SlideShare a Scribd company logo
1 of 4
Download to read offline
Rideth
he high-temperaturemlcro-
waveprocessingof materialsis
becomingan industrial realitY
with theavaiiabilityof commer-
cialmicrowavefurnacesandthe successfui
effortsto developprocessknow-how by
severaladvancedtechnologydevelopment
groupsworldwide. The impetus for this
developmentis the realizationthat high-
temperaturemicrowaveprocessingcanbe
a faster,greenerand cheaperalternativeto
conventionalelectric-andgas-basedheat-
ingtechnologies.Microwaveprocessingis
often preferredover conventionalmeth-
ods due to substantialeconomicadvan-
tagesandcomparableor betterproperties
of thefinishedproduct.
Historicaliyin the U.S.,low-temper-
ature microwaveprocessinghas been
usedextensivelyin applicationssuchas
food and wood processingand drying.
However,to datetherearefew domestic
high-temperalurecommercialmicrowave
applications.A primarychallengehasbeen
thelackof sophisticatedhigh-temperature
rnicrowavefurnaces.
Thisobstacleisbeingovercomethrough
the availabilityof new high-temperature
automatedmicrowavefurnaces,including
the latestcontinuousmicrowavepusher
system.-With a footprirrtin therangeol
2 x 6 to 2 x 18m, the sYstem'smaximum
output poweris 9-36kW. The maximum
temperatureis 1500'C,and processing
atmospherescanbe air, nitrogen'inert
gasesandmixtures.Thisindustrialmicro-
wavesystemoffers advancedindustrial
directenergytransfertechnologyandhigh
efficiencythat enablesceramicandmetal
partsto be processedat a fraction of the
time andcostof conventionalkilns.
6nl ng 6 r#en, iilipl r.,rr*rliilg {}lal'i'y
A major advantageof high-temperature
microwavesystemsis their
"green'nature.
Microwavefurnacesgenerallyheat oniy
the objectsto be processed,not the fur-
nacewallsor atmosphere.Energy-efficient
microwavefurnacesproducea substan-
tiallysmallercarbonfootprint,lesspoliut-
ants,andlower operatingand end-prod-
uctcosts.In addition,microwaveProcess-
ing caninvolveup to 90oloshorterprocess-
ing timesanda correspondingdecreaseof
up to 80o/oin energyconsumptionwhen
comparedwith conventionalmethodsfor
manycommercialProducts.
Microwavingcanalsoyield improved
product quality with finer grain size,
higher sintereddensity,increasedcorro-
sion resistance,and greaterstrengthof
finishedparts.Theseadvantagescanbe
obtainedwith ceramics,a rangeof pow-
deredmetals(suchastitanium,tungsten,
molybdenumand steels),and
"hardmet-
als"liketungstencarbide.
> High-temperature
microwaveprocessing
canbea faster,greener
andcheaperalternative
to conventiona[electric-
andgas-basedheating
technologies.
by K.Cherian,lM.KirkseY,l
P.Hu,2L. Hurtt,2J.Cheng,3
D.Agrawal3andR.RoY3
With the realizationof not only the
technicalbut alsothesubstantialeconomic
advantageshigh-temperal.uremicrowave
processingoffers,the implementationof
thisnewprocessingmethodbeganmostly
in ceramicsand relatedindustries,includ-
ing advancedceramic/carbidewearparts,
electro-ceramicsandbio-ceramics.Subse-
quently,microwaveprocessinghasbegun
to migrateto other industries'such as
powder metallurgy,wasteremediation,
andmaterialssymthesis/microwavechem-
istryapplications.
. . 1 | : ! ' ; ' i . '
In Iune 2006,PennsylvaniaStateUniver-
sityhostedthe NationalAcademy.of Engi-
neeringRegionalMeetingon
"Immediate
EnergySavingsvia MicrowaveUsagein
Maior MaterialsTechnologies."Several
leadingmicrowaveresearch,development
andapplicationgroupsfrom Asia'Europe
and the U.S.presentedreportsdetailing
the technicaland economicadvantages
andenergysavingsachievedthrough their
implementationof microwaveprocessing
technologiesin industrialapplications.
For traditional ceramic sintering,
Japan'sNational Institute of FusionSci-
encereportedthat microwaveuseenabled
the reduction of processingtime from
8 to 2 hours,energyconsumptionreduc-
tion from 335to 63 KWh, and reduction
1.SphericTechnotogies,Phoenix,Ariz.2.Syno-ThermCo.Ltd',Changsha,Hunan,PR
China'
3. MicrowaveProcessing& EngineeringCenter,PennsytvaniaStateUniversity'Pa'
16 September 2008 L www.CERAMICINDUSTRY'COM
ofenergycostfrom $14to $7perbatch.In the caseoflarge-part
