The Evolution of Scala

M
Martin OderskyCreator of Scala
The Evolution Of Scala
Martin Odersky
EPFL and Typesafe
10 Years of Scala
Pre History
1980s Modula-2, Oberon
1990-95 Functional Programming
1995-98 Pizza
1998-99 GJ, javac
2000-02 Functional Nets, Funnel
3
4
Minimal programming language based on type members and functional nets (a
variant of join calculus)
Analogous to Pict (Pierce and Turner 2001) for Pi-calculus.
A Minimal Language
• Idea of Funnel: Show that we can build a general
programming language that can be understood as thin
syntactic sugar over a core calculus.
– General: OO, functional + imperative, concurrent
– Core calculus: Functional nets
– Sugar: Records, Lambdas, Type members.
• Wrote some programs (including parts of the Funnel
library) in Funnel.
• Quickly became apparent that encodings suck:
– Confusing for beginners
– Boring to do them over and over again for experts
5
Motivation for Scala
• Grew out of Funnel
• Wanted to show that we can do a practical combination
of OOP and FP.
• What got dropped:
– Concurrency was relegated to libraries
– No tight connection between language and core calculus
(fragments were studied in the νObj paper and others.)
• What got added:
– Native object and class model, Java interop, XML literals (!).
6
Why a New Language?
• The OO dogma ruled then: Encapsulate
mutable data with methods.
– Infamous example: Java beans.
– There was no place for functional
programming in this.
• New at the time: Webservices that
process immutable (semi-)structured
data.
– Service sees the data “from the outside”.
– Functional programming supports that view,
e.g. using pattern matching, recursion.
• Rationale given: Would be good to have
a new FP language for webservices
7
8
Really, Why a new Language?
The work on Scala was motivated by
two hypotheses:
Hypothesis 1: A general-purpose
language needs to be scalable; the
same concepts should describe small
as well as large parts.
Hypothesis 2: Scalability can be
achieved by unifying and generalizing
functional and object-oriented
programming concepts.
How That Worked Out
9
(from:James Iry: A Brief, Incomplete, and
Mostly Wrong History of Programming
Languages)
Scala and Pizza
• Pizza (Odersky and Wadler 96) was another language
on the JVM that added functional elements to Java:
– algebraic datatypes and pattern matching
– function values
– generics
• Scala was more ambitious:
– More innovation on the OOP side
– More functional, e.g. immutable values, by-name parameters,
– Better integration of functional/oop, e.g. case classes.
– Not backwards compatible with Java
10
Java Features Not kept in Scala
public
static
void
Enumerations
Annotation Syntax
Wildcard types
Raw types
Primitive types
Array types
Definite assignment rules
11
Statements:
break
continue
synchronized
assert
for (C-style)
try (resource)
super(...)
Expressions:
primitive operators
cast syntax
conditional x ? y : z
array selection a[i]
Scala Beginnings
2003: First internal use
– to teach “Functional and Logic Programming Course” at EPFL.
(2nd year, ~ 150 participants),
– despite being not really ready for the task.
2004: Official announcement of Scala 1.0
– First vocal outside users: Miles Sabin, John Pretty @ Sygneca
– Together with Iulian Dragos and myself these are probably the
only people who have used Scala continuously for 10 years.
12
Scala Reloaded
2006: Scala 2.0 released
– Compiler written in Scala
– Followed the cake-pattern described “Scalable Component
Abstractions [Odersky&Zenger 05].
A few new features:
– Semicolon inference (!)
– Generalization of implicits and traits
– Automatically added empty parameter lists ()
Additions in 2.1, 2.2:
– Qualified access: private[C], protected[C]
– Multi-line string literals: ”””this is a line
and this is another”””
– Procedure syntax: def sort(xs: Array[T]) {...}
13
Scala Reloaded
2006: Scala 2.0 released
– Compiler written in Scala
– Followed the cake-pattern described “Scalable Component
Abstractions [Odersky&Zenger 05].
A few new features:
– Semicolon inference (!)
– Generalization of implicits and traits
– Automatically added empty parameter lists ()
Additions in 2.1, 2.2:
– Qualified access: private[C], protected[C]
– Multi-line string literals: ”””this is a line
and this is another”””
– Procedure syntax: def sort(xs: Array[T]) {...}
14
Learning from Experience
Scala 1.x had
– Parameterless methods supporting the uniform access principle.
def length: Int = ...
– Partially applied functions that are always eta-expanded:
def sum(f: Int => Int)(bounds: Range) = ...
val sumSquares = sum(x => x*x)
The combination of these two was a source of common
pitfalls:
println(“abc”.length) // prints: <function>
15
Avoiding the Pitfalls
1. Auto-add () for references f is to nullary functions
def f() = ...
2. Eta-expand only if
– expected type is a function
or
– missing parameters are specified with `_’
16
The Growth Year
2007: Scala 2.3-2.7 add lots of new features:
Extractors object Email { def unapply ... }
case Email(name, domain) => ...
Tuples (1, “a”, true)
Assignment operators +=, *=, ...
“_” notation for functions (_ + 1)
Early initialization object Foo extends {
val x = 3
} with SomeTrait
Lazy values lazy val rest = f()
Higher-kinded types class Functor[F[_]] { ... }
Structural types { val key: String }
Existential types Map[T, T] forSome { type T }
17
Why The Rapid Growth?
• People asked for it
– “If Scala only had this one new feature, I could use it in my
organization”
• People volunteered to do it
– Lots of thoughtful suggestions on the mailing list.
– PhD students were keen to see their thesis work applied.
18
Community Formation
2007: Lift web framework launched.
2008: First Scala liftoff unconference (50 particants)
– Twitter goes public with Scala, hype starts
2009: More Scala liftoffs.
2010-14: Scala Days
– 2010 EPFL 180 participants
– 2011 Stanford 280
– 2012 London 400
– 2013 New York 500 Scala Workshop Montellier
– 2014 Berlin 800 Scala Symposium Uppsala
Lots of other meetups and conferences
19
Scala 2.8 and 2.9: Consolidation
2010: Scala 2.8, with
– New collections with bitrot prevention.
– Fixed leaky array model.
– New semantics of nested packages.
– Better type inference for implicit resolution
– Lots of bug-fixes
2011: Scala 2.9, with
– Parallel collections
– Special trait DelayedInit, used in App
– Trait Dynamic, to interface with dynamic languages
20
Scala 2.10: Differentiation
2012: Scala 2.10, with
• New features, added through the Scala Improvement
Process (SIPs):
– Value classes class Meter(x: Long)
extends AnyVal
– Implicit classes implicit class StringOps(s: String)
– String interpolation s”you have $n new calls”
• Experimental features
– Macros def await(x: Future[T]) = macro ...
– Reflection
These are only enabled when compiling with –Xexperimental
• Language imports require explicit enabling of some features
available previously.
