SlideShare a Scribd company logo
1 of 25
Assignment on-
Polymer Science: Application in Drug Delivery System
Advanced Pharmaceutics (PHR-5022.1)
Prepared For:
Dr. Selim Reza
Professor,
Department of Pharmaceutical Sciences,
North South University
Prepared By:
Md. Mominul Islam
ID# 162 1405 673
NSU_Mpharm_Fall-2017
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 2
POLYMER SCIENCE: APPLICATION IN DRUG
DELIVERY SYSTEM
1. POLYMER SCIENCE
Polymer science or macromolecular science is a subfield of materials science concerned
with polymers, primarily synthetic polymers such as plastics and elastomers. The field of
polymer science includes researchers in multiple disciplines including chemistry, physics,
and engineering. Polymers are being used extensively in drug delivery due to their surface and
bulk properties. They are being used in drug formulations and in drug delivery devices. These
drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used
in colloidal drug carrier systems, consisting of small particles, show great advantage in drug
delivery systems because of optimized drug loading and releasing property. Polymeric nano
particulate systems are available in wide variety and have established chemistry. Non toxic,
biodegradable and biocompatible polymers are available. Some nano particulate polymeric
systems possess ability to cross blood brain barrier. They offer protection against chemical
degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature;
pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric
systems conjugated with antibodies/specific biomarkers help in detecting molecular targets
specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water
solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or
dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such
as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and
lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug
delivery assuring patient compliance.
Polymers have played an integral role in the advancement of drug delivery technology by
providing controlled release of therapeutic agents in constant doses over long periods, cyclic
dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings
using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 3
of chemical engineers. Modern advances in drug delivery are now predicated upon the rational
design of polymers tailored for specific cargo and engineered to exert distinct biological
functions. In this review, we highlight the fundamental drug delivery systems and their
mathematical foundations and discuss the physiological barriers to drug delivery. The origins
and applications of stimuli-responsive polymer systems and polymer therapeutics such as
polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of
molecular recognition or directing intracellular delivery are surveyed to illustrate areas of
research advancing the frontiers of drug delivery.
2. DRUG DELIVERY SYSTEM
Drug delivery systems combine one or more traditional drug delivery methods with engineered
technology. These systems create the ability to specifically target where a drug is released in the
body and/or the rate at which it gets released. This ability benefits patients in multiple ways. A
targeted drug delivery system can allow doctors to transport medicine to an exact location in the
body — a cancerous tumor, for example — while minimizing or even eliminating systemic side
effects and/or damage to tissues surrounding the treatment site. Targeted delivery can also help
ensure the medicine reaches the area where it’s needed without any degradation that might occur
if it has to pass through bodily systems like the digestive tract or circulatory system. This
delivery method can also help bypass the body’s natural defenses that may block foreign
substances — even needed medicine — from entering individual cells. The medication reaches
the diseased or damaged location quickly and at maximum efficacy.
Controlled release drug delivery systems are a natural evolution of the concept that’s made
timed-release oral medications successful. These systems time the release of medication that may
be administered in multiple ways, such as orally, by injection or implantation. This can allow
physicians to maintain a specific level of medication within the patient’s body, reduce the need
for repeated administrations of a medicine, optimize the efficacy of a drug, and even bypass the
pitfalls of patients failing to take medicine as prescribe.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 4
3.0 VARIOUS POLYMERS USED IN DRUG DELIVERY
3.1 PLGA
In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive
polymeric candidates used to fabricate devices for drug delivery and tissue engineering
applications. PLGA is biocompatible and
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 5
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 6
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 7
3.2 PGA (Poly Glycolic Acid)
Polyglycolic acid (PGA) is a biodegradable, thermoplastic polymer and the simplest linear,
aliphatic polyester.It can be prepared starting from glycolic acid by means of polycondensation
or ring-opening polymerization.PGA has been known since 1954 as a tough fiber-forming
polymer.
3.3 Poly-L-Glutamic Acid
Polyglutamic acid (PGA) is a polymer of the amino acid glutamic acid (GA). Gamma PGA is
formed by bacterial fermentation
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 8
3.4 Polylactic Acid
It is a biodegradable thermoplastic aliphatic polyester derived from renewable resources, such as
co r n starch (in the United States and Canada), tapioca roots, chips or starch (mostly in Asia), or
sugarcane (in the rest of the world).
3.5 Pnipaam [Poly(N-Isopropylacrylamide)]
It is a temperature responsive polymer that was first synthesized in the 1950s.It can be
synthesized from N-isopropylacrylamide which is commercially available. It is synthesized via
free radical polymerization and is readily functionalized making it useful in a variety of
applications
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 9
3.6 pHEMA[Poly 2-hydroxyethyl methacrylate]
It is a polymer that forms a hydrogel in water. Poly (hydroxyethyl methacrylate). It was invented
by Drahoslav Lim and Otto Wichterle for biological use. Together they succeeded in preparing a
cross-linking gel which absorbed up to 40% of water, exhibited suitable mechanical properties
and was transparent. They patented this material in 1953.
3.7 Ppy [Polypyrrole]
It is a type of organic polymer formed by polymerization of pyrrole. Polypyrroles are conductin
polymers, related members being polythiophene, polyaniline, and polyacetylene. The Nobel
Prize in Chemistry was awarded in 2000 for work on conductive polymers including polypyrrole.
The first examples of polypyrroles were reported in 1963 by Weiss and coworkers.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 10
3.8 PAMAM [Poly (amidoamine)]
It is a class of dendrimer which is made of repetitively branched subunits of amide and amine
functionality. PAMAM dendrimers, sometimes referred to by the trade name Starburst, have
been extensively studied since their synthesis in 1985, and represent the most well-characterized
dendrimer family as well as the first to be commercialized. Like other dendrimers, PAMAMs
have a sphere-like shape overall, and are typified by an internal molecular architecture consisting
of tree-like branching, with each outward “layer”, or generation, containing exponentially more
branching points.
4.0 RESPONSIVE POLYMERS FOR DRUG DELIVERY
Environmentally-responsive polymers, or smart polymers, are a class of materials comprised of a
large variety of linear and branched (co)polymers or crosslinked polymer networks. A hallmark
of responsive polymers is their ability to undergo a dramatic physical or chemical change in
response to an external stimulus. Temperature and pH changes are commonly used to trigger
behavioral changes, but other stimuli, such as ultrasound, ionic strength, redox potential,
electromagnetic radiation, and chemical or biochemical agents, can be used. These stimuli can be
subsumed into discrete classifications of physical or chemical nature. Physical stimuli (i.e.,
temperature, ultrasound, light, and magnetic and electrical fields) directly modulate the energy
level of the polymer/solvent system and induce a polymerresponse at some critical energy level.
Chemical stimuli (i.e., pH, redox potential, ionic strength, and chemical agents) induce a
response by altering molecular interactions between polymer and solvent (adjusting
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 11
hydrophobic/hydrophilic balance) or between polymer chains (influencing crosslink or backbone
integrity, proclivity for hydrophobic association, or electrostatic repulsion). Types of behavioral
change can include transitions in solubility, hydrophilic-hydrophobic balance, and conformation.
These changes are manifested in many ways, such as the coil-globule transition of polymer
chains, swelling/deswelling of covalently crosslinked hydrogels, sol-gel transition of physically
crosslinked hydrogels , and self-assembly of amphiphilic polymers. The aim of this section is to
review recent developments in temperature and pH-responsive polymers and highlight the
emerging area of redox-responsive polymers for drug delivery systems.
4.1 CONVENTIONAL USE OF POLYMERS IN DRUG DELIVERY
Conventional drug delivery systems use doses of drugs in form of capsules, tablets which are
formed by compression, coating and encapsulation of bioactive drug molecules. Polymers play a
versatile role in such conventional formulations; they serve as binding agents in capsules, film
coating agents in tablets and viscosity enhancers in emulsions and suspensions. Some of the
polymers given along with bioactive drug molecules include cellulose derivatives, poly (N-vinyl
pyrrolidone) and poly (ethylene glycol) PEG.
4.2 POLYMERS IN NOVEL DRUG DELIVERY SYSTEMS
Chemical engineers, pharmacologists and scientists are using polymers for developing controlled
drug release systems and sustained release formulations. Novel drug delivery systems include
micelles, dendrimers, liposomes, polymeric nanoparticles, cell ghosts, microcapsules and
lipoproteins. Recent advancements in polymer based encapsulations and controlled drug release
systems help in regulating drug administration by preventing under or overdosing. These
advanced systems play a promising role in improving bioavailability, minimizing side effects
and other types of inconveniences caused to the patients. Studies need to be performed in the
areas of surface and bulk properties of polymers as these properties govern their utilization
various applications. Role of polymers in drug delivery will grow steeply in future to handle
various unsolved issues. These issues may include site specific drug delivery in subcellular
organelles, harnessing chemical, physical and biological properties efficiently to optimize drug
administrations. Nano composites have shown to penetrate deep blood brain barriers Through
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 12
this paper we emphasize on the role of polymers in existing and novel drug delivery systems
both as formulations and in devices, their advantages and limitations.
Advantages:
1. Polymers used in colloidal drug carrier systems, consisting of small particles, show great
advantage in drug delivery systems because of optimized drug loading and releasing property.
2. A polymer (natural or synthetic) is aggregated with a drug in controlled drug delivery and
hence it gives a effective and controlled dose of dug avoiding overdose.
3. The degradable polymers are ruptured into biologically suitable molecules that are assimilated
and discarded from the body through normal route.
4. Reservoir based polymers is advantageous in various ways like it increase the solubility of
incompetently soluble drugs and it lowers the antagonistic side effects of drugs.
5. Magneto-optical polymer coated and targeted nanoparticles are multimodal (optical and MRI
detection) while Quantum Dots are only optically detectable.
6. Some Quantum dots contain Cd which is known to be toxic to humans. Magneto/optical
nanoparticles whether polymer coated or targeted are composed of iron oxides/polymers which
are known to be safe, therefore have great future.
7. Dextrans is the common polymer used for coating of iron oxide (plasma expander and affinity
for iron) and are used for treatment of iron anaemias since 1960 and is still in operation.
8. In controlled release, some of the polymers like polyurethanes for elasticity, polysiloxanes for
insulating ability are used for their intended non-biological physical properties.
9. Current polymers like Poly 2-hydroxy ethyl methacrylate, polyvinyl alcohol, Polyethylene
glycol are used because of their inert characteristics and also they are free of leachable impurities
10. In Biodegradable polymers, the system is biocompatible and it will not show dose leaving
behind at any time and the polymer will keep its properties until after exhaustion of the drug.
11. In hydrogels like drug delivery systems, the properties of polymer materials like PEG,(the
easy polymer used to design hydrogels), can be managed to enhance features like size of the
pore, which is used to manage rate of diffusion of the conveyer drugs. PEGylation was
considered to minister many diseases like hepatits B and C, neutropaenia connected with cancer
chemotherapy (PEG-GCSF) 28 and various types of cancers [PEG] glutaminase merged with a
glutamine anti-metabolite 6-diazo-5-oxo-norleucine (DON].
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 13
12. Polymers span from their use as films or binders covering agents in tablets to flow managing
agent in liquids or emulsions for improving drug security and to alter the delivering
characteristics. Micelles due to its smaller size have a small circulation time in the body. Hence,
it results in an advantage of entering in the tumour cells easily, because of the EPR effect.
13. Large importance of polymers in drug delivery has been noticed because they give a
distinctive property which so far is not achieved by any of the materials.
