢ‚ seems fairly large.
Just as when we test for heteroskedasticity, the null is that everything is
okay. We require the data to tell us, fairly convincingly, that some action
is required.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 21 / 28
Another statistic, related to the previous one, is called the
Durbin-Watson statistic. Unless the sample size is small, it has little to
oĀ¤er over the simple regression-based test.
We can easily add lags, too, and then use and F test: for example, we
can regress
uĢ‚t on uĢ‚t 1, uĢ‚t 2, t = 3, ..., n
and test the two lags for joint signiā€¦cance (using a usual F statistic or
heteroskedasticity-robust version).
Remember, Stata will automatically set the lags to missing data where
appropriate.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 22 / 28
Conemporaneously Exogenous Regressors
A simple adjustment is needed if the regressors are not strictly
exogenous. All we have to do is add all of the explanatory variables along
with the lagged OLS residual. And, we deā€¦nitely estimate an intercept.
So, for the AR(1) test, after getting the OLS residuals exactly as before,
run
uĢ‚t on uĢ‚t 1, xt1, xt2, ..., xtk , t = 2, ..., n
If we take the ā€œ^ā€ oĀ¤ of the residuals, we can see why we need to
include the regressors: ut 1 might be correlated with xt1, ..., xtk if the xtj
are not strictly exogenous.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 23 / 28
This form of the test is more general than the previous form, even
though the previous test is somewhat more popular.
One must use the extended form if one or more of the xtj is a lag of yt ,
but it is needed in other situations where strict exogeneity is violated.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 24 / 28
EXAMPLE: Percent Fatalities and TraĀ¢ c Laws (TRAFFIC.DTA)
Use as the dependent variable prcfat, the percent of accidents resulting
in at least one fatality.
The estimate of Ļ is about .282, and the test that assumes strict
exogeneity gives Ļ„ĻĢ‚ = 2.98. So we ā€¦nd strong evidence of serial
correlation, although it is not a huge amount of serial correlation.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 25 / 28
The more general test gives practically the same results: Ļ„ĻĢ‚ = 2.77.
We can conclude that we should compute Newey-West standard errors,
but it is not clear what the lag should be in N-W.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 26 / 28
Using lag = 4 reduces the statistical signiā€¦cance of spdlaw and beltlaw,
making beltlaw very insigniā€¦cant. spdlaw is still signiā€¦cant at the 1.3%
level.
The estimated eĀ¤ect of increasing the speed limit, .067, may seem small.
But the average fatality rate is about .886 with standard deviation = .10.
So, increasing the speed limit (on rural interstates) was associated with
about two-thirds of a standard deviation increase the fatality rate.
The seatbelt law had a negative sign but is not statistically signicant.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
. reg prcfat spdlaw beltlaw unem feb-dec t
Source | SS df MS Number of obs = 108
-------------+------------------------------ F( 15, 92) = 15.57
Model | .764194266 15 .050946284 Prob > F = 0.0000
Residual | .30105389 92 .003272325 R-squared = 0.7174
-------------+------------------------------ Adj R-squared = 0.6713
Total | 1.06524816 107 .00995559 Root MSE = .0572
------------------------------------------------------------------------------
prcfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
spdlaw | .0671634 .0204439 3.29 0.001 .02656 .1077668
beltlaw | -.0295827 .023093 -1.28 0.203 -.0754474 .0162819
unem | -.0154371 .0055134 -2.80 0.006 -.0263872 -.004487
feb | -.0001812 .0269749 -0.01 0.995 -.0537557 .0533933
mar | -.0002591 .0270411 -0.01 0.992 -.0539649 .0534468
apr | .057726 .0272431 2.12 0.037 .0036189 .1118331
may | .0714815 .0274507 2.60 0.011 .016962 .1260011
jun | .1006207 .0272277 3.70 0.000 .0465442 .1546973
jul | .1764641 .0270735 6.52 0.000 .1226939 .2302343
aug | .1924577 .0272551 7.06 0.000 .1383266 .2465887
sep | .1594422 .0274815 5.80 0.000 .1048615 .214023
oct | .1008793 .0274783 3.67 0.000 .046305 .1554536
nov | .0133768 .0274252 0.49 0.627 -.041092 .0678456
dec | .0089053 .0275565 0.32 0.747 -.0458243 .0636349
t | -.0022355 .0004185 -5.34 0.000 -.0030668 -.0014043
_cons | 1.038472 .0571893 18.16 0.000 .924889 1.152055
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
. predict uh, resid
. gen uh_1 = L.uh
(1 missing value generated)
. reg uh uh_1
Source | SS df MS Number of obs = 107
-------------+------------------------------ F( 1, 105) = 8.91
Model | .023532239 1 .023532239 Prob > F = 0.0035
Residual | .277343282 105 .002641365 R-squared = 0.0782
-------------+------------------------------ Adj R-squared = 0.0694
Total | .300875521 106 .002838448 Root MSE = .05139
------------------------------------------------------------------------------
uh | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
uh_1 | .2816806 .0943712 2.98 0.004 .0945599 .4688012
_cons | .0002994 .0049688 0.06 0.952 -.0095528 .0101516
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
. reg uh uh_1 spdlaw beltlaw unem feb-dec t
Source | SS df MS Number of obs = 107
-------------+------------------------------ F( 16, 90) = 0.48
Model | .023694612 16 .001480913 Prob > F = 0.9505
Residual | .277180909 90 .003079788 R-squared = 0.0788
-------------+------------------------------ Adj R-squared = -0.0850
Total | .300875521 106 .002838448 Root MSE = .0555
------------------------------------------------------------------------------
uh | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
uh_1 | .2830111 .1021103 2.77 0.007 .0801511 .4858711
spdlaw | -.0019168 .0199115 -0.10 0.924 -.0414744 .0376408
beltlaw | .0011499 .022418 0.05 0.959 -.0433874 .0456872
unem | -.000307 .0054271 -0.06 0.955 -.011089 .0104749
feb | -.0040023 .0270068 -0.15 0.883 -.057656 .0496513
mar | -.0041376 .0271499 -0.15 0.879 -.0580756 .0498004
apr | -.0042422 .027399 -0.15 0.877 -.058675 .0501907
may | -.0041133 .0276815 -0.15 0.882 -.0591073 .0508808
jun | -.0040234 .0273791 -0.15 0.883 -.0584167 .05037
jul | -.0038516 .0270836 -0.14 0.887 -.057658 .0499548
aug | -.004021 .0273602 -0.15 0.883 -.0583769 .0503349
sep | -.0041051 .0276161 -0.15 0.882 -.0589692 .0507591
oct | -.0040937 .027583 -0.15 0.882 -.0588921 .0507048
