SlideShare a Scribd company logo
1 of 36
• IP address: 32-bit identifier
associated with each host or router
interface
• interface: connection between
host/router and physical link
• router’s typically have multiple
interfaces
• host typically has one or two
interfaces (e.g., wired Ethernet,
wireless 802.11)
IP addressing: introduction
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
223.1.1.1 = 11011111 00000001 00000001 00000001
223 1 1
1
dotted-decimal IP address notation:
• IP address: 32-bit identifier
associated with each host or router
interface
• interface: connection between
host/router and physical link
• router’s typically have multiple
interfaces
• host typically has one or two
interfaces (e.g., wired Ethernet,
wireless 802.11)
IP addressing: introduction
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
223.1.1.1 = 11011111 00000001 00000001 00000001
223 1 1
1
dotted-decimal IP address notation:
IP addressing: introduction
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
Q: how are interfaces
actually connected?
A: wired
Ethernet interfaces
connected by
Ethernet switches
A: wireless WiFi interfaces
connected by WiFi base station
IPv4 Address Structure
Binary Notation
• Binary notation
refers to the fact
that computers
communicate in
1s and 0s
• Converting binary
to decimal
requires an
understanding of
the mathematical
basis of a
numbering system
– positional
notation
IPv4 Address Structure
Binary Number System
IPv4 Address Structure
Converting a Binary Address to Decimal
Practice
IPv4 Address Structure
Converting from Decimal to Binary
IPv4 Address Structure
Converting from Decimal to Binary Conversions
Subnets
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
What’s a subnet ?
• device interfaces that can
physically reach each other
without passing through an
intervening router
network consisting of 3 subnets
IP addresses have structure:
• subnet part: devices in same subnet
have common high order bits
• host part: remaining low order bits
Subnets
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
Recipe for defining subnets:
detach each interface from its
host or router, creating
“islands” of isolated networks
each isolated network is
called a subnet
subnet mask: /24
(high-order 24 bits: subnet part of IP address)
subnet
223.1.3.0/24
subnet 223.1.1.0/24
subnet 223.1.2.0/24
Network Layer: 4-10
Subnets
 where are the
subnets?
 what are the
/24 subnet
addresses?
223.1.1.1
223.1.1.3
223.1.1.4
223.1.2.2
223.1.2.6
223.1.3.2
223.1.3.1
223.1.3.27
223.1.1.2
223.1.7.0
223.1.7.1
223.1.8.0
223.1.8.1
223.1.9.1
223.1.9.2
223.1.2.1
subnet 223.1.1/24
subnet 223.1.7/24
subnet 223.1.3/24
subnet 223.1.2/24
subnet 223.1.9/24
subnet 223.1.8/24
Network Layer: 4-11
IP addressing: CIDR
CIDR: Classless InterDomain Routing (pronounced “cider”)
• subnet portion of address of arbitrary length
• address format: a.b.c.d/x, where x is # bits in subnet portion
of address
11001000 00010111 00010000 00000000
subnet
part
host
part
200.23.16.0/23
Network Layer: 4-12
Presentation_ID 13
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
Network Portion and Host Portion of an IPv4 Address
 To define the network and host portions of an address, a
devices use a separate 32-bit pattern called a subnet
mask
 The subnet mask does not actually contain the network
or host portion of an IPv4 address, it just says where to
look for these portions in a given IPv4 address
Presentation_ID 14
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
Network Portion and Host Portion of an IPv4 Address
Valid Subnet Masks
Presentation_ID 15
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
Examining the Prefix Length
Presentation_ID 16
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
IPv4 Network, Host, and Broadcast Address
Presentation_ID 17
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
First Host and Last Host Addresses
Presentation_ID 18
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Subnet Mask
Bitwise AND Operation
1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0
IP addresses: how to get one?
That’s actually two questions:
1.Q: How does a host get IP address within its network (host part of
address)?
2.Q: How does a network get IP address for itself (network part of
address)
How does host get IP address?
 hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
 DHCP: Dynamic Host Configuration Protocol: dynamically get address
from as server
• “plug-and-play”
Network Layer: 4-19
DHCP: Dynamic Host Configuration Protocol
goal: host dynamically obtains IP address from network server when it
“joins” network
 can renew its lease on address in use
 allows reuse of addresses (only hold address while
connected/on)
 support for mobile users who join/leave network
DHCP overview:
 host broadcasts DHCP discover msg [optional]
 DHCP server responds with DHCP offer msg [optional]
 host requests IP address: DHCP request msg
 DHCP server sends address: DHCP ack msg
Network Layer: 4-20
DHCP client-server scenario
223.1.1.1
223.1.1.2
223.1.1.3
223.1.1.4 223.1.2.9
223.1.2.2
223.1.2.1
223.1.3.2
223.1.3.1
223.1.3.27
DHCP server
223.1.2.5
arriving DHCP client needs
address in this network
Typically, DHCP server will be co-
located in router, serving all subnets
to which router is attached
Network Layer: 4-21
DHCP client-server scenario
DHCP server: 223.1.2.5
Arriving client
DHCP discover
src : 0.0.0.0, 68
dest.: 255.255.255.255,67
yiaddr: 0.0.0.0
transaction ID: 654
DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
lifetime: 3600 secs
