SlideShare a Scribd company logo
1 of 42
CHAPTER 3
Kinetic Theory of Gases and Radiation
CLASSXII
PHYSICS
MAHARASHTRASTATEBOARD
Can you recall?
1. What are different states of matter?
2. How do you distinguish between solid, liquid and gaseous
states?
3. What are gas laws?
4. What is absolute zero temperature?
5. What is Avogadro number? What is a mole?
6. How do you get ideal gas equation from the gas laws?
7. How is ideal gas different from real gases?
8. What is elastic collision of particles?
9. What is Dalton's law of partial pressures?
SOLID LIQUID GAS
MOLECULES ATOMS
Matter is made up of tiny particles called molecules.
All types of matter are made up of extremely small particles.
STATES OF MATTER
Scanning Tunnelling
Microscope
(STM)
Molecules are always in a state of motion and even when inside
matter, they never stop moving.
Closely
Packed
Very
loosely
Packed
Loosely
Packed
Gas lawโ€™s
โ€ข Boyleโ€™s Law: V โˆ
๐Ÿ
๐‘ท
at constant T
โ€ข Charles Law: V ๐œถ T at constant P
โ€ข Avogadroโ€™s Law: V ๐œถ ๐ง
โ€ข Gay-Lussacโ€™s Law: P ๐œถ T at constant V
Combining these all lawโ€™s, we get
V ๐œถ n T
๐Ÿ
๐‘ท
โˆด ๐‘ท๐‘ฝ ๐œถ ๐’๐‘ป
PV = nRT
Where, R is proportionality constant OR Universal Gas Constant
R = 8.314 J ๐’Ž๐’๐’โˆ’๐Ÿ
๐’Œโˆ’๐Ÿ
Moleโ€™s
Unit: mol
Formula: Mole =
๐‘ด๐’‚๐’”๐’”
๐‘ด๐’๐’๐’‚๐’“ ๐‘ด๐’‚๐’”๐’”
Concept:
1 mole of substance โ†’ Contain 6.022 X ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘
No. of mole (n) =
๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’‘๐’‚๐’“๐’•๐’Š๐’„๐’๐’†๐’”
๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘
ATOM
Weight of one atom of an element =
๐‘จ๐’•๐’๐’Ž๐’Š๐’„ ๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’•
๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘
Weight of one molecule of a compound =
๐‘ด๐’๐’๐’†๐’„๐’–๐’๐’‚๐’“ ๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’•
๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ‘ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘
For Gas,
n =
๐‘ต
๐‘ต๐‘จ
Where, n โ†’ mole
N โ†’ Number of molecules in a gas
๐‘ต๐‘จ โ†’ Avogadro's number OR Number of molecule in 1 mole of gas
IDEAL GAS
Equation, PV = nRT
PV =
๐‘ต
๐‘ต๐‘จ
RT โ€ฆโ€ฆโ€ฆโ€ฆ. [n =
๐‘ต
๐‘ต๐‘จ
]
Here, R = ๐‘ต๐‘จ๐’Œ๐‘ฉ
Where, ๐’Œ๐‘ฉ is the Boltzmann Constant
So, PV =
๐‘ต
๐‘ต๐‘จ
๐‘ต๐‘จ๐’Œ๐‘ฉ๐‘ป
PV = N๐’Œ๐‘ฉ๐‘ป
Where, N is the Number of Particles
NOTE: A gas obeying the equation of state i.e., PV = nRT at all
pressure, and temperature is an ideal gas.
Behaviour of gas
โ€ข Gas contained in container is characterized by its
pressure, volume and temperature.
โ€ข Particle of gas are always in constant motion.
โ€ข It is very hard to evaluate the motion of single
particle of gas.
โ€ข We find average of physical quantities and then
relate to the macroscopic view of gas.
Fig.(a): A gas with
molecules dispersed in
the container: A stop
action photograph.
Fig.(b): A typical
molecule in a gas
executing random
motion.
IDEAL gaS
โ€ข A gas obeying ideal gas equation is nothing but an ideal
gas.
โ€ข Intermolecular interaction is different or absent.
REAL GAS
โ€ข Compose of atom/molecule which do interact with
each other.
โ€ข If there is atom/molecule are so apart then we can say
that the real gases are ideal.
โ€ข This can be achieved by lowering pressure and
increasing temperature.
MEAN FREE PATH
โ€ข Represented by โ€˜๐€โ€™
โ€ข Defined as average distance travelled by a molecule with constant
velocity between two successive collision.
โ€ข Mean free path is inversely vary with density.
โ€ข Mean free path also inversely proportional to size of the particle of
gases.
Conclusion: ๐€ =
๐Ÿ
๐’…๐Ÿ๐†
๐€ =
๐Ÿ
๐’…๐Ÿ๐†๐… ๐Ÿ
๐€ =
๐Ÿ
๐’…๐Ÿ(
๐‘ต
๐‘ฝ
)๐… ๐Ÿ
โ€ฆโ€ฆโ€ฆ.[๐† =
๐‘ต
๐‘ฝ
]
EAXMPLE
โ€ข Obtain the mean free path of nitrogen molecule at 0 ยฐC and 1.0 atm pressure.
The molecular diameter of nitrogen is 324 pm (assume that the gas is ideal).
Solution: Given T = 0 ยฐC = 273 K, P = 1.0 atm = 1.01ร—๐Ÿ๐ŸŽ๐Ÿ“
Pa and
d = 324 pm = 324 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ
m.
For ideal gas PV = N๐’Œ๐‘ฉT, โˆด
๐‘ต
๐‘ฝ
=
๐‘ท
๐’Œ๐‘ฉ๐‘ป
Using Eq., mean free path
๐€ =
๐Ÿ
๐’…๐Ÿ(
๐‘ต
๐‘ฝ
)๐… ๐Ÿ
=
๐’Œ๐‘ฉ๐‘ป
๐Ÿ๐…๐’…๐Ÿ๐‘ท
=
๐Ÿ.๐Ÿ‘๐Ÿ– ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘ ๐‘ฑ
๐‘ฒ
(๐Ÿ๐Ÿ•๐Ÿ‘ ๐‘ฒ)
๐Ÿ๐… ๐Ÿ‘๐Ÿ๐Ÿ’ ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ ๐’Ž
๐Ÿ
(๐Ÿ.๐ŸŽ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ“ ๐‘ท๐’‚)
= 0.8 X ๐Ÿ๐ŸŽโˆ’๐Ÿ•
๐’Ž
Note that this is about 247 times molecular diameter.
Pressure of ideal gas
A cubical box of side L.
It contains n moles of
an ideal gas.
Volume of that cube is, V = ๐‘ณ๐Ÿ‘
,
Where L โ†’ ๐‘ณ๐’†๐’๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’”๐’Š๐’…๐’†
We have to find relation between pressure P of gas
with molecular speed
Here, change in momentum in โ€“component
โˆ† ๐‘ท๐’™ = ๐‘ญ๐’Š๐’๐’‚๐’ ๐’Ž๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž โˆ’ ๐‘ฐ๐’๐’Š๐’•๐’Š๐’‚๐’ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž
= - m๐’—๐’™ โˆ’ ๐’Ž๐’—๐’™
= - 2 m๐’—๐’™
So, total momentum applied on the wall is 2 m๐’—๐’™
The total distance travelled by particle of gas during
collision of molecule and wall is 2L
โˆ’๐’—๐’™
m
๐’—๐’™
โˆ†๐’• =
๐Ÿ๐‘ณ
๐’—๐’™
โ€ฆโ€ฆ[Speed =
๐‘ซ๐’Š๐’”๐’•๐’‚๐’๐’„๐’†
๐‘ป๐’Š๐’Ž๐’†
]
For 1-molecule, Average force = Average rate of change of momentum
=
๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž
๐‘ป๐’Š๐’Ž๐’†
=
๐Ÿ๐’Ž๐’—๐’™๐Ÿ
โˆ†๐’•
=
๐Ÿ๐’Ž๐’—๐’™๐Ÿ
๐Ÿ๐‘ณ
๐’—๐’™๐Ÿ
=
๐Ÿ๐’Ž๐’—๐’™๐Ÿ
๐Ÿ๐‘ณ
x ๐’—๐’™๐Ÿ
Average Force (๐‘ญ๐Ÿ) =
๐’Ž๐’—๐’™๐Ÿ
๐Ÿ
๐Ÿ๐‘ณ
Similarly, for particle 2,3,4, โ€ฆโ€ฆwith respect to x-component velocities are
๐’—๐’™๐Ÿ
, ๐’—๐’™๐Ÿ‘
, ๐’—๐’™๐Ÿ’
, โ€ฆ . .
Average Force (๐‘ญ) =
๐’Ž(๐’—๐’™๐Ÿ
๐Ÿ +๐’—๐’™๐Ÿ
๐Ÿ + ๐’—๐’™๐Ÿ‘
๐Ÿ + โ€ฆโ€ฆ..)
๐‘ณ
Pressure(P) =
๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’
๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ โ„Ž๐‘Ž๐‘‘๐‘’๐‘‘ ๐‘๐‘Ž๐‘Ÿ๐‘ก
=
๐’Ž(๐’—๐’™๐Ÿ
๐Ÿ +๐’—๐’™๐Ÿ
๐Ÿ + ๐’—๐’™๐Ÿ‘
๐Ÿ + โ€ฆโ€ฆ..)
๐‘ณ
๐ฟ2
=
๐’Ž(๐’—๐’™๐Ÿ
๐Ÿ +๐’—๐’™๐Ÿ
๐Ÿ + ๐’—๐’™๐Ÿ‘
๐Ÿ + โ€ฆโ€ฆ..)
๐‘ณ๐Ÿ‘ โ€ฆโ€ฆโ€ฆโ€ฆ.(i)
Average Velocity (๐‘ฃ๐‘ฅ
2
) =
๐’—๐’™๐Ÿ
๐Ÿ +๐’—๐’™๐Ÿ
๐Ÿ + ๐’—๐’™๐Ÿ‘
๐Ÿ + โ€ฆโ€ฆ.๐’—๐’™๐‘ต
๐Ÿ
๐‘ต
N๐‘ฃ๐‘ฅ
2
= ๐’—๐’™๐Ÿ
๐Ÿ
+ ๐’—๐’™๐Ÿ
๐Ÿ
+ ๐’—๐’™๐Ÿ‘
๐Ÿ
+ โ€ฆ โ€ฆ . ๐’—๐’™๐‘ต
๐Ÿ
Put it in equation (i)
Pressure(P) =
๐’ŽN๐‘ฃ๐‘ฅ
2
๐‘ณ๐Ÿ‘
Pressure(P) =
๐’ŽN๐‘ฃ๐‘ฅ
2
๐‘ฝ
โ€ฆโ€ฆ..[V=๐ฟ3
] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)
Now, as there is perfectly collision in molecule
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’™
๐Ÿ
=
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’š
๐Ÿ
=
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’›
๐Ÿ
๐’—๐’™
๐Ÿ
= ๐’—๐’š
๐Ÿ
= ๐’—๐’›
๐Ÿ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (a)
For average velocity of all component (x, y, z)
๐’—๐Ÿ = ๐’—๐’™
๐Ÿ
+ ๐’—๐’š
๐Ÿ
+ ๐’—๐’›
๐Ÿ
๐’—๐Ÿ = ๐’—๐’™
๐Ÿ
+ ๐’—๐’™
๐Ÿ
+ ๐’—๐’™
๐Ÿ
โ€ฆโ€ฆโ€ฆ From equation (a)
๐’—๐Ÿ = ๐Ÿ‘ ๐’—๐’™
๐Ÿ
๐’—๐’™
๐Ÿ
=
๐Ÿ
๐Ÿ‘
๐’—๐Ÿ
Put in equation (ii)
P =
