SlideShare a Scribd company logo
1 of 67
What to Leave Implicit
Martin Odersky
Scala Days Chicago
April 2017
Con-textual
what comes with the text,
but is not in the text
Context is all around us
- the current configuration
- the current scope
- the meaning of “<” on this type
- the user on behalf of which the
operation is performed
- the security level in effect
…
- globals
rigid if immutable,
unsafe if mutable
- monkey patching
- dependency injection
at runtime (Spring, Guice)
or with macros (MacWire)
- cake pattern
close coupling + recursion
Traditional ways to express context
“Parameterize all the things”
The Functional Way
- no side effects
- type-safe
- fine-grained control
Functional is Good
- sea of parameters
- most of which hardly ever change
- repetitive, boring, prone to mistakes
But sometimes it’s too much of a
good thing …
If passing a lot of parameters gets tedious,
leave some of them implicit.
A more direct approach
• If there’s one feature that makes Scala “Scala”,
I would pick implicits.
• There’s hardly an API without them.
• They enable advanced and elegant
architectural designs.
• They are also misused way too often.
Implicits
• takes you through the most common uses of
implicits,
• gives recommendations of use patterns,
• goes through a set of proposed language
changes that will make implicits even more
powerful and safer to use.
This Talk
t
• If you do not give an argument to an implicit
parameter, one will be provided for you.
• Eligible are all implicit values that are visible at
the point of call.
• If there are more than one eligible candidate,
the most specific one is chosen.
• If there’s no unique most specific candidate, an
ambiguity error Is reported.
Ground Rules
• They are a cousin of implicit parameters.
• If the type A of an expression does not match
the expected type B …
Implicit Conversions
• They are a cousin of implicit parameters.
• If the type A of an expression does not match
the expected type B …
… the compiler tries to find an implicit
conversion method from A to B.
• Same rules as for implicit parameters apply.
Implicit Conversions
• Shorthand for defining a new class and an
implicit conversion into it.
implicit class C(x: T) { … }
expands to
class C(x: T) { … }
implicit def C(x: T) = new C(x)
Implicit Classes
• Implicits leverage what the compiler knows
about your code.
• They remove repetition and boilerplate.
• But taken too far, they can hurt readability.
When To Use Implicits?
Applicability:
Where are you allowed to elide implied information?
How do you find out this is happening?
Power:
What influence does the elided info have?
Can it change radically behavior or types?
Scope:
How much of the rest of the code do you need to know
to find out what is implied?
Is there always a clear place to look?
* Adapted from Rust’s Language Ergonomics Initiative
Reasoning Footprint of Implicitness*
Patterns of Implicit Conversions
Extension Methods
Discoverability: medium
Power: low
Scope: large, but IDEs help
Extension Methods
Discoverability: medium
Power: low
Scope: large, but IDEs help
Late Trait Implementation
Make existing classes implement new traits
without changing their code.
This was the original reason for implicits in Scala.
Discoverability: low to medium
Power: low to medium
Scope: large, but IDEs help
They also have some use cases, e.g.
• cached implicit classes
• context-dependent views
What about simple conversions?
• Conversions that go both ways
• Conversions that change semantics
E.g. collection.convert.WrapAs{Java,Scala}
Better: Use Converters
collection.convert.DecorateAs{Java,Scala}
Anti Patterns
Conversions that undermine type safety
Anti Patterns
Conversions between pre-existing types
Discoverability: low
Power: high
Scope: very large
Anti Patterns
Discoverability: high
Power: low to high
Scope: large, but can be explored in IntelliJ
Implicit Parameters
Implicit parameters can
• prove theorems
• establish context
• set configurations
• inject dependencies
• model capabilities
• implement type classes
Implicit Parameters - Use Cases
Curry Howard isomorphism:
Types = Theorems
Programs = Proofs
C.f. Kennedy & Russo: “Generalized Type Constraints”, OOPSLA 2004
Prove Theorems
Establish Context
Example: conference management system.
Reviewers should only see (directly or indirectly) the
scores of papers where they have no conflict with an
author.
Establish Context
Example: conference management system.
Context is usually stable, can change at specific points.
Configuration &
Dependency Management
are special cases of context passing.
see also: Dick Wall: The parfait pattern
Implement Type Classes
Example: Ordering
How can we make implicits better?
What will change:
1. Tighten the rules for implicit conversions
2. Lazy implicits
3. Multiple implicit parameter lists
4. Coherence(?)
5. Implicit function types
1. Tighten Rules for
Implicit Conversions
Question: What does this print?
Answer: java.lang.IndexOutOfBoundsException: 42
Hint: List[String] <: Function[Int, String]
In the future: Only implicit methods are eligible as
conversions.
A new class ImplicitConverter allows to abstract over
implicit conversions.
Converters are turned into conversions like this:
1. Tighten Rules for
Implicit Conversions
Implementation Status
2. Lazy Implicits
Problem: When synthesizing code for recursive data
structures, we get divergent implicit searches.
E.g.
will diverge if A expands recursively to Sum[A, B]
2. Lazy Implicits
Solution: Delay the implicit search and tie the recursive
knot with a lazy val if a parameter is call-by-name:
This change, proposed by Miles Sabin, is a more robust
solution than the current “Lazy” type in shapeless.
