SlideShare a Scribd company logo
1 of 74
Factorisation of quadratic
expressions
A. Factorisation by extracting common factors
𝒂𝒃 + 𝒂𝒄 = 𝒂 𝒃 + 𝒄
Factorisation is the reverse of expansion:
𝑎 𝑏 + 𝑐 𝑎𝑏 + 𝑎𝑐
Expand
Factorise
• When extracting negative common factors such as −1, we have to
change the sign inside the brackets as shown below:
−𝑥 − 𝑦 = −(𝑥 + 𝑦)
Factorisation is the reverse of Expansion.
Consider the reverse procedure of the distributive law:
change sign
Factor out -1
( )
ab ac a b c
  
Factorising linear expressions
Example
Factorise each of the following expressions completely
a. 12𝑥 + 18
b. −15𝑥 − 6
c. −10𝑎𝑥 + 25𝑎𝑦
Solution
a. 𝟏𝟐𝒙 + 𝟏𝟖 = 𝟔(𝟐𝒙 + 𝟑)
The factors of 12 are: 𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟏𝟐 HCF of 12 𝑎𝑛𝑑 18 = 6
The factors of 18 are: 𝟏, 𝟐, 𝟑, 𝟔, 𝟗, 𝟏𝟖
The factors of 15 are: 𝟏, 𝟑, 𝟓, 𝟏𝟓
The factors of 3 are: 𝟏, 𝟑
HCF of 15 𝑎𝑛𝑑 3 = 3, so -3 is a common factor
b. −15𝑥 − 6 = −3(5𝑥 + 2)
c. −10𝑎𝑥 + 25𝑎𝑦 = 25𝑎𝑦 − 10𝑎𝑦 rearrange order of terms
= 5𝑎(5𝑦 − 2𝑥) common factors are 5 & a
Factor out -3
change sign
Factorising expression involving squares and cubes
Factorise each of the following expressions completely
• 10𝑥2 + 8𝑥 = 2𝑥(5𝑥 + 4) HCF of 10 and 8 = 2
HCF of 𝑥2and 𝑥 = 𝑥
• −49𝑏 − 28𝑏2 = −7𝑏(7 + 4𝑏) HCF of 49 and 28 = 7
HCF of 𝑏2and b = b
• 𝑐2𝑑3 + 𝑐3𝑑2 − 𝑐2𝑑2 = 𝑐2𝑑2 𝑑 + 𝑐 − 1 HCF of 𝑐2 and 𝑐3 = 𝑐2
HCF of 𝑑2 and 𝑑3 = 𝑑2
Factorisation of quadratic expressions of the form 𝒙𝟐 + 𝒃𝒙 + 𝒄, 𝒘𝒉𝒆𝒓𝒆 𝒄 >
𝟎 (𝒂𝒏𝒅 𝒃 > 𝟎)
• Factorise 𝑥2
+ 5𝑥 + 6 using multiplication frame.
1. write the term in 𝑥2
and the constant term in the multiplication frame
2. Consider all the possible pairs of factors of the constant term 6 whose product is 6, i.e.
6 = 1𝑥6, 2𝑥3
Choose the pair of factors of 6 with a sum of 5 ( which is the coefficient of 5𝑥). Since 3𝑥 + 2𝑥 =
5𝑥 𝑎𝑛𝑑 𝑥 + 6𝑥 ≠ 5𝑥, we write 2𝑥 𝑎𝑛𝑑 3𝑥 in the remaining two regions.
x
𝒙𝟐
+𝟔
x
𝒙𝟐 3𝑥
2𝑥 +𝟔
x 𝑥 +3
𝑥 𝒙𝟐 3𝑥
+2 2𝑥 +𝟔
HCF𝒙𝟐
and 𝟐𝒙 = 𝒙
HCF 𝟑𝒙 and 𝟔 = 𝟑
HCF𝟐𝒙and 6= 𝒙
HCF𝒙𝟐
and 3𝒙 = 𝒙
∴ 𝑥2
+ 5𝑥 + 6 = (𝑥 + 2)(𝑥 + 3)
𝑎𝑥2
+ 𝑏𝑥 + 𝑐 = 𝑥 + 𝑚 𝑥 + 𝑛
Where: 𝑚𝑥𝑛 = 𝑐,
𝑛 + 𝑚 = 𝑏
Factorisation of quadratic expressions of the form 𝒙𝟐 + 𝒃𝒙 + 𝒄, 𝒘𝒉𝒆𝒓𝒆 𝒄 >
𝟎 (𝒂𝒏𝒅 𝒃 > 𝟎) or 𝒙𝟐 − 𝒃𝒙 + 𝒄
• Factorise 𝑥2
− 5𝑥 + 6 using multiplication frame.
Solution
From 𝑥2
− 5𝑥 + 6 , 𝑎 = 1, 𝑏 = −5, 𝑐 = 6
Because 𝒃 = −𝟓 is negative, we need to consider both positive and negative
factors of the constant term 6, i.e.
6 = 1𝑥6 = −1 𝑥 −6
= 2𝑥3 = −2 𝑥 −3
𝒙𝟐 − 𝟓𝒙 + 𝟔 = (𝒙 − 𝟐)(𝒙 − 𝟑)
x
𝑥2 ?
? +6
𝑥2 −3𝑥
−2𝑥 +6
𝑥 −3
𝑥 𝑥2 −3𝑥
−2 −2𝑥 +6
• https://www.geogebra.org/m/WgE3VWQb
HCF ( )
x y
 