alumina (up to 60 cm diameter),the sinteringtime wasreduced
from 96to 20hours,energyconsumptionfrom 5000to 484k,Vh
and energycostfrom $420to $70perbatch.
Successfulpilot-scale investigationshavebeencompletedin
fapanfor usingmicrowavesin steelproduction.TheU.S.Depart-
ment of Energyestimatesthat conversionof domesticsteelmak-
ing from conventionalto microwave-assistedprocessingwould
saveup to 14million tons of coalburned for energy,thus reduc-
ing pollutant emissionsby over 30 million tons of carbonmon-
oxideand carbondioxideannualh
Totalprocessingtime
was decreasedfrom 1-500
hours using corrventional
processingto around50
hourswith a microwave-
assistedroute.
Britain's Loughborough University investigatedmicrowave-
assistedhybrid processesfor the sinteringand chemicalvapor
infiltration (CVI) of ceramicmatrix composites(CMCs). For
a 13-mm-thickwovenfabricpreform,the total processingtime
wasdecreasedfrom 1500hours usingconventionalprocessingto
around 50hourswith a microwave-assistedroute.
Canada'sOntario EnergyAgencyestimatedthat if the ceramic
industrystartedusingmicrowaveinsteadof conventionalprocesses
for variousceramicproducts,the industry would save412million
KWh per year,or the equivalentof one350MW coal-firedpower
plant. When extrapolatedto all applicationsin North America,
annualenergysavingscouldbemeasuredin Gigawatthours.
The PennStateMicrowaveProcessingand EngineeringCen-
ter cut the sinteringcycletime for cementedcarbidesfrom 2.5
hours to 15minutes,producingpartswith improvedabrasion
andcorrosionresistance.This hasnow developedinto a frrll-scale
commercialtechnology.
Additional studiescomparinghigh-temperaturemicrowave
processingwith traditional methodshavebeencarriedout for a
number of applicationsand aresummarizedbelow.
PTCElectronicCeramicHeatingParts
Conventional
Footprint(squaremeters) 50
Furnacehotdingpower(kW) 35
Powerconsumption(kWh/10,000pieces) 300
Productivity(pieces/year) 24mittion
Energycostsper10,000pieces(@$0.1/kwh) $lO
AnnuaImaintenancecosts $3750
Totalsavings/year(24million pieces): 548,000
Microwave
I O
1,2
100
24miltion
$ro
$3750
Footprint(squaremeters)
Furnaceinputpower(kW)
Powerconsumption(kWh/tonofproduct)
Productivity(tons/year)
Energycostspertonofproduct($0.1/kwh)
Totalsavings/year(100tons):S70,000
Footprint(squaremeters)
Furnaceinputpower(kW)
Powerconsumption(kWh/tonofproduct)
Productivity(tons/year)
Energycostspertonofproduct($0.1/kwh)
Totalsavings/year(200tons):596,000
120
180
9000
100
$9oo
100
100
6000
200
$ooo
40
50
2000
100
$200
40
24
1200
200
$120
Footprint(squaremeters) 200
Furnaceinputpower(kW) 550
Productivity(tons/yeaO 2oo
Powerconsumption(kWh/tonofproduct) 13,500
Nitrogengasconsumption(m3/hr) 240
Annualmaintenancecosts $150,000
Energycostspertonofproduct($0.1/kWh) $fffO
Annualmaintenancecostspertonofproducts$750
Nitrogengasusepertonofproducts $tOll
Totalsavings/year(200tons):5358,800
60
80
100
4500
60
$37,500
$4sb
$tts
$sre
The debinding and sintering of positivetemperaturecoeffi- AluminaGrindingSands
cient (PTC)electronicceramicheatingpartswascarriedout in For alumina grinding sand processingwith microwaves,the
a continuoustunnel microwavefurnace.EachPTC ceramicpart requiredmicrowavesinteringtemperaturewaslower (by approx-
weighed7 g andthe maximum temperatureusedwas 1240'C. imately100"C)andthehold time significantlyshorter(by about
*SPHERIC/SYNO-THERMTMcomputer-controlledmicrowavefurnacewiththeAMPSpushersystem,
marketedintheU.S.bySphericTechnologies,Phoenix,Ariz..
The product qualitywasfound to be asgoodasthat in partssin-
teredby a conventionalfurnace.
For an annualproduction levelof 24 million piecesof the
product,lab/field trials demonstratedpotentialyearlysavingsof
approximately$48,000by usinga microwaveprocessingroute
rather than a conventionalprocessingroute.Additional compar-
ativedatais detailedin Thble1.
Conventional Microwave
ConventionaI Microwave
Conventiona[ Microwave
CERAMIC INDUSTRY ) Seotember 2005 17
RIDETHEWAVE
ffi suNRocKcERAMtcs
Specia/istsin hishaluminakiln furniture
Saggers,setters,tile,rings/disks
& pusherplates
-MW -Conv
SunrockGeramlcsComPanY,LLC