nov | -.0040584 .0274856 -0.15 0.883 -.0586633 .0505466
dec | -.0040947 .0276155 -0.15 0.882 -.0589577 .0507684
t | -4.60e-06 .0004176 -0.01 0.991 -.0008342 .000825
_cons | .006583 .0583639 0.11 0.910 -.109367 .122533
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
. newey prcfat spdlaw beltlaw unem feb-dec t, lag(4)
Regression with Newey-West standard errors Number of obs = 108
maximum lag: 4 F( 15, 92) = 19.74
Prob > F = 0.0000
------------------------------------------------------------------------------
| Newey-West
prcfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
spdlaw | .0671634 .0264891 2.54 0.013 .0145538 .1197729
beltlaw | -.0295827 .0330354 -0.90 0.373 -.0951939 .0360284
unem | -.0154371 .0059803 -2.58 0.011 -.0273144 -.0035598
feb | -.0001812 .016465 -0.01 0.991 -.0328821 .0325197
mar | -.0002591 .0225929 -0.01 0.991 -.0451304 .0446123
apr | .057726 .0265662 2.17 0.032 .0049632 .1104888
may | .0714815 .0283569 2.52 0.013 .0151622 .1278008
jun | .1006207 .0319548 3.15 0.002 .0371557 .1640858
jul | .1764641 .0349275 5.05 0.000 .1070951 .2458331
aug | .1924577 .0252154 7.63 0.000 .1423777 .2425377
sep | .1594422 .0292946 5.44 0.000 .1012606 .2176239
oct | .1008793 .0306156 3.30 0.001 .0400742 .1616844
nov | .0133768 .029876 0.45 0.655 -.0459594 .0727131
dec | .0089053 .0283141 0.31 0.754 -.0473291 .0651396
t | -.0022355 .0005551 -4.03 0.000 -.0033381 -.001133
_cons | 1.038472 .0591372 17.56 0.000 .9210202 1.155924
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
EXAMPLE: Serial Correlation in the Federal Funds Rate Equation
No evidence of ā€¦rst-order serial correlation, but there is second order
serial correlation.
The standard errors that are robust to heteroskedasticity are actually
larger than those robust to serial correlation and heteroskedasticity.
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
. reg cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3
Source | SS df MS Number of obs = 178
-------------+------------------------------ F( 8, 169) = 7.68
Model | 47.4763936 8 5.93454919 Prob > F = 0.0000
Residual | 130.524094 169 .772331915 R-squared = 0.2667
-------------+------------------------------ Adj R-squared = 0.2320
Total | 178.000487 177 1.00565247 Root MSE = .87882
------------------------------------------------------------------------------
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1529545 .0680061 2.25 0.026 .0187037 .2872053
cinf_1 | .0711862 .0727929 0.98 0.330 -.0725143 .2148868
cinf_2 | .2244522 .0729376 3.08 0.002 .080466 .3684385
cinf_3 | .1428366 .0682135 2.09 0.038 .0081763 .2774969
cgdpgap | .3387203 .0769542 4.40 0.000 .186805 .4906355
cgdpgap_1 | .2413696 .0791325 3.05 0.003 .085154 .3975851
cgdpgap_2 | .0886014 .0761234 1.16 0.246 -.0616739 .2388767
cgdpgap_3 | .0502603 .0314743 1.60 0.112 -.0118731 .1123937
_cons | .038079 .0664227 0.57 0.567 -.093046 .169204
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
. predict uh, resid
(4 missing values generated)
. gen uh_1 = L.uh
(5 missing values generated)
. reg uh uh_1
Source | SS df MS Number of obs = 177
-------------+------------------------------ F( 1, 175) = 0.06
Model | .048449077 1 .048449077 Prob > F = 0.7991
Residual | 130.467572 175 .745528986 R-squared = 0.0004
-------------+------------------------------ Adj R-squared = -0.0053
Total | 130.516022 176 .741568304 Root MSE = .86344
------------------------------------------------------------------------------
uh | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
uh_1 | .0192665 .0755773 0.25 0.799 -.1298939 .1684269
_cons | .000512 .0649001 0.01 0.994 -.1275757 .1285997
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
. gen uh_2 = L2.uh
(6 missing values generated)
. reg uh uh_1 uh_2
Source | SS df MS Number of obs = 176
-------------+------------------------------ F( 2, 173) = 6.16
Model | 8.66875741 2 4.33437871 Prob > F = 0.0026
Residual | 121.811858 173 .704114789 R-squared = 0.0664
-------------+------------------------------ Adj R-squared = 0.0556
Total | 130.480616 175 .745603519 Root MSE = .83912
------------------------------------------------------------------------------
uh | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
uh_1 | .0243798 .0734643 0.33 0.740 -.1206218 .1693814
uh_2 | -.2571086 .0734841 -3.50 0.001 -.4021494 -.1120678
_cons | -.000234 .0632508 -0.00 0.997 -.1250766 .1246085
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
. reg cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3,
robust
Linear regression Number of obs = 178
F( 8, 169) = 4.84
Prob > F = 0.0000
R-squared = 0.2667
Root MSE = .87882
------------------------------------------------------------------------------
| Robust
cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cinf | .1529545 .10977 1.39 0.165 -.0637424 .3696515
cinf_1 | .0711862 .1058495 0.67 0.502 -.1377714 .2801439
cinf_2 | .2244522 .1136453 1.98 0.050 .0001049 .4487996
cinf_3 | .1428366 .094696 1.51 0.133 -.0441028 .3297761
cgdpgap | .3387203 .1162425 2.91 0.004 .1092458 .5681947
cgdpgap_1 | .2413696 .0987046 2.45 0.015 .0465168 .4362223
cgdpgap_2 | .0886014 .1482415 0.60 0.551 -.2040422 .381245
cgdpgap_3 | .0502603 .035287 1.42 0.156 -.0193998 .1199203
_cons | .038079 .0617225 0.62 0.538 -.0837674 .1599254
------------------------------------------------------------------------------
Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28

More Related Content

Similar to TimeSeries3.pdf.pdf

Writing Sample
Writing SampleWriting Sample
Writing SampleYiqun Li
Ā 
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...IRJET Journal
Ā 
Empirical Finance, Jordan Stone- Linkedin
Empirical Finance, Jordan Stone- LinkedinEmpirical Finance, Jordan Stone- Linkedin
Empirical Finance, Jordan Stone- LinkedinJordan Stone
Ā 
Time series modelling arima-arch
Time series modelling  arima-archTime series modelling  arima-arch
Time series modelling arima-archjeevan solaskar
Ā 
Autocorrelation- Concept, Causes and Consequences
Autocorrelation- Concept, Causes and ConsequencesAutocorrelation- Concept, Causes and Consequences
Autocorrelation- Concept, Causes and ConsequencesShilpa Chaudhary
Ā 
Forecasting demand planning
Forecasting demand planningForecasting demand planning
Forecasting demand planningManonmaniA3
Ā 
An Application Of TRAMO-SEATS Model Selection And Out-Of-Sample Performance....