2 ( ) 3 ( )
a x y b x y
  
(c)
2 ( ) 3 ( )
a x y b x y
   
( )(2 3 )
x y a b
  
The next example involves changing
the sign before a bracket before
taking out the common bracket.
Before discussing the next example,
consider the expressions:
(2 )
2
2
b a
b a
a b
 
  
  
( 2 )
2
2
b a
b a
a b
  
 
  
Therefore it is true that:
(2 ) ( 2 )
b a b a
     
You can write this as:
(2 ) ( 2 )
b a a b
    
For example:
(3 ) ( 3 ) ( 3 )
y x y x x y
        
(3 ) ( 3 ) ( 3 )
y x y x x y
        
( 3 ) ( 3 ) ( 3 )
y x y x x y
         
Therefore, if you change the sign
before the bracket, change the signs
of the terms when writing them in
the brackets.
2 (3 2 ) 5 (2 3 )
a x y b y x
  
EXAMPLE
Factorise:
(a)
2 (3 2 ) 5 ( 2 3 )
a x y b y x
    
2 (3 2 ) 5 (3 2 )
a x y b x y
   
(3 2 )(2 5 )
x y a b
  
3 (5 ) ( 5 )
a x y x y
   
(b)
3 (5 ) ( 5 )
a x y x y
    
3 (5 ) (5 )
a x y x y
   
(5 )(3 1)
x y a
  
DIFFERENCE OF TWO SQUARES
Consider the product
2 2
( )( )
a b a b a b
   
The reverse process is called the
factorisation of the difference of
two squares.
2 2
( )( )
a b a b a b
   
Another way of seeing this type of
factorisation is:
2 2 2 2 2 2
( )( )
a b a b a b
   
( )( )
a b a b
  
0, 0
a b
 
EXAMPLE
Factorise fully:
2
9
x 
(a)
2 2
( 9)( 9)
x x
  
( 3)( 3)
x x
  
4 2
49 64
x y

(b)
2 2
(7 8 )(7 8 )
x y x y
  
8 8
8 8
a b

(c)
8 8
8( )
a b
 
4 4 2 2
8( )( )( )( )
a b a b a b a b
    
4 4 4 4
8( )( )
a b a b
  
4 4 2 2 2 2
8( )( )( )
a b a b a b
   
2
4 ( )
x y
 
(d)
  
2 ( ) 2 ( )
x y x y
    
(2 )(2 )
x y x y
    
QUADRATIC TRINOMIALS
Consider the product ( )( )
x a x b
 
By multiplying out, it is clear that
this product will become:
( )( )
x a x b
 
2
x ax bx a b
    
2
( )
x a b x a b
    
So the expression
can be factorised as ( )( )
x a x b
 
2
( )
x a b x a b
   
For example, the trinomial
can be factorised as follows:
2
6 8
x x
 
Write the last term, 8, as the product
of two numbers ( )
a b

The options are: 1 8
 4 2

The middle term is now obtained
by adding the numbers of one of
the above options. The obvious
choice will be the option
because the sum of the numbers 4
and 2 gives 6. Therefore:
2
(4 2) (4 2)
x x
    
4 2

2
6 8
x x
 
( 4)( 2)
x x
  
So the trick to factorising trinomials is
as follows:
• Write down the last term as
the product of two numbers.
• Find the two numbers (using
the appropriate numbers from
one of the products) which
gets the middle term by adding
or subtracting.
• Check that when you multiply
these numbers you get the last
term.
EXAMPLE
Factorise:
2
7 60
x x
 
(a)
The last term can be written as
the following products:
1 60, 30 2, 15 4,
10 6, 12 5, 20 3
  
  
We now need to get from one
of the options above.
7

Using will enable us to get
since
12 5

7

12 5 7
    (middle term)
and ( 12)(5) 60
   (last term)
Therefore:
2
7 60
x x
 
( 12)( 5)
x x
  
2
5 6
x x
 
(b)
The last term can be written as
the following products:
3 2, 1 6
 
We now need to get from
one of the options above.
5

Try the option 3 2

Clearly which is the
middle term and
which is the last term.
Notice that the option
will not work because even
though
is the middle term,
is not the last term.
1 6

3 2 5
   
3 2 6
    
1 6 5
   
1 6 6
   
Therefore:
2
5 6
x x
  ( 3)( 2)
x x
  
Notice:
• If the sign of the last term of
a trinomial is negative, the
signs in the brackets are
different (see example 8a).
2
7 60 ( 12)( 5)
x x x x
    
• If the sign of the last term of
a trinomial is positive, the
signs in the brackets are the
same i.e. both positive or
both negative
2
5 6
x x
  ( 3)( 2)
x x
  