21
Scala Improvement Process
22
Design Tradeoffs
The Scala way: Provide few constructs of maximal generality.
Implicit conversions
> implicit classes
> extension methods
where “>” means more general.
Implicit conversions are very powerful
But they can be misused,
in particular if there are too many of them.
23
General Problem
• Scala is geared for orthogonality and expressiveness
• I believe that in the end, that’s the most productive
combination.
• But there are challenges.
– Some combinations of language features might be less desirable
than others.
– How to avoid feature misuse?
• Idea: Have a mechanism that demands that some
problematic features are explicitly imported (Haskell
uses something similar).
24
SIP 18: Language Imports
• Say you have:
object letsSimulateJS {
implicit def foo(x: String): Int =
Integer.parseInt(x)
}
• Compiling gives:
warning: there were 1 feature warnings; re-run with -
feature for details
one warning found
25
SIP 18: Language Imports
Say you have:
object letsSimulateJS {
implicit def foo(x: String): Int =
Integer.parseInt(x)
}
Compiling with –feature gives:
letsSimulateJS.scala:8: warning: implicit conversion method foo should be
enabled
by making the implicit value language.implicitConversions visible.
This can be achieved by adding the import clause 'import
scala.language.implicitConversions'
or by setting the compiler option -language:implicitConversions.
See the Scala docs for value scala.language.implicitConversions for a discussion
why the feature should be explicitly enabled.
implicit def foo(x: String): Int = Integer.parseInt(x)
^ 26
Turning off the Warnings
You turn off the warning by bringing the identifier
scala.language.implicitConversions
into scope, usually, using an import:
import language.implicitConversions
27
Features Controlled by SIP-18
From language:
– Implicit Conversions
– Dynamic
– Postfix Operators
– Dynamic dispatch on structural types
– Existential types
– Higher-kinded types
From language.experimental
– Macros
28
Now: Scala 2.11
• Smaller:
– broke out parts of libraries into separate modules
• Faster
– Better incremental compilation
• Stronger:
– Lots of bug fixes, tooling improvements
29
Now: Scala.JS
Why a Scala for Javascript?
– JS is becoming ubiquitous.
– Desire to use the same language on
client and server.
– But not everybody likes Javascript or
dynamic languages.
Scala.JS profits from Scala’s tradition of
interoperating with a host language through very general
abstractions.
Can combine JS DOM and Scala collections.
For the young age of the project, very mature and well-
received.
30
Invariants
In all this evolution, what stays constant?
What are some of the essential traits that make Scala what
it is?
31
1st Invariant: A Scalable Language
• Instead of providing lots of features in the language,
have the right abstractions so that they can
be provided in libraries.
• This has worked quite well so far.
• It implicitly trusts programmers and library designers to
“do the right thing”, or at least the community to sort
things out.
32
Libraries on top of Scala
33
SBT
Chisel Spark
Spray
Kafka
Akka
ScalaTest
Squeryl
Specs
shapeless
Scalaz
Slick
Growable = Good?
In fact, it’s a double edged sword.
– DSLs can fracture the user
community (“The Lisp curse”)
– Besides, no language is liked
by everyone, no matter whether
its a DSL or general purpose.
– Host languages get the blame
for the DSLs they embed.
Growable is great for experimentation.
But it demands conformity and discipline for large scale
production use.
34
• Scala’s core is its type system.
• Most of the advanced types concepts are about
flexibility, less so about safety.
2nd Invariant: It’s about the Types
35
Flexibility / Ease of Use
Safety
Scala
Trend in Type-systems
Goals of PL design
Stunted Evolution
null - “The Million Dollar Mistake”
• Why does Scala not have null-safety?
• We had plans to do it
you can see the traces in the stdlib with marker trait NotNull.
• But by then everybody was using already Option.
• So NPEs are actually quite rare in Scala code.
• Don’t want two ways to do the same thing.
36
What’s Next?
• Scala 2.12 will be a fairly conservative evolution of 2.11
• Main feature: Java 8 interop.
– Scala and Java lambdas can understand each other
– SAM method convention added to Scala
– Should make use of Java 8 streams
– Default methods for traits?
37
And After That?
Main Goals: Make the language and its libraries
• simpler to understand,
• more robust,
• better performing
Want to continue to make it the language of choice for
smart kids.
38
Scala “Aida”
Will concentrate on the standard library.
– Reduce reliance on inheritance
– Make all default collections immutable (e.g. scala.Seq will be an
alias of scala.immutable.Seq)
– Other small cleanups that are possible with a rewriting step (e.g.
rename mapValues)
Projects which might make it if they mature fast enough:
– scala.meta, the new, simplified approach to macros and
reflection.
– Collection fusion in the style of ScalaBlitz
– Better specialization through miniboxing.
39
Scala “Don Giovanni”
Concentrates on the language
• Simple foundations:
– A single fundamental concept - type members – can give precise
meaning to generics, existential types, and higher-kinded types.
– Intersection and union types.
– Theoretical foundations given by minimal core calculus (DOT).
• Cleaned-up syntax:
– Trait parameters instead of early definition syntax
– XML string interpolation instead of XML literals
– Procedure syntax is dropped.
– Simplified and unified type syntax for all forms of information
elision, forSome syntax is eliminated.
40
Scala “Don Giovanni”
• Removing puzzlers:
– Result types mandatory for implicit definitions.
– Inherited explicit result types take precedence over locally-
inferred ones.
– String “+” needs explicit enabling.
– Avoid surprising behavior of auto-tupling.
• Backwards compatibility:
– A migration tool will upgrade sources automatically.
– Should work for almost all commonly used code.
– Will not generally work for code using –Xexperimental
– But we aim to have features that can support analogous
functionality.
41
The Growth Year, Revisited
Extractors object Email { def unapply ... } ✔
case Email(name, domain) => ...
Tuples (1, “a”, true) ✔
Assignment operators +=, *=, ++= ✔
Annotations @volatile, @deprecated ✔
“_” notation for functions (_ + 1) ✔
Early initialization object Foo extends { ✗
val x = 3
} with SomeTrait
Higher-kinded types class Functor[F[_]] { ... } ≈
Structural types { val key: String } ≈
Lazy values lazy val rest = f() ✔
Existential types Map[T, T] forSome { type T } ✗
42
Conclusion
• Languages are not cast in stone; they evolve whether
you like it or not.
• Community matters
• Community will take a language where you never
expected it to go.
In the end languages are as much social phenomena as
technical ones.
43
1 of 43