An Application Of TRAMO-SEATS  Model Selection And Out-Of-Sample Performance....An Application Of TRAMO-SEATS  Model Selection And Out-Of-Sample Performance....
An Application Of TRAMO-SEATS Model Selection And Out-Of-Sample Performance....Wendy Berg
Ā 
Distribution of EstimatesLinear Regression ModelAssume (yt,.docx
Distribution of EstimatesLinear Regression ModelAssume (yt,.docxDistribution of EstimatesLinear Regression ModelAssume (yt,.docx
Distribution of EstimatesLinear Regression ModelAssume (yt,.docxmadlynplamondon
Ā 
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...Waqas Tariq
Ā 
Demand forecasting methods 1 gp
Demand forecasting methods 1 gpDemand forecasting methods 1 gp
Demand forecasting methods 1 gpPUTTU GURU PRASAD
Ā 
ANALYSIS OF PRODUCTION PERFORMANCE OF TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...
ANALYSIS OF PRODUCTION PERFORMANCE OF  TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...ANALYSIS OF PRODUCTION PERFORMANCE OF  TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...
ANALYSIS OF PRODUCTION PERFORMANCE OF TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...Editor IJCATR
Ā 
Forecasting
ForecastingForecasting
Forecasting3abooodi
Ā 
Ch 12 Slides.doc. Introduction of science of business
Ch 12 Slides.doc. Introduction of science of businessCh 12 Slides.doc. Introduction of science of business
Ch 12 Slides.doc. Introduction of science of businessohenebabismark508
Ā 
Adesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAdesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAlexander Decker
Ā 
QuantitativeDecisionMaking
QuantitativeDecisionMakingQuantitativeDecisionMaking
QuantitativeDecisionMakingEik Den Yeoh
Ā 
Auto Correlation Presentation
Auto Correlation PresentationAuto Correlation Presentation
Auto Correlation PresentationIrfan Hussain
Ā 
Time series, forecasting, and index numbers
Time series, forecasting, and index numbersTime series, forecasting, and index numbers
Time series, forecasting, and index numbersShakeel Nouman
Ā 

Similar to TimeSeries3.pdf.pdf (20)

Writing Sample
Writing SampleWriting Sample
Writing Sample
Ā 
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...
IRJET- Analysis of Crucial Oil Gas and Liquid Sensor Statistics and Productio...
Ā 
Empirical Finance, Jordan Stone- Linkedin
Empirical Finance, Jordan Stone- LinkedinEmpirical Finance, Jordan Stone- Linkedin
Empirical Finance, Jordan Stone- Linkedin
Ā 
Time series modelling arima-arch
Time series modelling  arima-archTime series modelling  arima-arch
Time series modelling arima-arch
Ā 
20120140503019
2012014050301920120140503019
20120140503019
Ā 
Autocorrelation- Concept, Causes and Consequences
Autocorrelation- Concept, Causes and ConsequencesAutocorrelation- Concept, Causes and Consequences
Autocorrelation- Concept, Causes and Consequences
Ā 
Forecasting demand planning
Forecasting demand planningForecasting demand planning
Forecasting demand planning
Ā 
An Application Of TRAMO-SEATS Model Selection And Out-Of-Sample Performance....
An Application Of TRAMO-SEATS  Model Selection And Out-Of-Sample Performance....An Application Of TRAMO-SEATS  Model Selection And Out-Of-Sample Performance....
An Application Of TRAMO-SEATS Model Selection And Out-Of-Sample Performance....
Ā 
Distribution of EstimatesLinear Regression ModelAssume (yt,.docx
Distribution of EstimatesLinear Regression ModelAssume (yt,.docxDistribution of EstimatesLinear Regression ModelAssume (yt,.docx
Distribution of EstimatesLinear Regression ModelAssume (yt,.docx
Ā 
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...
Probabilistic Analysis of an Evaporator of a Desalination Plant with Priority...
Ā 
Demand forecasting methods 1 gp
Demand forecasting methods 1 gpDemand forecasting methods 1 gp
Demand forecasting methods 1 gp
Ā 
Econometrics
EconometricsEconometrics
Econometrics
Ā 
ANALYSIS OF PRODUCTION PERFORMANCE OF TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...
ANALYSIS OF PRODUCTION PERFORMANCE OF  TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...ANALYSIS OF PRODUCTION PERFORMANCE OF  TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...
ANALYSIS OF PRODUCTION PERFORMANCE OF TAMILNADU NEWSPRINT AND PAPERS LTD ā€“ C...