Implementation Status
3. Multiple Implicit Parameter Lists
Problem: Implicit parameters are currently a bit irregular
compared to normal parameters:
• there can be only one implicit parameter section
• and it must come last.
This leads to some awkward workarounds (c.f. Aux
pattern).
Related problem: It’s sometimes confusing when a
parameter is implicit or explicit.
3. Multiple Implicit Parameter Lists
Proposal:
• Allow multiple implicit parameter lists
• Implicit and explicit parameter lists can be mixed freely.
• Explicit application of an implicit parameter must be
marked with a new “magic” method, explicitly.
• Implementation status: Proposal. Main challenge is
migration from current Scala.
4. Coherence
Difference between Scala’s implicits and Haskell’s type
classes: The latter are required to be coherent:
A type can implement a type class in one way only
(globally).
This is very restrictive, rules out most of the implicit use
cases we have seen.
But it also provides some benefits.
Coherence Rules Out Ambiguities
Say you have a capability system dealing with driver
licences:
If you can drive a truck and a cab, you should be able to
drive a car. But Scala would give you an ambiguity error.
Coherence Rules Out Ambiguities
Proposal:
• Allow type classes to declare themselves coherent.
• Have the compiler check that coherent traits have only
one implementation per type.
This is quite tricky. See github.com/lampepfl/dotty/issues/2047
• Drop all ambiguity checks for coherent implicits.
Parametricity
• It turns out that a necessary condition to ensure
coherence is to disallow operations like equals,
hashCode, isInstanceOf on coherent types.
• This restriction is useful in other contexts as well
because it gives us “theorems for free”.
• Proposal: Change Scala’s
top types to:
• AnyObj has all of current
Any’s methods. Any has only
the escape-hatch method
asInstanceOf.
Implementation Status
5. Implicit Function Types
Have another look at the conference management system:
In a large system, it gets tedious to declare all these
implicit Viewers parameters.
Can we do better?
Having to write
a couple of times does not look so bad.
But in the dotty compiler there are > 2600 occurrences of
the parameter
Would it not be nice to get rid of them?
Towards a solution
Let’s massage the definition of viewRankings a bit:
Towards a solution
Let’s massage the definition of viewRankings a bit:
Towards a solution
Let’s massage the definition of viewRankings a bit:
What is its type?
So far: Viewers => List[Paper]
From now on: implicit Viewers=> List[Paper]
or, desugared: ImplicitFunction1[Viewers, List[Paper]]
Inside ImplicitFunction1
ImplicitFunction1 can be thought of being defined as
follows:
Analogously for all other arities.
Two Rules for Typing
1. Implicit functions get implicit arguments just like implicit
methods. Given:
val f: implicit A => B
implicit val a: A
f expands to f(a).
2. Implicit functions get created on demand. If the
expected type of b is implicit A => B, then
b expands to implicit (_: A) => b
Revised Example
Assume:
Then reformulate:
Efficiency
Implicit function result types can be optimized
Instead of creating a closure like this:
we can simply create a curried function like this:
This brings the cost of implicit functions down to simple
implicit parameters.
Implementation Status
• The reader monad is a somewhat popular method to
pass context.
• Essentially, it wraps the implicit reading in a monad.
• One advantage: The reading is abstracted in a type.
• But I believe this is shooting sparrows with cannons.
• Monads are about sequencing, they have have nothing
to do with passing context.
The Reader Monad
• allow the same conciseness as the reader
monad,
• don’t force you into monadic style with explicit
sequencing,
• are fully composable,
• are more than 7x faster than the reader monad.
Implicit function types
Neat way to define structure-building DSLs, like this:
Natively supported in Groovy and in Kotlin via
“receiver functions”.
An encore: The Builder Pattern
Scala Implementation
• Any situation where an entity is implicitly
understood can be expressed with implicit
function types.
• We have seen:
“The current set of viewers”
“The structure to which current code should be added”
• Other possibilities:
“The current configuration”
“The currently running transaction”
“The capabilities needed to run this code”
"The effects this code has on the outside world”
…
Conjecture
Find out more on scala-lang.org/blog
• Implicit function types are a neat way to
abstract over contexts.
• It’s a very powerful feature, because it allows
one to inject implicit values in a scope simply
by defining a type.
• I expect it will fundamentally affect the kind of
code we will write in the future.
Summary (1)
• Implicit parameters are a fundamental and
powerful language construct.
• They are “just” parameterization, but remove
the boilerplate.
• One construct  multifaceted use cases
• Abstractable using implicit function types.
• Implicit conversions are also very convenient,
but should be used with care.
Summary (2)
When Can I Expect This?
Scala 2.12
Scala 2.13
Scala 3.0
TASTY,
middle end?
stdlib
collections
dotty MVP
dotty 0.x releases
2016
backend, classpath handling
Scala 2.14
2017
2018
This is open source work, depends on community’s contributions.
 Roadmap is tentative, no promises:
“MVP” = minimal
viable
prototype
Dotty:
Dmitry Petrashko Nicolas Stucki
Guillaume Martres Sebastien Douraene
Felix Mulder Ondrej Lhotak
Liu Fengyun Enno Runne
Close collaboration with scalac team @ Lightbend:
Adriaan Moors Seth Tisue
Jason Zaugg Stefan Zeiger
Lukas Rytz
Credits
Thank You