Recommended

Modular programming Using Object in Scala by
Modular programming Using Object in ScalaModular programming Using Object in Scala
Modular programming Using Object in ScalaKnoldus Inc.
4.1K views24 slides
Capabilities for Resources and Effects by
Capabilities for Resources and EffectsCapabilities for Resources and Effects
Capabilities for Resources and EffectsMartin Odersky
5.5K views29 slides
Purely Functional Data Structures in Scala by
Purely Functional Data Structures in ScalaPurely Functional Data Structures in Scala
Purely Functional Data Structures in ScalaVladimir Kostyukov
52.7K views40 slides
Gentle Introduction to Scala by
Gentle Introduction to ScalaGentle Introduction to Scala
Gentle Introduction to ScalaFangda Wang
146 views61 slides
ZIO Queue by
ZIO QueueZIO Queue
ZIO QueueJohn De Goes
3.1K views60 slides
ZIO-Direct - Functional Scala 2022 by
ZIO-Direct - Functional Scala 2022ZIO-Direct - Functional Scala 2022
ZIO-Direct - Functional Scala 2022Alexander Ioffe
762 views127 slides

More Related Content

What's hot

Applicative style programming by
Applicative style programmingApplicative style programming
Applicative style programmingJosé Luis García Hernández
1.9K views59 slides
relational algebra (joins) by
relational algebra (joins)relational algebra (joins)
relational algebra (joins)Nilt1234
413 views24 slides
Why functional programming and category theory strongly matters by
Why functional programming and category theory strongly mattersWhy functional programming and category theory strongly matters
Why functional programming and category theory strongly mattersPiotr Paradziński
946 views231 slides
Scala Talk at FOSDEM 2009 by
Scala Talk at FOSDEM 2009Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009Martin Odersky
37.2K views42 slides
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t... by
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...Philip Schwarz
1.2K views46 slides
Threading Made Easy! A Busy Developer’s Guide to Kotlin Coroutines by
Threading Made Easy! A Busy Developer’s Guide to Kotlin CoroutinesThreading Made Easy! A Busy Developer’s Guide to Kotlin Coroutines
Threading Made Easy! A Busy Developer’s Guide to Kotlin CoroutinesLauren Yew
135 views87 slides