2625 S. 21-stAve. Broadview,lL 60155
PH:708.344.7600, FX:708.344.7636
Time{Hrsl
Figure1. Aluminagrindingsand processing.
-MW -Conv
1400
1200
1000
800
600
400
200
0
Tim€{Hrs}
Figure2. Ni-Znferrite parts sintering.
-MW -Cony
part
L800
1600
O 1400
; 1200
E 1000
$ soo
E UUU
f +oo
200
0
U
o
o
E
o
€
E
o
F
1600
1400
1200
1000
800
600
40c
200
TimelHrs) ::i :.
Figure3.Vanadiumnitridesynthesisandsintering.
one-sixth) in comparisonto a conventionalcontinuous sinter-
ing furnacefor a similar product.The overallprocesstime' from
room temperatureto room temperature'wasreducedby more
than660/o(seeFigurel). Table2lists additionalbenefits.
.)
Ni-Zn FerriteParts
It wasfound that the requiredmicrowavesinteringtemperatureforr
Ni-Zn ferritepartswaslower (by about100oC),andthe hold time
wassignificantlyshorter (by approximatelyone-third) in compari-
sonto a conventionalcontinuoussinteringfurnacefor a similar
product.Figure2 illustratesthe 50% reduction in overallprocess
time that resultedwith microwaveprocessing.For an annualpro-
duction of 200tonsof Ni-Zn ferriteparts,lab/field trials demon-
stratedthatapotentialsavingsof $96,000couldbeachievedby uti-
lizingmicrowavevs.conventionalprocessing(seeTable3).
4 to 6 weekstandardleadtime
MolybdenumDisilicideand
SiliconGarbideHeatingElements..'
CustommadeforyouraPPlication
. Maximumstructuraldensityfor extendedservicelife
. Elementtemperaturesupto 1800oC(3272oF)
. Freeapplicationengineeringassistance
. Fastdelivery
-:*filloly-Dt -fttarhar@
ffiffi
Made in Americaby:
I SquaredR ElementCo.,lnc.
Akron,NY Phone(716)542-5511
Fux AlQ Sa2-2100
EmaiI: sa/es@rsquaredreIement.com
Visitour web site:wwwJsquaredrelement.com
18 September2008 ) www'cERAMICINDUSTRY.coM
VanadiumNitride
Vanadium nitride (VN) synthesisand
sintering through microwaveprocess-
ing wasalsoinvestigated.The required
microwavesintering temperaturewas
lower (by - 50'C) and the hold time
was significantlyshorter (about one-
sixth) compared to a conventional
process(like atmosphericpressure
carbothermic reduction) for a similar
product. Microwaveprocessingreduced
the overallprocesstime by at least50olo
(seeFigure 3), and potential savings
could reach$358,000per year for an
annualproduction of 200tons.Table4
listsadditionaldetails.
A HotFuture
High-temperaturemicrowaveprocess-
ing can provide substantialeconomic
and environmental advantagesover
traditional processesas a result of a
combinationof severalfactors,includ-
ing reducedprocessingtimes, lower
processingtemperatures,reducedcon-
sumablecostsin certain cases,fewer
p o l l u t a n t s ,a n d e n e r g ys a v i n g s - i n
addition to improvements in prod-
uct properties.Also, the application
of microwavesinvolves substantially
reducedor near-zeroproduction of
environmentallyharmful emissions,
therebymakingthis an environmen-
tally friendlier-or "greener"-tech-
nology aswell.
With a smallerphysicalfootprint and
a substantiallysmallercarbonfootprint,
microwavefurnacesoffer lower operat-
ing and end-productcosts.Thus,micro-
waveprocessingtechnology is a faster,
greenerand more energy-efficientalter-
nativefor industry. @
For moreinformationregardingmicrowaye
processingcontactSphericTechnologies,Inc.
at 4708E.VanBurenSt.,PhoenixAZ 85008;
(602)21S-9292;e-mailinfo@SphericTbch.com;
or visitwww.SohericTbch.mm.
€mvir0nmxemtanlvJ
The
applieation
mfnricronraves
involves
substamtiatrly
reducedor
near-xerO
prCIduetimnof
! r a
narmlul
? *
emlss}ons"
TOKUYAMAAluminumNitride
Powder& Granule
fl
:'
#.slargestsupplierca
urhusinessneeds
:::'
ty
u
u
. A stablesupply,
havingtheworld'slargestsupplycapacity.
. Highquality,lowmetallicimpurity.
. Longshelflife,excellentproductstability.
USA Europe
Tokuyama America In<. Tokuyama Europe GmbH
12lS.WilkeRoad,suite300 Oststrasse10,402ll
ArlingtonHeights,lL60005 DusseldorfGermany
Tel:+1-847-385-2195 fel:+49-21'l-17544ao
Japan
Tokuyama Corporation
ShapalSalesDeoartmentAdvancedMaterialsBusinessDivision
ShibuyaKonnoBldg.3-1,Shibuya3-chome,Shibuya-ku,Tokyo150-8383
Tel:.81 3.3597-5135e-mail:shapal@tokuyama.cojp
URLhttp://www.shapaljp/index.html
CERAMIC INDUSTRY l September 2008 t9