DHCP request
src: 0.0.0.0, 68
dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
lifetime: 3600 secs
DHCP ACK
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
lifetime: 3600 secs
Broadcast: is there a
DHCP server out there?
Broadcast: I’m a DHCP
server! Here’s an IP
address you can use
Broadcast: OK. I would
like to use this IP address!
Broadcast: OK. You’ve
got that IP address!
The two steps above can
be skipped “if a client
remembers and wishes to
reuse a previously
allocated network address”
[RFC 2131]
Network Layer: 4-22
DHCP: more than IP addresses
DHCP can return more than just allocated IP address on
subnet:
 address of first-hop router for client
 name and IP address of DNS sever
 network mask (indicating network versus host portion of address)
Network Layer: 4-23
Presentation_ID 24
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Unicast, Broadcast, and Multicast
Assigning a Static IPv4 Address to a Host
LAN Interface Properties Configuring a Static IPv4 Address
Presentation_ID 25
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Unicast, Broadcast, and Multicast
Assigning a Dynamic IPv4 Address to a Host
Verification
DHCP - preferred method of “leasing” IPv4 addresses to hosts on large
networks, reduces the burden on network support staff and virtually
eliminates entry errors
Presentation_ID 26
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Unicast, Broadcast, and Multicast
Unicast Transmission
In an IPv4 network, the hosts can communicate one of
three different ways:
1. Unicast - the process of sending a packet from one
host to an individual host.
Presentation_ID 27
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Unicast, Broadcast, and Multicast
Broadcast Transmission
2. Broadcast - the process of sending a packet from one host
to all hosts in the network
Routers do not
forward a
limited
broadcast!
Directed broadcast
• Destination
172.16.4.255
• Hosts within the
172.16.4.0/24
network
Presentation_ID 28
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
IPv4 Unicast, Broadcast, and Multicast
Multicast Transmission
• Multicast - the process of sending a packet from one host to
a selected group of hosts, possibly in different networks
• Reduces traffic
• Reserved for addressing multicast groups - 224.0.0.0 to
239.255.255.255.
• Link local - 224.0.0.0 to 224.0.0.255 (Example: routing
information exchanged by routing protocols)
• Globally scoped addresses - 224.0.1.0 to 238.255.255.255
(Example: 224.0.1.1 has been reserved for Network Time
Protocol)
Presentation_ID 29
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Types of IPv4 Address
Public and Private IPv4 Addresses
Private address blocks are:
 Hosts that do not require access to the Internet can use private addresses
 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)
Shared address space addresses:
 Not globally routable
 Intended only for use in service provider networks
 Address block is 100.64.0.0/10
Presentation_ID 30
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Types of IPv4 Address
Special Use IPv4 Addresses
 Network and Broadcast addresses - within each network
the first and last addresses cannot be assigned to hosts
 Loopback address - 127.0.0.1 a special address that hosts
use to direct traffic to themselves (addresses 127.0.0.0 to
127.255.255.255 are reserved)
 Link-Local address - 169.254.0.0 to 169.254.255.255
(169.254.0.0/16) addresses can be automatically assigned to
the local host
 TEST-NET addresses - 192.0.2.0 to 192.0.2.255
(192.0.2.0/24) set aside for teaching and learning purposes,
used in documentation and network examples
 Experimental addresses - 240.0.0.0 to 255.255.255.254
are listed as reserved
Presentation_ID 31
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Types of IPv4 Address
Legacy Classful Addressing
Presentation_ID 32
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Types of IPv4 Address
Legacy Classful Addressing
Classless Addressing
• Formal name is Classless Inter-Domain Routing (CIDR,
pronounced “cider
• Created a new set of standards that allowed service
providers to allocate IPv4 addresses on any address bit
boundary (prefix length) instead of only by a class A, B, or
C address
IP addresses: how to get one?
Q: how does network get subnet part of IP address?
A: gets allocated portion of its provider ISP’s address space
ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20
ISP can then allocate out its address space in 8 blocks:
Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23
... ….. …. ….
Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23
Network Layer: 4-33
IP addressing...
Q: how does an ISP get block of
addresses?
A: ICANN: Internet Corporation for
Assigned Names and Numbers
http://www.icann.org/
• allocates IP addresses, through 5
regional registries (RRs) (who may
then allocate to local registries)
Q: are there enough 32-bit IP
addresses?
 ICANN allocated last chunk of
IPv4 addresses to RRs in 2011
 NAT (next) helps IPv4 address
space exhaustion
 IPv6 has 128-bit address space
"Who the hell knew how much address
space we needed?" Vint Cerf (reflecting
on decision to make IPv4 address 32 bits
long)
Network Layer: 4-34
Presentation_ID 35
© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Types of IPv4 Address
Assignment of IP Addresses
Regional Internet Registries (RRs)
The major registries are:
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020
Slides taken from
https://gaia.cs.umass.edu/kurose_ross/ppt.htm
And CISCO learning materials.