๐’Ž๐‘ต (
๐Ÿ
๐Ÿ‘
๐’—๐Ÿ)
๐‘ฝ
=
๐’Ž๐‘ต๐’—๐Ÿ
๐Ÿ‘๐‘ฝ
=
๐Ÿ
๐Ÿ‘
๐‘ต
๐‘ฝ
๐’Ž ๐’—๐Ÿ
ROOTMEAN SQUARE(rms) SPEED
P =
๐Ÿ
๐Ÿ‘
๐‘ต
๐‘ฝ
๐’Ž ๐’—๐Ÿ
โˆด ๐Ÿ‘ ๐‘ท ๐‘ฝ = ๐‘ต ๐’Ž ๐’—๐Ÿ
๐’—๐Ÿ =
๐Ÿ‘ ๐‘ท ๐‘ฝ
๐‘ต ๐’Ž
We know that, P V = n R T
๐’—๐Ÿ =
๐Ÿ‘ ๐’ ๐‘น ๐‘ป
๐‘ต ๐’Ž
=
๐Ÿ‘ (
๐‘ต
๐‘ต๐‘จ
) ๐‘น ๐‘ป
๐‘ต ๐’Ž
โ€ฆโ€ฆโ€ฆโ€ฆ[n =
๐‘ต
๐‘ต๐‘จ
]
๐’—๐Ÿ =
๐Ÿ‘ ๐‘ต ๐‘น ๐‘ป
๐‘ต๐‘ต๐‘จ๐’Ž
=
๐Ÿ‘ ๐‘น ๐‘ป
๐‘ต๐‘จ๐’Ž
๐’—๐Ÿ =
๐Ÿ‘ ๐‘น ๐‘ป
๐‘ต๐‘จ๐’Ž
๐’—๐’“๐’Ž๐’” =
๐Ÿ‘ ๐‘น ๐‘ป
๐‘ด๐ŸŽ
โ€ฆโ€ฆ.[๐‘ด๐ŸŽ= ๐‘ต๐‘จ๐ฆ]
INTERPRETATIONOF TEMPERATURE IN KTG
We know that, P =
๐Ÿ
๐Ÿ‘
๐‘ต
๐‘ฝ
๐’Ž ๐’—๐Ÿ
P V =
๐Ÿ
๐Ÿ‘
๐‘ต ๐’Ž ๐’—๐Ÿ
=
๐Ÿ
๐Ÿ‘
๐‘ต (
๐’Ž ๐’—๐Ÿ
๐Ÿ
) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i)
In ideal gas there is no interaction molecule so P.E. = 0.
Here, Total Energy (E) = K.E. + P.E.
= N (
๐’Ž ๐’—๐Ÿ
๐Ÿ
) + 0 = N (
๐’Ž ๐’—๐Ÿ
๐Ÿ
) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(ii)
Put in equation (i)
P V =
๐Ÿ
๐Ÿ‘
E โ€ฆโ€ฆโ€ฆ.(iii)
Using Ideal Gas, P V = N ๐’Œ๐‘ฉ ๐‘ป =
๐Ÿ
๐Ÿ‘
E โ€ฆโ€ฆโ€ฆ.(iv)
N ๐’Œ๐‘ฉ ๐‘ป =
๐Ÿ
๐Ÿ‘
E
E =
๐Ÿ‘
๐Ÿ
N ๐’Œ๐‘ฉ ๐‘ป
๐‘ฌ
๐‘ต
=
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป
Example
At 300 K, what is the rms speed of Helium atom? [mass of He atom
is 4u, 1u = 1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ•
kg; ๐’Œ๐‘ฉ= 1.38 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘
J/K]
Solution: Given T = 300 K, m = 4 ร— 1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ•
kg
Average K. E =
๐Ÿ
๐Ÿ
๐’Ž ๐’—๐Ÿ =
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป
๐’—๐Ÿ =
๐Ÿ‘๐’Œ๐‘ฉ ๐‘ป
๐’Ž
=
๐Ÿ‘ ๐‘ฟ ๐Ÿ.๐Ÿ‘๐Ÿ– ๐‘ฟ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘ ๐‘ฟ ๐Ÿ‘๐ŸŽ๐ŸŽ
๐Ÿ’ ๐‘ฟ1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ•
= 187.05 X ๐Ÿ๐ŸŽ๐Ÿ’
๐’—๐’“๐’Ž๐’” = ๐’—๐Ÿ = 13.68 X ๐Ÿ๐ŸŽ๐Ÿ
= 1368 m/s
๐‘ณ๐‘จ๐‘พ ๐‘ถ๐‘ญ ๐‘ฌ๐‘ธ๐‘ผ๐‘ฐ๐‘ท๐‘จ๐‘น๐‘ป๐‘ฐ๐‘ป๐‘ฐ๐‘ถ๐‘ต
Energy of single molecule is
K.E =
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’™
๐Ÿ
+
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’š
๐Ÿ
+
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’›
๐Ÿ
For gas at temperature T,
The average K.E per molecule is <K.E.>
<K.E> = <
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’™
๐Ÿ
> + <
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’š
๐Ÿ
> + <
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’›
๐Ÿ>
But the mean distance is
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป is the molecular energy in single x or y or z component.
DEGREEOF FREEDOM
The molecule is free to move in whole space.
Molecule can move in 3-D space.
โ€œDegree of freedom of a system are defined as the total number of co-ordinate
required to describe the position and configuration of the system completely.โ€
DIATOMIC MOLECULE
Molecules having 3-translational degrees (x, y, z)
Diatomic molecule rotate around axis
Suppose, a molecule moving along axis z with ๐‘ฐ๐’› with ๐’˜๐’›
K.E =
๐Ÿ
๐Ÿ
๐‘ฐ๐’› ๐’˜๐’›
๐Ÿ
For axis y , K.E =
๐Ÿ
๐Ÿ
๐‘ฐ๐’š ๐’˜๐’š
๐Ÿ
So, Total energy = E (Translational) + E (Rotational)
= [
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’™
๐Ÿ
+
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’š
๐Ÿ
+
๐Ÿ
๐Ÿ
๐’Ž๐’—๐’›
๐Ÿ] + [
๐Ÿ
๐Ÿ
๐‘ฐ๐’› ๐’˜๐’›
๐Ÿ
+
๐Ÿ
๐Ÿ
๐‘ฐ๐’š ๐’˜๐’š
๐Ÿ
]
Fig.: The two independent
axes z and y of rotation of
a diatomic molecule lying
along the x-axis.
From equipartition of energy:
Each and every molecule separated with
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป molecule.
For, Translational motion โ†’ 3 (dof) โ†’ [ 3 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป ]
Rotational motion โ†’ 2 (dof) โ†’ [ 2 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป ]
Vibrational motion โ†’ 2 (dof) โ†’ [ 2 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป ]
โ†’ [
๐Ÿ
๐Ÿ
m ๐’–๐Ÿ +
๐Ÿ
๐Ÿ
k ๐’“๐Ÿ ]
โ€ข The energy of molecule [
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป ] is valid for high temperature and not
valid for extremely low temperature where quantum effects become
important.
SPECIFIC HEAT CAPACITY
If temperature of gas increase
(Cause considerable change in volume and pressure)
๐‘ช๐‘ฝ โ†’ Specific heat at constant volume
๐‘ช๐‘ท โ†’ Specific heat at constant pressure
MAYERโ€™S RELATON
Consider, 1 mole of gas (Ideal) enclosed in cylinder
Let P, V, T be the pressure, volume and temperature
dT = Change in temperature
(Volume is constant โ†’ ๐‘ต๐’ ๐’˜๐’๐’“๐’Œ ๐’Š๐’” ๐’…๐’๐’๐’†)
d๐‘ธ๐Ÿ โ†’ Increase in the internal energy
dE โ†’ ๐‘ฐ๐’๐’•๐’†๐’“๐’๐’‚๐’ ๐’†๐’๐’†๐’“๐’ˆ๐’š
โˆด ๐’…๐‘ธ๐Ÿ = ๐’…๐‘ฌ = ๐‘ช๐‘ฝ๐’…๐‘ป โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐’Š
Where, ๐‘ช๐‘ฝ โ†’ ๐‘ด๐’๐’๐’‚๐’“ ๐’”๐’‘๐’†๐’„๐’Š๐’‡๐’Š๐’„ ๐’‰๐’†๐’‚๐’• ๐’‚๐’• ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’—๐’๐’๐’–๐’Ž๐’†
If gas is heated with same given temperature at constant pressure
then,
dV โ†’ Change (increase) in volume
Here, work is done to pull backward the piston
dw = p dv
โˆด ๐’…๐‘ธ๐Ÿ = dE + dw = ๐‘ช๐‘ท๐’…๐‘ป โ€ฆโ€ฆโ€ฆ(ii)
Where, ๐‘ช๐‘ท โ†’ Molar specific heat at constant pressure
From equation (i)
โˆด ๐‘ช๐‘ฝ๐’…๐‘ป + ๐’…๐’˜ = ๐‘ช๐‘ท๐’…๐‘ป
๐‘ช๐‘ฝ๐’…๐‘ป + ๐‘ท ๐’…๐‘ฝ = ๐‘ช๐‘ท๐’…๐‘ป
๐‘ท ๐’…๐‘ฝ = ๐‘ช๐‘ท๐’…๐‘ป - ๐‘ช๐‘ฝ๐’…๐‘ป
๐‘ท ๐’…๐‘ฝ = (๐‘ช๐‘ท - ๐‘ช๐‘ฝ ) ๐’…๐‘ป โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (iii)
For, 1 mole of gas, PV = RT โ€ฆโ€ฆโ€ฆโ€ฆ(n = 1)
But, when pressure is constant
P dV = R dT
(๐‘ช๐‘ท - ๐‘ช๐‘ฝ ) ๐’…๐‘ป = R dT
๐‘ช๐‘ท - ๐‘ช๐‘ฝ = ๐‘น โ€ฆโ€ฆโ€ฆ(Mayerโ€™s relation)
Now, ๐‘ช๐‘ท - ๐‘ช๐‘ฝ =
๐‘น
๐‘ฑ
Where, J โ€“ mechanical equivalent of heat
Here, ๐‘ช๐‘ท = ๐‘ด๐ŸŽ ๐‘บ๐‘ท
๐‘ช๐‘ฝ = ๐‘ด๐ŸŽ ๐‘บ๐‘ฝ
๐‘ด๐ŸŽ = Molar mass of gas
๐‘บ๐‘ฝ, ๐‘บ๐‘ท = Respective principle of heat
๐‘ด๐ŸŽ ๐‘บ๐‘ท - ๐‘ด๐ŸŽ ๐‘บ๐‘ฝ =
๐‘น
๐‘ฑ
(๐‘บ๐‘ท - ๐‘บ๐‘ฝ) =
๐‘น
๐‘ด๐ŸŽ๐‘ฑ
a) MONOATOMICGAS
For translational motion โ†’ 3 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป โ†’
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป
๐‘ช๐‘ฝ =
๐’…๐‘ฌ
๐’…๐’•
=
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ
๐‘ป
โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น)
๐‘ช๐‘ฝ =
๐Ÿ‘
๐Ÿ
๐’Œ๐‘ฉN =
๐Ÿ‘
๐Ÿ
๐‘น
๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ
= R +
๐Ÿ‘
๐Ÿ
๐‘น
๐‘ช๐‘ท =
๐Ÿ“
๐Ÿ
๐‘น
โˆด ๐œธ =
๐‘ช๐‘ท
๐‘ช๐‘ฝ
=
๐Ÿ“
๐Ÿ
๐‘น
๐Ÿ‘
๐Ÿ
๐‘น
๐œธ =
๐‘ช๐‘ท
๐‘ช๐‘ฝ
=
๐Ÿ“
๐Ÿ‘
b) diaTOMICGAS
Gases like ๐‘ถ๐Ÿ, ๐‘ต๐Ÿ, ๐‘ช๐‘ถ, ๐‘ฏ๐‘ช๐’ ๐’‰๐’†๐’๐’… ๐’‚๐’• ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’•๐’†๐’Ž๐’‘๐’†๐’“๐’‚๐’•๐’–๐’“๐’† ๐‘ป.
Each molecule have 3-Translational and 2-Roational dof.
E = [3 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป] + [ 2 X
๐Ÿ
๐Ÿ
๐’Œ๐‘ฉ ๐‘ป]
= [
๐Ÿ‘
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] =
๐Ÿ“
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป
๐‘ช๐‘ฝ =
๐’…๐‘ฌ
๐’…๐’•
=
๐Ÿ“
๐Ÿ
๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ
๐‘ป
โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น)
๐‘ช๐‘ฝ =
๐Ÿ“
๐Ÿ
๐’Œ๐‘ฉ๐‘ต๐‘จ =
๐Ÿ“
๐Ÿ
๐‘น
๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ
= R +
๐Ÿ“
๐Ÿ
๐‘น =
๐Ÿ•
๐Ÿ
๐‘น
โˆด ๐œธ =
๐‘ช๐‘ท
๐‘ช๐‘ฝ
=
๐Ÿ•
๐Ÿ
๐‘น