14. Polymers are preferable in the fact that they habitually show a pharmacokinetic profile as
contrast to small-scale molecule drug with lengthy circulation time and they also have the ability
for tissue targeting.
15. Gold nanoparticles are easy to prepare, good capability of co existence, and their capacity to
attach with other biomolecules without changing their properties.
16. Biggest benefit of utilizing polymers in drug delivery is their control (manipulation) on their
properties (e.g. linkers and molecular weight) to modify to the need of drug delivery systems.
Difficulties and challenges
1. Difficult to scale the process up and production in high amounts is expensive as microspheres
are batch operations inherently [9].
2. It is possible to reproduce the distribution of size of the microsphere particles but the result is
not uniform generally and the standard deviation that we get is equal to half of the average size.
This is quite common. The distribution of the size should be as narrow as possible since the rate
at which the drug will be released as well as syringability depends on the size of the sphere
directly.
3. With the presence of organic solvents and aqueous-organic interfaces on drugs that are
encapsulated leads to adverse effects like eliminating the bioactivity of microspheres.
4. It is not an easy task to remove the organic solvents totally as mostly they are toxic and there
should be a regulation on the concentration of residual solvents in the microsphere.
5. A crucial limitation in the development of biodegradable polymer microspheres for controlled-
release drug delivery applications is the difficulty of specifically designing systems that exhibit
precisely controlled release rates.
6. Core-shell microparticles are significantly more difficult to manufacture than solid
microspheres.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 14
7. Handling and fabricating the microspehre’s architecture is not easy as its shell and core must
be immiscible.
8. Hydrogels have an ability to rapidly swell with water which may lead to faster release of the
loaded drug than desired followed by the degradation of the polymer [10]. There is a period of
release of hours to days for hydrophilic drugs that are delivered usinghydrogel systems and it is
considered to be much lesser than hydrophobic polymers based delivery systems like
microspheres or nanospheres.
9. There is a probability of controllable drug administration through the electrical stimulation of
conducting polymers. One of the examples of such a polymer is polyprrole (Ppy) [11]. But they
are not used generally as they have limitations related to the choice of dopant and molecular
weight of the delivered drug.
10. A hindrance to oral administration of some classes of drugs, mainly peptides and proteins is
caused due to hepatic first-pass metabolism [12] and degradation by enzymes within the
gastrointestinal tract.
11. There are limitations of the mucosal surface for drug delivery as well. The first limitation
being the low flux associated with mucosal delivery and the second as well as a major limitation
of the trans mucosal route of administration is at the site of absorption due to lack of dosage form
retention.
12. The conventional chemotherapeutic agents (using Nano scale polymers as carriers) that we
are aware of work by destroying the cells that rapidly divide. This leads to the damage of normal
healthy cells that divide rapidly such as cells in the macrophages, bone marrow, digestive tract,
and hair follicles due to chemotherapy.
13. There are some side effects in many chemotherapeutic agents that includes mucositis (lining
of the digestive tract affected by inflammation), loss of hair (alopecia), myelosuppression (white
blood cells production is reduced leading to immunosuppression),dysfunction of the organ, and
even anemia or thrombocytopenia . These side effects lead to some difficulties like they impose
dose reduction, treatment delay, or the given therapy is not continuous.
14. The cell division may be efficiently stopped near the center in solid tumor cells because of
which chemotherapeutic agents become insensitive to chemotherapy.
15. Most of the times chemotherapeutic agents cannot penetrate and reach the core of solid
tumors because of which they fail to kill the cancerous cells.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 15
16. Most of the traditional chemotherapeutic agents often get excreted from the circulation being
engulfed by macrophages and therefore they remain in the circulation for a very short time and
cannot interact with the cancerous cells that lead to ineffectiveness of the chemotherapy.
17. Collagen has a limitation that it causes immunogenic responses in some patients therefore is
not fit for use. It has a variant, atelocollagen. Atelocollagen preparation involves removal of the
telopeptide from collagen. It has also been used for decrease in the potential immunogenicity.
Collagen also has a poor mechanical strength and it cannot easily develop reproducible release
rates.
18. Gelatin is cross-linked with glutaraldehyde while preparing the drug delivery system. This
binds to and inactivates some protein drugs
5.0 PHARMACOLOGICAL CONSIDERATIONS IN DRUG DELIVERY
The central objective of a delivery system is to release therapeutics at the desired anatomical
site and to maintain the drug concentration within a therapeutic band for a desired duration.
Whether a drug is absorbed orally, parenterally, or by other means, such as inhalation or
transdermal patches, bioavailability in the bloodstream allows for distribution to virtually all
bodily tissues. Once in blood, drugs disseminate to all or most tissues by crossing endothelial
barriers or by draining though endothelial gaps in tissues with “leaky” vasculature. Additionally,
active targeting mechanisms may be employed by the polymer carrier, a polymer-drug conjugate,
or the drug itself to disproportionally partition itself into the tissue of interest.
6.0 PHYSIOLOGY OF ORAL DELIVERY
Oral formulations represent the most common platform for drug delivery. In conventional
pharmaceutical formulations, such as those employing tablets and capsules, delivery of relatively
small organic molecules via the gastrointestinal (GI) tract occurs by means of passive absorption
down a concentration gradient on the intestinal surfaces as determined by three primary factors:
extent of ionization, molecular weight (MW), and oil/water partition coefficient of the drug . Just
as in the absorption of nutrients and ions, drugs generally pass through several physical barriers
during transcytosis before entering intestinal capillaries or central lacteals.The boundaries,
beginning with the lumen of the intestine, are the mucous layer, brush border (microvilli),
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 16
epithelial apical membrane, cytoplasm, basal membrane, and basement membrane, before
entering the lamina propria, where substances can either enter capillaries by diffusing through
endothelial cells or pass into the central lacteal for passage into the lymphatic system, thereby
avoiding first-pass metabolism. Except for extremely large molecules or molecules that partition
heavily into chylomicrons, the vast majority of absorbed substances take the capillary exit from
the intestine owing to the substantial perfusion of blood vessels. It is important to emphasize that
effective release of a therapeutic agent in the vicinity of the mucous layer does not imply
sufficient bioavailability. Significant fractions of a drug that diffuses into the mucous membranes
may be effluxed back into the intestinal lumen, metabolized in the intestinal mucosa, or removed
by the hepatic portal system during firstpass metabolism.
7.0 PHYSIOLOGY OF PARENTERAL DELIVERY
Many therapeutic agents, such as proteins, lack the stability or absorption characteristics
necessary for absorption in the GI tract. These and agents with very narrow therapeutic windows
must be administered parenterally. Parenteral delivery bypasses the GI tract by direct injection,
usually intravenously or interstitially, and is far more predictable and generally more rapid than
oral delivery. Intravenous injection results in immediate drug availability, which is advantageous
in many cases, but it also generally results in shorter drug circulation owing to rapid access to
excretory mechanisms, and it can make overdoses nearly impossible to counteract. Drugs and
polymer carriers for intravenous delivery must generally be soluble in aqueous environments.
With subcutaneous and intramuscular routes, a drug bolus is temporarily implanted by injection
into an interstitial environment and subsequently cleared from the site by absorption into the
vasculature or drainage into the lymphatic system. This mechanism allows for slower absorption
of the drug and may be used for oily substances. MW determines whether an injection site will
be cleared by the tissue capillaries or lymphatics. As in the central lacteals of the intestine,
substances with higher MWs (or greater hydrodynamic diameters) enter lymphatic capillaries
and subsequently systemic circulation by drainage at the thoracic duct. Because tissue perfusion
is substantial, absorption vastly dominates lymphatic draining with molecules of less than 5 kDa.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 17
8.0 POLYMER THERAPEUTICS FOR DRUG DELIVERY
Polymer therapeutics is a term used to describe an increasingly important area of
biopaharmaceutics in which a linear or branched polymer chain behaves either as the bioactive (a
polymeric drug) or, more commonly, as the inert carrier to which a therapeutic is covalently
linked, as in the case of polymer-drug conjugates, polymer-protein conjugates, polymeric
micelles, and multicomponent polyplexes. Conjugation of the therapeutic to the polymer
improves the pharmacokinetic and pharmacodynamic properties of biopharmaceuticals through a
variety of measures, including increased plasma half-life (which improves patient compliance
because less frequent doses are required), protection of the therapeutic from proteolytic enzymes,
reduction in immmunogenicity, enhanced stability of proteins, enhanced solubility of low MW
drugs, and the potential for targeted deliveryThe majority of polymer conjugates are designed as
anticancer therapeutics, although other diseases have also been targeted, including rheumatoid
arthritis, diabetes, hepatitis B and C, and ischemia (85). The popularity of conjugates for
anticancer agents is a result of a passive tumor targeting phenomenon first coined by Matsumura
& Maeda (86) as the enhanced permeation and retention (EPR) effect. It has been shown that
the tumor concentration of anticancer therapeutics can increase up to 70-fold as a part of
circulating macromolecular systems such as polymer conjugates (82). However, recent studies
have shown that tumor targeting may not be able to be achieved exclusively by the EPR effect
owing to difficulties in reaching cancer cells deep inside malignant tissues (87), which
underscores the need for synergistic passive and active targeting strategies. Since the advent of
controlled release polymer drug delivery systems (DDS), the polymer therapeutics field has
exploded as the focus has shifted toward strategies that facilitate targeted release, especially for
anticancer drugs, which often have severe negative side effects.
For a polymer-drug conjugate to be both practical and effective, several features are desired: (a)
nontoxic and nonimmunogenic polymer carrier, (b) MW high enough to ensure long circulation
times, but <40 kDa for nonbiodegradable polymers to ensure renal elimination following drug
release [N-(2- hydroxypropyl)methacrylamide (HPMA) has an optimal MW of ~30 kDa (82)],
(c) adequate loading/carrying capacity in relation to the potency of the drug [PEG is not an ideal
carrier as it has only two reactive groups, which leads to a low drug payload, (d) linker must be
stable during transport but easily cleaved for optimum delivery upon arrival at target (frequently
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 18
achieved using a Glycine-Phenylalinine-Leucine-Glycine, or GFLG, peptide linkage), and (e) the
ability to target desired tissue by active and/or passive means The traditional approach to
synthesizing polymer-protein conjugates involves the postpolymerization modification of the
polymeric carrier, usually PEG, with proteinreactive end groups that facilitate binding between
its own pendant groups and those of the amino acids in the protein. There are three general
requirements for an effective polymerprotein conjugate system: a polymer with a single reactive
group at only one terminal end (to prevent protein crosslinking), a nontoxic/immunogenic linker
(including intermediate byproducts), and a method that will yield site-specific conjugation. The
two main types of polymers are amine- and thiol-reactive polymers that target lysine and
cysteine side chains, respectively. Thiol-reactive polymers have been used more recently in an
effort to create site-specific conjugates because cysteines are not as common as lysine.
Postpolymerization techniques typically employed to add thiol-reactive end groups include
the use of vinyl sulfone, maleimide, iodoacetamide, and activated disulfide end groups. In
addition, several new approaches have been investigated to circumvent postpolymerization
modifications and protein-polymer coupling reactions. There has been a strong impetus recently
for these techniques, which enable the synthesis of the polymer directly from protein-reactive
initiators, owing to the advent of living/controlled polymerization methodologies, such as RAFT
and ATRP, as they are straightforward, less time intensive, and almost guarantee that each
polymer chain contains only one reactive end-group.
9.0 POLYMER-DRUG CONJUGATES
One of the most commonly studied areas of polymer therapeutics is polymer-drug conjugates in
which the low MW therapeutic and polymeric carrier are most often an anticancer agent and
HPMA copolymer, respectively. This area was born from a landmark study by Ringsdorf in
1975 and then further pioneered in the 1980s by Duncan & Kopecek, who designed the first