Ā 
Forecasting
ForecastingForecasting
Forecasting
Ā 
Ch 12 Slides.doc. Introduction of science of business
Ch 12 Slides.doc. Introduction of science of businessCh 12 Slides.doc. Introduction of science of business
Ch 12 Slides.doc. Introduction of science of business
Ā 
Adesanya dissagregation of data corrected
Adesanya dissagregation of data correctedAdesanya dissagregation of data corrected
Adesanya dissagregation of data corrected
Ā 
QuantitativeDecisionMaking
QuantitativeDecisionMakingQuantitativeDecisionMaking
QuantitativeDecisionMaking
Ā 
Auto Correlation Presentation
Auto Correlation PresentationAuto Correlation Presentation
Auto Correlation Presentation
Ā 
Time series, forecasting, and index numbers
Time series, forecasting, and index numbersTime series, forecasting, and index numbers
Time series, forecasting, and index numbers
Ā 
Chap003 Forecasting
Chap003    ForecastingChap003    Forecasting
Chap003 Forecasting
Ā 

More from ROBERTOENRIQUEGARCAA1 (20)

Memory Lecture Psychology Introduction part 1
Memory Lecture Psychology Introduction part 1Memory Lecture Psychology Introduction part 1
Memory Lecture Psychology Introduction part 1
Ā 
Sherlock.pdf
Sherlock.pdfSherlock.pdf
Sherlock.pdf
Ā 
Cognicion Social clase
Cognicion Social claseCognicion Social clase
Cognicion Social clase
Ā 
surveys non experimental
surveys non experimentalsurveys non experimental
surveys non experimental
Ā 
experimental research
experimental researchexperimental research
experimental research
Ā 
non experimental
non experimentalnon experimental
non experimental
Ā 
quasi experimental research
quasi experimental researchquasi experimental research
quasi experimental research
Ā 
variables cont
variables contvariables cont
variables cont
Ā 
sampling experimental
sampling experimentalsampling experimental
sampling experimental
Ā 
experimental designs
experimental designsexperimental designs
experimental designs
Ā 
experimental control
experimental controlexperimental control
experimental control
Ā 
validity reliability
validity reliabilityvalidity reliability
validity reliability
Ā 
Experiment basics
Experiment basicsExperiment basics
Experiment basics
Ā 
methods
methodsmethods
methods
Ā 
Week 11.pptx
Week 11.pptxWeek 11.pptx
Week 11.pptx
Ā 
treatment effect DID.pdf
treatment effect DID.pdftreatment effect DID.pdf
treatment effect DID.pdf
Ā 
DAG.pdf
DAG.pdfDAG.pdf
DAG.pdf
Ā 
2022_Fried_Workshop_theory_measurement.pptx
2022_Fried_Workshop_theory_measurement.pptx2022_Fried_Workshop_theory_measurement.pptx
2022_Fried_Workshop_theory_measurement.pptx
Ā 
pdf (8).pdf
pdf (8).pdfpdf (8).pdf
pdf (8).pdf
Ā 
pdf (9).pdf
pdf (9).pdfpdf (9).pdf
pdf (9).pdf
Ā 

Recently uploaded

Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Pooja Nehwal
Ā 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...ssifa0344
Ā 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
Ā 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Delhi Call girls
Ā 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spiritegoetzinger
Ā 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual serviceCALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual serviceanilsa9823
Ā 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdfAdnet Communications
Ā 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfGale Pooley
Ā 
The Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfThe Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfGale Pooley
Ā 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfGale Pooley
Ā 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptxFinTech Belgium
Ā 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...Suhani Kapoor
Ā 
Instant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School DesignsInstant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School Designsegoetzinger
Ā 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdfFinTech Belgium
Ā 
Q3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesQ3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesMarketing847413
Ā 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptxFinTech Belgium
Ā 
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptxFinTech Belgium
Ā 

Recently uploaded (20)

Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Vip Call US šŸ“ž 7738631006 āœ…Call Girls In Sakinaka ( Mumbai )
Ā 
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
TEST BANK For Corporate Finance, 13th Edition By Stephen Ross, Randolph Weste...
Ā 
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Shivane  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Shivane 6297143586 Call Hot Indian Gi...
Ā 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Ā 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
Ā 
Commercial Bank Economic Capsule - April 2024
Commercial Bank Economic Capsule - April 2024Commercial Bank Economic Capsule - April 2024
Commercial Bank Economic Capsule - April 2024
Ā 
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(DIYA) Bhumkar Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual serviceCALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual service
CALL ON āž„8923113531 šŸ”Call Girls Gomti Nagar Lucknow best sexual service
Ā 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf
Ā 
The Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdfThe Economic History of the U.S. Lecture 23.pdf
The Economic History of the U.S. Lecture 23.pdf
Ā 
The Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdfThe Economic History of the U.S. Lecture 19.pdf
The Economic History of the U.S. Lecture 19.pdf
Ā 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdf
Ā 
03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx03_Emmanuel Ndiaye_Degroof Petercam.pptx
03_Emmanuel Ndiaye_Degroof Petercam.pptx
Ā 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With Room...