What's hot(20)

relational algebra (joins) by Nilt1234
relational algebra (joins)relational algebra (joins)
relational algebra (joins)
Nilt1234413 views
Why functional programming and category theory strongly matters by Piotr Paradziński
Why functional programming and category theory strongly mattersWhy functional programming and category theory strongly matters
Why functional programming and category theory strongly matters
Piotr Paradziński946 views
Scala Talk at FOSDEM 2009 by Martin Odersky
Scala Talk at FOSDEM 2009Scala Talk at FOSDEM 2009
Scala Talk at FOSDEM 2009
Martin Odersky37.2K views
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t... by Philip Schwarz
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarz1.2K views
Threading Made Easy! A Busy Developer’s Guide to Kotlin Coroutines by Lauren Yew
Threading Made Easy! A Busy Developer’s Guide to Kotlin CoroutinesThreading Made Easy! A Busy Developer’s Guide to Kotlin Coroutines
Threading Made Easy! A Busy Developer’s Guide to Kotlin Coroutines
Lauren Yew135 views
Functional Programming 101 with Scala and ZIO @FunctionalWorld by Jorge Vásquez
Functional Programming 101 with Scala and ZIO @FunctionalWorldFunctional Programming 101 with Scala and ZIO @FunctionalWorld
Functional Programming 101 with Scala and ZIO @FunctionalWorld
Jorge Vásquez446 views
From object oriented to functional domain modeling by Mario Fusco
From object oriented to functional domain modelingFrom object oriented to functional domain modeling
From object oriented to functional domain modeling
Mario Fusco15.3K views
Peeking inside the engine of ZIO SQL.pdf by JaroslavRegec1
Peeking inside the engine of ZIO SQL.pdfPeeking inside the engine of ZIO SQL.pdf
Peeking inside the engine of ZIO SQL.pdf
JaroslavRegec1153 views
What's new in Scala 2.13? by Hermann Hueck
What's new in Scala 2.13?What's new in Scala 2.13?
What's new in Scala 2.13?
Hermann Hueck2.5K views
Collections and its types in C# (with examples) by Aijaz Ali Abro
Collections and its types in C# (with examples)Collections and its types in C# (with examples)
Collections and its types in C# (with examples)
Aijaz Ali Abro2.1K views
Hacking ansible by bcoca
Hacking ansibleHacking ansible
Hacking ansible
bcoca12.5K views
Lập trình hướng đối tượng trong PHP by Jino Hoàng
Lập trình hướng đối tượng trong PHPLập trình hướng đối tượng trong PHP
Lập trình hướng đối tượng trong PHP
Jino Hoàng963 views
Hibernate Tutorial by Ram132
Hibernate TutorialHibernate Tutorial
Hibernate Tutorial
Ram1324.4K views

Similar to The Evolution of Scala

The Evolution of Scala / Scala進化論 by
The Evolution of Scala / Scala進化論The Evolution of Scala / Scala進化論
The Evolution of Scala / Scala進化論scalaconfjp
5.2K views37 slides
scalaliftoff2009.pdf by
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdfHiroshi Ono
746 views37 slides
scalaliftoff2009.pdf by
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdfHiroshi Ono
1.4K views37 slides
scalaliftoff2009.pdf by
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdfHiroshi Ono
472 views37 slides
scalaliftoff2009.pdf by
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdfHiroshi Ono
463 views37 slides
Martin Odersky - Evolution of Scala by
Martin Odersky - Evolution of ScalaMartin Odersky - Evolution of Scala
Martin Odersky - Evolution of ScalaScala Italy
1.6K views47 slides

Similar to The Evolution of Scala(20)