targeted synthetic polymer-anticancer conjugates to progress to clinical trials. This work was
comprehensively reviewed recently . In contrast to free drugs, which usually distribute randomly
throughout the body and thus exert deleterious side effects, attachment of the therapeutic to
polymer carriers limits cellular uptake to endocytosis, extends circulation times to several hours,
and facilitates passive targeting of tumors via the EPR effect. Angiogenesis inhibitors, such as
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 19
TNP-470 [O-(chloracetyl-carbomoyl) fumagillol] are currently receiving increased interest as
anticancer drugs. In a landmark paper describing the first polymer-antiangiogenic conjugate,
Satchi-Fainaro et al.) synthesized a conjugate of HPMA and TNP-470 that was covalently linked
with GFLG via an enzymatically degradable bond, ethylenediamine. The tetrapeptide linker was
designed to allow intralysosomal release of the therapeutic by cleaving the bond when in the
presence of lysosomal cysteine proteases such as cathepsin B, levels of which are elevated in
many tumor endothelial cells. In vivo studies not only demonstrated that the conjugate
selectively accumulated in tumor vessels via the EPR effect, but also enhanced and prolonged
the activity of TNP-470 without the neurotoxicity previously seen in animal studies
conductedusing only the antiangiogenic drug, likely because the size of the conjugate prevented
it from crossing the blood-brain barrier. This HPMA copolymer-TNP-470 conjugate is currently
in preclinical development under the name caplostatin by SynDevRx and has since
been the focus of additional studies.
Novel polymeric architectures, such as dendrimer, branched, grafted, and star polymers, are
now being explored as conjugate carriers of the future owing to advances in polymer chemistry.
In an elegant report, paclitaxil, a common chemotherapeutic with low solubility, was covalently
conjugated with linear bis(PEG) and dendritic polyamidoamine (PAMAM) G4 to determine the
influence of the architecture of the polymeric carrier on the efficacy of the anticancer DDS (102).
Both PAMAM and PEG increased the solubility of paclitaxil in relation to the free drug (0.3 mg
ml−1); however, solubility was improved further with the dendrimer (3.2 versus 2.5 mg ml−1).
Confocal microscopy analysis of FITC (fluorescein isothiocyanate) labeled samples showed that
both conjugates distributed in a more homogeneous and uniform manner than the free drug. In
vitro cytotoxicity studies of A2780 human ovarian cancer cells demonstrated that although the
PEG-based conjugate reduced the activity of the drug by 25-fold, the PAMAM-G4 dendrimer
conjugate increased the efficacy of paclitaxil by more than 10 times compared with its free state.
This study suggests that dendrimers are promising vehicles for intracellular delivery of poorly
soluble drugs.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 20
10. APPLICATION SCOPES OF POLYMERS IN DRUG DELIVEY SYSTEM
Polymers are playing important role in pharmaceuticals. They are used as binders in tablet,
increases solubility of poorly soluble drugs, used as film coatings on drugs to disguise their taste
and enhances their stability etc. Some polymers which are used in drugs are discussed below.
10.1 Biodegradable Polymers
Biodegradable polymers have either hydrolytically or proteolytically labile bond in their
backbone to make it chemically degradable . At present two types of biodegradable polymers
exists: natural polymers and synthetic polymers. Collagen and gelatin are two natural
biodegradable polymers that are mostly used in drugs
Collagens are biocompatible, non-toxic, can be easily isolated and purified in large quantities.
Gelatin is a thermoreversible polymer. Gelatin is easily available, have low antigen profile and
have low binding affinity to drug molecules. All these properties make it suitable for drug
delivery. Gelatin is cross-linked with glutaraldehyde to prepare it for drug delivery system.
Synthetic biodegradable polymers are also present that include PLA, PLGA, PGA,
poly(phosphazenes), poly(caprolactone), poly(anhydride), poly(phosphoesters),
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 21
poly(cyanoacrylates), poly(acrylic acid), poly(amides), poly(ortho esters), polyethylene glycol,
and polyvinyl alcohol and poly (isobutylcynoacrylate), poly(ethylene oxide), and
poly(paradioxane). Among these, PLGA, the copolymer of PLA and PGA are mostly used
polymers in drug delivery. Large numbers of biodegradable synthetic polymers rely on the
hydrolytic cleavage of ester bonds.
• Polyethylene glycol: Polyethylene glycol is a hydrophilic polymer. Some features like low
toxicity, lack of immunogenicity, antigenicity and excellent biocompatibility make it preffered
polymer. Its hydrophilic nature provides the protection to protein from any immune response.
• Polyesters: They have esters bond in the main chain. Due to their biocompatible and
biodegradablefeature, PLA, PGA and their copolymer PLGA and poly (caprolactone) have been
extensively used.
• Polyanhydrides: Polyanhydrides are biocompatible and bioabsorbable materials. They can be
easily removed from the body because they can be degraded into their diacid counter parts in
vivo.
• Polyamides: They contain the repeated unit of amide group and are hydrophilic in nature. Due
to the presence of amide groups and hydrogen bonds, they have good mechanical properties and
show high polar behaviour. They are used to deliver low molecular weight drugs.
• Polyorthoesters: A number of studies have been done on the use of polyorthoesters as
encapsulating material for various drugs.
• Polyaprolctone: PCL have been taken into consideration to be used as implantable biomaterial
because it has ester linkage that can be hydrolysed in physiological conditions. It can also be
used for preparation of long term implantable devices because it degrades very slowly.
10.2 The Role of Bioabsorbable Polymers
For many new drug delivery systems, bioabsorbable polymers make the magic possible.
Bioabsorbable polymers like hydrogels, polylactic and polyglycolic acid and their copolymers,
polyurethanes and others can be used to create the delivery component of the system. Whether
the drug delivery system relies on a biodegradable implant to deliver medicine subcutaneously or
deep within the body, biodegradable polymers provide a safe framework for delivering medicine
without harm. And because they ultimately degrade and absorb in the human body,
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 22
bioabsorbable polymers eliminate the need to remove the drug delivery system once the
medication has been released. Researchers continue to develop new drug delivery systems to
better meet either or both objectives — targeting or timing — for a variety of medications to
treat a wide range of diseases. They’re even beginning to explore the idea of drug delivery
systems that will be able to diagnose and treat diseases in a single step — and that will be truly
amazing!
10.3 Non-Biodegradable Polymers
Non-biodegradable polymers are commonly used in diffusion-controlled system. Due to non
biodegradable polymers, there is no initial burst release in diffusion-controlled systems. The
permeability and thickness of the polymer, the solubility and the release area of the drug
determines the release kinetics of the drug form the diffusion controlled system. Silicone, cross-
linked Polyvinyl Alcohol, and Ethyl Vinyl Acetate are mostly used in drug formulations.
Silicones are used as permeable or impermeable material. The permeability or the
impermeability of the silicone material is decided by the thickness and the grade used. EVA is
impermeable to many drugs, thus, commonly used as a membrane to surround the drug core.
There is reduction in the release area due to EVA membrane, thus reduces the drug release rate.
PVA is used as controlled elution membrane in the release area because they are permeable to
various lipophilic drugs. Alteration in the thickness layer helps in achieving the desired release
kinetics
10.4 Smart Polymers
They are high performance polymers which change according to the environment they are
residing in. Even a small change in the environment can bring large changes in the polymer’s
properties. They can change the conformation, adhesiveness and water retention properties in
response to pH change. They are used for production of hydrogels and other materials. These
properties of smart polymers make them suitable for utilization in drug formulations. Some smart
polymer are formed by the cross linking of the pH sensitive smart polymeric chains. The
polymer composition, the nature of the ionizable groups, the hydrophilicity of the polymer
backbone and the cross linking density decide the behaviour of the smart polymers. The cross
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 23
linking density affects the permeability of the solute inversely, the higher the cross linking
density, the lower the permeability. Alginate gel beads are co-precipitated with a biologically
active agent to form a sustained release gels. This gives the advantage of high loading of drugs
while achieving better protein stability. LCST is a polymer, which have been tested in
controlling drug delivery matrices. Copolymerisation of the NIPAAm with alkyl methacrylates
maintains the temperature sensitivity because it increases its mechanical strength. There is
reduction in the transportation. of the bioactive molecules out of the polymers by surrounding the
LCST with a thick layer of poly NIPAAm polymer.
10.5 Gels
These are hydrophilic polymers and have linear structures used in topical drug delivery. Linear
structure is formed by covalent bonding between monomer units such as amides, ester,
orthoesters, and glycosidic bonds. Topical polymers are mostly prepared by organic polymers
such as carbomers. They are prepared by natural or synthetic polymers. Polymers which are used
in its preparation include the natural gums tragacanth, pectin, agar, alginic acid and carrageenan;
semi synthetic materials such as hydroxyethyl cellulose, methylcellulose, carboxymethyl
cellulose and hydroxypropylmethyl cellulose; and the synthetic polymer, carbopol.
10.6 Polymers in Mucoadhesive Delivery
For developing the liquid ocular delivery system, the hydrophilic polymers should be used
because they can be used as viscosity modifying or enhancing agent. Polysaccharides are
frequently used in the ocular mucoadhesive delivery system. Its derivatives are hyaluronic acid,
methyl cellulose, hydroxypropyl methylcellulose, gellan gum, chitosan, xanthan gum,
carrageenan and guargum. Chitosan is a polysaccharide polymer. Its biodegradable, low toxic
and biocompatible properties make it suitable for use in drug formulations. Some other used
nonionic polymers for mucoadhesive properties are poloxamer, polyvinylpyrrolidone and
polyvinyl alcohol.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 24
10.7 Polymer Drug Conjugate Used for Cancer Treatment
There is a physiological labile bond between the drug and the polymer. Paclitaxil [poly(L-
glutamic acid)] is used as a chemotherapeutic agent to treat ovarian, breast and lung cancer. It
has been studied in phase III trials. It has an ester linkage between its 2’hydroxyl group and the
carboxylic acid of poly(L-glutamic acid). PEG and PAMAM are covalently conjugated with a
chemotherapeutic drug Paclitaxil to increase its efficiency as an anticancer drug delivery system.
Both increase its solubility. After an in-vitro study on human ovarian cancer cell it was found
that PEG based conjugate reduced the activity of the paclitaxil by 25-fold and the PAMAM-G4
dendrimer increases its efficiency by more than 10 times. 5-flourouracil drug causes cell death.
Nagarwal et al. Synthesized an encapsulating agent nanospheres of PLA polymer for 5-
flurouracil.
11. CONCLUSION
Polymers are quite advantageous in drug delivery. This leads to enhanced drug delivery with
better pharmacokinetics handling all safety parameters. Mechanism and time taken for drug
delivery system for a particular tissue or cellular compartment still needs to be studied. In order
to design the most suitable polymer therapeutic many queries including gene delivery p need to
be answered as well. This leads to the synthesis of the smart polymer. In targeted drug delivery
systems the site of action should be clearly known. Biocompatible polymers provide better
control over the toxicity of the samples; this leads to more reliable drug delivery and ensures
patient’s safety. Novel strategies like dendrimer synthesis and controlled polymerisation
techniques are now well.
Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 25
REFERENCES:
1. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-
Aldrich/Method/1/polymeric-drug-delivery-techniques-web.pdf
2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438887/
3. http://www.polymerjournals.com/pdfdownload/919502.pdf
4. https://link.springer.com/chapter/10.1007%2F978-1-4899-2245-8_3
5. https://www.researchgate.net/publication/11871203_Polymers_in_drug_delivery
6. http://www.sciencedirect.com/science/article/pii/0168365994901341
7. http://onlinelibrary.wiley.com/doi/10.1002/pola.28252/full
8. https://www.omicsonline.org/open-access/synthetic-biodegradable-polymers-used-in-
controlled-drug-delivery-system-2167-065X.1000121.php?aid=31480
9. http://pubs.acs.org/doi/abs/10.1021/ar00034a004
10. https://www.sciencedirect.com/science/article/pii/0168365994901341
11. https://www.sciencedirect.com/science/article/pii/S2211383514000252
12. https://www.informationvine.com/index?qsrc=999&qo=semQuery&ad=semD&o=603902&l
=sem&askid=c3b28dd8-709d-42b5-bdb0-4cca3aab4bce-0
iv_gsb&q=polymer%20material%20science&dqi=&am=broad&an=google_s
13. http://ansfoundation.org/?gclid=EAIaIQobChMI4ofKw9eQ2AIVTgwrCh3vrwIFEAAYAiA
AEgJTXfD_BwE
14. https://www.nanoshel.com/wp-content/uploads/2014/04/Polymers-and-Drug-Delivery-
Systems.pdf
15. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8
&ved=0ahUKEwik6rPx15DYAhWDu48KHUmGBjwQFghqMAc&url=http%3A%2F%2Fjo
urnals.sagepub.com%2Fdoi%2Ffull%2F10.1177%2F2211068211428189&usg=AOvVaw0Q
zeFp4G9oe6r5C_1bpxBA