More Related Content

What's hot

Deployment model Blue Green deployment
Deployment model Blue Green deploymentDeployment model Blue Green deployment
Deployment model Blue Green deploymentjeetendra mandal
 
Automated Deployments with Ansible
Automated Deployments with AnsibleAutomated Deployments with Ansible
Automated Deployments with AnsibleMartin Etmajer
 
Implementing OpenAPI and GraphQL services with gRPC
Implementing OpenAPI and GraphQL services with gRPCImplementing OpenAPI and GraphQL services with gRPC
Implementing OpenAPI and GraphQL services with gRPCTim Burks
 
Terraform modules restructured
Terraform modules restructuredTerraform modules restructured
Terraform modules restructuredAmi Mahloof
 
Keep your code clean
Keep your code cleanKeep your code clean
Keep your code cleanmacrochen
 
Life as a SRE at Instana
Life as a SRE at InstanaLife as a SRE at Instana
Life as a SRE at InstanaMarcel Birkner
 
Resilient service to-service calls in a post-Hystrix world
Resilient service to-service calls in a post-Hystrix worldResilient service to-service calls in a post-Hystrix world
Resilient service to-service calls in a post-Hystrix worldRares Musina
 
Introduction to Java 11
Introduction to Java 11 Introduction to Java 11
Introduction to Java 11 Knoldus Inc.
 
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)Chris Richardson
 
Accelerating Envoy and Istio with Cilium and the Linux Kernel
Accelerating Envoy and Istio with Cilium and the Linux KernelAccelerating Envoy and Istio with Cilium and the Linux Kernel
Accelerating Envoy and Istio with Cilium and the Linux KernelThomas Graf
 
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...Kai Wähner
 
Spring boot Introduction
Spring boot IntroductionSpring boot Introduction
Spring boot IntroductionJeevesh Pandey
 

What's hot (20)

Deployment model Blue Green deployment
Deployment model Blue Green deploymentDeployment model Blue Green deployment
Deployment model Blue Green deployment
 
Automated Deployments with Ansible
Automated Deployments with AnsibleAutomated Deployments with Ansible
Automated Deployments with Ansible
 
Implementing OpenAPI and GraphQL services with gRPC
Implementing OpenAPI and GraphQL services with gRPCImplementing OpenAPI and GraphQL services with gRPC
Implementing OpenAPI and GraphQL services with gRPC
 
Terraform modules restructured
Terraform modules restructuredTerraform modules restructured
Terraform modules restructured
 