Ā 
Instant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School DesignsInstant Issue Debit Cards - School Designs
Instant Issue Debit Cards - School Designs
Ā 
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
06_Joeri Van Speybroek_Dell_MeetupDora&Cybersecurity.pdf
Ā 
Q3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast SlidesQ3 2024 Earnings Conference Call and Webcast Slides
Q3 2024 Earnings Conference Call and Webcast Slides
Ā 
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
05_Annelore Lenoir_Docbyte_MeetupDora&Cybersecurity.pptx
Ā 
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANIKA) Budhwar Peth Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
02_Fabio Colombo_Accenture_MeetupDora&Cybersecurity.pptx
Ā 

TimeSeries3.pdf.pdf

  • 1. Econ 2015 Time Series: Serial Correlation Sheng-Kai Chang NTU Spring 2016 Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 1 / 28
  • 2. 1. Properties of OLS Under Serial Correlation Recall the model written in its usual form: yt = Ī²0 + Ī²1xt1 + ... + Ī²k xtk + ut Serial correlation means that the errors, fut : t = 1, 2, ...g are correlated. Serial correlation has nothing directly to do with unbiasedness or consistency of OLS. If the expected value of ut does not depend on any of the explanatory variables in any time period ā€“so the explanatory variables are strictly exogenous, Assumption TS.3 ā€“then OLS is unbiased. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 2 / 28
  • 3. If ut is uncorrelated with the explantory variables at time t ā€“the explanatory variables are contemporaneously exogenous, Assumption TS.30 ā€“then OLS is consistent, provided the time series are weakly dependent. There is little to worry about with static and ā€¦nite distributed lag regression models concerning consistency in the presence of serial correlation. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 3 / 28
  • 4. But serially correlated errors means the usual OLS statistical inference is incorrect, even in large samples. In many cases, the inference can be very misleading. (Heteroskedasticity also invalidates the usual inference in TS regressions, just as with CS regressions.) In some cases, we can improve over OLS by modeling the serial correlation and using a diĀ¤erent estimation method, but additional assumptions are needed. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 4 / 28
  • 5. It is commonly thought that serial correlation invalidates R2 and RĢ„2. If the serial correlation is due to spurious regression ā€“which means fyt g and some of the explanatory variables have unit roots ā€“then R2 and RĢ„2 are pretty useless. But if the data are weakly dependent (perhaps after diĀ¤erencing or using growth rates), the usual R-squareds are reliable even if there is serial correlation (and/or heteroskedasticity). Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 5 / 28
  • 6. 2. Computing Standard Errors Robust to Serial Correlation and Heteroskedasticity It is increasingly common to treat serial correlation in TS regression like we often treat heteroskedasticity in CS regression: as a nuisance that causes the usual inference to be incorrect. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 6 / 28
  • 7. For heteroskedasticity, we make inference robust to heteroskedasticity of unknown form: reg y x1 x2 ... xk, robust Importantly, if we can rule out serial correlation in the errors, we can use exactly the same command to make inference robust to heteroskedasticity with time series. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 7 / 28
  • 8. It is also possible to compute standard errors, CIs, and test statistics robust to general forms of serial correlation ā€“at least approximately. These statistics are also robust to any kind of heteroskedasticity. The underlying theory is complicated, but it is easy to describe the idea. For example, we might decide up front to allow ut to be correlated with ut 1 and ut 2, but not the errors more than two periods apart. See Wooldridge (5e, Section 12.5) for details. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 8 / 28
  • 9. The resulting standard errors are usually called Newey-West standard errors, and are now computed routinely by Stata and other programs. The standard errors are sometimes called HAC (heteroskedasticity and autocorrelation consistent) standard errors. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 9 / 28
  • 10. The N-W standard errors are not as automated as the adjustment for heteroskedasticity because we have to choose a lag. With annual data, the lag is usually fairly short ā€“maybe a couple of years, so lag = 2 ā€“but with quarterly or monthly data we tend to try longer lags, such as lag = 24. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 10 / 28
  • 11. The command in Stata is newey y x1 x2 ... xk, lag(q) where we have to choose q, and probably will experiment a bit to see how sensitive the standard errors are. If we choose q = 0, it is the same thing as reg y x1 x2 ... xk, robust Important: We are still estimating the parameters by OLS. We are only changing how we estimate their precision and peform inference. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 11 / 28
  • 12. Just as with the heteroskedasticity-robust inference, we can apply the HAC inference whether or not we have evidence of serial correlation. Large diĀ¤erences in the HAC standard errors and the usual ones suggests serial correlation (autocorrelation) or heteroskedasticity are problems. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 12 / 28
  • 13. EXAMPLE: Estimating a Simple Reaction Function for the Federal Funds Rate (FEDFUND.DTA) We earlier found evidence that Ā¤ratet is highly persistent. So are inā€”ation and the GDP gap. So we use changes (diĀ¤erences) of all variables. With quarterly data, try FDLs of order 4 in both inf and gdpgap. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 13 / 28
  • 14. The usual t statistics show signiā€¦cance of both contemporaneous variables and some lags. If we try the Newey-West standard errors with lag = 2, the standard errors generally increase, sometimes by large amounts. For example, cinf and cinf _3 have have much smaller t statistics. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 14 / 28