More Related Content

What's hot

Targeted drug delivery systems
Targeted drug delivery systemsTargeted drug delivery systems
Targeted drug delivery systemsDr Subodh Satheesh
 
Rationale of controlled drug delivery
Rationale of controlled drug deliveryRationale of controlled drug delivery
Rationale of controlled drug deliveryAmeena Kadar
 
Microparticle : formulation and evaluation
Microparticle : formulation and evaluation Microparticle : formulation and evaluation
Microparticle : formulation and evaluation ShubhamShete9
 
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok Shahare
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok ShaharePharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok Shahare
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok ShahareTrilok Shahare
 
Polymers of Controlled Drug Delivery System
Polymers of Controlled Drug Delivery SystemPolymers of Controlled Drug Delivery System
Polymers of Controlled Drug Delivery SystemNabeela Moosakutty
 
Implantable Drug Delivery System
Implantable Drug Delivery SystemImplantable Drug Delivery System
Implantable Drug Delivery Systemparesh bharodiya
 
Single shot vaccines Naveen Balaji
Single shot vaccines Naveen BalajiSingle shot vaccines Naveen Balaji
Single shot vaccines Naveen BalajiNaveen Balaji
 
microspheres types , preparation and evaluation
microspheres types , preparation and evaluationmicrospheres types , preparation and evaluation
microspheres types , preparation and evaluationSowjanya
 
P h activated drug delivery systems
P h  activated drug delivery systemsP h  activated drug delivery systems
P h activated drug delivery systemsMehak AggarwAl
 
Protein and peptide drug delivery system
Protein and peptide drug delivery systemProtein and peptide drug delivery system
Protein and peptide drug delivery systemSagar Savale
 
Application Of Polymer In Controlled Release Formulation
Application Of Polymer In Controlled Release FormulationApplication Of Polymer In Controlled Release Formulation
Application Of Polymer In Controlled Release FormulationAnindya Jana
 
Pharmaceutical polymers
Pharmaceutical polymersPharmaceutical polymers
Pharmaceutical polymersProtik Biswas
 

What's hot (20)

Targeted drug delivery systems
Targeted drug delivery systemsTargeted drug delivery systems
Targeted drug delivery systems
 
Microspheres
MicrospheresMicrospheres
Microspheres
 
Rationale of controlled drug delivery
Rationale of controlled drug deliveryRationale of controlled drug delivery
Rationale of controlled drug delivery
 
Targeted drug delivery system
Targeted drug delivery systemTargeted drug delivery system
Targeted drug delivery system
 
Microparticle : formulation and evaluation
Microparticle : formulation and evaluation Microparticle : formulation and evaluation
Microparticle : formulation and evaluation
 
Niosome
Niosome Niosome
Niosome
 
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok Shahare
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok ShaharePharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok Shahare
Pharmacokinetics And Pharmacodynamic of Biotechnology Drugs - Trilok Shahare
 
Tumor targeting drug delivery
Tumor targeting drug deliveryTumor targeting drug delivery
Tumor targeting drug delivery
 
Liposome preparation and evaluation
Liposome preparation and evaluationLiposome preparation and evaluation
Liposome preparation and evaluation
 
Polymers of Controlled Drug Delivery System
Polymers of Controlled Drug Delivery SystemPolymers of Controlled Drug Delivery System
Polymers of Controlled Drug Delivery System
 
Implantable Drug Delivery System
Implantable Drug Delivery SystemImplantable Drug Delivery System
Implantable Drug Delivery System
 
Single shot vaccines Naveen Balaji
Single shot vaccines Naveen BalajiSingle shot vaccines Naveen Balaji
Single shot vaccines Naveen Balaji
 
microspheres types , preparation and evaluation
microspheres types , preparation and evaluationmicrospheres types , preparation and evaluation
microspheres types , preparation and evaluation
 
Liposomes
LiposomesLiposomes
Liposomes
 
P h activated drug delivery systems
P h  activated drug delivery systemsP h  activated drug delivery systems
P h activated drug delivery systems
 
Protein and peptide drug delivery system
Protein and peptide drug delivery systemProtein and peptide drug delivery system
Protein and peptide drug delivery system
 
Targeted drug delivery system
Targeted drug delivery systemTargeted drug delivery system
Targeted drug delivery system
 
Application Of Polymer In Controlled Release Formulation
Application Of Polymer In Controlled Release FormulationApplication Of Polymer In Controlled Release Formulation
Application Of Polymer In Controlled Release Formulation
 
Pharmaceutical polymers
Pharmaceutical polymersPharmaceutical polymers
Pharmaceutical polymers
 
Niosomes
NiosomesNiosomes
Niosomes
 

Similar to Polymer science in drug delivery system

SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.
SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.
SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.JayeshRajput7
 
Polymers 10-00031
Polymers 10-00031Polymers 10-00031
Polymers 10-00031CubixQubi
 
POLYMER'S AS A ADVANCE EXCIPIENTS.pptx
POLYMER'S AS A ADVANCE EXCIPIENTS.pptxPOLYMER'S AS A ADVANCE EXCIPIENTS.pptx
POLYMER'S AS A ADVANCE EXCIPIENTS.pptxRAHUL PAL
 