More Related Content

Viewers also liked

Rick Pedaline Digital Portfolio
Rick Pedaline Digital PortfolioRick Pedaline Digital Portfolio
Rick Pedaline Digital Portfolio
Rick Pedaline
 
Military Training Recieved
Military Training RecievedMilitary Training Recieved
Military Training Recieved
Joseph Slape
 
Senior Multi-Disciplined CADD Designer 3
Senior Multi-Disciplined CADD Designer 3Senior Multi-Disciplined CADD Designer 3
Senior Multi-Disciplined CADD Designer 3
GARY HILSON
 
CustomBrochure_v5-PRINT
CustomBrochure_v5-PRINTCustomBrochure_v5-PRINT
CustomBrochure_v5-PRINT
Nancy Gores
 
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FMFIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
Francesca Mei
 
C.V. Mina Habib
C.V. Mina HabibC.V. Mina Habib
C.V. Mina Habib
Mina Habib
 

Viewers also liked (13)

Rick Pedaline Digital Portfolio
Rick Pedaline Digital PortfolioRick Pedaline Digital Portfolio
Rick Pedaline Digital Portfolio
 
Military Training Recieved
Military Training RecievedMilitary Training Recieved
Military Training Recieved
 
DISCOURSE ANALYSIS FOR LANGUAGE TEACHER
DISCOURSE ANALYSIS FOR LANGUAGE TEACHERDISCOURSE ANALYSIS FOR LANGUAGE TEACHER
DISCOURSE ANALYSIS FOR LANGUAGE TEACHER
 
3.at the post office
3.at the post office3.at the post office
3.at the post office
 
Unit 13 LO1
Unit 13 LO1Unit 13 LO1
Unit 13 LO1
 
Senior Multi-Disciplined CADD Designer 3
Senior Multi-Disciplined CADD Designer 3Senior Multi-Disciplined CADD Designer 3
Senior Multi-Disciplined CADD Designer 3
 
History.eng
History.engHistory.eng
History.eng
 
CustomBrochure_v5-PRINT
CustomBrochure_v5-PRINTCustomBrochure_v5-PRINT
CustomBrochure_v5-PRINT
 
Youth Connect 2015- Youth Agency Stream Activities and Handouts
Youth Connect 2015- Youth Agency Stream Activities and HandoutsYouth Connect 2015- Youth Agency Stream Activities and Handouts
Youth Connect 2015- Youth Agency Stream Activities and Handouts
 
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FMFIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
FIBA_EB2015_TrophyTour_Brochure_AW_SINGLEPG_VISUAL_FM
 
Resumea_A_Guerrero
Resumea_A_GuerreroResumea_A_Guerrero
Resumea_A_Guerrero
 
C.V. Mina Habib
C.V. Mina HabibC.V. Mina Habib
C.V. Mina Habib
 
Tracing and Sketching Performance using Blunt-tipped Styli on Direct-Touch ...
Tracing and Sketching Performance  using Blunt-tipped Styli on  Direct-Touch ...Tracing and Sketching Performance  using Blunt-tipped Styli on  Direct-Touch ...
Tracing and Sketching Performance using Blunt-tipped Styli on Direct-Touch ...
 