  • 15. Increasing the N-W lag to four does not change much. The joint test of the fourth lags fails to reject, so we would be justiā€¦ed in dropping them. Overall, there seems to be evidence that the Fed increases the FF rate, phased over a couple of quarters, when inā€”ation increases or when the GDP gap increases (so actual GDP is above the ideal GDP). Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
  • 16. . reg cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3 cgdpgap_4 Source | SS df MS Number of obs = 177 -------------+------------------------------ F( 10, 166) = 6.23 Model | 48.562746 10 4.8562746 Prob > F = 0.0000 Residual | 129.427415 166 .779683225 R-squared = 0.2728 -------------+------------------------------ Adj R-squared = 0.2290 Total | 177.990161 176 1.01130774 Root MSE = .883 ------------------------------------------------------------------------------ cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1635009 .0693821 2.36 0.020 .0265158 .3004861 cinf_1 | .0892447 .0749762 1.19 0.236 -.0587852 .2372746 cinf_2 | .2397011 .0766598 3.13 0.002 .0883473 .3910549 cinf_3 | .1603425 .0742329 2.16 0.032 .0137802 .3069048 cinf_4 | .0188896 .0692756 0.27 0.785 -.1178851 .1556644 cgdpgap | .3419624 .077994 4.38 0.000 .1879743 .4959506 cgdpgap_1 | .2432981 .0796212 3.06 0.003 .0860974 .4004988 cgdpgap_2 | .1016662 .077379 1.31 0.191 -.0511077 .2544401 cgdpgap_3 | .0544501 .0335291 1.62 0.106 -.0117484 .1206486 cgdpgap_4 | -.0874404 .0774749 -1.13 0.261 -.2404035 .0655227 _cons | .0395079 .0670281 0.59 0.556 -.0928297 .1718454 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
  • 17. . newey cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3 cgdpgap_4, lag(2) Regression with Newey-West standard errors Number of obs = 177 maximum lag: 2 F( 10, 166) = 5.51 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1635009 .0890041 1.84 0.068 -.012225 .3392269 cinf_1 | .0892447 .1168206 0.76 0.446 -.1414011 .3198905 cinf_2 | .2397011 .1328552 1.80 0.073 -.0226026 .5020048 cinf_3 | .1603425 .1170766 1.37 0.173 -.0708086 .3914936 cinf_4 | .0188896 .0738927 0.26 0.799 -.127001 .1647803 cgdpgap | .3419624 .1068802 3.20 0.002 .1309426 .5529822 cgdpgap_1 | .2432981 .0974424 2.50 0.014 .050912 .4356842 cgdpgap_2 | .1016662 .1466274 0.69 0.489 -.1878288 .3911612 cgdpgap_3 | .0544501 .0405701 1.34 0.181 -.0256499 .1345501 cgdpgap_4 | -.0874404 .07741 -1.13 0.260 -.2402755 .0653947 _cons | .0395079 .0593546 0.67 0.507 -.0776794 .1566951 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
  • 18. . newey cffrate cinf cinf_1 cinf_2 cinf_3 cinf_4 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3 cgdpgap_4, lag(4) Regression with Newey-West standard errors Number of obs = 177 maximum lag: 4 F( 10, 166) = 7.51 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1635009 .0913361 1.79 0.075 -.0168292 .343831 cinf_1 | .0892447 .1218877 0.73 0.465 -.1514052 .3298947 cinf_2 | .2397011 .1463759 1.64 0.103 -.0492973 .5286995 cinf_3 | .1603425 .1191334 1.35 0.180 -.0748695 .3955545 cinf_4 | .0188896 .0723094 0.26 0.794 -.1238749 .1616542 cgdpgap | .3419624 .1126093 3.04 0.003 .1196314 .5642934 cgdpgap_1 | .2432981 .0966048 2.52 0.013 .0525656 .4340306 cgdpgap_2 | .1016662 .1455609 0.70 0.486 -.1857231 .3890555 cgdpgap_3 | .0544501 .040057 1.36 0.176 -.0246368 .133537 cgdpgap_4 | -.0874404 .0724511 -1.21 0.229 -.2304848 .055604 _cons | .0395079 .0584588 0.68 0.500 -.0759106 .1549264 ------------------------------------------------------------------------------ . test cinf_4 cgdpgap_4 ( 1) cinf_4 = 0 ( 2) cgdpgap_4 = 0 F( 2, 166) = 0.74 Prob > F = 0.4771 Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
  • 19. . newey cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3, lag(4) Regression with Newey-West standard errors Number of obs = 178 maximum lag: 4 F( 8, 169) = 9.85 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1529545 .090034 1.70 0.091 -.0247817 .3306907 cinf_1 | .0711862 .1073547 0.66 0.508 -.1407427 .2831152 cinf_2 | .2244522 .1375701 1.63 0.105 -.047125 .4960295 cinf_3 | .1428366 .0961857 1.49 0.139 -.0470436 .3327168 cgdpgap | .3387203 .1090373 3.11 0.002 .1234698 .5539708 cgdpgap_1 | .2413696 .0972818 2.48 0.014 .0493255 .4334136 cgdpgap_2 | .0886014 .1476462 0.60 0.549 -.202867 .3800698 cgdpgap_3 | .0502603 .0376323 1.34 0.183 -.0240297 .1245503 _cons | .038079 .0584926 0.65 0.516 -.0773912 .1535493 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 15 / 28
  • 20. 3. Testing for Serial Correlation We specify simple alternative models that allow the errors to be serially correlated, and then use the model to test the null that the errors are not serially correlated. The most common is an AR(1) model: ut = Ļut 1 + et where fet g is serially uncorrelated, has a zero mean, and (usually) a constant variance. Then the null is H0 : Ļ = 0 Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 16 / 28
  • 21. Often Ļ > 0 when there is serial correlation, but we usually use a two-sided alternative. If we could observe fut g, we would just estimate a simple AR(1) model for ut and test Ļ = 0. [Because E(ut ) = 0, this is one case we would not have to include a constant.] But we do not observe the errors. Instead, we base a test on the OLS residuals, uĢ‚t . (Think back to the case of testing for heteroskedasticity, where we used uĢ‚2 t in place of u2 t .) Remember the diĀ¤erence between uĢ‚t and ut : the former depends on the estimators, Ī²Ģ‚j . Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 17 / 28
  • 22. Strictly Exogenous Regressors If the fxtj g are strictly exogenous (Assumption TS.3) then we can use a simple test. In fact, it suĀ¢ ces that E(ut jxt , xt+1) = 0, so ut is uncorrelated with regressors in this time period and next time period. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 18 / 28
  • 23. Testing for Serial Correlation under Strict Exogeneity 1. Estimate the equation yt = Ī²0 + Ī²1xt1 + ... + Ī²k xtk + ut , t = 1, 2, ..., n by OLS, and save the residuals, fuĢ‚t : t = 1, 2, ..., ng. 2. Run the AR(1) regression uĢ‚t on uĢ‚t 1, t = 2, ..., n It is not necessary to estimate an intercept ā€“after all, the averages of uĢ‚t and uĢ‚t 1 are almost zero over t = 2, ..., n ā€“but it is harmless to do so. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 19 / 28