More Related Content

What's hot (20)

IPV6 ADDRESS
IPV6 ADDRESSIPV6 ADDRESS
IPV6 ADDRESS
 
Domain name system
Domain name systemDomain name system
Domain name system
 
TCP and UDP
TCP and UDP TCP and UDP
TCP and UDP
 
IP Address - IPv4 & IPv6
IP Address - IPv4 & IPv6IP Address - IPv4 & IPv6
IP Address - IPv4 & IPv6
 
Access Control List (ACL)
Access Control List (ACL)Access Control List (ACL)
Access Control List (ACL)
 
IPv4 Addressing
 IPv4 Addressing   IPv4 Addressing
IPv4 Addressing
 
IP Addressing
IP AddressingIP Addressing
IP Addressing
 
Subnetting
SubnettingSubnetting
Subnetting
 
Telnet ppt
Telnet pptTelnet ppt
Telnet ppt
 
Spanning tree protocol
Spanning tree protocolSpanning tree protocol
Spanning tree protocol
 
Basic web architecture
Basic web architectureBasic web architecture
Basic web architecture
 
IPv6 Addressing Architecture
IPv6 Addressing ArchitectureIPv6 Addressing Architecture
IPv6 Addressing Architecture
 
Presentation on cyclic redundancy check (crc)
Presentation on cyclic redundancy check (crc)Presentation on cyclic redundancy check (crc)
Presentation on cyclic redundancy check (crc)
 
IP Address
IP AddressIP Address
IP Address
 
Network Address Translation (NAT)
Network Address Translation (NAT)Network Address Translation (NAT)
Network Address Translation (NAT)
 
Unit 3 Network Layer PPT
Unit 3 Network Layer PPTUnit 3 Network Layer PPT
Unit 3 Network Layer PPT
 
Address resolution protocol (ARP)
Address resolution protocol (ARP)Address resolution protocol (ARP)
Address resolution protocol (ARP)
 
Tcp and udp
Tcp and udpTcp and udp
Tcp and udp
 
Transport layer protocol
Transport layer protocolTransport layer protocol
Transport layer protocol
 
TCP /IP
TCP /IPTCP /IP
TCP /IP
 

Similar to Computer Networking: A Top-Down Approach

MULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKSMULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKSKathirvel Ayyaswamy
 
IP addressing by Mamun Sir
IP addressing by Mamun SirIP addressing by Mamun Sir
IP addressing by Mamun Sirsharifbdp
 
Lecture 23 DHCP and NAT.pptx
Lecture 23 DHCP and NAT.pptxLecture 23 DHCP and NAT.pptx
Lecture 23 DHCP and NAT.pptxHanzlaNaveed1
 
Chapter_6_ Network Layer.pptx
Chapter_6_ Network Layer.pptxChapter_6_ Network Layer.pptx
Chapter_6_ Network Layer.pptxduotchol
 
CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8Irsandi Hasan
 
CCNA RS_NB - Chapter 7
CCNA RS_NB - Chapter 7CCNA RS_NB - Chapter 7
CCNA RS_NB - Chapter 7Irsandi Hasan
 
network design 7.pptx
network design 7.pptxnetwork design 7.pptx
network design 7.pptxaida alsamawi
 
2 logical addressing
2 logical addressing2 logical addressing
2 logical addressinggafurov_x
 
Junos routing overview from Juniper
Junos routing overview from JuniperJunos routing overview from Juniper
Junos routing overview from JuniperNam Nguyen
 
Configuring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMConfiguring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMJohnny Jean Tigas
 
CCNA 1 Routing and Switching v5.0 Chapter 8
CCNA 1 Routing and Switching v5.0 Chapter 8CCNA 1 Routing and Switching v5.0 Chapter 8
CCNA 1 Routing and Switching v5.0 Chapter 8Nil Menon
 
Microsoft Offical Course 20410C_05
Microsoft Offical Course 20410C_05Microsoft Offical Course 20410C_05
Microsoft Offical Course 20410C_05gameaxt
 
Chapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptChapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptanwarkade1
 
Chapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptChapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptEsubesisay
 
Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8Hamza Malik
 

Similar to Computer Networking: A Top-Down Approach (20)

IP Addressing.ppt
IP Addressing.pptIP Addressing.ppt
IP Addressing.ppt
 
MULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKSMULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKS
 
IP addressing by Mamun Sir
IP addressing by Mamun SirIP addressing by Mamun Sir
IP addressing by Mamun Sir
 
IPAddressing .pptx
IPAddressing .pptxIPAddressing .pptx
IPAddressing .pptx
 
Lecture 23 DHCP and NAT.pptx
Lecture 23 DHCP and NAT.pptxLecture 23 DHCP and NAT.pptx
Lecture 23 DHCP and NAT.pptx
 
net work iTM3
net work iTM3net work iTM3
net work iTM3
 
Chapter_6_ Network Layer.pptx
Chapter_6_ Network Layer.pptxChapter_6_ Network Layer.pptx
Chapter_6_ Network Layer.pptx
 
Module3
Module3Module3
Module3
 
CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8
 
CCNA RS_NB - Chapter 7
CCNA RS_NB - Chapter 7CCNA RS_NB - Chapter 7
CCNA RS_NB - Chapter 7
 
network design 7.pptx
network design 7.pptxnetwork design 7.pptx
network design 7.pptx
 
2 logical addressing
2 logical addressing2 logical addressing
2 logical addressing
 
Junos routing overview from Juniper
Junos routing overview from JuniperJunos routing overview from Juniper
Junos routing overview from Juniper
 
Configuring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEMConfiguring IPv4 and IPv6 Addressing to STEM
Configuring IPv4 and IPv6 Addressing to STEM
 
CCNA 1 Routing and Switching v5.0 Chapter 8
CCNA 1 Routing and Switching v5.0 Chapter 8CCNA 1 Routing and Switching v5.0 Chapter 8
CCNA 1 Routing and Switching v5.0 Chapter 8
 
Microsoft Offical Course 20410C_05
Microsoft Offical Course 20410C_05Microsoft Offical Course 20410C_05
Microsoft Offical Course 20410C_05
 
Chapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptChapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.ppt
 
Chapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.pptChapter 5 Network Configuration Basics.ppt
Chapter 5 Network Configuration Basics.ppt
 
Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8
 
chapter 4.pptx
chapter 4.pptxchapter 4.pptx
chapter 4.pptx
 

Recently uploaded

ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 

Computer Networking: A Top-Down Approach

  • 1. • IP address: 32-bit identifier associated with each host or router interface • interface: connection between host/router and physical link • router’s typically have multiple interfaces • host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11) IP addressing: introduction 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 dotted-decimal IP address notation:
  • 2. • IP address: 32-bit identifier associated with each host or router interface • interface: connection between host/router and physical link • router’s typically have multiple interfaces • host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11) IP addressing: introduction 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 dotted-decimal IP address notation:
  • 3. IP addressing: introduction 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 Q: how are interfaces actually connected? A: wired Ethernet interfaces connected by Ethernet switches A: wireless WiFi interfaces connected by WiFi base station
  • 4. IPv4 Address Structure Binary Notation • Binary notation refers to the fact that computers communicate in 1s and 0s • Converting binary to decimal requires an understanding of the mathematical basis of a numbering system – positional notation
  • 6. IPv4 Address Structure Converting a Binary Address to Decimal Practice
  • 7. IPv4 Address Structure Converting from Decimal to Binary
  • 8. IPv4 Address Structure Converting from Decimal to Binary Conversions
  • 9. Subnets 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 What’s a subnet ? • device interfaces that can physically reach each other without passing through an intervening router network consisting of 3 subnets IP addresses have structure: • subnet part: devices in same subnet have common high order bits • host part: remaining low order bits
  • 10. Subnets 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 Recipe for defining subnets: detach each interface from its host or router, creating “islands” of isolated networks each isolated network is called a subnet subnet mask: /24 (high-order 24 bits: subnet part of IP address) subnet 223.1.3.0/24 subnet 223.1.1.0/24 subnet 223.1.2.0/24 Network Layer: 4-10
  • 11. Subnets  where are the subnets?  what are the /24 subnet addresses? 223.1.1.1 223.1.1.3 223.1.1.4 223.1.2.2 223.1.2.6 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.2 223.1.7.0 223.1.7.1 223.1.8.0 223.1.8.1 223.1.9.1 223.1.9.2 223.1.2.1 subnet 223.1.1/24 subnet 223.1.7/24 subnet 223.1.3/24 subnet 223.1.2/24 subnet 223.1.9/24 subnet 223.1.8/24 Network Layer: 4-11
  • 12. IP addressing: CIDR CIDR: Classless InterDomain Routing (pronounced “cider”) • subnet portion of address of arbitrary length • address format: a.b.c.d/x, where x is # bits in subnet portion of address 11001000 00010111 00010000 00000000 subnet part host part 200.23.16.0/23 Network Layer: 4-12
  • 13. Presentation_ID 13 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask Network Portion and Host Portion of an IPv4 Address  To define the network and host portions of an address, a devices use a separate 32-bit pattern called a subnet mask  The subnet mask does not actually contain the network or host portion of an IPv4 address, it just says where to look for these portions in a given IPv4 address
  • 14. Presentation_ID 14 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask Network Portion and Host Portion of an IPv4 Address Valid Subnet Masks
  • 15. Presentation_ID 15 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask Examining the Prefix Length
  • 16. Presentation_ID 16 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask IPv4 Network, Host, and Broadcast Address
  • 17. Presentation_ID 17 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask First Host and Last Host Addresses
  • 18. Presentation_ID 18 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Subnet Mask Bitwise AND Operation 1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0
  • 19. IP addresses: how to get one? That’s actually two questions: 1.Q: How does a host get IP address within its network (host part of address)? 2.Q: How does a network get IP address for itself (network part of address) How does host get IP address?  hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)  DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server • “plug-and-play” Network Layer: 4-19
  • 20. DHCP: Dynamic Host Configuration Protocol goal: host dynamically obtains IP address from network server when it “joins” network  can renew its lease on address in use  allows reuse of addresses (only hold address while connected/on)  support for mobile users who join/leave network DHCP overview:  host broadcasts DHCP discover msg [optional]  DHCP server responds with DHCP offer msg [optional]  host requests IP address: DHCP request msg  DHCP server sends address: DHCP ack msg Network Layer: 4-20
  • 21. DHCP client-server scenario 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 DHCP server 223.1.2.5 arriving DHCP client needs address in this network Typically, DHCP server will be co- located in router, serving all subnets to which router is attached Network Layer: 4-21