The Evolution of Scala / Scala進化論 by scalaconfjp
The Evolution of Scala / Scala進化論The Evolution of Scala / Scala進化論
The Evolution of Scala / Scala進化論
scalaconfjp5.2K views
scalaliftoff2009.pdf by Hiroshi Ono
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono746 views
scalaliftoff2009.pdf by Hiroshi Ono
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono1.4K views
scalaliftoff2009.pdf by Hiroshi Ono
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono472 views
scalaliftoff2009.pdf by Hiroshi Ono
scalaliftoff2009.pdfscalaliftoff2009.pdf
scalaliftoff2009.pdf
Hiroshi Ono463 views
Martin Odersky - Evolution of Scala by Scala Italy
Martin Odersky - Evolution of ScalaMartin Odersky - Evolution of Scala
Martin Odersky - Evolution of Scala
Scala Italy1.6K views
Scala - The Simple Parts, SFScala presentation by Martin Odersky
Scala - The Simple Parts, SFScala presentationScala - The Simple Parts, SFScala presentation
Scala - The Simple Parts, SFScala presentation
Martin Odersky16.5K views
Scala for n00bs by a n00b. by brandongulla
Scala for n00bs by a n00b.Scala for n00bs by a n00b.
Scala for n00bs by a n00b.
brandongulla399 views
Martin Odersky: What's next for Scala by Marakana Inc.
Martin Odersky: What's next for ScalaMartin Odersky: What's next for Scala
Martin Odersky: What's next for Scala
Marakana Inc.4.4K views
flatMap Oslo presentation slides by Martin Odersky
flatMap Oslo presentation slidesflatMap Oslo presentation slides
flatMap Oslo presentation slides
Martin Odersky24.9K views
Scala Days San Francisco by Martin Odersky
Scala Days San FranciscoScala Days San Francisco
Scala Days San Francisco
Martin Odersky65.9K views
A Tour Of Scala by fanf42
A Tour Of ScalaA Tour Of Scala
A Tour Of Scala
fanf423.4K views
Spark - The Ultimate Scala Collections by Martin Odersky by Spark Summit
Spark - The Ultimate Scala Collections by Martin OderskySpark - The Ultimate Scala Collections by Martin Odersky
Spark - The Ultimate Scala Collections by Martin Odersky
Spark Summit5.7K views
Scala final ppt vinay by Viplav Jain
Scala final ppt vinayScala final ppt vinay
Scala final ppt vinay
Viplav Jain227 views
Scala and jvm_languages_praveen_technologist by pmanvi
Scala and jvm_languages_praveen_technologistScala and jvm_languages_praveen_technologist
Scala and jvm_languages_praveen_technologist
pmanvi644 views
An Introduction to Scala - Blending OO and Functional Paradigms by Miles Sabin
An Introduction to Scala - Blending OO and Functional ParadigmsAn Introduction to Scala - Blending OO and Functional Paradigms
An Introduction to Scala - Blending OO and Functional Paradigms
Miles Sabin767 views
Scala for Java Programmers by Eric Pederson
Scala for Java ProgrammersScala for Java Programmers
Scala for Java Programmers
Eric Pederson967 views
Scala, Akka, and Play: An Introduction on Heroku by Havoc Pennington
Scala, Akka, and Play: An Introduction on HerokuScala, Akka, and Play: An Introduction on Heroku
Scala, Akka, and Play: An Introduction on Heroku
Havoc Pennington16.8K views

More from Martin Odersky

scalar.pdf by
scalar.pdfscalar.pdf
scalar.pdfMartin Odersky
962 views44 slides
Simplicitly by
SimplicitlySimplicitly
SimplicitlyMartin Odersky
2.1K views33 slides
What To Leave Implicit by
What To Leave ImplicitWhat To Leave Implicit
What To Leave ImplicitMartin Odersky
3.7K views41 slides
What To Leave Implicit by
What To Leave ImplicitWhat To Leave Implicit
What To Leave ImplicitMartin Odersky
6.1K views67 slides
From DOT to Dotty by
From DOT to DottyFrom DOT to Dotty
From DOT to DottyMartin Odersky
6.8K views56 slides
Implementing Higher-Kinded Types in Dotty by
Implementing Higher-Kinded Types in DottyImplementing Higher-Kinded Types in Dotty
Implementing Higher-Kinded Types in DottyMartin Odersky
11.9K views31 slides

More from Martin Odersky(12)

Recently uploaded

FOSSLight Community Day 2023-11-30 by
FOSSLight Community Day 2023-11-30FOSSLight Community Day 2023-11-30
FOSSLight Community Day 2023-11-30Shane Coughlan
6 views18 slides
Generic or specific? Making sensible software design decisions by
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisionsBert Jan Schrijver
7 views60 slides
Fleet Management Software in India by
Fleet Management Software in India Fleet Management Software in India
Fleet Management Software in India Fleetable
12 views1 slide
The Era of Large Language Models.pptx by
The Era of Large Language Models.pptxThe Era of Large Language Models.pptx
The Era of Large Language Models.pptxAbdulVahedShaik
7 views9 slides
nintendo_64.pptx by
nintendo_64.pptxnintendo_64.pptx
nintendo_64.pptxpaiga02016
6 views7 slides
MS PowerPoint.pptx by
MS PowerPoint.pptxMS PowerPoint.pptx
MS PowerPoint.pptxLitty Sylus
7 views14 slides

Recently uploaded(20)