2
3 21 24
a a
 
(c)
2
3 21 24
a a
 
Here it is necessary to first
take out the highest
common factor:
2
3( 7 8)
a a
  
3( 1)( 8)
a a
  
2
12
x x
 
(d)
( 4)( 3)
x x
  
2
10 24
x x
 
(e)
( 6)( 4)
x x
  
In summary then, apply the following
procedure when factorising
trinomials:
• Take out the highest common
factor if necessary.
• Write down the last term as the
product of two numbers.
• Find the two numbers (using the
appropriate numbers from one
of the products) which gets the
middle term by adding or
subtracting.
• Check that when you multiply
these numbers you get the last
term.
• If the sign of the last term of a
trinomial is positive, the signs in
the brackets are the same (both
positive or both negative).
• If the sign of the last term of a
trinomial is negative, the signs in
the brackets are different.
MORE ADVANCED TRINOMIALS
Consider the trinomial
2
21 25 4
x x
 
The method to factorise this
trinomial is a little more involved
than with the previous
trinomials. A suggested method
is as follows.
EXAMPLE
Step 1
Write down the product options
of the first and last terms
2
21 : 1 21 , 7 3
4 : 1 4, 2 2
x x x x x
 
 
Step 2
Write the product options in a
table format as follows:
First term Last term
21x
1x
7x
3x
1
4 1
4 2
2
The product option for the
last term must also be written in
reverse order as
1 4

4 1

Step 3
Select any product option from the
first term and last term and write
these options using what is called
the “cross method”:
7x
3x
1
4
7x
3x
1
4
Step 4
Now multiply as follows:
3x
28x
Step 5
The trick is to now get the middle
term, , from and
using different signs (because the
sign of the last term of the
trinomial is negative). Insert the
signs as follows:
25x
 3x 28x
7x
3x
1
4
3x

28x

25x

7x
3x
1
4
3x

28x

Step 6
The factors are now obtained by
reading off horizontally:
7 1
x 
3 4
x 
2
21 25 4
x x
 
(7 1)(3 4)
x x
  
Factorise: 2
12 11 2
x x
 
The product options of the first
and last terms:
EXAMPLE
2
12 : 1 12 , 4 3 , 6 2
2 : 1 2, 2 1
x x x x x x x
  
 
First term Last term
1x
12x
4x
3x
1
1
2
2
The signs in the brackets must be
the same because the sign of the
last term of the trinomial is
positive.
6x
2x
4x
3x
1
2
3x

8x

11x

2
12 11 2
x x
 
(4 1)(3 2)
x x
  
Before discussing the next examples,
we need to deal with the concept of
“taking out a negative”. Consider the
following expressions:
( )
x y
x y
 
  
( )
x y
x y
 
  
It is clear from the above that:
( )
x y x y
    
( )
x y x y
    
Therefore, whenever you “take out a
negative sign” when factorising an
expression, the middle sign will
always change in the brackets.
For example:
3 ( 3)
x x
    
middle sign is positive and changes
to a negative in the brackets
3 ( 3)
x x
    
middle sign is negative and changes
to a positive in the brackets
2 8 2( 4)
x x
    
middle sign is negative and changes
to a positive in the brackets
SIMPLIFICATION OF ALGEBRAIC
FRACTIONS
MULTIPLICATION AND DIVISION
EXAMPLE 15
Simplify the following expressions:
3 4
5
12
18
x y z
x yz
(a)
3 4
5
12
18
x y z
x yz
3 4
5 1
12
18
x y z
x y z

3
2
2
3
y
x

2 7
3
12 24
5 25
a b a b
c c

(b)
2 3
7
12 25
5 24
a b c
c a b
 
2
5
5
2
c
a

2 3
7
12 25
5 24
a bc
a bc



2
2
6 12
6
x x
x

(c)
2
6 ( 2)
6
x x
x


2
x
x


EXAMPLE
Simplify the following expressions:
2
2
12 27
4 12
x x
x x
 

(a)
  
 
9 3
4 3
x x
x x
 


9
4
x
x


2
2 2
2 5
4 5 4
x x x
x x x
 

  
(b)
  
 
  
5
2
5 1 2 2
x x
x
x x x x


 
   
  
1 2
x
x x

 
2 2
2 3
2 2 1
2
1 8
yx y y x
x
x x
 
 

 
(c)
2
2 2 3
2 2 2 1
1 8
yx y x x
x y x
  
  
 
 
     
2
2 2
2 1 2 1
1 1 2 2 4
y x x x
x x y x x x
  
  
    
 
  
2
2
2 1
1 2 4
x
y x x x


  
EXAMPLE 17
 
x y y x
   
Simplify:
3 6
2
x
x


(a)
 
3 2
2
x
x



 
 