๐Ÿ“
๐Ÿ
๐‘น
=
๐Ÿ•
๐Ÿ“
โ€ฆโ€ฆโ€ฆ.(For rigid rotator body)
For non rigid vibrating molecule
E = Translational Energy + Rotational Energy + Vibrational Energy
E = [3 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 2 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 2 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป]
=
๐Ÿ•
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป
๐‘ช๐‘ฝ =
๐’…๐‘ฌ
๐’…๐’•
=
๐Ÿ•
๐Ÿ
๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ
๐‘ป
โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น)
๐‘ช๐‘ฝ =
๐Ÿ•
๐Ÿ
๐’Œ๐‘ฉ๐‘ต๐‘จ =
๐Ÿ•
๐Ÿ
๐‘น
๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ
= R +
๐Ÿ•
๐Ÿ
๐‘น =
๐Ÿ—
๐Ÿ
๐‘น
โˆด ๐œธ =
๐‘ช๐‘ท
๐‘ช๐‘ฝ
=
๐Ÿ—
๐Ÿ
๐‘น
๐Ÿ•
๐Ÿ
๐‘น
=
๐Ÿ—
๐Ÿ•
b) POLYaTOMICGASES
E = Translational Energy + Rotational Energy + (f x Vibrational Energy)
Where, f โ†’ Number of vibrational dof
E = [3 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 3 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ f X 2 X
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป]
=
๐Ÿ
๐Ÿ
๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป (3+3+2f)
= (3 + f) ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป
๐‘ช๐‘ฝ =
๐’…๐‘ฌ
๐’…๐’•
=
(๐Ÿ‘+๐’‡)๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ
๐‘ป
โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น)
๐‘ช๐‘ฝ = (3+f)๐’Œ๐‘ฉ๐‘ต๐‘จ = (3+f) ๐‘น
๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ
= R + (3+f) ๐‘น = ๐Ÿ‘ + ๐’‡ ๐‘น
โˆด ๐œธ =
๐‘ช๐‘ท
๐‘ช๐‘ฝ
=
(๐Ÿ’+๐’‡)
(๐Ÿ‘+๐’‡)
HEAT
Heat is the form of energy which can be formed from one
object to another object.
MODES OF CONDUCTION
1)Conduction
2)Convection
3)Radiation
โ€ข Does not required material medium for transfer
โ€ข Emission of heat โ†’ radiant energy โ†’ Electromagnetic wave
โ€ข Can travel through both material and vacuum medium.
โ€ข Fastest way of heat transfer.
Requires material medium for transfer.
INTERACTION OF THERMAL RADIATIONANDMATTER
When any thermal radiation falls on object then some part is
reflected, some part is absorbed and some part transmitted.
Consider,
Q โ†’ Total amount of heat energy incident
๐‘ธ๐’‚ โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’‚๐’ƒ๐’”๐’๐’“๐’ƒ๐’†๐’…
๐‘ธ๐’“ โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’“๐’†๐’‡๐’๐’†๐’„๐’•๐’†๐’…
๐‘ธ๐’• โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’•๐’“๐’‚๐’๐’”๐’Ž๐’Š๐’•๐’•๐’†๐’…
Total energy (Q) = ๐‘ธ๐’‚ + ๐‘ธ๐’“ + ๐‘ธ๐’•
โˆด ๐Ÿ = ๐’‚ + ๐’“ + ๐’•๐’“
Where, a =
๐‘ธ๐’‚
๐‘ธ
, r =
๐‘ธ๐’“
๐‘ธ
, ๐’•๐’“ =
๐‘ธ๐’•
๐‘ธ
Coefficient of absorption, reflection, transmission
COEFFICIENT OF HEAT READIATION
โ€ข Coefficient of absorption/absorptive power/absorptivity
โ€œThe ratio of amount of heat absorbed to total amount of heat incident.โ€
a =
๐‘ธ๐’‚
๐‘ธ
โ€ข Coefficient of reflection/reflectance
โ€œThe ratio of amount of heat reflected to total amount of heat incident.โ€
r =
๐‘ธ๐’“
๐‘ธ
โ€ข Coefficient of transmission or transmittance
โ€œThe ratio of amount of heat is transmitted to total amount of heat
incident.โ€
๐’•๐’“ =
๐‘ธ๐’•
๐‘ธ
Cases
a)Perfect transmitter: r = 0, a = 0, ๐’•๐’“ โ‰  1
Object is said to be completely transparent.
b) Di-athermanous substance: ๐’•๐’“ โ‰  0
โ€œSubstance through which heat radiation can pass is called di-
athermanousโ€
Neither a good absorber nor good reflector
E.G., Quartz, Sodium Chloride, Hydrogen, Oxygen
c) Athermanous substance: ๐’•๐’“ = 0, a + r = 1
โ€œSubstance which are largely opaque to thermal radiation i.e. do
not transmit heat.โ€
d) Good reflector/poor absorber/poor transmitter: ๐’•๐’“ = 0, a = 0, r = 1
e) Perfect blackbody: ๐’•๐’“ = 0, r = 0 and a = 1
โ€œAll the incident energy is absorbed by the object such an object is called
a perfect blackbody.โ€
NOTE: All the a (absorption), r
(reflection) and t (transmission) depends
upon wavelength of incident radiation.
โ€œA body which absorb entire radiant
energy incident on it, is called an ideal or
perfect blackbody.โ€
Platinum black absorb nearly 97 % of
incident radiant heat on it.
Good absorber are good emitter and
poor absorber are poor emitter.
Fig.: Ferryโ€™s blackbody.
EMISSION OF HEAT RADIATION
Pierre prevost published a theory of radiation known
as theory of exchange of heat.
At temperature 0 K or above it.
โ€ข Body radiate thermal energy and at same time
they absorb radiation received from surrounding.
โ€ข Emission per unit time depends upon surface of
emission, its area and size.
โ€ข Hotter body radiate at higher rate than the cooler
body
AMOUNT OF HEAT RADIATED BY THE BODY DEPENDS ON โ€“
โ€ข The absolute temperature of body
โ€ข The nature of body (Polished or not, size, colour)
โ€ข Surface area of body (A)
โ€ข Time duration
Amount of heat radiated ๐œถ Surface area of body and time duration
Q ๐œถ At
Q = Rat
Where, R โ†’ Emissive power/Radiant power
R =
๐‘ธ
๐‘จ๐’•
SI Unit โ€“ J ๐’Žโˆ’๐Ÿ
๐’”โˆ’๐Ÿ
Dimension - [๐‘ณ๐ŸŽ
๐‘ด๐Ÿ
๐‘ปโˆ’๐Ÿ‘
]
EMISSIVITY
โ€œThe coefficient of emission or emissivity (e) of a given surface is the ratio of the emissive
power R of the surface to emissive power ๐‘น๐‘ฉ of perfect black body at same temperature.โ€
e =
๐‘น
๐‘น๐‘ฉ
For perfect blackbody, e = 1, Perfect reflector, e = 0
KIRCHOFFโ€™S LAW OF HEATRADIATION
โ€œAt a given temperature, the ratio of emissive power to coefficient of absorption of a body
is equal to the emissive power of a perfect blackbody at the same temperature for all
wavelength.โ€
๐‘น
๐’‚
= ๐‘น๐‘ฉ
โˆด
๐‘น
๐‘น๐‘ฉ
= ๐’‚
โˆด ๐’‚ = ๐’†
At thermal equilibrium, emissivity is equal to absorptivity.
WEINโ€™S DISPLACEMENTLAW
The wavelength for which emissive power of a blackbody is
maximum is inversely proportional to the absolute temperature
of the blackbody.
๐€๐’Ž๐’‚๐’™ ๐œถ
๐Ÿ
๐‘ป
๐€๐’Ž๐’‚๐’™ = ๐’ƒ ๐‘ฟ
๐Ÿ
๐‘ป
Where, b โ†’ Weinโ€™s constant
b = 2.897 X ๐Ÿ๐ŸŽโˆ’๐Ÿ‘
mk
Law is useful to determine distant length.
SREFAN-BOLTZMANN LAWOF RADIATION
โ€œThe rate of emission of radiant energy per unit area or the power
radiated per unit area of a perfect blackbody is directly proportional to
fourth power of its temperature.โ€
R ๐œถ ๐‘ป๐Ÿ’
R = ๐ˆ ๐‘ป๐Ÿ’
Where, ๐ˆ โ†’ ๐‘บ๐’•๐’†๐’‡๐’‚๐’โ€ฒ
๐’” ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’•
๐ˆ = ๐Ÿ“. ๐Ÿ”๐Ÿ• ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ–
Unit โ†’ J ๐’Žโˆ’๐Ÿ
๐’”โˆ’๐Ÿ
๐’Œโˆ’๐Ÿ’
Dimension โ†’ [๐‘ณ๐ŸŽ
๐‘ด๐Ÿ
๐‘บโˆ’๐Ÿ
๐‘ฒโˆ’๐Ÿ’
]
We know that, R =
๐‘ธ
๐‘จ๐’•
So, R = ๐ˆ ๐‘ป๐Ÿ’
โ†’
๐‘ธ
๐‘จ๐’•
= ๐ˆ ๐‘ป๐Ÿ’
โ€ฆโ€ฆโ€ฆโ€ฆ(For black body)
For ordinary body, R = ๐ž ๐ˆ ๐‘ป๐Ÿ’
Let, T โ†’ ๐‘จ๐’ƒ๐’”๐’๐’๐’–๐’•๐’† ๐’•๐’†๐’Ž๐’‘๐’†๐’“๐’‚๐’•๐’–๐’“๐’† ๐’๐’‡ ๐’ƒ๐’๐’‚๐’„๐’Œ๐’ƒ๐’๐’…๐’š ๐ค๐ž๐ž๐ฉ ๐š๐ญ ๐ฅ๐จ๐ฐ๐ž๐ซ
๐š๐›๐ฌ๐จ๐ฅ๐ฎ๐ญ๐ž ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž ๐‘ป๐‘ถ
Energy radiated per unit time = ๐ˆ ๐‘ป๐Ÿ’
Energy radiated per unit time in surrounding = ๐ˆ ๐‘ป๐ŸŽ
๐Ÿ’
Net loss of energy by perfect blackbody per unit time = ๐ˆ ๐‘ป๐Ÿ’ - ๐ˆ ๐‘ป๐ŸŽ
๐Ÿ’
= ๐ˆ ( ๐‘ป๐Ÿ’
- ๐‘ป๐ŸŽ
๐Ÿ’
)
For ordinary body = ๐ž๐ˆ ( ๐‘ป๐Ÿ’
- ๐‘ป๐ŸŽ
๐Ÿ’
)