  • 24. 3. Compute the usual or heteroskedasticity-robust t statistic for ĻĢ‚, and carry out the test H0 : Ļ = 0 in the usual way. The test has large-sample justiā€¦cation and tends to work well. It is often applied to static and FDL models because strict exogeneity can be true. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 20 / 28
  • 25. With large n, we might reject Ļ = 0 even if ĻĢ‚ is ā€œsmall.ā€ (The test can have a lot of power with large n.) With small n, we might not reject even if ĻĢ‚ seems fairly large. Just as when we test for heteroskedasticity, the null is that everything is okay. We require the data to tell us, fairly convincingly, that some action is required. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 21 / 28
  • 26. Another statistic, related to the previous one, is called the Durbin-Watson statistic. Unless the sample size is small, it has little to oĀ¤er over the simple regression-based test. We can easily add lags, too, and then use and F test: for example, we can regress uĢ‚t on uĢ‚t 1, uĢ‚t 2, t = 3, ..., n and test the two lags for joint signiā€¦cance (using a usual F statistic or heteroskedasticity-robust version). Remember, Stata will automatically set the lags to missing data where appropriate. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 22 / 28
  • 27. Conemporaneously Exogenous Regressors A simple adjustment is needed if the regressors are not strictly exogenous. All we have to do is add all of the explanatory variables along with the lagged OLS residual. And, we deā€¦nitely estimate an intercept. So, for the AR(1) test, after getting the OLS residuals exactly as before, run uĢ‚t on uĢ‚t 1, xt1, xt2, ..., xtk , t = 2, ..., n If we take the ā€œ^ā€ oĀ¤ of the residuals, we can see why we need to include the regressors: ut 1 might be correlated with xt1, ..., xtk if the xtj are not strictly exogenous. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 23 / 28
  • 28. This form of the test is more general than the previous form, even though the previous test is somewhat more popular. One must use the extended form if one or more of the xtj is a lag of yt , but it is needed in other situations where strict exogeneity is violated. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 24 / 28
  • 29. EXAMPLE: Percent Fatalities and TraĀ¢ c Laws (TRAFFIC.DTA) Use as the dependent variable prcfat, the percent of accidents resulting in at least one fatality. The estimate of Ļ is about .282, and the test that assumes strict exogeneity gives Ļ„ĻĢ‚ = 2.98. So we ā€¦nd strong evidence of serial correlation, although it is not a huge amount of serial correlation. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 25 / 28
  • 30. The more general test gives practically the same results: Ļ„ĻĢ‚ = 2.77. We can conclude that we should compute Newey-West standard errors, but it is not clear what the lag should be in N-W. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 26 / 28
  • 31. Using lag = 4 reduces the statistical signiā€¦cance of spdlaw and beltlaw, making beltlaw very insigniā€¦cant. spdlaw is still signiā€¦cant at the 1.3% level. The estimated eĀ¤ect of increasing the speed limit, .067, may seem small. But the average fatality rate is about .886 with standard deviation = .10. So, increasing the speed limit (on rural interstates) was associated with about two-thirds of a standard deviation increase the fatality rate. The seatbelt law had a negative sign but is not statistically signicant. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
  • 32. . reg prcfat spdlaw beltlaw unem feb-dec t Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 15, 92) = 15.57 Model | .764194266 15 .050946284 Prob > F = 0.0000 Residual | .30105389 92 .003272325 R-squared = 0.7174 -------------+------------------------------ Adj R-squared = 0.6713 Total | 1.06524816 107 .00995559 Root MSE = .0572 ------------------------------------------------------------------------------ prcfat | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- spdlaw | .0671634 .0204439 3.29 0.001 .02656 .1077668 beltlaw | -.0295827 .023093 -1.28 0.203 -.0754474 .0162819 unem | -.0154371 .0055134 -2.80 0.006 -.0263872 -.004487 feb | -.0001812 .0269749 -0.01 0.995 -.0537557 .0533933 mar | -.0002591 .0270411 -0.01 0.992 -.0539649 .0534468 apr | .057726 .0272431 2.12 0.037 .0036189 .1118331 may | .0714815 .0274507 2.60 0.011 .016962 .1260011 jun | .1006207 .0272277 3.70 0.000 .0465442 .1546973 jul | .1764641 .0270735 6.52 0.000 .1226939 .2302343 aug | .1924577 .0272551 7.06 0.000 .1383266 .2465887 sep | .1594422 .0274815 5.80 0.000 .1048615 .214023 oct | .1008793 .0274783 3.67 0.000 .046305 .1554536 nov | .0133768 .0274252 0.49 0.627 -.041092 .0678456 dec | .0089053 .0275565 0.32 0.747 -.0458243 .0636349 t | -.0022355 .0004185 -5.34 0.000 -.0030668 -.0014043 _cons | 1.038472 .0571893 18.16 0.000 .924889 1.152055 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
  • 33. . predict uh, resid . gen uh_1 = L.uh (1 missing value generated) . reg uh uh_1 Source | SS df MS Number of obs = 107 -------------+------------------------------ F( 1, 105) = 8.91 Model | .023532239 1 .023532239 Prob > F = 0.0035 Residual | .277343282 105 .002641365 R-squared = 0.0782 -------------+------------------------------ Adj R-squared = 0.0694 Total | .300875521 106 .002838448 Root MSE = .05139 ------------------------------------------------------------------------------ uh | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- uh_1 | .2816806 .0943712 2.98 0.004 .0945599 .4688012 _cons | .0002994 .0049688 0.06 0.952 -.0095528 .0101516 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