3 2
2
x
x


 
3
 
EXAMPLE 18
Simplify:
2 3
1 2 1
1
2
4 3 xy
x x
  
3
LCD 12x y

2 3
1 1 2 1
1 2
4 3 xy
x x
   
2 3
1 1 2 1
1 2
4 3 xy
x x
   
3 2
3
12 3 8 6
12
x y xy y x
x y
  

3
3 2 2
3
2
1 1 2 1
1 2
12 3 4 6
3 4
12 6
4 3
x y xy y x
x xy
x x
y y
x y x
 
     
3 2
3 3 3 3
12 3 8 6
12 12 12 12
x y xy y x
x y x y x y x y
   
1 2 3
2 3 4
x x x
  
 
( 1) ( 2) ( 3)
2 3
6 4 3
6 4 3
4
x x x
  
     
EXAMPLE 19
Simplify:
LCD 12

6( 1) 4( 2) 3( 3)
12 12 12
x x x
  
  
2 1
3 3
x x
  
 
  
  
2 1
3 3
x x
  
 
  
  
EXAMPLE 20
Simplify:
Method 1
3 2 3 1
3 3
x x
 
  
   
  
3 2 3 1
3 3
x x
 
  
   
  
2
9 3 2
9
x x
 

(3 2)(3 1)
9
x x
 

2 1
3 3
x x
  
 
  
  
Method 2
2 1 2 2
3 3 9
x x x
   
2
9 3 6 2
9
x x x
  

2
9 3 2
9
x x
 

EXAMPLE
Simplify:
1 2 1
2
x x
x x
 


(a)  
LCD 2
x x
 
 
1 (2 1)
( 2 (
)
( 2)
2)
x x x
x x
x
x
x


  
 


 
1 (2 1)( 2)
( 2) ( 2)
x x x x
x x x x
  
 
 
 
1 (2 1)( 2)
( 2) ( 2)
x x x x
x x x x
  
 
 
    
1 (2 1) 2
( 2)
x x x x
x x
   


2 2
(2 4 2)
( 2)
x x x x x
x x
    


2 2
2 4 2
( 2)
x x x x x
x x
    


2
6 2
( 2)
x x
x x
  


EXAMPLE
Simplify:
2
3 2 2 5
2 2
4
x x
x x
x

 
 

(a)
  
3 2 2 5
2 2 2 2
x x
x x x x

  
   
      
( 2)
(3 ( 2)
( 2)
2) 2 5
2)
2 2 (
2 2
x
x x
x x x
x
x x
x
 


    
  
 
   
  
3 2 2 2 5 2
2 2
x x x x
x x
    

 
  
2
3 2 2 4 5 10
2 2
x x x x
x x
    

 
  
2
2 6 12
2 2
x x
x x
 

 
EXAMPLE
Simplify:
2
5 3
3
5 6
x
x
x x


 
(a)
  
5 3
2 3 3
x
x x x
 
  
    
5 3
2 3 3
x
x x x
 
   
    
5 3
2 3 3
x
x x x
 
  
    
5 3
2 3 )
3
( 2)
( 2
x
x x x
x
x
  
  


 
  
5 3 2
2 3
x x
x x
 

 
  
2
5 3 6
2 3
x x
x x
 

    
2
3 6 5
2 3
x x
x x
  

 
THE END

More Related Content

Similar to Gr-10-ALGEBRA-REVISION.pptx

Factoring Polynomials (1).pptx
Factoring Polynomials (1).pptxFactoring Polynomials (1).pptx
Factoring Polynomials (1).pptx
MartiNBaccay2
 
Linear equations inequalities and applications
Linear equations inequalities and applicationsLinear equations inequalities and applications
Linear equations inequalities and applications
vineeta yadav
 
1)  Use properties of logarithms to expand the following logarit.docx
1)  Use properties of logarithms to expand the following logarit.docx1)  Use properties of logarithms to expand the following logarit.docx
1)  Use properties of logarithms to expand the following logarit.docx
hirstcruz
 

Similar to Gr-10-ALGEBRA-REVISION.pptx (20)

Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Indices
IndicesIndices
Indices
 
Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
March 6
March 6March 6
March 6
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Algebra 2 Section 0-3
Algebra 2 Section 0-3Algebra 2 Section 0-3
Algebra 2 Section 0-3
 
1.5 Factoring Polynomials
1.5 Factoring Polynomials1.5 Factoring Polynomials
1.5 Factoring Polynomials
 
Factoring Polynomials (1).pptx
Factoring Polynomials (1).pptxFactoring Polynomials (1).pptx
Factoring Polynomials (1).pptx
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
U1 04 factorizacion
U1   04 factorizacionU1   04 factorizacion
U1 04 factorizacion
 
Bonus math project
Bonus math projectBonus math project
Bonus math project
 
Franyinex roas.
Franyinex roas.Franyinex roas.
Franyinex roas.
 