  • 22. DHCP client-server scenario DHCP server: 223.1.2.5 Arriving client DHCP discover src : 0.0.0.0, 68 dest.: 255.255.255.255,67 yiaddr: 0.0.0.0 transaction ID: 654 DHCP offer src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddrr: 223.1.2.4 transaction ID: 654 lifetime: 3600 secs DHCP request src: 0.0.0.0, 68 dest:: 255.255.255.255, 67 yiaddrr: 223.1.2.4 transaction ID: 655 lifetime: 3600 secs DHCP ACK src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddrr: 223.1.2.4 transaction ID: 655 lifetime: 3600 secs Broadcast: is there a DHCP server out there? Broadcast: I’m a DHCP server! Here’s an IP address you can use Broadcast: OK. I would like to use this IP address! Broadcast: OK. You’ve got that IP address! The two steps above can be skipped “if a client remembers and wishes to reuse a previously allocated network address” [RFC 2131] Network Layer: 4-22
  • 23. DHCP: more than IP addresses DHCP can return more than just allocated IP address on subnet:  address of first-hop router for client  name and IP address of DNS sever  network mask (indicating network versus host portion of address) Network Layer: 4-23
  • 24. Presentation_ID 24 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Unicast, Broadcast, and Multicast Assigning a Static IPv4 Address to a Host LAN Interface Properties Configuring a Static IPv4 Address
  • 25. Presentation_ID 25 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Unicast, Broadcast, and Multicast Assigning a Dynamic IPv4 Address to a Host Verification DHCP - preferred method of “leasing” IPv4 addresses to hosts on large networks, reduces the burden on network support staff and virtually eliminates entry errors
  • 26. Presentation_ID 26 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Unicast, Broadcast, and Multicast Unicast Transmission In an IPv4 network, the hosts can communicate one of three different ways: 1. Unicast - the process of sending a packet from one host to an individual host.
  • 27. Presentation_ID 27 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Unicast, Broadcast, and Multicast Broadcast Transmission 2. Broadcast - the process of sending a packet from one host to all hosts in the network Routers do not forward a limited broadcast! Directed broadcast • Destination 172.16.4.255 • Hosts within the 172.16.4.0/24 network
  • 28. Presentation_ID 28 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential IPv4 Unicast, Broadcast, and Multicast Multicast Transmission • Multicast - the process of sending a packet from one host to a selected group of hosts, possibly in different networks • Reduces traffic • Reserved for addressing multicast groups - 224.0.0.0 to 239.255.255.255. • Link local - 224.0.0.0 to 224.0.0.255 (Example: routing information exchanged by routing protocols) • Globally scoped addresses - 224.0.1.0 to 238.255.255.255 (Example: 224.0.1.1 has been reserved for Network Time Protocol)
  • 29. Presentation_ID 29 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential Types of IPv4 Address Public and Private IPv4 Addresses Private address blocks are:  Hosts that do not require access to the Internet can use private addresses  10.0.0.0 to 10.255.255.255 (10.0.0.0/8)  172.16.0.0 to 172.31.255.255 (172.16.0.0/12)  192.168.0.0 to 192.168.255.255 (192.168.0.0/16) Shared address space addresses:  Not globally routable  Intended only for use in service provider networks  Address block is 100.64.0.0/10
  • 30. Presentation_ID 30 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential Types of IPv4 Address Special Use IPv4 Addresses  Network and Broadcast addresses - within each network the first and last addresses cannot be assigned to hosts  Loopback address - 127.0.0.1 a special address that hosts use to direct traffic to themselves (addresses 127.0.0.0 to 127.255.255.255 are reserved)  Link-Local address - 169.254.0.0 to 169.254.255.255 (169.254.0.0/16) addresses can be automatically assigned to the local host  TEST-NET addresses - 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples  Experimental addresses - 240.0.0.0 to 255.255.255.254 are listed as reserved
  • 31. Presentation_ID 31 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential Types of IPv4 Address Legacy Classful Addressing
  • 32. Presentation_ID 32 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential Types of IPv4 Address Legacy Classful Addressing Classless Addressing • Formal name is Classless Inter-Domain Routing (CIDR, pronounced “cider • Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address
  • 33. IP addresses: how to get one? Q: how does network get subnet part of IP address? A: gets allocated portion of its provider ISP’s address space ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20 ISP can then allocate out its address space in 8 blocks: Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23 Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23 Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23 ... ….. …. …. Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23 Network Layer: 4-33
  • 34. IP addressing... Q: how does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/ • allocates IP addresses, through 5 regional registries (RRs) (who may then allocate to local registries) Q: are there enough 32-bit IP addresses?  ICANN allocated last chunk of IPv4 addresses to RRs in 2011  NAT (next) helps IPv4 address space exhaustion  IPv6 has 128-bit address space "Who the hell knew how much address space we needed?" Vint Cerf (reflecting on decision to make IPv4 address 32 bits long) Network Layer: 4-34
  • 35. Presentation_ID 35 © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential Types of IPv4 Address Assignment of IP Addresses Regional Internet Registries (RRs) The major registries are:
  • 36. Computer Networking: A Top-Down Approach 8th edition Jim Kurose, Keith Ross Pearson, 2020 Slides taken from https://gaia.cs.umass.edu/kurose_ross/ppt.htm And CISCO learning materials.