Exploring Quarkus on JDK 17
Exploring Quarkus on JDK 17Exploring Quarkus on JDK 17
Exploring Quarkus on JDK 17
 
Keep your code clean
Keep your code cleanKeep your code clean
Keep your code clean
 
Interface in java
Interface in javaInterface in java
Interface in java
 
Java 8 features
Java 8 featuresJava 8 features
Java 8 features
 
Life as a SRE at Instana
Life as a SRE at InstanaLife as a SRE at Instana
Life as a SRE at Instana
 
Resilient service to-service calls in a post-Hystrix world
Resilient service to-service calls in a post-Hystrix worldResilient service to-service calls in a post-Hystrix world
Resilient service to-service calls in a post-Hystrix world
 
Advanced Terraform
Advanced TerraformAdvanced Terraform
Advanced Terraform
 
Introduction to Java 11
Introduction to Java 11 Introduction to Java 11
Introduction to Java 11
 
Terraform
TerraformTerraform
Terraform
 
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)
Deploying Spring Boot applications with Docker (east bay cloud meetup dec 2014)
 
Accelerating Envoy and Istio with Cilium and the Linux Kernel
Accelerating Envoy and Istio with Cilium and the Linux KernelAccelerating Envoy and Istio with Cilium and the Linux Kernel
Accelerating Envoy and Istio with Cilium and the Linux Kernel
 
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...
Microservices, Containers, Docker and a Cloud-Native Architecture in the Midd...
 
Project Reactor By Example
Project Reactor By ExampleProject Reactor By Example
Project Reactor By Example
 
Terraform 101
Terraform 101Terraform 101
Terraform 101
 
Spring boot Introduction
Spring boot IntroductionSpring boot Introduction
Spring boot Introduction
 
Introduction to docker
Introduction to dockerIntroduction to docker
Introduction to docker
 

Similar to What To Leave Implicit

What To Leave Implicit
What To Leave ImplicitWhat To Leave Implicit
What To Leave ImplicitMartin Odersky
 
Principled And Clean Coding
Principled And Clean CodingPrincipled And Clean Coding
Principled And Clean CodingMetin Ogurlu
 
Working With Concurrency In Java 8
Working With Concurrency In Java 8Working With Concurrency In Java 8
Working With Concurrency In Java 8Heartin Jacob
 
Java Closures
Java ClosuresJava Closures
Java ClosuresBen Evans
 
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...Raffi Khatchadourian
 
EuroAD 2021: ChainRules.jl
EuroAD 2021: ChainRules.jl EuroAD 2021: ChainRules.jl
EuroAD 2021: ChainRules.jl Lyndon White
 
GoF Design patterns I: Introduction + Structural Patterns
GoF Design patterns I:   Introduction + Structural PatternsGoF Design patterns I:   Introduction + Structural Patterns
GoF Design patterns I: Introduction + Structural PatternsSameh Deabes
 
FRONTEND BOOTCAMP Session 2.pptx
FRONTEND BOOTCAMP Session 2.pptxFRONTEND BOOTCAMP Session 2.pptx
FRONTEND BOOTCAMP Session 2.pptxEhtesham46
 
Java+8-New+Features.pdf
Java+8-New+Features.pdfJava+8-New+Features.pdf
Java+8-New+Features.pdfgurukanth4
 
Few minutes To better Code - Refactoring
Few minutes To better Code - RefactoringFew minutes To better Code - Refactoring
Few minutes To better Code - RefactoringDiaa Al-Salehi
 
Introduction to Software - Coder Forge - John Mulhall
Introduction to Software - Coder Forge - John MulhallIntroduction to Software - Coder Forge - John Mulhall
Introduction to Software - Coder Forge - John MulhallJohn Mulhall
 
Improving Software Quality Using Object Oriented Design Principles
Improving Software Quality Using Object Oriented Design PrinciplesImproving Software Quality Using Object Oriented Design Principles
Improving Software Quality Using Object Oriented Design PrinciplesDr. Syed Hassan Amin
 
Framework Design Guidelines
Framework Design GuidelinesFramework Design Guidelines
Framework Design GuidelinesMohamed Meligy
 

Similar to What To Leave Implicit (20)

What To Leave Implicit
What To Leave ImplicitWhat To Leave Implicit
What To Leave Implicit
 
Simplicitly
SimplicitlySimplicitly
Simplicitly
 
Principled And Clean Coding
Principled And Clean CodingPrincipled And Clean Coding
Principled And Clean Coding
 
Working With Concurrency In Java 8
Working With Concurrency In Java 8Working With Concurrency In Java 8
Working With Concurrency In Java 8
 
Java Closures
Java ClosuresJava Closures
Java Closures
 
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...
Open Problems in Automatically Refactoring Legacy Java Software to use New Fe...
 