Similar to CI9-08Article Ride The Wave1

Cold storage system
Cold storage systemCold storage system
Cold storage system
Ronit Saha
 
Modern Plastics Energy Savings Glycon Corp.
Modern Plastics Energy Savings Glycon Corp.Modern Plastics Energy Savings Glycon Corp.
Modern Plastics Energy Savings Glycon Corp.
Glycon Corp.
 
Brochure_Range_Of_Products_And_Services
Brochure_Range_Of_Products_And_ServicesBrochure_Range_Of_Products_And_Services
Brochure_Range_Of_Products_And_Services
Anton Besaris
 
Industri Minyak di Masa Depan
Industri Minyak di Masa DepanIndustri Minyak di Masa Depan
Industri Minyak di Masa Depan
Yanu Priandana
 
Extreme Capacitor Introduction
Extreme Capacitor IntroductionExtreme Capacitor Introduction
Extreme Capacitor Introduction
ytusa
 

Similar to CI9-08Article Ride The Wave1 (20)

Solar Process Heat - Markus Gründler
Solar Process Heat - Markus GründlerSolar Process Heat - Markus Gründler
Solar Process Heat - Markus Gründler
 
Cold storage system
Cold storage systemCold storage system
Cold storage system
 
“Towards net zero: extracting energy from flooded coal mines for heating and ...
“Towards net zero: extracting energy from flooded coal mines for heating and ...“Towards net zero: extracting energy from flooded coal mines for heating and ...
“Towards net zero: extracting energy from flooded coal mines for heating and ...
 
Thermoplastic composites for Wind Energy
Thermoplastic composites for Wind EnergyThermoplastic composites for Wind Energy
Thermoplastic composites for Wind Energy
 
Modern Plastics Energy Savings Glycon Corp.
Modern Plastics Energy Savings Glycon Corp.Modern Plastics Energy Savings Glycon Corp.
Modern Plastics Energy Savings Glycon Corp.
 
Brochure_Range_Of_Products_And_Services
Brochure_Range_Of_Products_And_ServicesBrochure_Range_Of_Products_And_Services
Brochure_Range_Of_Products_And_Services
 
Eubce 2016 presentation - skreiberg 002_rsk_final_3_ao.3.2
Eubce 2016 presentation - skreiberg 002_rsk_final_3_ao.3.2Eubce 2016 presentation - skreiberg 002_rsk_final_3_ao.3.2
Eubce 2016 presentation - skreiberg 002_rsk_final_3_ao.3.2
 
Steam Turbine - biomass
Steam Turbine - biomassSteam Turbine - biomass
Steam Turbine - biomass
 
JK paper LTD.
JK paper LTD. JK paper LTD.
JK paper LTD.
 
Steel Making Methods
Steel Making MethodsSteel Making Methods
Steel Making Methods
 
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
 
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
CCS Gas and Industry Research Activities in Norway, Nils Røkke (Sintef) UK/No...
 
Clean Energy at the University of Hull - Simon Waldman & Xudong Zhao
Clean Energy at the University of Hull - Simon Waldman & Xudong ZhaoClean Energy at the University of Hull - Simon Waldman & Xudong Zhao
Clean Energy at the University of Hull - Simon Waldman & Xudong Zhao
 
Renewable energy
Renewable energy Renewable energy
Renewable energy
 
Techno-economical Up-gradation Strategies of Traditional Terracotta up- draug...
Techno-economical Up-gradation Strategies of Traditional Terracotta up- draug...Techno-economical Up-gradation Strategies of Traditional Terracotta up- draug...
Techno-economical Up-gradation Strategies of Traditional Terracotta up- draug...
 
Soot blowing and advantages
Soot blowing and advantagesSoot blowing and advantages
Soot blowing and advantages
 
Adoption of supercritical technology (1)
Adoption of supercritical technology (1)Adoption of supercritical technology (1)
Adoption of supercritical technology (1)
 
Industri Minyak di Masa Depan
Industri Minyak di Masa DepanIndustri Minyak di Masa Depan
Industri Minyak di Masa Depan
 
Extreme Capacitor Introduction
Extreme Capacitor IntroductionExtreme Capacitor Introduction
Extreme Capacitor Introduction
 
Thermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pelletsThermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pellets
 