More Related Content

What's hot

Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5tdean1
ย 
Chemical Thermodynamics
Chemical Thermodynamics Chemical Thermodynamics
Chemical Thermodynamics suresh gdvm
ย 
Teori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal AbidinTeori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal AbidinZainal Abidin Mustofa
ย 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gasesRahul Singh
ย 
The kinetic theory of gases
The kinetic theory of gasesThe kinetic theory of gases
The kinetic theory of gasesAshwani Kumar
ย 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relationsnaphis ahamad
ย 
Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Alisson Moreira
ย 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gasesRadha Mini
ย 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notesAshima Aggarwal
ย 
Properties of Gases
Properties of GasesProperties of Gases
Properties of GasesYujung Dong
ย 
Chapter 14-powerpoint-1232611945071357-1
Chapter 14-powerpoint-1232611945071357-1Chapter 14-powerpoint-1232611945071357-1
Chapter 14-powerpoint-1232611945071357-1Cleophas Rwemera
ย 
States of matter
States of matterStates of matter
States of matterHoshi94
ย 
Ch. 10 Gases
Ch. 10 GasesCh. 10 Gases
Ch. 10 Gasesewalenta
ย 
kinetic-theory-of-gases
 kinetic-theory-of-gases kinetic-theory-of-gases
kinetic-theory-of-gasesAshish Kumar
ย 
Pressure, temperature and โ€˜rmsโ€™ related to kinetic model
Pressure, temperature and โ€˜rmsโ€™ related to kinetic modelPressure, temperature and โ€˜rmsโ€™ related to kinetic model
Pressure, temperature and โ€˜rmsโ€™ related to kinetic modelMichael Marty
ย 
THERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVTHERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVsureshkcet
ย 

What's hot (19)

Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5
ย 
Chemical Thermodynamics
Chemical Thermodynamics Chemical Thermodynamics
Chemical Thermodynamics
ย 
Teori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal AbidinTeori Kinetik Gas - Zainal Abidin
Teori Kinetik Gas - Zainal Abidin
ย 
Stoikiometri
StoikiometriStoikiometri
Stoikiometri
ย 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gases
ย 
The kinetic theory of gases
The kinetic theory of gasesThe kinetic theory of gases
The kinetic theory of gases
ย 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
ย 
Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)Exerc cios resolvidos_-_cap._01-atkins_(a)
Exerc cios resolvidos_-_cap._01-atkins_(a)
ย 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gases
ย 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
ย 
Properties of Gases
Properties of GasesProperties of Gases
Properties of Gases
ย 
Thermodynamic, part 2
Thermodynamic, part 2Thermodynamic, part 2
Thermodynamic, part 2
ย 
Chapter 14-powerpoint-1232611945071357-1
Chapter 14-powerpoint-1232611945071357-1Chapter 14-powerpoint-1232611945071357-1
Chapter 14-powerpoint-1232611945071357-1
ย 
States of matter
States of matterStates of matter
States of matter
ย 
Ch. 10 Gases
Ch. 10 GasesCh. 10 Gases
Ch. 10 Gases
ย 
Gases
Gases Gases
Gases
ย 
kinetic-theory-of-gases
 kinetic-theory-of-gases kinetic-theory-of-gases
kinetic-theory-of-gases
ย 
Pressure, temperature and โ€˜rmsโ€™ related to kinetic model
Pressure, temperature and โ€˜rmsโ€™ related to kinetic modelPressure, temperature and โ€˜rmsโ€™ related to kinetic model
Pressure, temperature and โ€˜rmsโ€™ related to kinetic model
ย 
THERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVTHERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IV
ย 