Polymers Used as Biopolymer in Product Formulations.
Polymers Used as Biopolymer in Product Formulations.Polymers Used as Biopolymer in Product Formulations.
Polymers Used as Biopolymer in Product Formulations.Prachi Pandey
 
Polymer therapeutics: an smart drug delivary system
Polymer therapeutics: an smart drug delivary systemPolymer therapeutics: an smart drug delivary system
Polymer therapeutics: an smart drug delivary systemAlok kumar Soni
 
Introduction to General Pharmacology (1).pptx
Introduction to General Pharmacology (1).pptxIntroduction to General Pharmacology (1).pptx
Introduction to General Pharmacology (1).pptxbilisabaker
 
Layer by-layer microcapsules for the delivery of lipophilic drugs
Layer by-layer microcapsules for the delivery of lipophilic drugsLayer by-layer microcapsules for the delivery of lipophilic drugs
Layer by-layer microcapsules for the delivery of lipophilic drugsAlexander Decker
 
Mini review of polysaccharide nanoparticles and drug delivery process
Mini review of polysaccharide nanoparticles and drug delivery process Mini review of polysaccharide nanoparticles and drug delivery process
Mini review of polysaccharide nanoparticles and drug delivery process AANBTJournal
 
targeted drug delivery system to respiratory system
targeted drug delivery system to respiratory systemtargeted drug delivery system to respiratory system
targeted drug delivery system to respiratory systemAnusha Golla
 
Practical consideration of protien and peptides
Practical consideration of protien and peptidesPractical consideration of protien and peptides
Practical consideration of protien and peptidesSuchandra03
 
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...SriramNagarajan17
 
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...IJERA Editor
 
Natural Polymers - Recent outcomes Vishnu Datta.M
Natural Polymers - Recent outcomes Vishnu Datta.MNatural Polymers - Recent outcomes Vishnu Datta.M
Natural Polymers - Recent outcomes Vishnu Datta.MVishnu Datta Maremanda
 
Polymers controlled delivery of therapeutic nucleic acid
Polymers controlled delivery of therapeutic nucleic acidPolymers controlled delivery of therapeutic nucleic acid
Polymers controlled delivery of therapeutic nucleic acidSivasangari Shanmugam
 

Similar to Polymer science in drug delivery system (20)

Polymers in controlled release Drug Delivery System
Polymers in controlled release Drug Delivery SystemPolymers in controlled release Drug Delivery System
Polymers in controlled release Drug Delivery System
 
Biodegradable polymers as drug carriers
Biodegradable polymers as drug carriers Biodegradable polymers as drug carriers
Biodegradable polymers as drug carriers
 
SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.
SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.
SUSTAINED RELEASE (SR) AND CONTROLLED RELEASE (CR) DRUG DELIVERY SYSTEMS.
 
Polymers 10-00031
Polymers 10-00031Polymers 10-00031
Polymers 10-00031
 
POLYMER'S AS A ADVANCE EXCIPIENTS.pptx
POLYMER'S AS A ADVANCE EXCIPIENTS.pptxPOLYMER'S AS A ADVANCE EXCIPIENTS.pptx
POLYMER'S AS A ADVANCE EXCIPIENTS.pptx
 
POLYMER.pptx
POLYMER.pptxPOLYMER.pptx
POLYMER.pptx
 
Polymers Used as Biopolymer in Product Formulations.
Polymers Used as Biopolymer in Product Formulations.Polymers Used as Biopolymer in Product Formulations.
Polymers Used as Biopolymer in Product Formulations.
 
Hydrogels
HydrogelsHydrogels
Hydrogels
 
Polymer therapeutics: an smart drug delivary system
Polymer therapeutics: an smart drug delivary systemPolymer therapeutics: an smart drug delivary system
Polymer therapeutics: an smart drug delivary system
 
Introduction to General Pharmacology (1).pptx
Introduction to General Pharmacology (1).pptxIntroduction to General Pharmacology (1).pptx
Introduction to General Pharmacology (1).pptx
 
Polymers 22
Polymers 22Polymers 22
Polymers 22
 
Layer by-layer microcapsules for the delivery of lipophilic drugs
Layer by-layer microcapsules for the delivery of lipophilic drugsLayer by-layer microcapsules for the delivery of lipophilic drugs
Layer by-layer microcapsules for the delivery of lipophilic drugs
 
Mini review of polysaccharide nanoparticles and drug delivery process
Mini review of polysaccharide nanoparticles and drug delivery process Mini review of polysaccharide nanoparticles and drug delivery process
Mini review of polysaccharide nanoparticles and drug delivery process
 
targeted drug delivery system to respiratory system
targeted drug delivery system to respiratory systemtargeted drug delivery system to respiratory system
targeted drug delivery system to respiratory system
 
Biotechnology presentation
Biotechnology presentationBiotechnology presentation
Biotechnology presentation
 
Practical consideration of protien and peptides
Practical consideration of protien and peptidesPractical consideration of protien and peptides
Practical consideration of protien and peptides
 
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...
NIOSOMES (NON IONIC SURFACTANT VESICLES) PREPARATION AND STABILITY IN BIOLOGI...
 
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...
Biocompatibility of Poly (L-Lactic Acid) Synthesized In Polymerization Unit B...
 
Natural Polymers - Recent outcomes Vishnu Datta.M
Natural Polymers - Recent outcomes Vishnu Datta.MNatural Polymers - Recent outcomes Vishnu Datta.M
Natural Polymers - Recent outcomes Vishnu Datta.M
 
Polymers controlled delivery of therapeutic nucleic acid
Polymers controlled delivery of therapeutic nucleic acidPolymers controlled delivery of therapeutic nucleic acid
Polymers controlled delivery of therapeutic nucleic acid
 

Recently uploaded

VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...Miss joya
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Deliverynehamumbai
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Servicenarwatsonia7
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Nehru place Escorts
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiNehru place Escorts
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Miss joya
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Miss joya
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...narwatsonia7
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatorenarwatsonia7
 

Recently uploaded (20)

VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
VIP Call Girls Pune Vrinda 9907093804 Short 1500 Night 6000 Best call girls S...
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on DeliveryCall Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
Call Girls Colaba Mumbai ❤️ 9920874524 👈 Cash on Delivery
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
Russian Call Girls Chennai Madhuri 9907093804 Independent Call Girls Service ...
 
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service ChennaiCall Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
Call Girls Chennai Megha 9907093804 Independent Call Girls Service Chennai
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
Russian Call Girls Chickpet - 7001305949 Booking and charges genuine rate for...
 
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service CoimbatoreCall Girl Coimbatore Prisha☎️  8250192130 Independent Escort Service Coimbatore
Call Girl Coimbatore Prisha☎️ 8250192130 Independent Escort Service Coimbatore
 
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCREscort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
Escort Service Call Girls In Sarita Vihar,, 99530°56974 Delhi NCR
 