FOSSLight Community Day 2023-11-30 by Shane Coughlan
FOSSLight Community Day 2023-11-30FOSSLight Community Day 2023-11-30
FOSSLight Community Day 2023-11-30
Shane Coughlan6 views
Generic or specific? Making sensible software design decisions by Bert Jan Schrijver
Generic or specific? Making sensible software design decisionsGeneric or specific? Making sensible software design decisions
Generic or specific? Making sensible software design decisions
Fleet Management Software in India by Fleetable
Fleet Management Software in India Fleet Management Software in India
Fleet Management Software in India
Fleetable12 views
tecnologia18.docx by nosi6702
tecnologia18.docxtecnologia18.docx
tecnologia18.docx
nosi67025 views
360 graden fabriek by info33492
360 graden fabriek360 graden fabriek
360 graden fabriek
info33492162 views
predicting-m3-devopsconMunich-2023-v2.pptx by Tier1 app
predicting-m3-devopsconMunich-2023-v2.pptxpredicting-m3-devopsconMunich-2023-v2.pptx
predicting-m3-devopsconMunich-2023-v2.pptx
Tier1 app11 views
Bootstrapping vs Venture Capital.pptx by Zeljko Svedic
Bootstrapping vs Venture Capital.pptxBootstrapping vs Venture Capital.pptx
Bootstrapping vs Venture Capital.pptx
Zeljko Svedic15 views
Top-5-production-devconMunich-2023.pptx by Tier1 app
Top-5-production-devconMunich-2023.pptxTop-5-production-devconMunich-2023.pptx
Top-5-production-devconMunich-2023.pptx
Tier1 app9 views
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium... by Lisi Hocke
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...
Team Transformation Tactics for Holistic Testing and Quality (Japan Symposium...
Lisi Hocke35 views
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with... by sparkfabrik
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...
20231129 - Platform @ localhost 2023 - Application-driven infrastructure with...
sparkfabrik8 views
Understanding HTML terminology by artembondar5
Understanding HTML terminologyUnderstanding HTML terminology
Understanding HTML terminology
artembondar57 views
Top-5-production-devconMunich-2023-v2.pptx by Tier1 app
Top-5-production-devconMunich-2023-v2.pptxTop-5-production-devconMunich-2023-v2.pptx
Top-5-production-devconMunich-2023-v2.pptx
Tier1 app6 views
DRYiCE™ iAutomate: AI-enhanced Intelligent Runbook Automation by HCLSoftware
DRYiCE™ iAutomate: AI-enhanced Intelligent Runbook AutomationDRYiCE™ iAutomate: AI-enhanced Intelligent Runbook Automation
DRYiCE™ iAutomate: AI-enhanced Intelligent Runbook Automation
HCLSoftware6 views