Hprec2 5
Hprec2 5Hprec2 5
Hprec2 5
 
Linear equations inequalities and applications
Linear equations inequalities and applicationsLinear equations inequalities and applications
Linear equations inequalities and applications
 
Algebra unit 8.7
Algebra unit 8.7Algebra unit 8.7
Algebra unit 8.7
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
1)  Use properties of logarithms to expand the following logarit.docx
1)  Use properties of logarithms to expand the following logarit.docx1)  Use properties of logarithms to expand the following logarit.docx
1)  Use properties of logarithms to expand the following logarit.docx
 
Applied numerical methods lec6
Applied numerical methods lec6Applied numerical methods lec6
Applied numerical methods lec6
 

Recently uploaded

Recently uploaded (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
What is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptxWhat is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
Our Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdfOur Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdf
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 

Gr-10-ALGEBRA-REVISION.pptx

  • 2. A. Factorisation by extracting common factors 𝒂𝒃 + 𝒂𝒄 = 𝒂 𝒃 + 𝒄 Factorisation is the reverse of expansion: 𝑎 𝑏 + 𝑐 𝑎𝑏 + 𝑎𝑐 Expand Factorise
  • 3. • When extracting negative common factors such as −1, we have to change the sign inside the brackets as shown below: −𝑥 − 𝑦 = −(𝑥 + 𝑦) Factorisation is the reverse of Expansion. Consider the reverse procedure of the distributive law: change sign Factor out -1 ( ) ab ac a b c   
  • 4. Factorising linear expressions Example Factorise each of the following expressions completely a. 12𝑥 + 18 b. −15𝑥 − 6 c. −10𝑎𝑥 + 25𝑎𝑦 Solution a. 𝟏𝟐𝒙 + 𝟏𝟖 = 𝟔(𝟐𝒙 + 𝟑) The factors of 12 are: 𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟏𝟐 HCF of 12 𝑎𝑛𝑑 18 = 6 The factors of 18 are: 𝟏, 𝟐, 𝟑, 𝟔, 𝟗, 𝟏𝟖
  • 5. The factors of 15 are: 𝟏, 𝟑, 𝟓, 𝟏𝟓 The factors of 3 are: 𝟏, 𝟑 HCF of 15 𝑎𝑛𝑑 3 = 3, so -3 is a common factor b. −15𝑥 − 6 = −3(5𝑥 + 2) c. −10𝑎𝑥 + 25𝑎𝑦 = 25𝑎𝑦 − 10𝑎𝑦 rearrange order of terms = 5𝑎(5𝑦 − 2𝑥) common factors are 5 & a Factor out -3 change sign
  • 6. Factorising expression involving squares and cubes Factorise each of the following expressions completely • 10𝑥2 + 8𝑥 = 2𝑥(5𝑥 + 4) HCF of 10 and 8 = 2 HCF of 𝑥2and 𝑥 = 𝑥 • −49𝑏 − 28𝑏2 = −7𝑏(7 + 4𝑏) HCF of 49 and 28 = 7 HCF of 𝑏2and b = b • 𝑐2𝑑3 + 𝑐3𝑑2 − 𝑐2𝑑2 = 𝑐2𝑑2 𝑑 + 𝑐 − 1 HCF of 𝑐2 and 𝑐3 = 𝑐2 HCF of 𝑑2 and 𝑑3 = 𝑑2
  • 7. Factorisation of quadratic expressions of the form 𝒙𝟐 + 𝒃𝒙 + 𝒄, 𝒘𝒉𝒆𝒓𝒆 𝒄 > 𝟎 (𝒂𝒏𝒅 𝒃 > 𝟎) • Factorise 𝑥2 + 5𝑥 + 6 using multiplication frame. 1. write the term in 𝑥2 and the constant term in the multiplication frame 2. Consider all the possible pairs of factors of the constant term 6 whose product is 6, i.e. 6 = 1𝑥6, 2𝑥3 Choose the pair of factors of 6 with a sum of 5 ( which is the coefficient of 5𝑥). Since 3𝑥 + 2𝑥 = 5𝑥 𝑎𝑛𝑑 𝑥 + 6𝑥 ≠ 5𝑥, we write 2𝑥 𝑎𝑛𝑑 3𝑥 in the remaining two regions. x 𝒙𝟐 +𝟔 x 𝒙𝟐 3𝑥 2𝑥 +𝟔
  • 8. x 𝑥 +3 𝑥 𝒙𝟐 3𝑥 +2 2𝑥 +𝟔 HCF𝒙𝟐 and 𝟐𝒙 = 𝒙 HCF 𝟑𝒙 and 𝟔 = 𝟑 HCF𝟐𝒙and 6= 𝒙 HCF𝒙𝟐 and 3𝒙 = 𝒙 ∴ 𝑥2 + 5𝑥 + 6 = (𝑥 + 2)(𝑥 + 3) 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑥 + 𝑚 𝑥 + 𝑛 Where: 𝑚𝑥𝑛 = 𝑐, 𝑛 + 𝑚 = 𝑏
  • 9. Factorisation of quadratic expressions of the form 𝒙𝟐 + 𝒃𝒙 + 𝒄, 𝒘𝒉𝒆𝒓𝒆 𝒄 > 𝟎 (𝒂𝒏𝒅 𝒃 > 𝟎) or 𝒙𝟐 − 𝒃𝒙 + 𝒄 • Factorise 𝑥2 − 5𝑥 + 6 using multiplication frame. Solution From 𝑥2 − 5𝑥 + 6 , 𝑎 = 1, 𝑏 = −5, 𝑐 = 6 Because 𝒃 = −𝟓 is negative, we need to consider both positive and negative factors of the constant term 6, i.e. 6 = 1𝑥6 = −1 𝑥 −6 = 2𝑥3 = −2 𝑥 −3 𝒙𝟐 − 𝟓𝒙 + 𝟔 = (𝒙 − 𝟐)(𝒙 − 𝟑) x 𝑥2 ? ? +6 𝑥2 −3𝑥 −2𝑥 +6 𝑥 −3 𝑥 𝑥2 −3𝑥 −2 −2𝑥 +6
  • 11. HCF ( ) x y   2 ( ) 3 ( ) a x y b x y    (c) 2 ( ) 3 ( ) a x y b x y     ( )(2 3 ) x y a b   
  • 12. The next example involves changing the sign before a bracket before taking out the common bracket. Before discussing the next example, consider the expressions: (2 ) 2 2 b a b a a b         ( 2 ) 2 2 b a b a a b        
  • 13. Therefore it is true that: (2 ) ( 2 ) b a b a       You can write this as: (2 ) ( 2 ) b a a b      For example: (3 ) ( 3 ) ( 3 ) y x y x x y          (3 ) ( 3 ) ( 3 ) y x y x x y          ( 3 ) ( 3 ) ( 3 ) y x y x x y          
  • 14. Therefore, if you change the sign before the bracket, change the signs of the terms when writing them in the brackets.