Design p atterns
Design p atternsDesign p atterns
Design p atterns
 
EuroAD 2021: ChainRules.jl
EuroAD 2021: ChainRules.jl EuroAD 2021: ChainRules.jl
EuroAD 2021: ChainRules.jl
 
GoF Design patterns I: Introduction + Structural Patterns
GoF Design patterns I:   Introduction + Structural PatternsGoF Design patterns I:   Introduction + Structural Patterns
GoF Design patterns I: Introduction + Structural Patterns
 
FRONTEND BOOTCAMP Session 2.pptx
FRONTEND BOOTCAMP Session 2.pptxFRONTEND BOOTCAMP Session 2.pptx
FRONTEND BOOTCAMP Session 2.pptx
 
Java+8-New+Features.pdf
Java+8-New+Features.pdfJava+8-New+Features.pdf
Java+8-New+Features.pdf
 
Few minutes To better Code - Refactoring
Few minutes To better Code - RefactoringFew minutes To better Code - Refactoring
Few minutes To better Code - Refactoring
 
Introduction to Software - Coder Forge - John Mulhall
Introduction to Software - Coder Forge - John MulhallIntroduction to Software - Coder Forge - John Mulhall
Introduction to Software - Coder Forge - John Mulhall
 
Functional Programming in Java
Functional Programming in JavaFunctional Programming in Java
Functional Programming in Java
 
Intro to Scala
 Intro to Scala Intro to Scala
Intro to Scala
 
Improving Software Quality Using Object Oriented Design Principles
Improving Software Quality Using Object Oriented Design PrinciplesImproving Software Quality Using Object Oriented Design Principles
Improving Software Quality Using Object Oriented Design Principles
 
14274730 (1).ppt
14274730 (1).ppt14274730 (1).ppt
14274730 (1).ppt
 
Code Metrics
Code MetricsCode Metrics
Code Metrics
 
Core_Java_Interview.pdf
Core_Java_Interview.pdfCore_Java_Interview.pdf
Core_Java_Interview.pdf
 
Framework Design Guidelines
Framework Design GuidelinesFramework Design Guidelines
Framework Design Guidelines
 

More from Martin Odersky

Implementing Higher-Kinded Types in Dotty
Implementing Higher-Kinded Types in DottyImplementing Higher-Kinded Types in Dotty
Implementing Higher-Kinded Types in DottyMartin Odersky
 
Compilers Are Databases
Compilers Are DatabasesCompilers Are Databases
Compilers Are DatabasesMartin Odersky
 
Scala Days San Francisco
Scala Days San FranciscoScala Days San Francisco
Scala Days San FranciscoMartin Odersky
 
The Evolution of Scala
The Evolution of ScalaThe Evolution of Scala
The Evolution of ScalaMartin Odersky
 
Scala - The Simple Parts, SFScala presentation
Scala - The Simple Parts, SFScala presentationScala - The Simple Parts, SFScala presentation
Scala - The Simple Parts, SFScala presentationMartin Odersky
 
flatMap Oslo presentation slides
flatMap Oslo presentation slidesflatMap Oslo presentation slides
flatMap Oslo presentation slidesMartin Odersky
 
Oscon keynote: Working hard to keep it simple
Oscon keynote: Working hard to keep it simpleOscon keynote: Working hard to keep it simple
Oscon keynote: Working hard to keep it simpleMartin Odersky
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange openingMartin Odersky
 
Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009Martin Odersky
 

More from Martin Odersky (16)

scalar.pdf
scalar.pdfscalar.pdf
scalar.pdf
 
Preparing for Scala 3
Preparing for Scala 3Preparing for Scala 3
Preparing for Scala 3
 
From DOT to Dotty
From DOT to DottyFrom DOT to Dotty
From DOT to Dotty
 
Implementing Higher-Kinded Types in Dotty
Implementing Higher-Kinded Types in DottyImplementing Higher-Kinded Types in Dotty
Implementing Higher-Kinded Types in Dotty
 