The Evolution of Scala

  • 1. The Evolution Of Scala Martin Odersky EPFL and Typesafe
  • 2. 10 Years of Scala
  • 3. Pre History 1980s Modula-2, Oberon 1990-95 Functional Programming 1995-98 Pizza 1998-99 GJ, javac 2000-02 Functional Nets, Funnel 3
  • 4. 4 Minimal programming language based on type members and functional nets (a variant of join calculus) Analogous to Pict (Pierce and Turner 2001) for Pi-calculus.
  • 5. A Minimal Language • Idea of Funnel: Show that we can build a general programming language that can be understood as thin syntactic sugar over a core calculus. – General: OO, functional + imperative, concurrent – Core calculus: Functional nets – Sugar: Records, Lambdas, Type members. • Wrote some programs (including parts of the Funnel library) in Funnel. • Quickly became apparent that encodings suck: – Confusing for beginners – Boring to do them over and over again for experts 5
  • 6. Motivation for Scala • Grew out of Funnel • Wanted to show that we can do a practical combination of OOP and FP. • What got dropped: – Concurrency was relegated to libraries – No tight connection between language and core calculus (fragments were studied in the νObj paper and others.) • What got added: – Native object and class model, Java interop, XML literals (!). 6
  • 7. Why a New Language? • The OO dogma ruled then: Encapsulate mutable data with methods. – Infamous example: Java beans. – There was no place for functional programming in this. • New at the time: Webservices that process immutable (semi-)structured data. – Service sees the data “from the outside”. – Functional programming supports that view, e.g. using pattern matching, recursion. • Rationale given: Would be good to have a new FP language for webservices 7
  • 8. 8 Really, Why a new Language? The work on Scala was motivated by two hypotheses: Hypothesis 1: A general-purpose language needs to be scalable; the same concepts should describe small as well as large parts. Hypothesis 2: Scalability can be achieved by unifying and generalizing functional and object-oriented programming concepts.
  • 9. How That Worked Out 9 (from:James Iry: A Brief, Incomplete, and Mostly Wrong History of Programming Languages)
  • 10. Scala and Pizza • Pizza (Odersky and Wadler 96) was another language on the JVM that added functional elements to Java: – algebraic datatypes and pattern matching – function values – generics • Scala was more ambitious: – More innovation on the OOP side – More functional, e.g. immutable values, by-name parameters, – Better integration of functional/oop, e.g. case classes. – Not backwards compatible with Java 10
  • 11. Java Features Not kept in Scala public static void Enumerations Annotation Syntax Wildcard types Raw types Primitive types Array types Definite assignment rules 11 Statements: break continue synchronized assert for (C-style) try (resource) super(...) Expressions: primitive operators cast syntax conditional x ? y : z array selection a[i]
  • 12. Scala Beginnings 2003: First internal use – to teach “Functional and Logic Programming Course” at EPFL. (2nd year, ~ 150 participants), – despite being not really ready for the task. 2004: Official announcement of Scala 1.0 – First vocal outside users: Miles Sabin, John Pretty @ Sygneca – Together with Iulian Dragos and myself these are probably the only people who have used Scala continuously for 10 years. 12
  • 13. Scala Reloaded 2006: Scala 2.0 released – Compiler written in Scala – Followed the cake-pattern described “Scalable Component Abstractions [Odersky&Zenger 05]. A few new features: – Semicolon inference (!) – Generalization of implicits and traits – Automatically added empty parameter lists () Additions in 2.1, 2.2: – Qualified access: private[C], protected[C] – Multi-line string literals: ”””this is a line and this is another””” – Procedure syntax: def sort(xs: Array[T]) {...} 13
  • 14. Scala Reloaded 2006: Scala 2.0 released – Compiler written in Scala – Followed the cake-pattern described “Scalable Component Abstractions [Odersky&Zenger 05]. A few new features: – Semicolon inference (!) – Generalization of implicits and traits – Automatically added empty parameter lists () Additions in 2.1, 2.2: – Qualified access: private[C], protected[C] – Multi-line string literals: ”””this is a line and this is another””” – Procedure syntax: def sort(xs: Array[T]) {...} 14
  • 15. Learning from Experience Scala 1.x had – Parameterless methods supporting the uniform access principle. def length: Int = ... – Partially applied functions that are always eta-expanded: def sum(f: Int => Int)(bounds: Range) = ... val sumSquares = sum(x => x*x) The combination of these two was a source of common pitfalls: println(“abc”.length) // prints: <function> 15
  • 16. Avoiding the Pitfalls 1. Auto-add () for references f is to nullary functions def f() = ... 2. Eta-expand only if – expected type is a function or – missing parameters are specified with `_’ 16
  • 17. The Growth Year 2007: Scala 2.3-2.7 add lots of new features: Extractors object Email { def unapply ... } case Email(name, domain) => ... Tuples (1, “a”, true) Assignment operators +=, *=, ... “_” notation for functions (_ + 1) Early initialization object Foo extends { val x = 3 } with SomeTrait Lazy values lazy val rest = f() Higher-kinded types class Functor[F[_]] { ... } Structural types { val key: String } Existential types Map[T, T] forSome { type T } 17
  • 18. Why The Rapid Growth? • People asked for it – “If Scala only had this one new feature, I could use it in my organization” • People volunteered to do it – Lots of thoughtful suggestions on the mailing list. – PhD students were keen to see their thesis work applied. 18
  • 19. Community Formation 2007: Lift web framework launched. 2008: First Scala liftoff unconference (50 particants) – Twitter goes public with Scala, hype starts 2009: More Scala liftoffs. 2010-14: Scala Days – 2010 EPFL 180 participants – 2011 Stanford 280 – 2012 London 400 – 2013 New York 500 Scala Workshop Montellier – 2014 Berlin 800 Scala Symposium Uppsala Lots of other meetups and conferences 19
  • 20. Scala 2.8 and 2.9: Consolidation 2010: Scala 2.8, with – New collections with bitrot prevention. – Fixed leaky array model. – New semantics of nested packages. – Better type inference for implicit resolution – Lots of bug-fixes 2011: Scala 2.9, with – Parallel collections – Special trait DelayedInit, used in App – Trait Dynamic, to interface with dynamic languages 20
  • 21. Scala 2.10: Differentiation 2012: Scala 2.10, with • New features, added through the Scala Improvement Process (SIPs): – Value classes class Meter(x: Long) extends AnyVal – Implicit classes implicit class StringOps(s: String) – String interpolation s”you have $n new calls” • Experimental features – Macros def await(x: Future[T]) = macro ... – Reflection These are only enabled when compiling with –Xexperimental • Language imports require explicit enabling of some features available previously. 21