  • 15. 2 (3 2 ) 5 (2 3 ) a x y b y x    EXAMPLE Factorise: (a) 2 (3 2 ) 5 ( 2 3 ) a x y b y x      2 (3 2 ) 5 (3 2 ) a x y b x y     (3 2 )(2 5 ) x y a b   
  • 16. 3 (5 ) ( 5 ) a x y x y     (b) 3 (5 ) ( 5 ) a x y x y      3 (5 ) (5 ) a x y x y     (5 )(3 1) x y a   
  • 17. DIFFERENCE OF TWO SQUARES Consider the product 2 2 ( )( ) a b a b a b     The reverse process is called the factorisation of the difference of two squares. 2 2 ( )( ) a b a b a b    
  • 18. Another way of seeing this type of factorisation is: 2 2 2 2 2 2 ( )( ) a b a b a b     ( )( ) a b a b    0, 0 a b  
  • 19. EXAMPLE Factorise fully: 2 9 x  (a) 2 2 ( 9)( 9) x x    ( 3)( 3) x x   
  • 20. 4 2 49 64 x y  (b) 2 2 (7 8 )(7 8 ) x y x y    8 8 8 8 a b  (c) 8 8 8( ) a b   4 4 2 2 8( )( )( )( ) a b a b a b a b      4 4 4 4 8( )( ) a b a b    4 4 2 2 2 2 8( )( )( ) a b a b a b    
  • 21. 2 4 ( ) x y   (d)    2 ( ) 2 ( ) x y x y      (2 )(2 ) x y x y     
  • 22. QUADRATIC TRINOMIALS Consider the product ( )( ) x a x b   By multiplying out, it is clear that this product will become: ( )( ) x a x b   2 x ax bx a b      2 ( ) x a b x a b     
  • 23. So the expression can be factorised as ( )( ) x a x b   2 ( ) x a b x a b     For example, the trinomial can be factorised as follows: 2 6 8 x x   Write the last term, 8, as the product of two numbers ( ) a b  The options are: 1 8  4 2 
  • 24. The middle term is now obtained by adding the numbers of one of the above options. The obvious choice will be the option because the sum of the numbers 4 and 2 gives 6. Therefore: 2 (4 2) (4 2) x x      4 2  2 6 8 x x   ( 4)( 2) x x   
  • 25. So the trick to factorising trinomials is as follows: • Write down the last term as the product of two numbers. • Find the two numbers (using the appropriate numbers from one of the products) which gets the middle term by adding or subtracting.
  • 26. • Check that when you multiply these numbers you get the last term.
  • 27. EXAMPLE Factorise: 2 7 60 x x   (a) The last term can be written as the following products: 1 60, 30 2, 15 4, 10 6, 12 5, 20 3      
  • 28. We now need to get from one of the options above. 7  Using will enable us to get since 12 5  7  12 5 7     (middle term) and ( 12)(5) 60    (last term)
  • 29. Therefore: 2 7 60 x x   ( 12)( 5) x x   
  • 30. 2 5 6 x x   (b) The last term can be written as the following products: 3 2, 1 6   We now need to get from one of the options above. 5  Try the option 3 2 
  • 31. Clearly which is the middle term and which is the last term. Notice that the option will not work because even though is the middle term, is not the last term. 1 6  3 2 5     3 2 6      1 6 5     1 6 6    
  • 32. Therefore: 2 5 6 x x   ( 3)( 2) x x    Notice: • If the sign of the last term of a trinomial is negative, the signs in the brackets are different (see example 8a). 2 7 60 ( 12)( 5) x x x x     
  • 33. • If the sign of the last term of a trinomial is positive, the signs in the brackets are the same i.e. both positive or both negative 2 5 6 x x   ( 3)( 2) x x   
  • 34. 2 3 21 24 a a   (c) 2 3 21 24 a a   Here it is necessary to first take out the highest common factor: 2 3( 7 8) a a    3( 1)( 8) a a   
  • 35. 2 12 x x   (d) ( 4)( 3) x x    2 10 24 x x   (e) ( 6)( 4) x x   
  • 36. In summary then, apply the following procedure when factorising trinomials: • Take out the highest common factor if necessary. • Write down the last term as the product of two numbers.
  • 37. • Find the two numbers (using the appropriate numbers from one of the products) which gets the middle term by adding or subtracting. • Check that when you multiply these numbers you get the last term.
  • 38. • If the sign of the last term of a trinomial is positive, the signs in the brackets are the same (both positive or both negative). • If the sign of the last term of a trinomial is negative, the signs in the brackets are different.
  • 39. MORE ADVANCED TRINOMIALS Consider the trinomial 2 21 25 4 x x   The method to factorise this trinomial is a little more involved than with the previous trinomials. A suggested method is as follows. EXAMPLE
  • 40. Step 1 Write down the product options of the first and last terms 2 21 : 1 21 , 7 3 4 : 1 4, 2 2 x x x x x    