Similar to CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation

8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)PhysicsLover
ย 
Chem-1101.pptx
Chem-1101.pptxChem-1101.pptx
Chem-1101.pptxthuzar29
ย 
kinetic theory of gas TSH PHYSICS .pptx
kinetic theory of gas TSH PHYSICS  .pptxkinetic theory of gas TSH PHYSICS  .pptx
kinetic theory of gas TSH PHYSICS .pptxthesciencehubprg
ย 
Lecture 2 summary.pdf
Lecture 2 summary.pdfLecture 2 summary.pdf
Lecture 2 summary.pdfFathiShokry
ย 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gasesUsman Shah
ย 
Thermodynamics Begining
Thermodynamics BeginingThermodynamics Begining
Thermodynamics Beginingfarhanabinte
ย 
07 xi kinetic theory of gases notes
07 xi kinetic theory of gases notes07 xi kinetic theory of gases notes
07 xi kinetic theory of gases notesGODARAMANGERAM
ย 
Spherical accretion in black hole
Spherical accretion in black holeSpherical accretion in black hole
Spherical accretion in black holePujita Das
ย 
Thermodynamics
ThermodynamicsThermodynamics
ThermodynamicsSrilekhaV1
ย 
Ch 14 Ideal Gas Law & Kinetic Theory
Ch 14 Ideal Gas Law & Kinetic TheoryCh 14 Ideal Gas Law & Kinetic Theory
Ch 14 Ideal Gas Law & Kinetic TheoryScott Thomas
ย 
Ch10 outline
Ch10 outlineCh10 outline
Ch10 outlineAP_Chem
ย 
AP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineAP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineJane Hamze
ย 
Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptmikeebio1
ย 
Thermodynamics ppt
Thermodynamics pptThermodynamics ppt
Thermodynamics pptNaman Jain
ย 

Similar to CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation (20)

8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)
ย 
Chem-1101.pptx
Chem-1101.pptxChem-1101.pptx
Chem-1101.pptx
ย 
kinetic theory of gas TSH PHYSICS .pptx
kinetic theory of gas TSH PHYSICS  .pptxkinetic theory of gas TSH PHYSICS  .pptx
kinetic theory of gas TSH PHYSICS .pptx
ย 
Lecture 2 summary.pdf
Lecture 2 summary.pdfLecture 2 summary.pdf
Lecture 2 summary.pdf
ย 
Gas Laws
Gas LawsGas Laws
Gas Laws
ย 
B.Sc. Sem II Kinetic Theory of Gases
B.Sc. Sem II Kinetic Theory of GasesB.Sc. Sem II Kinetic Theory of Gases
B.Sc. Sem II Kinetic Theory of Gases
ย 
Chapter10.pdf
Chapter10.pdfChapter10.pdf
Chapter10.pdf
ย 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gases
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
ย 
Thermodynamics Begining
Thermodynamics BeginingThermodynamics Begining
Thermodynamics Begining
ย 
07 xi kinetic theory of gases notes
07 xi kinetic theory of gases notes07 xi kinetic theory of gases notes
07 xi kinetic theory of gases notes
ย 
Spherical accretion in black hole
Spherical accretion in black holeSpherical accretion in black hole
Spherical accretion in black hole
ย 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
ย 
Ch 14 Ideal Gas Law & Kinetic Theory
Ch 14 Ideal Gas Law & Kinetic TheoryCh 14 Ideal Gas Law & Kinetic Theory
Ch 14 Ideal Gas Law & Kinetic Theory
ย 
Gases
GasesGases
Gases
ย 
Ch10 outline
Ch10 outlineCh10 outline
Ch10 outline
ย 
AP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineAP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 Outline
ย 
Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
ย 
Heat 3
Heat 3Heat 3
Heat 3
ย 
Thermodynamics ppt
Thermodynamics pptThermodynamics ppt
Thermodynamics ppt
ย 

Recently uploaded

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
ย 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
ย 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
ย 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 

Recently uploaded (20)

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
ย 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ย 
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธcall girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
call girls in Kamla Market (DELHI) ๐Ÿ” >เผ’9953330565๐Ÿ” genuine Escort Service ๐Ÿ”โœ”๏ธโœ”๏ธ
ย 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ย 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
ย 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
ย 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 

CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation

  • 1. CHAPTER 3 Kinetic Theory of Gases and Radiation CLASSXII PHYSICS MAHARASHTRASTATEBOARD
  • 2. Can you recall? 1. What are different states of matter? 2. How do you distinguish between solid, liquid and gaseous states? 3. What are gas laws? 4. What is absolute zero temperature? 5. What is Avogadro number? What is a mole? 6. How do you get ideal gas equation from the gas laws? 7. How is ideal gas different from real gases? 8. What is elastic collision of particles? 9. What is Dalton's law of partial pressures?
  • 3. SOLID LIQUID GAS MOLECULES ATOMS Matter is made up of tiny particles called molecules. All types of matter are made up of extremely small particles. STATES OF MATTER
  • 4. Scanning Tunnelling Microscope (STM) Molecules are always in a state of motion and even when inside matter, they never stop moving.
  • 6. Gas lawโ€™s โ€ข Boyleโ€™s Law: V โˆ ๐Ÿ ๐‘ท at constant T โ€ข Charles Law: V ๐œถ T at constant P โ€ข Avogadroโ€™s Law: V ๐œถ ๐ง โ€ข Gay-Lussacโ€™s Law: P ๐œถ T at constant V Combining these all lawโ€™s, we get V ๐œถ n T ๐Ÿ ๐‘ท โˆด ๐‘ท๐‘ฝ ๐œถ ๐’๐‘ป PV = nRT Where, R is proportionality constant OR Universal Gas Constant R = 8.314 J ๐’Ž๐’๐’โˆ’๐Ÿ ๐’Œโˆ’๐Ÿ
  • 7. Moleโ€™s Unit: mol Formula: Mole = ๐‘ด๐’‚๐’”๐’” ๐‘ด๐’๐’๐’‚๐’“ ๐‘ด๐’‚๐’”๐’” Concept: 1 mole of substance โ†’ Contain 6.022 X ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘ No. of mole (n) = ๐‘ต๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’‘๐’‚๐’“๐’•๐’Š๐’„๐’๐’†๐’” ๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘
  • 8. ATOM Weight of one atom of an element = ๐‘จ๐’•๐’๐’Ž๐’Š๐’„ ๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’• ๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘ Weight of one molecule of a compound = ๐‘ด๐’๐’๐’†๐’„๐’–๐’๐’‚๐’“ ๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’• ๐Ÿ”.๐ŸŽ๐Ÿ๐Ÿ‘ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ‘ For Gas, n = ๐‘ต ๐‘ต๐‘จ Where, n โ†’ mole N โ†’ Number of molecules in a gas ๐‘ต๐‘จ โ†’ Avogadro's number OR Number of molecule in 1 mole of gas
  • 9. IDEAL GAS Equation, PV = nRT PV = ๐‘ต ๐‘ต๐‘จ RT โ€ฆโ€ฆโ€ฆโ€ฆ. [n = ๐‘ต ๐‘ต๐‘จ ] Here, R = ๐‘ต๐‘จ๐’Œ๐‘ฉ Where, ๐’Œ๐‘ฉ is the Boltzmann Constant So, PV = ๐‘ต ๐‘ต๐‘จ ๐‘ต๐‘จ๐’Œ๐‘ฉ๐‘ป PV = N๐’Œ๐‘ฉ๐‘ป Where, N is the Number of Particles NOTE: A gas obeying the equation of state i.e., PV = nRT at all pressure, and temperature is an ideal gas.
  • 10. Behaviour of gas โ€ข Gas contained in container is characterized by its pressure, volume and temperature. โ€ข Particle of gas are always in constant motion. โ€ข It is very hard to evaluate the motion of single particle of gas. โ€ข We find average of physical quantities and then relate to the macroscopic view of gas.
  • 11. Fig.(a): A gas with molecules dispersed in the container: A stop action photograph. Fig.(b): A typical molecule in a gas executing random motion.
  • 12. IDEAL gaS โ€ข A gas obeying ideal gas equation is nothing but an ideal gas. โ€ข Intermolecular interaction is different or absent. REAL GAS โ€ข Compose of atom/molecule which do interact with each other. โ€ข If there is atom/molecule are so apart then we can say that the real gases are ideal. โ€ข This can be achieved by lowering pressure and increasing temperature.
  • 13. MEAN FREE PATH โ€ข Represented by โ€˜๐€โ€™ โ€ข Defined as average distance travelled by a molecule with constant velocity between two successive collision. โ€ข Mean free path is inversely vary with density. โ€ข Mean free path also inversely proportional to size of the particle of gases. Conclusion: ๐€ = ๐Ÿ ๐’…๐Ÿ๐† ๐€ = ๐Ÿ ๐’…๐Ÿ๐†๐… ๐Ÿ ๐€ = ๐Ÿ ๐’…๐Ÿ( ๐‘ต ๐‘ฝ )๐… ๐Ÿ โ€ฆโ€ฆโ€ฆ.[๐† = ๐‘ต ๐‘ฝ ]
  • 14. EAXMPLE โ€ข Obtain the mean free path of nitrogen molecule at 0 ยฐC and 1.0 atm pressure. The molecular diameter of nitrogen is 324 pm (assume that the gas is ideal). Solution: Given T = 0 ยฐC = 273 K, P = 1.0 atm = 1.01ร—๐Ÿ๐ŸŽ๐Ÿ“ Pa and d = 324 pm = 324 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ m. For ideal gas PV = N๐’Œ๐‘ฉT, โˆด ๐‘ต ๐‘ฝ = ๐‘ท ๐’Œ๐‘ฉ๐‘ป Using Eq., mean free path ๐€ = ๐Ÿ ๐’…๐Ÿ( ๐‘ต ๐‘ฝ )๐… ๐Ÿ = ๐’Œ๐‘ฉ๐‘ป ๐Ÿ๐…๐’…๐Ÿ๐‘ท = ๐Ÿ.๐Ÿ‘๐Ÿ– ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘ ๐‘ฑ ๐‘ฒ (๐Ÿ๐Ÿ•๐Ÿ‘ ๐‘ฒ) ๐Ÿ๐… ๐Ÿ‘๐Ÿ๐Ÿ’ ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ ๐’Ž ๐Ÿ (๐Ÿ.๐ŸŽ๐Ÿ ๐‘ฟ ๐Ÿ๐ŸŽ๐Ÿ“ ๐‘ท๐’‚) = 0.8 X ๐Ÿ๐ŸŽโˆ’๐Ÿ• ๐’Ž Note that this is about 247 times molecular diameter.
  • 15. Pressure of ideal gas A cubical box of side L. It contains n moles of an ideal gas. Volume of that cube is, V = ๐‘ณ๐Ÿ‘ , Where L โ†’ ๐‘ณ๐’†๐’๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’”๐’Š๐’…๐’† We have to find relation between pressure P of gas with molecular speed Here, change in momentum in โ€“component โˆ† ๐‘ท๐’™ = ๐‘ญ๐’Š๐’๐’‚๐’ ๐’Ž๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž โˆ’ ๐‘ฐ๐’๐’Š๐’•๐’Š๐’‚๐’ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž = - m๐’—๐’™ โˆ’ ๐’Ž๐’—๐’™ = - 2 m๐’—๐’™ So, total momentum applied on the wall is 2 m๐’—๐’™ The total distance travelled by particle of gas during collision of molecule and wall is 2L โˆ’๐’—๐’™ m ๐’—๐’™
  • 16. โˆ†๐’• = ๐Ÿ๐‘ณ ๐’—๐’™ โ€ฆโ€ฆ[Speed = ๐‘ซ๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐‘ป๐’Š๐’Ž๐’† ] For 1-molecule, Average force = Average rate of change of momentum = ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐‘ป๐’Š๐’Ž๐’† = ๐Ÿ๐’Ž๐’—๐’™๐Ÿ โˆ†๐’• = ๐Ÿ๐’Ž๐’—๐’™๐Ÿ ๐Ÿ๐‘ณ ๐’—๐’™๐Ÿ = ๐Ÿ๐’Ž๐’—๐’™๐Ÿ ๐Ÿ๐‘ณ x ๐’—๐’™๐Ÿ Average Force (๐‘ญ๐Ÿ) = ๐’Ž๐’—๐’™๐Ÿ ๐Ÿ ๐Ÿ๐‘ณ Similarly, for particle 2,3,4, โ€ฆโ€ฆwith respect to x-component velocities are ๐’—๐’™๐Ÿ , ๐’—๐’™๐Ÿ‘ , ๐’—๐’™๐Ÿ’ , โ€ฆ . . Average Force (๐‘ญ) = ๐’Ž(๐’—๐’™๐Ÿ ๐Ÿ +๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ‘ ๐Ÿ + โ€ฆโ€ฆ..) ๐‘ณ
  • 17. Pressure(P) = ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐น๐‘œ๐‘Ÿ๐‘๐‘’ ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘ โ„Ž๐‘Ž๐‘‘๐‘’๐‘‘ ๐‘๐‘Ž๐‘Ÿ๐‘ก = ๐’Ž(๐’—๐’™๐Ÿ ๐Ÿ +๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ‘ ๐Ÿ + โ€ฆโ€ฆ..) ๐‘ณ ๐ฟ2 = ๐’Ž(๐’—๐’™๐Ÿ ๐Ÿ +๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ‘ ๐Ÿ + โ€ฆโ€ฆ..) ๐‘ณ๐Ÿ‘ โ€ฆโ€ฆโ€ฆโ€ฆ.(i) Average Velocity (๐‘ฃ๐‘ฅ 2 ) = ๐’—๐’™๐Ÿ ๐Ÿ +๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ‘ ๐Ÿ + โ€ฆโ€ฆ.๐’—๐’™๐‘ต ๐Ÿ ๐‘ต N๐‘ฃ๐‘ฅ 2 = ๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ ๐Ÿ + ๐’—๐’™๐Ÿ‘ ๐Ÿ + โ€ฆ โ€ฆ . ๐’—๐’™๐‘ต ๐Ÿ Put it in equation (i) Pressure(P) = ๐’ŽN๐‘ฃ๐‘ฅ 2 ๐‘ณ๐Ÿ‘ Pressure(P) = ๐’ŽN๐‘ฃ๐‘ฅ 2 ๐‘ฝ โ€ฆโ€ฆ..[V=๐ฟ3 ] โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(ii)
  • 18. Now, as there is perfectly collision in molecule ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’™ ๐Ÿ = ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’š ๐Ÿ = ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’› ๐Ÿ ๐’—๐’™ ๐Ÿ = ๐’—๐’š ๐Ÿ = ๐’—๐’› ๐Ÿ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.. (a) For average velocity of all component (x, y, z) ๐’—๐Ÿ = ๐’—๐’™ ๐Ÿ + ๐’—๐’š ๐Ÿ + ๐’—๐’› ๐Ÿ ๐’—๐Ÿ = ๐’—๐’™ ๐Ÿ + ๐’—๐’™ ๐Ÿ + ๐’—๐’™ ๐Ÿ โ€ฆโ€ฆโ€ฆ From equation (a) ๐’—๐Ÿ = ๐Ÿ‘ ๐’—๐’™ ๐Ÿ ๐’—๐’™ ๐Ÿ = ๐Ÿ ๐Ÿ‘ ๐’—๐Ÿ Put in equation (ii) P = ๐’Ž๐‘ต ( ๐Ÿ ๐Ÿ‘ ๐’—๐Ÿ) ๐‘ฝ = ๐’Ž๐‘ต๐’—๐Ÿ ๐Ÿ‘๐‘ฝ = ๐Ÿ ๐Ÿ‘ ๐‘ต ๐‘ฝ ๐’Ž ๐’—๐Ÿ