Polymer science in drug delivery system

  • 1. Assignment on- Polymer Science: Application in Drug Delivery System Advanced Pharmaceutics (PHR-5022.1) Prepared For: Dr. Selim Reza Professor, Department of Pharmaceutical Sciences, North South University Prepared By: Md. Mominul Islam ID# 162 1405 673 NSU_Mpharm_Fall-2017
  • 2. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 2 POLYMER SCIENCE: APPLICATION IN DRUG DELIVERY SYSTEM 1. POLYMER SCIENCE Polymer science or macromolecular science is a subfield of materials science concerned with polymers, primarily synthetic polymers such as plastics and elastomers. The field of polymer science includes researchers in multiple disciplines including chemistry, physics, and engineering. Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature; pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance. Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations
  • 3. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 3 of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. The origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. 2. DRUG DELIVERY SYSTEM Drug delivery systems combine one or more traditional drug delivery methods with engineered technology. These systems create the ability to specifically target where a drug is released in the body and/or the rate at which it gets released. This ability benefits patients in multiple ways. A targeted drug delivery system can allow doctors to transport medicine to an exact location in the body — a cancerous tumor, for example — while minimizing or even eliminating systemic side effects and/or damage to tissues surrounding the treatment site. Targeted delivery can also help ensure the medicine reaches the area where it’s needed without any degradation that might occur if it has to pass through bodily systems like the digestive tract or circulatory system. This delivery method can also help bypass the body’s natural defenses that may block foreign substances — even needed medicine — from entering individual cells. The medication reaches the diseased or damaged location quickly and at maximum efficacy. Controlled release drug delivery systems are a natural evolution of the concept that’s made timed-release oral medications successful. These systems time the release of medication that may be administered in multiple ways, such as orally, by injection or implantation. This can allow physicians to maintain a specific level of medication within the patient’s body, reduce the need for repeated administrations of a medicine, optimize the efficacy of a drug, and even bypass the pitfalls of patients failing to take medicine as prescribe.
  • 4. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 4 3.0 VARIOUS POLYMERS USED IN DRUG DELIVERY 3.1 PLGA In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and
  • 5. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 5
  • 6. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 6
  • 7. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 7 3.2 PGA (Poly Glycolic Acid) Polyglycolic acid (PGA) is a biodegradable, thermoplastic polymer and the simplest linear, aliphatic polyester.It can be prepared starting from glycolic acid by means of polycondensation or ring-opening polymerization.PGA has been known since 1954 as a tough fiber-forming polymer. 3.3 Poly-L-Glutamic Acid Polyglutamic acid (PGA) is a polymer of the amino acid glutamic acid (GA). Gamma PGA is formed by bacterial fermentation
  • 8. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 8 3.4 Polylactic Acid It is a biodegradable thermoplastic aliphatic polyester derived from renewable resources, such as co r n starch (in the United States and Canada), tapioca roots, chips or starch (mostly in Asia), or sugarcane (in the rest of the world). 3.5 Pnipaam [Poly(N-Isopropylacrylamide)] It is a temperature responsive polymer that was first synthesized in the 1950s.It can be synthesized from N-isopropylacrylamide which is commercially available. It is synthesized via free radical polymerization and is readily functionalized making it useful in a variety of applications
  • 9. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 9 3.6 pHEMA[Poly 2-hydroxyethyl methacrylate] It is a polymer that forms a hydrogel in water. Poly (hydroxyethyl methacrylate). It was invented by Drahoslav Lim and Otto Wichterle for biological use. Together they succeeded in preparing a cross-linking gel which absorbed up to 40% of water, exhibited suitable mechanical properties and was transparent. They patented this material in 1953. 3.7 Ppy [Polypyrrole] It is a type of organic polymer formed by polymerization of pyrrole. Polypyrroles are conductin polymers, related members being polythiophene, polyaniline, and polyacetylene. The Nobel Prize in Chemistry was awarded in 2000 for work on conductive polymers including polypyrrole. The first examples of polypyrroles were reported in 1963 by Weiss and coworkers.
  • 10. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 10 3.8 PAMAM [Poly (amidoamine)] It is a class of dendrimer which is made of repetitively branched subunits of amide and amine functionality. PAMAM dendrimers, sometimes referred to by the trade name Starburst, have been extensively studied since their synthesis in 1985, and represent the most well-characterized dendrimer family as well as the first to be commercialized. Like other dendrimers, PAMAMs have a sphere-like shape overall, and are typified by an internal molecular architecture consisting of tree-like branching, with each outward “layer”, or generation, containing exponentially more branching points. 4.0 RESPONSIVE POLYMERS FOR DRUG DELIVERY Environmentally-responsive polymers, or smart polymers, are a class of materials comprised of a large variety of linear and branched (co)polymers or crosslinked polymer networks. A hallmark of responsive polymers is their ability to undergo a dramatic physical or chemical change in response to an external stimulus. Temperature and pH changes are commonly used to trigger behavioral changes, but other stimuli, such as ultrasound, ionic strength, redox potential, electromagnetic radiation, and chemical or biochemical agents, can be used. These stimuli can be subsumed into discrete classifications of physical or chemical nature. Physical stimuli (i.e., temperature, ultrasound, light, and magnetic and electrical fields) directly modulate the energy level of the polymer/solvent system and induce a polymerresponse at some critical energy level. Chemical stimuli (i.e., pH, redox potential, ionic strength, and chemical agents) induce a response by altering molecular interactions between polymer and solvent (adjusting
  • 11. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 11 hydrophobic/hydrophilic balance) or between polymer chains (influencing crosslink or backbone integrity, proclivity for hydrophobic association, or electrostatic repulsion). Types of behavioral change can include transitions in solubility, hydrophilic-hydrophobic balance, and conformation. These changes are manifested in many ways, such as the coil-globule transition of polymer chains, swelling/deswelling of covalently crosslinked hydrogels, sol-gel transition of physically crosslinked hydrogels , and self-assembly of amphiphilic polymers. The aim of this section is to review recent developments in temperature and pH-responsive polymers and highlight the emerging area of redox-responsive polymers for drug delivery systems. 4.1 CONVENTIONAL USE OF POLYMERS IN DRUG DELIVERY Conventional drug delivery systems use doses of drugs in form of capsules, tablets which are formed by compression, coating and encapsulation of bioactive drug molecules. Polymers play a versatile role in such conventional formulations; they serve as binding agents in capsules, film coating agents in tablets and viscosity enhancers in emulsions and suspensions. Some of the polymers given along with bioactive drug molecules include cellulose derivatives, poly (N-vinyl pyrrolidone) and poly (ethylene glycol) PEG. 4.2 POLYMERS IN NOVEL DRUG DELIVERY SYSTEMS Chemical engineers, pharmacologists and scientists are using polymers for developing controlled drug release systems and sustained release formulations. Novel drug delivery systems include micelles, dendrimers, liposomes, polymeric nanoparticles, cell ghosts, microcapsules and lipoproteins. Recent advancements in polymer based encapsulations and controlled drug release systems help in regulating drug administration by preventing under or overdosing. These advanced systems play a promising role in improving bioavailability, minimizing side effects and other types of inconveniences caused to the patients. Studies need to be performed in the areas of surface and bulk properties of polymers as these properties govern their utilization various applications. Role of polymers in drug delivery will grow steeply in future to handle various unsolved issues. These issues may include site specific drug delivery in subcellular organelles, harnessing chemical, physical and biological properties efficiently to optimize drug administrations. Nano composites have shown to penetrate deep blood brain barriers Through
  • 12. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 12 this paper we emphasize on the role of polymers in existing and novel drug delivery systems both as formulations and in devices, their advantages and limitations. Advantages: 1. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. 2. A polymer (natural or synthetic) is aggregated with a drug in controlled drug delivery and hence it gives a effective and controlled dose of dug avoiding overdose. 3. The degradable polymers are ruptured into biologically suitable molecules that are assimilated and discarded from the body through normal route. 4. Reservoir based polymers is advantageous in various ways like it increase the solubility of incompetently soluble drugs and it lowers the antagonistic side effects of drugs. 5. Magneto-optical polymer coated and targeted nanoparticles are multimodal (optical and MRI detection) while Quantum Dots are only optically detectable. 6. Some Quantum dots contain Cd which is known to be toxic to humans. Magneto/optical nanoparticles whether polymer coated or targeted are composed of iron oxides/polymers which are known to be safe, therefore have great future. 7. Dextrans is the common polymer used for coating of iron oxide (plasma expander and affinity for iron) and are used for treatment of iron anaemias since 1960 and is still in operation. 8. In controlled release, some of the polymers like polyurethanes for elasticity, polysiloxanes for insulating ability are used for their intended non-biological physical properties. 9. Current polymers like Poly 2-hydroxy ethyl methacrylate, polyvinyl alcohol, Polyethylene glycol are used because of their inert characteristics and also they are free of leachable impurities 10. In Biodegradable polymers, the system is biocompatible and it will not show dose leaving behind at any time and the polymer will keep its properties until after exhaustion of the drug. 11. In hydrogels like drug delivery systems, the properties of polymer materials like PEG,(the easy polymer used to design hydrogels), can be managed to enhance features like size of the pore, which is used to manage rate of diffusion of the conveyer drugs. PEGylation was considered to minister many diseases like hepatits B and C, neutropaenia connected with cancer chemotherapy (PEG-GCSF) 28 and various types of cancers [PEG] glutaminase merged with a glutamine anti-metabolite 6-diazo-5-oxo-norleucine (DON].
  • 13. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 13 12. Polymers span from their use as films or binders covering agents in tablets to flow managing agent in liquids or emulsions for improving drug security and to alter the delivering characteristics. Micelles due to its smaller size have a small circulation time in the body. Hence, it results in an advantage of entering in the tumour cells easily, because of the EPR effect. 13. Large importance of polymers in drug delivery has been noticed because they give a distinctive property which so far is not achieved by any of the materials. 14. Polymers are preferable in the fact that they habitually show a pharmacokinetic profile as contrast to small-scale molecule drug with lengthy circulation time and they also have the ability for tissue targeting. 15. Gold nanoparticles are easy to prepare, good capability of co existence, and their capacity to attach with other biomolecules without changing their properties. 16. Biggest benefit of utilizing polymers in drug delivery is their control (manipulation) on their properties (e.g. linkers and molecular weight) to modify to the need of drug delivery systems. Difficulties and challenges 1. Difficult to scale the process up and production in high amounts is expensive as microspheres are batch operations inherently [9]. 2. It is possible to reproduce the distribution of size of the microsphere particles but the result is not uniform generally and the standard deviation that we get is equal to half of the average size. This is quite common. The distribution of the size should be as narrow as possible since the rate at which the drug will be released as well as syringability depends on the size of the sphere directly. 3. With the presence of organic solvents and aqueous-organic interfaces on drugs that are encapsulated leads to adverse effects like eliminating the bioactivity of microspheres. 4. It is not an easy task to remove the organic solvents totally as mostly they are toxic and there should be a regulation on the concentration of residual solvents in the microsphere. 5. A crucial limitation in the development of biodegradable polymer microspheres for controlled- release drug delivery applications is the difficulty of specifically designing systems that exhibit precisely controlled release rates. 6. Core-shell microparticles are significantly more difficult to manufacture than solid microspheres.