Scala Days NYC 2016
Scala Days NYC 2016Scala Days NYC 2016
Scala Days NYC 2016
 
Compilers Are Databases
Compilers Are DatabasesCompilers Are Databases
Compilers Are Databases
 
Scala Days San Francisco
Scala Days San FranciscoScala Days San Francisco
Scala Days San Francisco
 
Scalax
ScalaxScalax
Scalax
 
The Evolution of Scala
The Evolution of ScalaThe Evolution of Scala
The Evolution of Scala
 
Scala - The Simple Parts, SFScala presentation
Scala - The Simple Parts, SFScala presentationScala - The Simple Parts, SFScala presentation
Scala - The Simple Parts, SFScala presentation
 
Flatmap
FlatmapFlatmap
Flatmap
 
flatMap Oslo presentation slides
flatMap Oslo presentation slidesflatMap Oslo presentation slides
flatMap Oslo presentation slides
 
Devoxx
DevoxxDevoxx
Devoxx
 
Oscon keynote: Working hard to keep it simple
Oscon keynote: Working hard to keep it simpleOscon keynote: Working hard to keep it simple
Oscon keynote: Working hard to keep it simple
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange opening
 
Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009
 

Recently uploaded

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringWSO2
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)Samir Dash
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...caitlingebhard1
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceIES VE
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformWSO2
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governanceWSO2
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 

Recently uploaded (20)

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Choreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software EngineeringChoreo: Empowering the Future of Enterprise Software Engineering
Choreo: Empowering the Future of Enterprise Software Engineering
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational Performance
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
 
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data PlatformLess Is More: Utilizing Ballerina to Architect a Cloud Data Platform
Less Is More: Utilizing Ballerina to Architect a Cloud Data Platform
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governance
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 