  • 19. ROOTMEAN SQUARE(rms) SPEED P = ๐Ÿ ๐Ÿ‘ ๐‘ต ๐‘ฝ ๐’Ž ๐’—๐Ÿ โˆด ๐Ÿ‘ ๐‘ท ๐‘ฝ = ๐‘ต ๐’Ž ๐’—๐Ÿ ๐’—๐Ÿ = ๐Ÿ‘ ๐‘ท ๐‘ฝ ๐‘ต ๐’Ž We know that, P V = n R T ๐’—๐Ÿ = ๐Ÿ‘ ๐’ ๐‘น ๐‘ป ๐‘ต ๐’Ž = ๐Ÿ‘ ( ๐‘ต ๐‘ต๐‘จ ) ๐‘น ๐‘ป ๐‘ต ๐’Ž โ€ฆโ€ฆโ€ฆโ€ฆ[n = ๐‘ต ๐‘ต๐‘จ ] ๐’—๐Ÿ = ๐Ÿ‘ ๐‘ต ๐‘น ๐‘ป ๐‘ต๐‘ต๐‘จ๐’Ž = ๐Ÿ‘ ๐‘น ๐‘ป ๐‘ต๐‘จ๐’Ž ๐’—๐Ÿ = ๐Ÿ‘ ๐‘น ๐‘ป ๐‘ต๐‘จ๐’Ž ๐’—๐’“๐’Ž๐’” = ๐Ÿ‘ ๐‘น ๐‘ป ๐‘ด๐ŸŽ โ€ฆโ€ฆ.[๐‘ด๐ŸŽ= ๐‘ต๐‘จ๐ฆ]
  • 20. INTERPRETATIONOF TEMPERATURE IN KTG We know that, P = ๐Ÿ ๐Ÿ‘ ๐‘ต ๐‘ฝ ๐’Ž ๐’—๐Ÿ P V = ๐Ÿ ๐Ÿ‘ ๐‘ต ๐’Ž ๐’—๐Ÿ = ๐Ÿ ๐Ÿ‘ ๐‘ต ( ๐’Ž ๐’—๐Ÿ ๐Ÿ ) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(i) In ideal gas there is no interaction molecule so P.E. = 0. Here, Total Energy (E) = K.E. + P.E. = N ( ๐’Ž ๐’—๐Ÿ ๐Ÿ ) + 0 = N ( ๐’Ž ๐’—๐Ÿ ๐Ÿ ) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(ii) Put in equation (i) P V = ๐Ÿ ๐Ÿ‘ E โ€ฆโ€ฆโ€ฆ.(iii) Using Ideal Gas, P V = N ๐’Œ๐‘ฉ ๐‘ป = ๐Ÿ ๐Ÿ‘ E โ€ฆโ€ฆโ€ฆ.(iv) N ๐’Œ๐‘ฉ ๐‘ป = ๐Ÿ ๐Ÿ‘ E E = ๐Ÿ‘ ๐Ÿ N ๐’Œ๐‘ฉ ๐‘ป ๐‘ฌ ๐‘ต = ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป
  • 21. Example At 300 K, what is the rms speed of Helium atom? [mass of He atom is 4u, 1u = 1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ• kg; ๐’Œ๐‘ฉ= 1.38 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘ J/K] Solution: Given T = 300 K, m = 4 ร— 1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ• kg Average K. E = ๐Ÿ ๐Ÿ ๐’Ž ๐’—๐Ÿ = ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ๐’—๐Ÿ = ๐Ÿ‘๐’Œ๐‘ฉ ๐‘ป ๐’Ž = ๐Ÿ‘ ๐‘ฟ ๐Ÿ.๐Ÿ‘๐Ÿ– ๐‘ฟ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ‘ ๐‘ฟ ๐Ÿ‘๐ŸŽ๐ŸŽ ๐Ÿ’ ๐‘ฟ1.66 ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ๐Ÿ• = 187.05 X ๐Ÿ๐ŸŽ๐Ÿ’ ๐’—๐’“๐’Ž๐’” = ๐’—๐Ÿ = 13.68 X ๐Ÿ๐ŸŽ๐Ÿ = 1368 m/s
  • 22. ๐‘ณ๐‘จ๐‘พ ๐‘ถ๐‘ญ ๐‘ฌ๐‘ธ๐‘ผ๐‘ฐ๐‘ท๐‘จ๐‘น๐‘ป๐‘ฐ๐‘ป๐‘ฐ๐‘ถ๐‘ต Energy of single molecule is K.E = ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’™ ๐Ÿ + ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’š ๐Ÿ + ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’› ๐Ÿ For gas at temperature T, The average K.E per molecule is <K.E.> <K.E> = < ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’™ ๐Ÿ > + < ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’š ๐Ÿ > + < ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’› ๐Ÿ> But the mean distance is ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป is the molecular energy in single x or y or z component.
  • 23. DEGREEOF FREEDOM The molecule is free to move in whole space. Molecule can move in 3-D space. โ€œDegree of freedom of a system are defined as the total number of co-ordinate required to describe the position and configuration of the system completely.โ€ DIATOMIC MOLECULE Molecules having 3-translational degrees (x, y, z) Diatomic molecule rotate around axis Suppose, a molecule moving along axis z with ๐‘ฐ๐’› with ๐’˜๐’› K.E = ๐Ÿ ๐Ÿ ๐‘ฐ๐’› ๐’˜๐’› ๐Ÿ For axis y , K.E = ๐Ÿ ๐Ÿ ๐‘ฐ๐’š ๐’˜๐’š ๐Ÿ So, Total energy = E (Translational) + E (Rotational) = [ ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’™ ๐Ÿ + ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’š ๐Ÿ + ๐Ÿ ๐Ÿ ๐’Ž๐’—๐’› ๐Ÿ] + [ ๐Ÿ ๐Ÿ ๐‘ฐ๐’› ๐’˜๐’› ๐Ÿ + ๐Ÿ ๐Ÿ ๐‘ฐ๐’š ๐’˜๐’š ๐Ÿ ] Fig.: The two independent axes z and y of rotation of a diatomic molecule lying along the x-axis.
  • 24. From equipartition of energy: Each and every molecule separated with ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป molecule. For, Translational motion โ†’ 3 (dof) โ†’ [ 3 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ] Rotational motion โ†’ 2 (dof) โ†’ [ 2 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ] Vibrational motion โ†’ 2 (dof) โ†’ [ 2 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ] โ†’ [ ๐Ÿ ๐Ÿ m ๐’–๐Ÿ + ๐Ÿ ๐Ÿ k ๐’“๐Ÿ ] โ€ข The energy of molecule [ ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ] is valid for high temperature and not valid for extremely low temperature where quantum effects become important.
  • 25. SPECIFIC HEAT CAPACITY If temperature of gas increase (Cause considerable change in volume and pressure) ๐‘ช๐‘ฝ โ†’ Specific heat at constant volume ๐‘ช๐‘ท โ†’ Specific heat at constant pressure MAYERโ€™S RELATON Consider, 1 mole of gas (Ideal) enclosed in cylinder Let P, V, T be the pressure, volume and temperature dT = Change in temperature (Volume is constant โ†’ ๐‘ต๐’ ๐’˜๐’๐’“๐’Œ ๐’Š๐’” ๐’…๐’๐’๐’†) d๐‘ธ๐Ÿ โ†’ Increase in the internal energy dE โ†’ ๐‘ฐ๐’๐’•๐’†๐’“๐’๐’‚๐’ ๐’†๐’๐’†๐’“๐’ˆ๐’š โˆด ๐’…๐‘ธ๐Ÿ = ๐’…๐‘ฌ = ๐‘ช๐‘ฝ๐’…๐‘ป โ€ฆ โ€ฆ โ€ฆ โ€ฆ ๐’Š Where, ๐‘ช๐‘ฝ โ†’ ๐‘ด๐’๐’๐’‚๐’“ ๐’”๐’‘๐’†๐’„๐’Š๐’‡๐’Š๐’„ ๐’‰๐’†๐’‚๐’• ๐’‚๐’• ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’—๐’๐’๐’–๐’Ž๐’†
  • 26. If gas is heated with same given temperature at constant pressure then, dV โ†’ Change (increase) in volume Here, work is done to pull backward the piston dw = p dv โˆด ๐’…๐‘ธ๐Ÿ = dE + dw = ๐‘ช๐‘ท๐’…๐‘ป โ€ฆโ€ฆโ€ฆ(ii) Where, ๐‘ช๐‘ท โ†’ Molar specific heat at constant pressure From equation (i) โˆด ๐‘ช๐‘ฝ๐’…๐‘ป + ๐’…๐’˜ = ๐‘ช๐‘ท๐’…๐‘ป ๐‘ช๐‘ฝ๐’…๐‘ป + ๐‘ท ๐’…๐‘ฝ = ๐‘ช๐‘ท๐’…๐‘ป ๐‘ท ๐’…๐‘ฝ = ๐‘ช๐‘ท๐’…๐‘ป - ๐‘ช๐‘ฝ๐’…๐‘ป ๐‘ท ๐’…๐‘ฝ = (๐‘ช๐‘ท - ๐‘ช๐‘ฝ ) ๐’…๐‘ป โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ (iii)
  • 27. For, 1 mole of gas, PV = RT โ€ฆโ€ฆโ€ฆโ€ฆ(n = 1) But, when pressure is constant P dV = R dT (๐‘ช๐‘ท - ๐‘ช๐‘ฝ ) ๐’…๐‘ป = R dT ๐‘ช๐‘ท - ๐‘ช๐‘ฝ = ๐‘น โ€ฆโ€ฆโ€ฆ(Mayerโ€™s relation) Now, ๐‘ช๐‘ท - ๐‘ช๐‘ฝ = ๐‘น ๐‘ฑ Where, J โ€“ mechanical equivalent of heat Here, ๐‘ช๐‘ท = ๐‘ด๐ŸŽ ๐‘บ๐‘ท ๐‘ช๐‘ฝ = ๐‘ด๐ŸŽ ๐‘บ๐‘ฝ ๐‘ด๐ŸŽ = Molar mass of gas ๐‘บ๐‘ฝ, ๐‘บ๐‘ท = Respective principle of heat ๐‘ด๐ŸŽ ๐‘บ๐‘ท - ๐‘ด๐ŸŽ ๐‘บ๐‘ฝ = ๐‘น ๐‘ฑ (๐‘บ๐‘ท - ๐‘บ๐‘ฝ) = ๐‘น ๐‘ด๐ŸŽ๐‘ฑ
  • 28. a) MONOATOMICGAS For translational motion โ†’ 3 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป โ†’ ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป ๐‘ช๐‘ฝ = ๐’…๐‘ฌ ๐’…๐’• = ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ ๐‘ป โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น) ๐‘ช๐‘ฝ = ๐Ÿ‘ ๐Ÿ ๐’Œ๐‘ฉN = ๐Ÿ‘ ๐Ÿ ๐‘น ๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ = R + ๐Ÿ‘ ๐Ÿ ๐‘น ๐‘ช๐‘ท = ๐Ÿ“ ๐Ÿ ๐‘น โˆด ๐œธ = ๐‘ช๐‘ท ๐‘ช๐‘ฝ = ๐Ÿ“ ๐Ÿ ๐‘น ๐Ÿ‘ ๐Ÿ ๐‘น ๐œธ = ๐‘ช๐‘ท ๐‘ช๐‘ฝ = ๐Ÿ“ ๐Ÿ‘
  • 29. b) diaTOMICGAS Gases like ๐‘ถ๐Ÿ, ๐‘ต๐Ÿ, ๐‘ช๐‘ถ, ๐‘ฏ๐‘ช๐’ ๐’‰๐’†๐’๐’… ๐’‚๐’• ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’•๐’†๐’Ž๐’‘๐’†๐’“๐’‚๐’•๐’–๐’“๐’† ๐‘ป. Each molecule have 3-Translational and 2-Roational dof. E = [3 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป] + [ 2 X ๐Ÿ ๐Ÿ ๐’Œ๐‘ฉ ๐‘ป] = [ ๐Ÿ‘ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] = ๐Ÿ“ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป ๐‘ช๐‘ฝ = ๐’…๐‘ฌ ๐’…๐’• = ๐Ÿ“ ๐Ÿ ๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ ๐‘ป โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น) ๐‘ช๐‘ฝ = ๐Ÿ“ ๐Ÿ ๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐Ÿ“ ๐Ÿ ๐‘น ๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ = R + ๐Ÿ“ ๐Ÿ ๐‘น = ๐Ÿ• ๐Ÿ ๐‘น โˆด ๐œธ = ๐‘ช๐‘ท ๐‘ช๐‘ฝ = ๐Ÿ• ๐Ÿ ๐‘น ๐Ÿ“ ๐Ÿ ๐‘น = ๐Ÿ• ๐Ÿ“ โ€ฆโ€ฆโ€ฆ.(For rigid rotator body)