  • 14. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 14 7. Handling and fabricating the microspehre’s architecture is not easy as its shell and core must be immiscible. 8. Hydrogels have an ability to rapidly swell with water which may lead to faster release of the loaded drug than desired followed by the degradation of the polymer [10]. There is a period of release of hours to days for hydrophilic drugs that are delivered usinghydrogel systems and it is considered to be much lesser than hydrophobic polymers based delivery systems like microspheres or nanospheres. 9. There is a probability of controllable drug administration through the electrical stimulation of conducting polymers. One of the examples of such a polymer is polyprrole (Ppy) [11]. But they are not used generally as they have limitations related to the choice of dopant and molecular weight of the delivered drug. 10. A hindrance to oral administration of some classes of drugs, mainly peptides and proteins is caused due to hepatic first-pass metabolism [12] and degradation by enzymes within the gastrointestinal tract. 11. There are limitations of the mucosal surface for drug delivery as well. The first limitation being the low flux associated with mucosal delivery and the second as well as a major limitation of the trans mucosal route of administration is at the site of absorption due to lack of dosage form retention. 12. The conventional chemotherapeutic agents (using Nano scale polymers as carriers) that we are aware of work by destroying the cells that rapidly divide. This leads to the damage of normal healthy cells that divide rapidly such as cells in the macrophages, bone marrow, digestive tract, and hair follicles due to chemotherapy. 13. There are some side effects in many chemotherapeutic agents that includes mucositis (lining of the digestive tract affected by inflammation), loss of hair (alopecia), myelosuppression (white blood cells production is reduced leading to immunosuppression),dysfunction of the organ, and even anemia or thrombocytopenia . These side effects lead to some difficulties like they impose dose reduction, treatment delay, or the given therapy is not continuous. 14. The cell division may be efficiently stopped near the center in solid tumor cells because of which chemotherapeutic agents become insensitive to chemotherapy. 15. Most of the times chemotherapeutic agents cannot penetrate and reach the core of solid tumors because of which they fail to kill the cancerous cells.
  • 15. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 15 16. Most of the traditional chemotherapeutic agents often get excreted from the circulation being engulfed by macrophages and therefore they remain in the circulation for a very short time and cannot interact with the cancerous cells that lead to ineffectiveness of the chemotherapy. 17. Collagen has a limitation that it causes immunogenic responses in some patients therefore is not fit for use. It has a variant, atelocollagen. Atelocollagen preparation involves removal of the telopeptide from collagen. It has also been used for decrease in the potential immunogenicity. Collagen also has a poor mechanical strength and it cannot easily develop reproducible release rates. 18. Gelatin is cross-linked with glutaraldehyde while preparing the drug delivery system. This binds to and inactivates some protein drugs 5.0 PHARMACOLOGICAL CONSIDERATIONS IN DRUG DELIVERY The central objective of a delivery system is to release therapeutics at the desired anatomical site and to maintain the drug concentration within a therapeutic band for a desired duration. Whether a drug is absorbed orally, parenterally, or by other means, such as inhalation or transdermal patches, bioavailability in the bloodstream allows for distribution to virtually all bodily tissues. Once in blood, drugs disseminate to all or most tissues by crossing endothelial barriers or by draining though endothelial gaps in tissues with “leaky” vasculature. Additionally, active targeting mechanisms may be employed by the polymer carrier, a polymer-drug conjugate, or the drug itself to disproportionally partition itself into the tissue of interest. 6.0 PHYSIOLOGY OF ORAL DELIVERY Oral formulations represent the most common platform for drug delivery. In conventional pharmaceutical formulations, such as those employing tablets and capsules, delivery of relatively small organic molecules via the gastrointestinal (GI) tract occurs by means of passive absorption down a concentration gradient on the intestinal surfaces as determined by three primary factors: extent of ionization, molecular weight (MW), and oil/water partition coefficient of the drug . Just as in the absorption of nutrients and ions, drugs generally pass through several physical barriers during transcytosis before entering intestinal capillaries or central lacteals.The boundaries, beginning with the lumen of the intestine, are the mucous layer, brush border (microvilli),
  • 16. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 16 epithelial apical membrane, cytoplasm, basal membrane, and basement membrane, before entering the lamina propria, where substances can either enter capillaries by diffusing through endothelial cells or pass into the central lacteal for passage into the lymphatic system, thereby avoiding first-pass metabolism. Except for extremely large molecules or molecules that partition heavily into chylomicrons, the vast majority of absorbed substances take the capillary exit from the intestine owing to the substantial perfusion of blood vessels. It is important to emphasize that effective release of a therapeutic agent in the vicinity of the mucous layer does not imply sufficient bioavailability. Significant fractions of a drug that diffuses into the mucous membranes may be effluxed back into the intestinal lumen, metabolized in the intestinal mucosa, or removed by the hepatic portal system during firstpass metabolism. 7.0 PHYSIOLOGY OF PARENTERAL DELIVERY Many therapeutic agents, such as proteins, lack the stability or absorption characteristics necessary for absorption in the GI tract. These and agents with very narrow therapeutic windows must be administered parenterally. Parenteral delivery bypasses the GI tract by direct injection, usually intravenously or interstitially, and is far more predictable and generally more rapid than oral delivery. Intravenous injection results in immediate drug availability, which is advantageous in many cases, but it also generally results in shorter drug circulation owing to rapid access to excretory mechanisms, and it can make overdoses nearly impossible to counteract. Drugs and polymer carriers for intravenous delivery must generally be soluble in aqueous environments. With subcutaneous and intramuscular routes, a drug bolus is temporarily implanted by injection into an interstitial environment and subsequently cleared from the site by absorption into the vasculature or drainage into the lymphatic system. This mechanism allows for slower absorption of the drug and may be used for oily substances. MW determines whether an injection site will be cleared by the tissue capillaries or lymphatics. As in the central lacteals of the intestine, substances with higher MWs (or greater hydrodynamic diameters) enter lymphatic capillaries and subsequently systemic circulation by drainage at the thoracic duct. Because tissue perfusion is substantial, absorption vastly dominates lymphatic draining with molecules of less than 5 kDa.
  • 17. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 17 8.0 POLYMER THERAPEUTICS FOR DRUG DELIVERY Polymer therapeutics is a term used to describe an increasingly important area of biopaharmaceutics in which a linear or branched polymer chain behaves either as the bioactive (a polymeric drug) or, more commonly, as the inert carrier to which a therapeutic is covalently linked, as in the case of polymer-drug conjugates, polymer-protein conjugates, polymeric micelles, and multicomponent polyplexes. Conjugation of the therapeutic to the polymer improves the pharmacokinetic and pharmacodynamic properties of biopharmaceuticals through a variety of measures, including increased plasma half-life (which improves patient compliance because less frequent doses are required), protection of the therapeutic from proteolytic enzymes, reduction in immmunogenicity, enhanced stability of proteins, enhanced solubility of low MW drugs, and the potential for targeted deliveryThe majority of polymer conjugates are designed as anticancer therapeutics, although other diseases have also been targeted, including rheumatoid arthritis, diabetes, hepatitis B and C, and ischemia (85). The popularity of conjugates for anticancer agents is a result of a passive tumor targeting phenomenon first coined by Matsumura & Maeda (86) as the enhanced permeation and retention (EPR) effect. It has been shown that the tumor concentration of anticancer therapeutics can increase up to 70-fold as a part of circulating macromolecular systems such as polymer conjugates (82). However, recent studies have shown that tumor targeting may not be able to be achieved exclusively by the EPR effect owing to difficulties in reaching cancer cells deep inside malignant tissues (87), which underscores the need for synergistic passive and active targeting strategies. Since the advent of controlled release polymer drug delivery systems (DDS), the polymer therapeutics field has exploded as the focus has shifted toward strategies that facilitate targeted release, especially for anticancer drugs, which often have severe negative side effects. For a polymer-drug conjugate to be both practical and effective, several features are desired: (a) nontoxic and nonimmunogenic polymer carrier, (b) MW high enough to ensure long circulation times, but <40 kDa for nonbiodegradable polymers to ensure renal elimination following drug release [N-(2- hydroxypropyl)methacrylamide (HPMA) has an optimal MW of ~30 kDa (82)], (c) adequate loading/carrying capacity in relation to the potency of the drug [PEG is not an ideal carrier as it has only two reactive groups, which leads to a low drug payload, (d) linker must be stable during transport but easily cleaved for optimum delivery upon arrival at target (frequently
  • 18. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 18 achieved using a Glycine-Phenylalinine-Leucine-Glycine, or GFLG, peptide linkage), and (e) the ability to target desired tissue by active and/or passive means The traditional approach to synthesizing polymer-protein conjugates involves the postpolymerization modification of the polymeric carrier, usually PEG, with proteinreactive end groups that facilitate binding between its own pendant groups and those of the amino acids in the protein. There are three general requirements for an effective polymerprotein conjugate system: a polymer with a single reactive group at only one terminal end (to prevent protein crosslinking), a nontoxic/immunogenic linker (including intermediate byproducts), and a method that will yield site-specific conjugation. The two main types of polymers are amine- and thiol-reactive polymers that target lysine and cysteine side chains, respectively. Thiol-reactive polymers have been used more recently in an effort to create site-specific conjugates because cysteines are not as common as lysine. Postpolymerization techniques typically employed to add thiol-reactive end groups include the use of vinyl sulfone, maleimide, iodoacetamide, and activated disulfide end groups. In addition, several new approaches have been investigated to circumvent postpolymerization modifications and protein-polymer coupling reactions. There has been a strong impetus recently for these techniques, which enable the synthesis of the polymer directly from protein-reactive initiators, owing to the advent of living/controlled polymerization methodologies, such as RAFT and ATRP, as they are straightforward, less time intensive, and almost guarantee that each polymer chain contains only one reactive end-group. 9.0 POLYMER-DRUG CONJUGATES One of the most commonly studied areas of polymer therapeutics is polymer-drug conjugates in which the low MW therapeutic and polymeric carrier are most often an anticancer agent and HPMA copolymer, respectively. This area was born from a landmark study by Ringsdorf in 1975 and then further pioneered in the 1980s by Duncan & Kopecek, who designed the first targeted synthetic polymer-anticancer conjugates to progress to clinical trials. This work was comprehensively reviewed recently . In contrast to free drugs, which usually distribute randomly throughout the body and thus exert deleterious side effects, attachment of the therapeutic to polymer carriers limits cellular uptake to endocytosis, extends circulation times to several hours, and facilitates passive targeting of tumors via the EPR effect. Angiogenesis inhibitors, such as