  • 41. Step 2 Write the product options in a table format as follows: First term Last term 21x 1x 7x 3x 1 4 1 4 2 2 The product option for the last term must also be written in reverse order as 1 4  4 1 
  • 42. Step 3 Select any product option from the first term and last term and write these options using what is called the “cross method”: 7x 3x 1 4
  • 43. 7x 3x 1 4 Step 4 Now multiply as follows: 3x 28x
  • 44. Step 5 The trick is to now get the middle term, , from and using different signs (because the sign of the last term of the trinomial is negative). Insert the signs as follows: 25x  3x 28x
  • 46. 7x 3x 1 4 3x  28x  Step 6 The factors are now obtained by reading off horizontally: 7 1 x  3 4 x  2 21 25 4 x x   (7 1)(3 4) x x   
  • 47. Factorise: 2 12 11 2 x x   The product options of the first and last terms: EXAMPLE 2 12 : 1 12 , 4 3 , 6 2 2 : 1 2, 2 1 x x x x x x x     
  • 48. First term Last term 1x 12x 4x 3x 1 1 2 2 The signs in the brackets must be the same because the sign of the last term of the trinomial is positive. 6x 2x
  • 49. 4x 3x 1 2 3x  8x  11x  2 12 11 2 x x   (4 1)(3 2) x x   
  • 50. Before discussing the next examples, we need to deal with the concept of “taking out a negative”. Consider the following expressions: ( ) x y x y      ( ) x y x y      It is clear from the above that: ( ) x y x y      ( ) x y x y     
  • 51. Therefore, whenever you “take out a negative sign” when factorising an expression, the middle sign will always change in the brackets. For example: 3 ( 3) x x      middle sign is positive and changes to a negative in the brackets
  • 52. 3 ( 3) x x      middle sign is negative and changes to a positive in the brackets 2 8 2( 4) x x      middle sign is negative and changes to a positive in the brackets
  • 53. SIMPLIFICATION OF ALGEBRAIC FRACTIONS MULTIPLICATION AND DIVISION EXAMPLE 15 Simplify the following expressions: 3 4 5 12 18 x y z x yz (a)
  • 54. 3 4 5 12 18 x y z x yz 3 4 5 1 12 18 x y z x y z  3 2 2 3 y x 
  • 55. 2 7 3 12 24 5 25 a b a b c c  (b) 2 3 7 12 25 5 24 a b c c a b   2 5 5 2 c a  2 3 7 12 25 5 24 a bc a bc   
  • 56. 2 2 6 12 6 x x x  (c) 2 6 ( 2) 6 x x x   2 x x  
  • 57. EXAMPLE Simplify the following expressions: 2 2 12 27 4 12 x x x x    (a)      9 3 4 3 x x x x     9 4 x x  
  • 58. 2 2 2 2 5 4 5 4 x x x x x x       (b)         5 2 5 1 2 2 x x x x x x x            1 2 x x x   
  • 59. 2 2 2 3 2 2 1 2 1 8 yx y y x x x x        (c) 2 2 2 3 2 2 2 1 1 8 yx y x x x y x                 2 2 2 2 1 2 1 1 1 2 2 4 y x x x x x y x x x                 2 2 2 1 1 2 4 x y x x x     
  • 60. EXAMPLE 17   x y y x     Simplify: 3 6 2 x x   (a)   3 2 2 x x        3 2 2 x x     3  
  • 61. EXAMPLE 18 Simplify: 2 3 1 2 1 1 2 4 3 xy x x    3 LCD 12x y  2 3 1 1 2 1 1 2 4 3 xy x x    
  • 62. 2 3 1 1 2 1 1 2 4 3 xy x x     3 2 3 12 3 8 6 12 x y xy y x x y     3 3 2 2 3 2 1 1 2 1 1 2 12 3 4 6 3 4 12 6 4 3 x y xy y x x xy x x y y x y x         3 2 3 3 3 3 12 3 8 6 12 12 12 12 x y xy y x x y x y x y x y    
  • 63. 1 2 3 2 3 4 x x x      ( 1) ( 2) ( 3) 2 3 6 4 3 6 4 3 4 x x x          EXAMPLE 19 Simplify: LCD 12  6( 1) 4( 2) 3( 3) 12 12 12 x x x      
  • 64. 2 1 3 3 x x            2 1 3 3 x x            EXAMPLE 20 Simplify: Method 1 3 2 3 1 3 3 x x            
  • 65. 3 2 3 1 3 3 x x             2 9 3 2 9 x x    (3 2)(3 1) 9 x x   
  • 66. 2 1 3 3 x x            Method 2 2 1 2 2 3 3 9 x x x     2 9 3 6 2 9 x x x     2 9 3 2 9 x x   
  • 67. EXAMPLE Simplify: 1 2 1 2 x x x x     (a)   LCD 2 x x     1 (2 1) ( 2 ( ) ( 2) 2) x x x x x x x x            1 (2 1)( 2) ( 2) ( 2) x x x x x x x x       
  • 68.   1 (2 1)( 2) ( 2) ( 2) x x x x x x x x             1 (2 1) 2 ( 2) x x x x x x       2 2 (2 4 2) ( 2) x x x x x x x       
  • 69. 2 2 2 4 2 ( 2) x x x x x x x        2 6 2 ( 2) x x x x     
  • 70. EXAMPLE Simplify: 2 3 2 2 5 2 2 4 x x x x x       (a)    3 2 2 5 2 2 2 2 x x x x x x        
  • 71.        ( 2) (3 ( 2) ( 2) 2) 2 5 2) 2 2 ( 2 2 x x x x x x x x x x                      3 2 2 2 5 2 2 2 x x x x x x            2 3 2 2 4 5 10 2 2 x x x x x x            2 2 6 12 2 2 x x x x     
  • 72. EXAMPLE Simplify: 2 5 3 3 5 6 x x x x     (a)    5 3 2 3 3 x x x x           5 3 2 3 3 x x x x      
  • 73.      5 3 2 3 3 x x x x           5 3 2 3 ) 3 ( 2) ( 2 x x x x x x              5 3 2 2 3 x x x x         2 5 3 6 2 3 x x x x         2 3 6 5 2 3 x x x x      