  • 23. Design Tradeoffs The Scala way: Provide few constructs of maximal generality. Implicit conversions > implicit classes > extension methods where “>” means more general. Implicit conversions are very powerful But they can be misused, in particular if there are too many of them. 23
  • 24. General Problem • Scala is geared for orthogonality and expressiveness • I believe that in the end, that’s the most productive combination. • But there are challenges. – Some combinations of language features might be less desirable than others. – How to avoid feature misuse? • Idea: Have a mechanism that demands that some problematic features are explicitly imported (Haskell uses something similar). 24
  • 25. SIP 18: Language Imports • Say you have: object letsSimulateJS { implicit def foo(x: String): Int = Integer.parseInt(x) } • Compiling gives: warning: there were 1 feature warnings; re-run with - feature for details one warning found 25
  • 26. SIP 18: Language Imports Say you have: object letsSimulateJS { implicit def foo(x: String): Int = Integer.parseInt(x) } Compiling with –feature gives: letsSimulateJS.scala:8: warning: implicit conversion method foo should be enabled by making the implicit value language.implicitConversions visible. This can be achieved by adding the import clause 'import scala.language.implicitConversions' or by setting the compiler option -language:implicitConversions. See the Scala docs for value scala.language.implicitConversions for a discussion why the feature should be explicitly enabled. implicit def foo(x: String): Int = Integer.parseInt(x) ^ 26
  • 27. Turning off the Warnings You turn off the warning by bringing the identifier scala.language.implicitConversions into scope, usually, using an import: import language.implicitConversions 27
  • 28. Features Controlled by SIP-18 From language: – Implicit Conversions – Dynamic – Postfix Operators – Dynamic dispatch on structural types – Existential types – Higher-kinded types From language.experimental – Macros 28
  • 29. Now: Scala 2.11 • Smaller: – broke out parts of libraries into separate modules • Faster – Better incremental compilation • Stronger: – Lots of bug fixes, tooling improvements 29
  • 30. Now: Scala.JS Why a Scala for Javascript? – JS is becoming ubiquitous. – Desire to use the same language on client and server. – But not everybody likes Javascript or dynamic languages. Scala.JS profits from Scala’s tradition of interoperating with a host language through very general abstractions. Can combine JS DOM and Scala collections. For the young age of the project, very mature and well- received. 30
  • 31. Invariants In all this evolution, what stays constant? What are some of the essential traits that make Scala what it is? 31
  • 32. 1st Invariant: A Scalable Language • Instead of providing lots of features in the language, have the right abstractions so that they can be provided in libraries. • This has worked quite well so far. • It implicitly trusts programmers and library designers to “do the right thing”, or at least the community to sort things out. 32
  • 33. Libraries on top of Scala 33 SBT Chisel Spark Spray Kafka Akka ScalaTest Squeryl Specs shapeless Scalaz Slick
  • 34. Growable = Good? In fact, it’s a double edged sword. – DSLs can fracture the user community (“The Lisp curse”) – Besides, no language is liked by everyone, no matter whether its a DSL or general purpose. – Host languages get the blame for the DSLs they embed. Growable is great for experimentation. But it demands conformity and discipline for large scale production use. 34
  • 35. • Scala’s core is its type system. • Most of the advanced types concepts are about flexibility, less so about safety. 2nd Invariant: It’s about the Types 35 Flexibility / Ease of Use Safety Scala Trend in Type-systems Goals of PL design
  • 36. Stunted Evolution null - “The Million Dollar Mistake” • Why does Scala not have null-safety? • We had plans to do it you can see the traces in the stdlib with marker trait NotNull. • But by then everybody was using already Option. • So NPEs are actually quite rare in Scala code. • Don’t want two ways to do the same thing. 36
  • 37. What’s Next? • Scala 2.12 will be a fairly conservative evolution of 2.11 • Main feature: Java 8 interop. – Scala and Java lambdas can understand each other – SAM method convention added to Scala – Should make use of Java 8 streams – Default methods for traits? 37
  • 38. And After That? Main Goals: Make the language and its libraries • simpler to understand, • more robust, • better performing Want to continue to make it the language of choice for smart kids. 38
  • 39. Scala “Aida” Will concentrate on the standard library. – Reduce reliance on inheritance – Make all default collections immutable (e.g. scala.Seq will be an alias of scala.immutable.Seq) – Other small cleanups that are possible with a rewriting step (e.g. rename mapValues) Projects which might make it if they mature fast enough: – scala.meta, the new, simplified approach to macros and reflection. – Collection fusion in the style of ScalaBlitz – Better specialization through miniboxing. 39
  • 40. Scala “Don Giovanni” Concentrates on the language • Simple foundations: – A single fundamental concept - type members – can give precise meaning to generics, existential types, and higher-kinded types. – Intersection and union types. – Theoretical foundations given by minimal core calculus (DOT). • Cleaned-up syntax: – Trait parameters instead of early definition syntax – XML string interpolation instead of XML literals – Procedure syntax is dropped. – Simplified and unified type syntax for all forms of information elision, forSome syntax is eliminated. 40
  • 41. Scala “Don Giovanni” • Removing puzzlers: – Result types mandatory for implicit definitions. – Inherited explicit result types take precedence over locally- inferred ones. – String “+” needs explicit enabling. – Avoid surprising behavior of auto-tupling. • Backwards compatibility: – A migration tool will upgrade sources automatically. – Should work for almost all commonly used code. – Will not generally work for code using –Xexperimental – But we aim to have features that can support analogous functionality. 41
  • 42. The Growth Year, Revisited Extractors object Email { def unapply ... } ✔ case Email(name, domain) => ... Tuples (1, “a”, true) ✔ Assignment operators +=, *=, ++= ✔ Annotations @volatile, @deprecated ✔ “_” notation for functions (_ + 1) ✔ Early initialization object Foo extends { ✗ val x = 3 } with SomeTrait Higher-kinded types class Functor[F[_]] { ... } ≈ Structural types { val key: String } ≈ Lazy values lazy val rest = f() ✔ Existential types Map[T, T] forSome { type T } ✗ 42
  • 43. Conclusion • Languages are not cast in stone; they evolve whether you like it or not. • Community matters • Community will take a language where you never expected it to go. In the end languages are as much social phenomena as technical ones. 43