CI9-08Article Ride The Wave1

  • 1. Rideth he high-temperaturemlcro- waveprocessingof materialsis becomingan industrial realitY with theavaiiabilityof commer- cialmicrowavefurnacesandthe successfui effortsto developprocessknow-how by severaladvancedtechnologydevelopment groupsworldwide. The impetus for this developmentis the realizationthat high- temperaturemicrowaveprocessingcanbe a faster,greenerand cheaperalternativeto conventionalelectric-andgas-basedheat- ingtechnologies.Microwaveprocessingis often preferredover conventionalmeth- ods due to substantialeconomicadvan- tagesandcomparableor betterproperties of thefinishedproduct. Historicaliyin the U.S.,low-temper- ature microwaveprocessinghas been usedextensivelyin applicationssuchas food and wood processingand drying. However,to datetherearefew domestic high-temperalurecommercialmicrowave applications.A primarychallengehasbeen thelackof sophisticatedhigh-temperature rnicrowavefurnaces. Thisobstacleisbeingovercomethrough the availabilityof new high-temperature automatedmicrowavefurnaces,including the latestcontinuousmicrowavepusher system.-With a footprirrtin therangeol 2 x 6 to 2 x 18m, the sYstem'smaximum output poweris 9-36kW. The maximum temperatureis 1500'C,and processing atmospherescanbe air, nitrogen'inert gasesandmixtures.Thisindustrialmicro- wavesystemoffers advancedindustrial directenergytransfertechnologyandhigh efficiencythat enablesceramicandmetal partsto be processedat a fraction of the time andcostof conventionalkilns. 6nl ng 6 r#en, iilipl r.,rr*rliilg {}lal'i'y A major advantageof high-temperature microwavesystemsis their "green'nature. Microwavefurnacesgenerallyheat oniy the objectsto be processed,not the fur- nacewallsor atmosphere.Energy-efficient microwavefurnacesproducea substan- tiallysmallercarbonfootprint,lesspoliut- ants,andlower operatingand end-prod- uctcosts.In addition,microwaveProcess- ing caninvolveup to 90oloshorterprocess- ing timesanda correspondingdecreaseof up to 80o/oin energyconsumptionwhen comparedwith conventionalmethodsfor manycommercialProducts. Microwavingcanalsoyield improved product quality with finer grain size, higher sintereddensity,increasedcorro- sion resistance,and greaterstrengthof finishedparts.Theseadvantagescanbe obtainedwith ceramics,a rangeof pow- deredmetals(suchastitanium,tungsten, molybdenumand steels),and "hardmet- als"liketungstencarbide. > High-temperature microwaveprocessing canbea faster,greener andcheaperalternative to conventiona[electric- andgas-basedheating technologies. by K.Cherian,lM.KirkseY,l P.Hu,2L. Hurtt,2J.Cheng,3 D.Agrawal3andR.RoY3 With the realizationof not only the technicalbut alsothesubstantialeconomic advantageshigh-temperal.uremicrowave processingoffers,the implementationof thisnewprocessingmethodbeganmostly in ceramicsand relatedindustries,includ- ing advancedceramic/carbidewearparts, electro-ceramicsandbio-ceramics.Subse- quently,microwaveprocessinghasbegun to migrateto other industries'such as powder metallurgy,wasteremediation, andmaterialssymthesis/microwavechem- istryapplications. . . 1 | : ! ' ; ' i . ' In Iune 2006,PennsylvaniaStateUniver- sityhostedthe NationalAcademy.of Engi- neeringRegionalMeetingon "Immediate EnergySavingsvia MicrowaveUsagein Maior MaterialsTechnologies."Several leadingmicrowaveresearch,development andapplicationgroupsfrom Asia'Europe and the U.S.presentedreportsdetailing the technicaland economicadvantages andenergysavingsachievedthrough their implementationof microwaveprocessing technologiesin industrialapplications. For traditional ceramic sintering, Japan'sNational Institute of FusionSci- encereportedthat microwaveuseenabled the reduction of processingtime from 8 to 2 hours,energyconsumptionreduc- tion from 335to 63 KWh, and reduction 1.SphericTechnotogies,Phoenix,Ariz.2.Syno-ThermCo.Ltd',Changsha,Hunan,PR China' 3. MicrowaveProcessing& EngineeringCenter,PennsytvaniaStateUniversity'Pa' 16 September 2008 L www.CERAMICINDUSTRY'COM