  • 30. For non rigid vibrating molecule E = Translational Energy + Rotational Energy + Vibrational Energy E = [3 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 2 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 2 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] = ๐Ÿ• ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป ๐‘ช๐‘ฝ = ๐’…๐‘ฌ ๐’…๐’• = ๐Ÿ• ๐Ÿ ๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ ๐‘ป โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น) ๐‘ช๐‘ฝ = ๐Ÿ• ๐Ÿ ๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐Ÿ• ๐Ÿ ๐‘น ๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ = R + ๐Ÿ• ๐Ÿ ๐‘น = ๐Ÿ— ๐Ÿ ๐‘น โˆด ๐œธ = ๐‘ช๐‘ท ๐‘ช๐‘ฝ = ๐Ÿ— ๐Ÿ ๐‘น ๐Ÿ• ๐Ÿ ๐‘น = ๐Ÿ— ๐Ÿ•
  • 31. b) POLYaTOMICGASES E = Translational Energy + Rotational Energy + (f x Vibrational Energy) Where, f โ†’ Number of vibrational dof E = [3 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ 3 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] + [ f X 2 X ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป] = ๐Ÿ ๐Ÿ ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป (3+3+2f) = (3 + f) ๐‘ต๐‘จ๐’Œ๐‘ฉ ๐‘ป ๐‘ช๐‘ฝ = ๐’…๐‘ฌ ๐’…๐’• = (๐Ÿ‘+๐’‡)๐’Œ๐‘ฉ๐‘ป๐‘ต๐‘จ ๐‘ป โ€ฆโ€ฆโ€ฆ.(๐’Œ๐‘ฉ๐‘ต๐‘จ = ๐‘น) ๐‘ช๐‘ฝ = (3+f)๐’Œ๐‘ฉ๐‘ต๐‘จ = (3+f) ๐‘น ๐‘ช๐‘ท = ๐‘น + ๐‘ช๐‘ฝ = R + (3+f) ๐‘น = ๐Ÿ‘ + ๐’‡ ๐‘น โˆด ๐œธ = ๐‘ช๐‘ท ๐‘ช๐‘ฝ = (๐Ÿ’+๐’‡) (๐Ÿ‘+๐’‡)
  • 32. HEAT Heat is the form of energy which can be formed from one object to another object. MODES OF CONDUCTION 1)Conduction 2)Convection 3)Radiation โ€ข Does not required material medium for transfer โ€ข Emission of heat โ†’ radiant energy โ†’ Electromagnetic wave โ€ข Can travel through both material and vacuum medium. โ€ข Fastest way of heat transfer. Requires material medium for transfer.
  • 33. INTERACTION OF THERMAL RADIATIONANDMATTER When any thermal radiation falls on object then some part is reflected, some part is absorbed and some part transmitted. Consider, Q โ†’ Total amount of heat energy incident ๐‘ธ๐’‚ โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’‚๐’ƒ๐’”๐’๐’“๐’ƒ๐’†๐’… ๐‘ธ๐’“ โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’“๐’†๐’‡๐’๐’†๐’„๐’•๐’†๐’… ๐‘ธ๐’• โ†’ ๐‘จ๐’Ž๐’๐’–๐’๐’• ๐’๐’‡ ๐’‰๐’†๐’‚๐’• ๐’•๐’“๐’‚๐’๐’”๐’Ž๐’Š๐’•๐’•๐’†๐’… Total energy (Q) = ๐‘ธ๐’‚ + ๐‘ธ๐’“ + ๐‘ธ๐’• โˆด ๐Ÿ = ๐’‚ + ๐’“ + ๐’•๐’“ Where, a = ๐‘ธ๐’‚ ๐‘ธ , r = ๐‘ธ๐’“ ๐‘ธ , ๐’•๐’“ = ๐‘ธ๐’• ๐‘ธ Coefficient of absorption, reflection, transmission
  • 34. COEFFICIENT OF HEAT READIATION โ€ข Coefficient of absorption/absorptive power/absorptivity โ€œThe ratio of amount of heat absorbed to total amount of heat incident.โ€ a = ๐‘ธ๐’‚ ๐‘ธ โ€ข Coefficient of reflection/reflectance โ€œThe ratio of amount of heat reflected to total amount of heat incident.โ€ r = ๐‘ธ๐’“ ๐‘ธ โ€ข Coefficient of transmission or transmittance โ€œThe ratio of amount of heat is transmitted to total amount of heat incident.โ€ ๐’•๐’“ = ๐‘ธ๐’• ๐‘ธ
  • 35. Cases a)Perfect transmitter: r = 0, a = 0, ๐’•๐’“ โ‰  1 Object is said to be completely transparent. b) Di-athermanous substance: ๐’•๐’“ โ‰  0 โ€œSubstance through which heat radiation can pass is called di- athermanousโ€ Neither a good absorber nor good reflector E.G., Quartz, Sodium Chloride, Hydrogen, Oxygen c) Athermanous substance: ๐’•๐’“ = 0, a + r = 1 โ€œSubstance which are largely opaque to thermal radiation i.e. do not transmit heat.โ€
  • 36. d) Good reflector/poor absorber/poor transmitter: ๐’•๐’“ = 0, a = 0, r = 1 e) Perfect blackbody: ๐’•๐’“ = 0, r = 0 and a = 1 โ€œAll the incident energy is absorbed by the object such an object is called a perfect blackbody.โ€ NOTE: All the a (absorption), r (reflection) and t (transmission) depends upon wavelength of incident radiation. โ€œA body which absorb entire radiant energy incident on it, is called an ideal or perfect blackbody.โ€ Platinum black absorb nearly 97 % of incident radiant heat on it. Good absorber are good emitter and poor absorber are poor emitter. Fig.: Ferryโ€™s blackbody.
  • 37. EMISSION OF HEAT RADIATION Pierre prevost published a theory of radiation known as theory of exchange of heat. At temperature 0 K or above it. โ€ข Body radiate thermal energy and at same time they absorb radiation received from surrounding. โ€ข Emission per unit time depends upon surface of emission, its area and size. โ€ข Hotter body radiate at higher rate than the cooler body
  • 38. AMOUNT OF HEAT RADIATED BY THE BODY DEPENDS ON โ€“ โ€ข The absolute temperature of body โ€ข The nature of body (Polished or not, size, colour) โ€ข Surface area of body (A) โ€ข Time duration Amount of heat radiated ๐œถ Surface area of body and time duration Q ๐œถ At Q = Rat Where, R โ†’ Emissive power/Radiant power R = ๐‘ธ ๐‘จ๐’• SI Unit โ€“ J ๐’Žโˆ’๐Ÿ ๐’”โˆ’๐Ÿ Dimension - [๐‘ณ๐ŸŽ ๐‘ด๐Ÿ ๐‘ปโˆ’๐Ÿ‘ ]
  • 39. EMISSIVITY โ€œThe coefficient of emission or emissivity (e) of a given surface is the ratio of the emissive power R of the surface to emissive power ๐‘น๐‘ฉ of perfect black body at same temperature.โ€ e = ๐‘น ๐‘น๐‘ฉ For perfect blackbody, e = 1, Perfect reflector, e = 0 KIRCHOFFโ€™S LAW OF HEATRADIATION โ€œAt a given temperature, the ratio of emissive power to coefficient of absorption of a body is equal to the emissive power of a perfect blackbody at the same temperature for all wavelength.โ€ ๐‘น ๐’‚ = ๐‘น๐‘ฉ โˆด ๐‘น ๐‘น๐‘ฉ = ๐’‚ โˆด ๐’‚ = ๐’† At thermal equilibrium, emissivity is equal to absorptivity.
  • 40. WEINโ€™S DISPLACEMENTLAW The wavelength for which emissive power of a blackbody is maximum is inversely proportional to the absolute temperature of the blackbody. ๐€๐’Ž๐’‚๐’™ ๐œถ ๐Ÿ ๐‘ป ๐€๐’Ž๐’‚๐’™ = ๐’ƒ ๐‘ฟ ๐Ÿ ๐‘ป Where, b โ†’ Weinโ€™s constant b = 2.897 X ๐Ÿ๐ŸŽโˆ’๐Ÿ‘ mk Law is useful to determine distant length.
  • 41. SREFAN-BOLTZMANN LAWOF RADIATION โ€œThe rate of emission of radiant energy per unit area or the power radiated per unit area of a perfect blackbody is directly proportional to fourth power of its temperature.โ€ R ๐œถ ๐‘ป๐Ÿ’ R = ๐ˆ ๐‘ป๐Ÿ’ Where, ๐ˆ โ†’ ๐‘บ๐’•๐’†๐’‡๐’‚๐’โ€ฒ ๐’” ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐ˆ = ๐Ÿ“. ๐Ÿ”๐Ÿ• ๐‘ฟ ๐Ÿ๐ŸŽโˆ’๐Ÿ– Unit โ†’ J ๐’Žโˆ’๐Ÿ ๐’”โˆ’๐Ÿ ๐’Œโˆ’๐Ÿ’ Dimension โ†’ [๐‘ณ๐ŸŽ ๐‘ด๐Ÿ ๐‘บโˆ’๐Ÿ ๐‘ฒโˆ’๐Ÿ’ ] We know that, R = ๐‘ธ ๐‘จ๐’• So, R = ๐ˆ ๐‘ป๐Ÿ’ โ†’ ๐‘ธ ๐‘จ๐’• = ๐ˆ ๐‘ป๐Ÿ’ โ€ฆโ€ฆโ€ฆโ€ฆ(For black body) For ordinary body, R = ๐ž ๐ˆ ๐‘ป๐Ÿ’
  • 42. Let, T โ†’ ๐‘จ๐’ƒ๐’”๐’๐’๐’–๐’•๐’† ๐’•๐’†๐’Ž๐’‘๐’†๐’“๐’‚๐’•๐’–๐’“๐’† ๐’๐’‡ ๐’ƒ๐’๐’‚๐’„๐’Œ๐’ƒ๐’๐’…๐’š ๐ค๐ž๐ž๐ฉ ๐š๐ญ ๐ฅ๐จ๐ฐ๐ž๐ซ ๐š๐›๐ฌ๐จ๐ฅ๐ฎ๐ญ๐ž ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž ๐‘ป๐‘ถ Energy radiated per unit time = ๐ˆ ๐‘ป๐Ÿ’ Energy radiated per unit time in surrounding = ๐ˆ ๐‘ป๐ŸŽ ๐Ÿ’ Net loss of energy by perfect blackbody per unit time = ๐ˆ ๐‘ป๐Ÿ’ - ๐ˆ ๐‘ป๐ŸŽ ๐Ÿ’ = ๐ˆ ( ๐‘ป๐Ÿ’ - ๐‘ป๐ŸŽ ๐Ÿ’ ) For ordinary body = ๐ž๐ˆ ( ๐‘ป๐Ÿ’ - ๐‘ป๐ŸŽ ๐Ÿ’ )