  • 19. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 19 TNP-470 [O-(chloracetyl-carbomoyl) fumagillol] are currently receiving increased interest as anticancer drugs. In a landmark paper describing the first polymer-antiangiogenic conjugate, Satchi-Fainaro et al.) synthesized a conjugate of HPMA and TNP-470 that was covalently linked with GFLG via an enzymatically degradable bond, ethylenediamine. The tetrapeptide linker was designed to allow intralysosomal release of the therapeutic by cleaving the bond when in the presence of lysosomal cysteine proteases such as cathepsin B, levels of which are elevated in many tumor endothelial cells. In vivo studies not only demonstrated that the conjugate selectively accumulated in tumor vessels via the EPR effect, but also enhanced and prolonged the activity of TNP-470 without the neurotoxicity previously seen in animal studies conductedusing only the antiangiogenic drug, likely because the size of the conjugate prevented it from crossing the blood-brain barrier. This HPMA copolymer-TNP-470 conjugate is currently in preclinical development under the name caplostatin by SynDevRx and has since been the focus of additional studies. Novel polymeric architectures, such as dendrimer, branched, grafted, and star polymers, are now being explored as conjugate carriers of the future owing to advances in polymer chemistry. In an elegant report, paclitaxil, a common chemotherapeutic with low solubility, was covalently conjugated with linear bis(PEG) and dendritic polyamidoamine (PAMAM) G4 to determine the influence of the architecture of the polymeric carrier on the efficacy of the anticancer DDS (102). Both PAMAM and PEG increased the solubility of paclitaxil in relation to the free drug (0.3 mg ml−1); however, solubility was improved further with the dendrimer (3.2 versus 2.5 mg ml−1). Confocal microscopy analysis of FITC (fluorescein isothiocyanate) labeled samples showed that both conjugates distributed in a more homogeneous and uniform manner than the free drug. In vitro cytotoxicity studies of A2780 human ovarian cancer cells demonstrated that although the PEG-based conjugate reduced the activity of the drug by 25-fold, the PAMAM-G4 dendrimer conjugate increased the efficacy of paclitaxil by more than 10 times compared with its free state. This study suggests that dendrimers are promising vehicles for intracellular delivery of poorly soluble drugs.
  • 20. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 20 10. APPLICATION SCOPES OF POLYMERS IN DRUG DELIVEY SYSTEM Polymers are playing important role in pharmaceuticals. They are used as binders in tablet, increases solubility of poorly soluble drugs, used as film coatings on drugs to disguise their taste and enhances their stability etc. Some polymers which are used in drugs are discussed below. 10.1 Biodegradable Polymers Biodegradable polymers have either hydrolytically or proteolytically labile bond in their backbone to make it chemically degradable . At present two types of biodegradable polymers exists: natural polymers and synthetic polymers. Collagen and gelatin are two natural biodegradable polymers that are mostly used in drugs Collagens are biocompatible, non-toxic, can be easily isolated and purified in large quantities. Gelatin is a thermoreversible polymer. Gelatin is easily available, have low antigen profile and have low binding affinity to drug molecules. All these properties make it suitable for drug delivery. Gelatin is cross-linked with glutaraldehyde to prepare it for drug delivery system. Synthetic biodegradable polymers are also present that include PLA, PLGA, PGA, poly(phosphazenes), poly(caprolactone), poly(anhydride), poly(phosphoesters),
  • 21. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 21 poly(cyanoacrylates), poly(acrylic acid), poly(amides), poly(ortho esters), polyethylene glycol, and polyvinyl alcohol and poly (isobutylcynoacrylate), poly(ethylene oxide), and poly(paradioxane). Among these, PLGA, the copolymer of PLA and PGA are mostly used polymers in drug delivery. Large numbers of biodegradable synthetic polymers rely on the hydrolytic cleavage of ester bonds. • Polyethylene glycol: Polyethylene glycol is a hydrophilic polymer. Some features like low toxicity, lack of immunogenicity, antigenicity and excellent biocompatibility make it preffered polymer. Its hydrophilic nature provides the protection to protein from any immune response. • Polyesters: They have esters bond in the main chain. Due to their biocompatible and biodegradablefeature, PLA, PGA and their copolymer PLGA and poly (caprolactone) have been extensively used. • Polyanhydrides: Polyanhydrides are biocompatible and bioabsorbable materials. They can be easily removed from the body because they can be degraded into their diacid counter parts in vivo. • Polyamides: They contain the repeated unit of amide group and are hydrophilic in nature. Due to the presence of amide groups and hydrogen bonds, they have good mechanical properties and show high polar behaviour. They are used to deliver low molecular weight drugs. • Polyorthoesters: A number of studies have been done on the use of polyorthoesters as encapsulating material for various drugs. • Polyaprolctone: PCL have been taken into consideration to be used as implantable biomaterial because it has ester linkage that can be hydrolysed in physiological conditions. It can also be used for preparation of long term implantable devices because it degrades very slowly. 10.2 The Role of Bioabsorbable Polymers For many new drug delivery systems, bioabsorbable polymers make the magic possible. Bioabsorbable polymers like hydrogels, polylactic and polyglycolic acid and their copolymers, polyurethanes and others can be used to create the delivery component of the system. Whether the drug delivery system relies on a biodegradable implant to deliver medicine subcutaneously or deep within the body, biodegradable polymers provide a safe framework for delivering medicine without harm. And because they ultimately degrade and absorb in the human body,
  • 22. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 22 bioabsorbable polymers eliminate the need to remove the drug delivery system once the medication has been released. Researchers continue to develop new drug delivery systems to better meet either or both objectives — targeting or timing — for a variety of medications to treat a wide range of diseases. They’re even beginning to explore the idea of drug delivery systems that will be able to diagnose and treat diseases in a single step — and that will be truly amazing! 10.3 Non-Biodegradable Polymers Non-biodegradable polymers are commonly used in diffusion-controlled system. Due to non biodegradable polymers, there is no initial burst release in diffusion-controlled systems. The permeability and thickness of the polymer, the solubility and the release area of the drug determines the release kinetics of the drug form the diffusion controlled system. Silicone, cross- linked Polyvinyl Alcohol, and Ethyl Vinyl Acetate are mostly used in drug formulations. Silicones are used as permeable or impermeable material. The permeability or the impermeability of the silicone material is decided by the thickness and the grade used. EVA is impermeable to many drugs, thus, commonly used as a membrane to surround the drug core. There is reduction in the release area due to EVA membrane, thus reduces the drug release rate. PVA is used as controlled elution membrane in the release area because they are permeable to various lipophilic drugs. Alteration in the thickness layer helps in achieving the desired release kinetics 10.4 Smart Polymers They are high performance polymers which change according to the environment they are residing in. Even a small change in the environment can bring large changes in the polymer’s properties. They can change the conformation, adhesiveness and water retention properties in response to pH change. They are used for production of hydrogels and other materials. These properties of smart polymers make them suitable for utilization in drug formulations. Some smart polymer are formed by the cross linking of the pH sensitive smart polymeric chains. The polymer composition, the nature of the ionizable groups, the hydrophilicity of the polymer backbone and the cross linking density decide the behaviour of the smart polymers. The cross
  • 23. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 23 linking density affects the permeability of the solute inversely, the higher the cross linking density, the lower the permeability. Alginate gel beads are co-precipitated with a biologically active agent to form a sustained release gels. This gives the advantage of high loading of drugs while achieving better protein stability. LCST is a polymer, which have been tested in controlling drug delivery matrices. Copolymerisation of the NIPAAm with alkyl methacrylates maintains the temperature sensitivity because it increases its mechanical strength. There is reduction in the transportation. of the bioactive molecules out of the polymers by surrounding the LCST with a thick layer of poly NIPAAm polymer. 10.5 Gels These are hydrophilic polymers and have linear structures used in topical drug delivery. Linear structure is formed by covalent bonding between monomer units such as amides, ester, orthoesters, and glycosidic bonds. Topical polymers are mostly prepared by organic polymers such as carbomers. They are prepared by natural or synthetic polymers. Polymers which are used in its preparation include the natural gums tragacanth, pectin, agar, alginic acid and carrageenan; semi synthetic materials such as hydroxyethyl cellulose, methylcellulose, carboxymethyl cellulose and hydroxypropylmethyl cellulose; and the synthetic polymer, carbopol. 10.6 Polymers in Mucoadhesive Delivery For developing the liquid ocular delivery system, the hydrophilic polymers should be used because they can be used as viscosity modifying or enhancing agent. Polysaccharides are frequently used in the ocular mucoadhesive delivery system. Its derivatives are hyaluronic acid, methyl cellulose, hydroxypropyl methylcellulose, gellan gum, chitosan, xanthan gum, carrageenan and guargum. Chitosan is a polysaccharide polymer. Its biodegradable, low toxic and biocompatible properties make it suitable for use in drug formulations. Some other used nonionic polymers for mucoadhesive properties are poloxamer, polyvinylpyrrolidone and polyvinyl alcohol.
  • 24. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 24 10.7 Polymer Drug Conjugate Used for Cancer Treatment There is a physiological labile bond between the drug and the polymer. Paclitaxil [poly(L- glutamic acid)] is used as a chemotherapeutic agent to treat ovarian, breast and lung cancer. It has been studied in phase III trials. It has an ester linkage between its 2’hydroxyl group and the carboxylic acid of poly(L-glutamic acid). PEG and PAMAM are covalently conjugated with a chemotherapeutic drug Paclitaxil to increase its efficiency as an anticancer drug delivery system. Both increase its solubility. After an in-vitro study on human ovarian cancer cell it was found that PEG based conjugate reduced the activity of the paclitaxil by 25-fold and the PAMAM-G4 dendrimer increases its efficiency by more than 10 times. 5-flourouracil drug causes cell death. Nagarwal et al. Synthesized an encapsulating agent nanospheres of PLA polymer for 5- flurouracil. 11. CONCLUSION Polymers are quite advantageous in drug delivery. This leads to enhanced drug delivery with better pharmacokinetics handling all safety parameters. Mechanism and time taken for drug delivery system for a particular tissue or cellular compartment still needs to be studied. In order to design the most suitable polymer therapeutic many queries including gene delivery p need to be answered as well. This leads to the synthesis of the smart polymer. In targeted drug delivery systems the site of action should be clearly known. Biocompatible polymers provide better control over the toxicity of the samples; this leads to more reliable drug delivery and ensures patient’s safety. Novel strategies like dendrimer synthesis and controlled polymerisation techniques are now well.
  • 25. Md.Mominul Islam; ID# 162 1405 673 ; MPharm_Fall 2017 ; North South University Page | 25 REFERENCES: 1. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma- Aldrich/Method/1/polymeric-drug-delivery-techniques-web.pdf 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438887/ 3. http://www.polymerjournals.com/pdfdownload/919502.pdf 4. https://link.springer.com/chapter/10.1007%2F978-1-4899-2245-8_3 5. https://www.researchgate.net/publication/11871203_Polymers_in_drug_delivery 6. http://www.sciencedirect.com/science/article/pii/0168365994901341 7. http://onlinelibrary.wiley.com/doi/10.1002/pola.28252/full 8. https://www.omicsonline.org/open-access/synthetic-biodegradable-polymers-used-in- controlled-drug-delivery-system-2167-065X.1000121.php?aid=31480 9. http://pubs.acs.org/doi/abs/10.1021/ar00034a004 10. https://www.sciencedirect.com/science/article/pii/0168365994901341 11. https://www.sciencedirect.com/science/article/pii/S2211383514000252 12. https://www.informationvine.com/index?qsrc=999&qo=semQuery&ad=semD&o=603902&l =sem&askid=c3b28dd8-709d-42b5-bdb0-4cca3aab4bce-0 iv_gsb&q=polymer%20material%20science&dqi=&am=broad&an=google_s 13. http://ansfoundation.org/?gclid=EAIaIQobChMI4ofKw9eQ2AIVTgwrCh3vrwIFEAAYAiA AEgJTXfD_BwE 14. https://www.nanoshel.com/wp-content/uploads/2014/04/Polymers-and-Drug-Delivery- Systems.pdf 15. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8 &ved=0ahUKEwik6rPx15DYAhWDu48KHUmGBjwQFghqMAc&url=http%3A%2F%2Fjo urnals.sagepub.com%2Fdoi%2Ffull%2F10.1177%2F2211068211428189&usg=AOvVaw0Q zeFp4G9oe6r5C_1bpxBA