  • 2. ofenergycostfrom $14to $7perbatch.In the caseoflarge-part alumina (up to 60 cm diameter),the sinteringtime wasreduced from 96to 20hours,energyconsumptionfrom 5000to 484k,Vh and energycostfrom $420to $70perbatch. Successfulpilot-scale investigationshavebeencompletedin fapanfor usingmicrowavesin steelproduction.TheU.S.Depart- ment of Energyestimatesthat conversionof domesticsteelmak- ing from conventionalto microwave-assistedprocessingwould saveup to 14million tons of coalburned for energy,thus reduc- ing pollutant emissionsby over 30 million tons of carbonmon- oxideand carbondioxideannualh Totalprocessingtime was decreasedfrom 1-500 hours using corrventional processingto around50 hourswith a microwave- assistedroute. Britain's Loughborough University investigatedmicrowave- assistedhybrid processesfor the sinteringand chemicalvapor infiltration (CVI) of ceramicmatrix composites(CMCs). For a 13-mm-thickwovenfabricpreform,the total processingtime wasdecreasedfrom 1500hours usingconventionalprocessingto around 50hourswith a microwave-assistedroute. Canada'sOntario EnergyAgencyestimatedthat if the ceramic industrystartedusingmicrowaveinsteadof conventionalprocesses for variousceramicproducts,the industry would save412million KWh per year,or the equivalentof one350MW coal-firedpower plant. When extrapolatedto all applicationsin North America, annualenergysavingscouldbemeasuredin Gigawatthours. The PennStateMicrowaveProcessingand EngineeringCen- ter cut the sinteringcycletime for cementedcarbidesfrom 2.5 hours to 15minutes,producingpartswith improvedabrasion andcorrosionresistance.This hasnow developedinto a frrll-scale commercialtechnology. Additional studiescomparinghigh-temperaturemicrowave processingwith traditional methodshavebeencarriedout for a number of applicationsand aresummarizedbelow. PTCElectronicCeramicHeatingParts Conventional Footprint(squaremeters) 50 Furnacehotdingpower(kW) 35 Powerconsumption(kWh/10,000pieces) 300 Productivity(pieces/year) 24mittion Energycostsper10,000pieces(@$0.1/kwh) $lO AnnuaImaintenancecosts $3750 Totalsavings/year(24million pieces): 548,000 Microwave I O 1,2 100 24miltion $ro $3750 Footprint(squaremeters) Furnaceinputpower(kW) Powerconsumption(kWh/tonofproduct) Productivity(tons/year) Energycostspertonofproduct($0.1/kwh) Totalsavings/year(100tons):S70,000 Footprint(squaremeters) Furnaceinputpower(kW) Powerconsumption(kWh/tonofproduct) Productivity(tons/year) Energycostspertonofproduct($0.1/kwh) Totalsavings/year(200tons):596,000 120 180 9000 100 $9oo 100 100 6000 200 $ooo 40 50 2000 100 $200 40 24 1200 200 $120 Footprint(squaremeters) 200 Furnaceinputpower(kW) 550 Productivity(tons/yeaO 2oo Powerconsumption(kWh/tonofproduct) 13,500 Nitrogengasconsumption(m3/hr) 240 Annualmaintenancecosts $150,000 Energycostspertonofproduct($0.1/kWh) $fffO Annualmaintenancecostspertonofproducts$750 Nitrogengasusepertonofproducts $tOll Totalsavings/year(200tons):5358,800 60 80 100 4500 60 $37,500 $4sb $tts $sre The debinding and sintering of positivetemperaturecoeffi- AluminaGrindingSands cient (PTC)electronicceramicheatingpartswascarriedout in For alumina grinding sand processingwith microwaves,the a continuoustunnel microwavefurnace.EachPTC ceramicpart requiredmicrowavesinteringtemperaturewaslower (by approx- weighed7 g andthe maximum temperatureusedwas 1240'C. imately100"C)andthehold time significantlyshorter(by about *SPHERIC/SYNO-THERMTMcomputer-controlledmicrowavefurnacewiththeAMPSpushersystem, marketedintheU.S.bySphericTechnologies,Phoenix,Ariz.. The product qualitywasfound to be asgoodasthat in partssin- teredby a conventionalfurnace. For an annualproduction levelof 24 million piecesof the product,lab/field trials demonstratedpotentialyearlysavingsof approximately$48,000by usinga microwaveprocessingroute rather than a conventionalprocessingroute.Additional compar- ativedatais detailedin Thble1. Conventional Microwave ConventionaI Microwave Conventiona[ Microwave CERAMIC INDUSTRY ) Seotember 2005 17