  • 34. . reg uh uh_1 spdlaw beltlaw unem feb-dec t Source | SS df MS Number of obs = 107 -------------+------------------------------ F( 16, 90) = 0.48 Model | .023694612 16 .001480913 Prob > F = 0.9505 Residual | .277180909 90 .003079788 R-squared = 0.0788 -------------+------------------------------ Adj R-squared = -0.0850 Total | .300875521 106 .002838448 Root MSE = .0555 ------------------------------------------------------------------------------ uh | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- uh_1 | .2830111 .1021103 2.77 0.007 .0801511 .4858711 spdlaw | -.0019168 .0199115 -0.10 0.924 -.0414744 .0376408 beltlaw | .0011499 .022418 0.05 0.959 -.0433874 .0456872 unem | -.000307 .0054271 -0.06 0.955 -.011089 .0104749 feb | -.0040023 .0270068 -0.15 0.883 -.057656 .0496513 mar | -.0041376 .0271499 -0.15 0.879 -.0580756 .0498004 apr | -.0042422 .027399 -0.15 0.877 -.058675 .0501907 may | -.0041133 .0276815 -0.15 0.882 -.0591073 .0508808 jun | -.0040234 .0273791 -0.15 0.883 -.0584167 .05037 jul | -.0038516 .0270836 -0.14 0.887 -.057658 .0499548 aug | -.004021 .0273602 -0.15 0.883 -.0583769 .0503349 sep | -.0041051 .0276161 -0.15 0.882 -.0589692 .0507591 oct | -.0040937 .027583 -0.15 0.882 -.0588921 .0507048 nov | -.0040584 .0274856 -0.15 0.883 -.0586633 .0505466 dec | -.0040947 .0276155 -0.15 0.882 -.0589577 .0507684 t | -4.60e-06 .0004176 -0.01 0.991 -.0008342 .000825 _cons | .006583 .0583639 0.11 0.910 -.109367 .122533 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
  • 35. . newey prcfat spdlaw beltlaw unem feb-dec t, lag(4) Regression with Newey-West standard errors Number of obs = 108 maximum lag: 4 F( 15, 92) = 19.74 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Newey-West prcfat | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- spdlaw | .0671634 .0264891 2.54 0.013 .0145538 .1197729 beltlaw | -.0295827 .0330354 -0.90 0.373 -.0951939 .0360284 unem | -.0154371 .0059803 -2.58 0.011 -.0273144 -.0035598 feb | -.0001812 .016465 -0.01 0.991 -.0328821 .0325197 mar | -.0002591 .0225929 -0.01 0.991 -.0451304 .0446123 apr | .057726 .0265662 2.17 0.032 .0049632 .1104888 may | .0714815 .0283569 2.52 0.013 .0151622 .1278008 jun | .1006207 .0319548 3.15 0.002 .0371557 .1640858 jul | .1764641 .0349275 5.05 0.000 .1070951 .2458331 aug | .1924577 .0252154 7.63 0.000 .1423777 .2425377 sep | .1594422 .0292946 5.44 0.000 .1012606 .2176239 oct | .1008793 .0306156 3.30 0.001 .0400742 .1616844 nov | .0133768 .029876 0.45 0.655 -.0459594 .0727131 dec | .0089053 .0283141 0.31 0.754 -.0473291 .0651396 t | -.0022355 .0005551 -4.03 0.000 -.0033381 -.001133 _cons | 1.038472 .0591372 17.56 0.000 .9210202 1.155924 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 27 / 28
  • 36. EXAMPLE: Serial Correlation in the Federal Funds Rate Equation No evidence of ā€¦rst-order serial correlation, but there is second order serial correlation. The standard errors that are robust to heteroskedasticity are actually larger than those robust to serial correlation and heteroskedasticity. Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
  • 37. . reg cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3 Source | SS df MS Number of obs = 178 -------------+------------------------------ F( 8, 169) = 7.68 Model | 47.4763936 8 5.93454919 Prob > F = 0.0000 Residual | 130.524094 169 .772331915 R-squared = 0.2667 -------------+------------------------------ Adj R-squared = 0.2320 Total | 178.000487 177 1.00565247 Root MSE = .87882 ------------------------------------------------------------------------------ cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1529545 .0680061 2.25 0.026 .0187037 .2872053 cinf_1 | .0711862 .0727929 0.98 0.330 -.0725143 .2148868 cinf_2 | .2244522 .0729376 3.08 0.002 .080466 .3684385 cinf_3 | .1428366 .0682135 2.09 0.038 .0081763 .2774969 cgdpgap | .3387203 .0769542 4.40 0.000 .186805 .4906355 cgdpgap_1 | .2413696 .0791325 3.05 0.003 .085154 .3975851 cgdpgap_2 | .0886014 .0761234 1.16 0.246 -.0616739 .2388767 cgdpgap_3 | .0502603 .0314743 1.60 0.112 -.0118731 .1123937 _cons | .038079 .0664227 0.57 0.567 -.093046 .169204 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
  • 38. . predict uh, resid (4 missing values generated) . gen uh_1 = L.uh (5 missing values generated) . reg uh uh_1 Source | SS df MS Number of obs = 177 -------------+------------------------------ F( 1, 175) = 0.06 Model | .048449077 1 .048449077 Prob > F = 0.7991 Residual | 130.467572 175 .745528986 R-squared = 0.0004 -------------+------------------------------ Adj R-squared = -0.0053 Total | 130.516022 176 .741568304 Root MSE = .86344 ------------------------------------------------------------------------------ uh | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- uh_1 | .0192665 .0755773 0.25 0.799 -.1298939 .1684269 _cons | .000512 .0649001 0.01 0.994 -.1275757 .1285997 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
  • 39. . gen uh_2 = L2.uh (6 missing values generated) . reg uh uh_1 uh_2 Source | SS df MS Number of obs = 176 -------------+------------------------------ F( 2, 173) = 6.16 Model | 8.66875741 2 4.33437871 Prob > F = 0.0026 Residual | 121.811858 173 .704114789 R-squared = 0.0664 -------------+------------------------------ Adj R-squared = 0.0556 Total | 130.480616 175 .745603519 Root MSE = .83912 ------------------------------------------------------------------------------ uh | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- uh_1 | .0243798 .0734643 0.33 0.740 -.1206218 .1693814 uh_2 | -.2571086 .0734841 -3.50 0.001 -.4021494 -.1120678 _cons | -.000234 .0632508 -0.00 0.997 -.1250766 .1246085 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28
  • 40. . reg cffrate cinf cinf_1 cinf_2 cinf_3 cgdpgap cgdpgap_1 cgdpgap_2 cgdpgap_3, robust Linear regression Number of obs = 178 F( 8, 169) = 4.84 Prob > F = 0.0000 R-squared = 0.2667 Root MSE = .87882 ------------------------------------------------------------------------------ | Robust cffrate | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- cinf | .1529545 .10977 1.39 0.165 -.0637424 .3696515 cinf_1 | .0711862 .1058495 0.67 0.502 -.1377714 .2801439 cinf_2 | .2244522 .1136453 1.98 0.050 .0001049 .4487996 cinf_3 | .1428366 .094696 1.51 0.133 -.0441028 .3297761 cgdpgap | .3387203 .1162425 2.91 0.004 .1092458 .5681947 cgdpgap_1 | .2413696 .0987046 2.45 0.015 .0465168 .4362223 cgdpgap_2 | .0886014 .1482415 0.60 0.551 -.2040422 .381245 cgdpgap_3 | .0502603 .035287 1.42 0.156 -.0193998 .1199203 _cons | .038079 .0617225 0.62 0.538 -.0837674 .1599254 ------------------------------------------------------------------------------ Sheng-Kai Chang (NTU) Econ 2015 Time Series: Serial Correlation Spring 2016 28 / 28