What To Leave Implicit

  • 1. What to Leave Implicit Martin Odersky Scala Days Chicago April 2017
  • 2. Con-textual what comes with the text, but is not in the text
  • 3. Context is all around us - the current configuration - the current scope - the meaning of “<” on this type - the user on behalf of which the operation is performed - the security level in effect …
  • 4. - globals rigid if immutable, unsafe if mutable - monkey patching - dependency injection at runtime (Spring, Guice) or with macros (MacWire) - cake pattern close coupling + recursion Traditional ways to express context
  • 5. “Parameterize all the things” The Functional Way
  • 6. - no side effects - type-safe - fine-grained control Functional is Good
  • 7. - sea of parameters - most of which hardly ever change - repetitive, boring, prone to mistakes But sometimes it’s too much of a good thing …
  • 8. If passing a lot of parameters gets tedious, leave some of them implicit. A more direct approach
  • 9. • If there’s one feature that makes Scala “Scala”, I would pick implicits. • There’s hardly an API without them. • They enable advanced and elegant architectural designs. • They are also misused way too often. Implicits
  • 10. • takes you through the most common uses of implicits, • gives recommendations of use patterns, • goes through a set of proposed language changes that will make implicits even more powerful and safer to use. This Talk t
  • 11. • If you do not give an argument to an implicit parameter, one will be provided for you. • Eligible are all implicit values that are visible at the point of call. • If there are more than one eligible candidate, the most specific one is chosen. • If there’s no unique most specific candidate, an ambiguity error Is reported. Ground Rules
  • 12. • They are a cousin of implicit parameters. • If the type A of an expression does not match the expected type B … Implicit Conversions
  • 13. • They are a cousin of implicit parameters. • If the type A of an expression does not match the expected type B … … the compiler tries to find an implicit conversion method from A to B. • Same rules as for implicit parameters apply. Implicit Conversions
  • 14. • Shorthand for defining a new class and an implicit conversion into it. implicit class C(x: T) { … } expands to class C(x: T) { … } implicit def C(x: T) = new C(x) Implicit Classes
  • 15. • Implicits leverage what the compiler knows about your code. • They remove repetition and boilerplate. • But taken too far, they can hurt readability. When To Use Implicits?
  • 16. Applicability: Where are you allowed to elide implied information? How do you find out this is happening? Power: What influence does the elided info have? Can it change radically behavior or types? Scope: How much of the rest of the code do you need to know to find out what is implied? Is there always a clear place to look? * Adapted from Rust’s Language Ergonomics Initiative Reasoning Footprint of Implicitness*
  • 17. Patterns of Implicit Conversions
  • 18. Extension Methods Discoverability: medium Power: low Scope: large, but IDEs help
  • 19. Extension Methods Discoverability: medium Power: low Scope: large, but IDEs help
  • 20. Late Trait Implementation Make existing classes implement new traits without changing their code. This was the original reason for implicits in Scala. Discoverability: low to medium Power: low to medium Scope: large, but IDEs help
  • 21. They also have some use cases, e.g. • cached implicit classes • context-dependent views What about simple conversions?
  • 22. • Conversions that go both ways • Conversions that change semantics E.g. collection.convert.WrapAs{Java,Scala} Better: Use Converters collection.convert.DecorateAs{Java,Scala} Anti Patterns
  • 23. Conversions that undermine type safety Anti Patterns
  • 24. Conversions between pre-existing types Discoverability: low Power: high Scope: very large Anti Patterns
  • 25. Discoverability: high Power: low to high Scope: large, but can be explored in IntelliJ Implicit Parameters
  • 26. Implicit parameters can • prove theorems • establish context • set configurations • inject dependencies • model capabilities • implement type classes Implicit Parameters - Use Cases
  • 27. Curry Howard isomorphism: Types = Theorems Programs = Proofs C.f. Kennedy & Russo: “Generalized Type Constraints”, OOPSLA 2004 Prove Theorems
  • 28. Establish Context Example: conference management system. Reviewers should only see (directly or indirectly) the scores of papers where they have no conflict with an author.
  • 29. Establish Context Example: conference management system. Context is usually stable, can change at specific points.
  • 30. Configuration & Dependency Management are special cases of context passing. see also: Dick Wall: The parfait pattern
  • 32. How can we make implicits better?
  • 33. What will change: 1. Tighten the rules for implicit conversions 2. Lazy implicits 3. Multiple implicit parameter lists 4. Coherence(?) 5. Implicit function types
  • 34. 1. Tighten Rules for Implicit Conversions Question: What does this print? Answer: java.lang.IndexOutOfBoundsException: 42 Hint: List[String] <: Function[Int, String]
  • 35. In the future: Only implicit methods are eligible as conversions. A new class ImplicitConverter allows to abstract over implicit conversions. Converters are turned into conversions like this: 1. Tighten Rules for Implicit Conversions
  • 37. 2. Lazy Implicits Problem: When synthesizing code for recursive data structures, we get divergent implicit searches. E.g. will diverge if A expands recursively to Sum[A, B]
  • 38. 2. Lazy Implicits Solution: Delay the implicit search and tie the recursive knot with a lazy val if a parameter is call-by-name: This change, proposed by Miles Sabin, is a more robust solution than the current “Lazy” type in shapeless.
  • 40. 3. Multiple Implicit Parameter Lists Problem: Implicit parameters are currently a bit irregular compared to normal parameters: • there can be only one implicit parameter section • and it must come last. This leads to some awkward workarounds (c.f. Aux pattern). Related problem: It’s sometimes confusing when a parameter is implicit or explicit.