  • 3. RIDETHEWAVE ffi suNRocKcERAMtcs Specia/istsin hishaluminakiln furniture Saggers,setters,tile,rings/disks & pusherplates -MW -Conv SunrockGeramlcsComPanY,LLC 2625 S. 21-stAve. Broadview,lL 60155 PH:708.344.7600, FX:708.344.7636 Time{Hrsl Figure1. Aluminagrindingsand processing. -MW -Conv 1400 1200 1000 800 600 400 200 0 Tim€{Hrs} Figure2. Ni-Znferrite parts sintering. -MW -Cony part L800 1600 O 1400 ; 1200 E 1000 $ soo E UUU f +oo 200 0 U o o E o € E o F 1600 1400 1200 1000 800 600 40c 200 TimelHrs) ::i :. Figure3.Vanadiumnitridesynthesisandsintering. one-sixth) in comparisonto a conventionalcontinuous sinter- ing furnacefor a similar product.The overallprocesstime' from room temperatureto room temperature'wasreducedby more than660/o(seeFigurel). Table2lists additionalbenefits. .) Ni-Zn FerriteParts It wasfound that the requiredmicrowavesinteringtemperatureforr Ni-Zn ferritepartswaslower (by about100oC),andthe hold time wassignificantlyshorter (by approximatelyone-third) in compari- sonto a conventionalcontinuoussinteringfurnacefor a similar product.Figure2 illustratesthe 50% reduction in overallprocess time that resultedwith microwaveprocessing.For an annualpro- duction of 200tonsof Ni-Zn ferriteparts,lab/field trials demon- stratedthatapotentialsavingsof $96,000couldbeachievedby uti- lizingmicrowavevs.conventionalprocessing(seeTable3). 4 to 6 weekstandardleadtime MolybdenumDisilicideand SiliconGarbideHeatingElements..' CustommadeforyouraPPlication . Maximumstructuraldensityfor extendedservicelife . Elementtemperaturesupto 1800oC(3272oF) . Freeapplicationengineeringassistance . Fastdelivery -:*filloly-Dt -fttarhar@ ffiffi Made in Americaby: I SquaredR ElementCo.,lnc. Akron,NY Phone(716)542-5511 Fux AlQ Sa2-2100 EmaiI: sa/es@rsquaredreIement.com Visitour web site:wwwJsquaredrelement.com 18 September2008 ) www'cERAMICINDUSTRY.coM
  • 4. VanadiumNitride Vanadium nitride (VN) synthesisand sintering through microwaveprocess- ing wasalsoinvestigated.The required microwavesintering temperaturewas lower (by - 50'C) and the hold time was significantlyshorter (about one- sixth) compared to a conventional process(like atmosphericpressure carbothermic reduction) for a similar product. Microwaveprocessingreduced the overallprocesstime by at least50olo (seeFigure 3), and potential savings could reach$358,000per year for an annualproduction of 200tons.Table4 listsadditionaldetails. A HotFuture High-temperaturemicrowaveprocess- ing can provide substantialeconomic and environmental advantagesover traditional processesas a result of a combinationof severalfactors,includ- ing reducedprocessingtimes, lower processingtemperatures,reducedcon- sumablecostsin certain cases,fewer p o l l u t a n t s ,a n d e n e r g ys a v i n g s - i n addition to improvements in prod- uct properties.Also, the application of microwavesinvolves substantially reducedor near-zeroproduction of environmentallyharmful emissions, therebymakingthis an environmen- tally friendlier-or "greener"-tech- nology aswell. With a smallerphysicalfootprint and a substantiallysmallercarbonfootprint, microwavefurnacesoffer lower operat- ing and end-productcosts.Thus,micro- waveprocessingtechnology is a faster, greenerand more energy-efficientalter- nativefor industry. @ For moreinformationregardingmicrowaye processingcontactSphericTechnologies,Inc. at 4708E.VanBurenSt.,PhoenixAZ 85008; (602)21S-9292;e-mailinfo@SphericTbch.com; or visitwww.SohericTbch.mm. €mvir0nmxemtanlvJ The applieation mfnricronraves involves substamtiatrly reducedor near-xerO prCIduetimnof ! r a narmlul ? * emlss}ons" TOKUYAMAAluminumNitride Powder& Granule fl :' #.slargestsupplierca urhusinessneeds :::' ty u u . A stablesupply, havingtheworld'slargestsupplycapacity. . Highquality,lowmetallicimpurity. . Longshelflife,excellentproductstability. USA Europe Tokuyama America In<. Tokuyama Europe GmbH 12lS.WilkeRoad,suite300 Oststrasse10,402ll ArlingtonHeights,lL60005 DusseldorfGermany Tel:+1-847-385-2195 fel:+49-21'l-17544ao Japan Tokuyama Corporation ShapalSalesDeoartmentAdvancedMaterialsBusinessDivision ShibuyaKonnoBldg.3-1,Shibuya3-chome,Shibuya-ku,Tokyo150-8383 Tel:.81 3.3597-5135e-mail:shapal@tokuyama.cojp URLhttp://www.shapaljp/index.html CERAMIC INDUSTRY l September 2008 t9