Editor's Notes

  1. "Textbook, Chapter, Page"
  2. "Textbook, Chapter, Page"
  3. "Textbook, Chapter, Page"
  4. "Textbook, Chapter, Page"
  5. "Textbook, Chapter, Page"
  6. "Textbook, Chapter, Page"
  7. "Textbook, Chapter, Page"
  8. "Textbook, Chapter, Page"
  9. "Textbook, Chapter, Page"
  10. "Textbook, Chapter, Page"
  11. "Textbook, Chapter, Page"
  12. "Textbook, Chapter, Page"
  13. "Textbook, Chapter, Page"
  14. "Textbook, Chapter, Page"
  15. "Textbook, Chapter, Page"
  16. "Textbook, Chapter, Page"
  17. "Textbook, Chapter, Page"
  18. "Textbook, Chapter, Page"
  19. "Textbook, Chapter, Page"
  20. "Textbook, Chapter, Page"
  21. "Textbook, Chapter, Page"
  22. "Textbook, Chapter, Page"
  23. "Textbook, Chapter, Page"
  24. "Textbook, Chapter, Page"
  25. "Textbook, Chapter, Page"
  26. "Textbook, Chapter, Page"
  27. "Textbook, Chapter, Page"
  28. "Textbook, Chapter, Page"
  29. "Textbook, Chapter, Page"
  30. "Textbook, Chapter, Page"
  31. "Textbook, Chapter, Page"
  32. "Textbook, Chapter, Page"
  33. "Textbook, Chapter, Page"
  34. "Textbook, Chapter, Page"
  35. "Textbook, Chapter, Page"
  36. "Textbook, Chapter, Page"
  37. "Textbook, Chapter, Page"
  38. "Textbook, Chapter, Page"
  39. "Textbook, Chapter, Page"
  40. "Textbook, Chapter, Page"
  41. "Textbook, Chapter, Page"
  42. "Textbook, Chapter, Page"
  43. "Textbook, Chapter, Page"
  44. "Textbook, Chapter, Page"
  45. "Textbook, Chapter, Page"
  46. "Textbook, Chapter, Page"
  47. "Textbook, Chapter, Page"
  48. "Textbook, Chapter, Page"
  49. "Textbook, Chapter, Page"
  50. "Textbook, Chapter, Page"
  51. "Textbook, Chapter, Page"
  52. "Textbook, Chapter, Page"
  53. "Textbook, Chapter, Page"
  54. "Textbook, Chapter, Page"
  55. "Textbook, Chapter, Page"
  56. "Textbook, Chapter, Page"
  57. "Textbook, Chapter, Page"
  58. "Textbook, Chapter, Page"
  59. "Textbook, Chapter, Page"
  60. "Textbook, Chapter, Page"
  61. "Textbook, Chapter, Page"
  62. "Textbook, Chapter, Page"
  63. "Textbook, Chapter, Page"