  • 41. 3. Multiple Implicit Parameter Lists Proposal: • Allow multiple implicit parameter lists • Implicit and explicit parameter lists can be mixed freely. • Explicit application of an implicit parameter must be marked with a new “magic” method, explicitly. • Implementation status: Proposal. Main challenge is migration from current Scala.
  • 42. 4. Coherence Difference between Scala’s implicits and Haskell’s type classes: The latter are required to be coherent: A type can implement a type class in one way only (globally). This is very restrictive, rules out most of the implicit use cases we have seen. But it also provides some benefits.
  • 43. Coherence Rules Out Ambiguities Say you have a capability system dealing with driver licences: If you can drive a truck and a cab, you should be able to drive a car. But Scala would give you an ambiguity error.
  • 44. Coherence Rules Out Ambiguities Proposal: • Allow type classes to declare themselves coherent. • Have the compiler check that coherent traits have only one implementation per type. This is quite tricky. See github.com/lampepfl/dotty/issues/2047 • Drop all ambiguity checks for coherent implicits.
  • 45. Parametricity • It turns out that a necessary condition to ensure coherence is to disallow operations like equals, hashCode, isInstanceOf on coherent types. • This restriction is useful in other contexts as well because it gives us “theorems for free”. • Proposal: Change Scala’s top types to: • AnyObj has all of current Any’s methods. Any has only the escape-hatch method asInstanceOf.
  • 47. 5. Implicit Function Types Have another look at the conference management system: In a large system, it gets tedious to declare all these implicit Viewers parameters.
  • 48. Can we do better? Having to write a couple of times does not look so bad. But in the dotty compiler there are > 2600 occurrences of the parameter Would it not be nice to get rid of them?
  • 49. Towards a solution Let’s massage the definition of viewRankings a bit:
  • 50. Towards a solution Let’s massage the definition of viewRankings a bit:
  • 51. Towards a solution Let’s massage the definition of viewRankings a bit: What is its type? So far: Viewers => List[Paper] From now on: implicit Viewers=> List[Paper] or, desugared: ImplicitFunction1[Viewers, List[Paper]]
  • 52. Inside ImplicitFunction1 ImplicitFunction1 can be thought of being defined as follows: Analogously for all other arities.
  • 53. Two Rules for Typing 1. Implicit functions get implicit arguments just like implicit methods. Given: val f: implicit A => B implicit val a: A f expands to f(a). 2. Implicit functions get created on demand. If the expected type of b is implicit A => B, then b expands to implicit (_: A) => b
  • 55. Efficiency Implicit function result types can be optimized Instead of creating a closure like this: we can simply create a curried function like this: This brings the cost of implicit functions down to simple implicit parameters.
  • 57. • The reader monad is a somewhat popular method to pass context. • Essentially, it wraps the implicit reading in a monad. • One advantage: The reading is abstracted in a type. • But I believe this is shooting sparrows with cannons. • Monads are about sequencing, they have have nothing to do with passing context. The Reader Monad
  • 58. • allow the same conciseness as the reader monad, • don’t force you into monadic style with explicit sequencing, • are fully composable, • are more than 7x faster than the reader monad. Implicit function types
  • 59. Neat way to define structure-building DSLs, like this: Natively supported in Groovy and in Kotlin via “receiver functions”. An encore: The Builder Pattern
  • 61. • Any situation where an entity is implicitly understood can be expressed with implicit function types. • We have seen: “The current set of viewers” “The structure to which current code should be added” • Other possibilities: “The current configuration” “The currently running transaction” “The capabilities needed to run this code” "The effects this code has on the outside world” … Conjecture
  • 62. Find out more on scala-lang.org/blog
  • 63. • Implicit function types are a neat way to abstract over contexts. • It’s a very powerful feature, because it allows one to inject implicit values in a scope simply by defining a type. • I expect it will fundamentally affect the kind of code we will write in the future. Summary (1)
  • 64. • Implicit parameters are a fundamental and powerful language construct. • They are “just” parameterization, but remove the boilerplate. • One construct  multifaceted use cases • Abstractable using implicit function types. • Implicit conversions are also very convenient, but should be used with care. Summary (2)
  • 65. When Can I Expect This? Scala 2.12 Scala 2.13 Scala 3.0 TASTY, middle end? stdlib collections dotty MVP dotty 0.x releases 2016 backend, classpath handling Scala 2.14 2017 2018 This is open source work, depends on community’s contributions.  Roadmap is tentative, no promises: “MVP” = minimal viable prototype
  • 66. Dotty: Dmitry Petrashko Nicolas Stucki Guillaume Martres Sebastien Douraene Felix Mulder Ondrej Lhotak Liu Fengyun Enno Runne Close collaboration with scalac team @ Lightbend: Adriaan Moors Seth Tisue Jason Zaugg Stefan Zeiger Lukas Rytz Credits

Editor's Notes

  1. OPEN GAMBIT Multicore. Cloud computing. Containers. You’ll likely agree that the infrastructure for amazing scalability is in place, it’s been well funded. It’s the underpinning that’s required for enterprises to movie en masse to the cloud. But what are they moving? Applications. Applications that run their business, engage their customers, allow them to innovate and enter new markets. Without applications, this infinitely scalable infrastructure is nothing.
  2. OPEN GAMBIT Multicore. Cloud computing. Containers. You’ll likely agree that the infrastructure for amazing scalability is in place, it’s been well funded. It’s the underpinning that’s required for enterprises to movie en masse to the cloud. But what are they moving? Applications. Applications that run their business, engage their customers, allow them to innovate and enter new markets. Without applications, this infinitely scalable infrastructure is nothing.