SlideShare a Scribd company logo
1 of 13
Download to read offline
ENERGY	EFFICIENCY	REPORT	
Do	“we”	currently	use	our	energy	resources	efficiently?	Are	ZEVs	really	zero‐
emission?	
 
1. Introduction	
 
Recently the British public concern about the energy issue and greenhouse gas emission has been growing, 
as demonstrated by the results of the latest public attitudes tracking survey (Department of Energy & 
Climate Change ‐ UK government, 2015) conducted by the United Kingdom government. The dataset 
reveals that 76% of the interviewed support renewable energy, 68% are concerned with the global 
warming, but, although frequently presented as an important solution to energy problems, only 4% are 
thinking about buying an electric car. The reasons for this lack of interest are mainly “cost to purchase” 
(49%), “not suitable for long distance journeys” (25%) and “lack of charging infrastructure – nowhere to 
charge” (24%). 
Electric cars are seen by many governments around the world as an important way to cut emissions and 
reduce global warming (Bomford, 2013), indeed they are often referred as Zero Emission Cars, but the 
name could lead to a gross mistake of interpretation. Just with an easy research on the internet it is 
possible to find an appropriate definition, even on Wikipedia: “A zero‐emissions vehicle, or ZEV, is a vehicle 
that emits no tailpipe pollutants from the on‐board source of power.” (Wikipedia, 2015). Therefore a ZEV 
avoids the emission of exhaust gases just during its operation; what sometimes eludes people is that all the 
steps to bring electricity to the electric plug which charge the batteries of an electric car generate 
emissions. For this reason it is important to appraise the efficiencies of these steps and calculate the 
related emissions to wisely evaluate the actual energetic advantage of an electric vehicle and its real impact 
on the pollution problem. 
2. Report	aims	
 
The best way to understand the impact of a product is with a Life Cycle Assessment (LCA), this analysis is 
usually called cradle‐to‐grave, and it includes the evaluation of cost, energy and emission from the 
extraction of the raw materials, passing through manufacturing and use, until the dismissal and, if possible, 
the recycling (Nealer, 2014). 
Considering every stage in the life cycle of an electric car is a very laborious job and the possible results 
could be complex and problematic to be interpreted. Consequently a more useful and intuitive instrument 
could be a comparison between the efficiency of a gasoline engine and of an electric one; thus the aim of 
this report is to calculate the amount of energy required to drive a car for a specific distance, for example 
100 km, and the energy efficiencies of the two different types of engine and, therefore, critically evaluate 
the emissions considering the related problems and some alternatives, such as renewably‐fuelled internal 
combustion engines and total renewably generated electricity. 
3. Efficiency	calculation	
 
The method used in this report to evaluate the efficiency of a car is a Well‐to‐Wheel (WTW) approach, 
which describes the process of producing, transporting, manufacturing, distributing and using fuel, covering 
every step and considering their efficiencies separately (Edwards, et al., 2011). 
Therefore, at first, it is crucial to calculate the energy required to drive the car for the given distance 
(100.00 km); but evaluating this first step could be very complex. It is necessary not only to consider the 
force needed to overcome inertia, rolling resistance and aerodynamic drag, but internal losses, such as 
engine losses, idling losses and drivetrain losses, as well (Kobayashi, et al., 2009). 
An easier way is to compare two engines working under exactly the same conditions, hence is required the 
same car design, with the same weight, the same power output, et cetera. It would be very rare to find this 
kind of condition in the real world, but for a first intuitive comparison is possible to use as reference two 
models of smart fortwo, the smart fortwo Grandstyle edition (kerb weight 825 kg) powered by an in‐line 3‐
cylinder gasoline engine of 999cc which generate 70 HP (52 kW) and the smart fortwo electric drive (kerb 
weight 900 kg) powered by a magneto‐electric motor which generate 55 kW (Smart, 2015). Both the 
models have a very similar design, the difference in weight is just 75 kg and the difference in power output 
is just 3 kW; a first sight difference is in the price: £ 10,330 for the gasoline model and £ 20,395 for the 
electric one, an interesting data and a source of threads that, however, could not be part of this job 
(Carpages, 2015). 
3.1. Engine	efficiency	
Having these cars as models, it is possible to evaluate the energy required to drive for 100 km. From the 
Smart technical data (2015) it is known that the average fuel consumption of the gasoline model is 6.3 
l/100km, considering that the average (see appendix for all the average calculations) energy content of 
gasoline is 118,227 Btu/gal (9.15 kWh/l) (Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014), 
it is possible to calculate the energy required to the gasoline engine to travel for 100 km and the result is: 
6.30	 	 	9.15	 	57.67	  
A similar calculation could be done for the electric engine, knowing the battery capacity (17.6 kWh) and the 
average range (109 km) (Smart, 2015) it is possible to calculate the energy required per km: 
17.60	
109.00	
	0.16	  
And then, the energy required for 100 km: 
0.16	 	 100.00	 	16.15	  
The energy efficiency is calculated as  
	
	
 , what it is known at the moment is the energy input 
required by the two types of engine, therefore it is necessary to calculate either the energy efficiency or the 
energy output (the minimum amount of energy required to move a car for 100 km). The easiest way to do it 
is considering the average efficiency of a gasoline car from tank to wheel, which is usually about 15% 
(Kobayashi, et al., 2009) to calculate the energy output of the gasoline car: 
57.67	 	 	15.00% 	8.65	  
The value of 15% is reasonable, a fast verification could be done using the Carnot cycle, which is the most 
theoretically efficient heat‐engine cycle, to calculate a theoretical maximum efficiency using the formula: 
1 	  
Using as    an average (see appendix) temperature of the cooling liquid in the radiator of 365.09 °K 
(Darryl, n.d.), and as   an average (see appendix) gasoline ignition temperature of 541.50 °K (Shani, 
2003) the result is:  
32.55% 
Which is a greater value than the efficiency used in the calculation and thus it is concordant with the law of 
thermodynamics. 
The value of  8.65	   could be considered the energy required to move the mass of the Smart fortwo car 
for 100 km, therefore, because of the similarities between the two models, it could be assumed that the 
energy output of the electric model is substantially equal. So, it is possible to calculate the energy efficiency 
tank‐to‐wheel for the electric model: 
8.65	
16.15	
	53.57% 
In this way the efficiencies and energies required for the two models are known. 
3.2. Battery	efficiency		
While for the gasoline model the calculated step is adequate to describe the losses from the pump, one 
only step is not sufficient to consider all the losses of an electric engine from the electric plug; the battery 
efficiency must be assessed. The available data are:  
Battery	capacity 	17.6	 	
Charger	power 	3.3	 	
Average	 see	appendix 	charging	time 	7	  
(Smart, 2015). 
From the last two values it is possible to calculate the energy required for a full charge:  
3.30	 	 	7.00	 	23.10	  
And therefore the battery efficiency:  
17.60	
23.10	
	76.19% 
From which is possible to calculate the energy required from the plug: 
16.15	 	 	76.19% 21.19	  
The efficiency of the last steps could be multiplied to the previous ones to get a cumulative efficiency:  
76.19%	 	53.57% 	40.81% 
For the next stages this calculation will be implicit for both the cars, and the results will be shown in the 
final table. 
3.3. Fuel	distribution	
To have the fuel available for the car, another stage is required: distribution. 
Transport, storage and distribution of gasoline have an overall efficiency of 99.5% (Wang, 2003); therefore 
the energy required before distribution for the gasoline engine is:  
57.67	
99.50	%
	57.95	  
On the other hand, the efficiency of the distribution of electricity from the power plant through a typical 
European grid is 93% (Svensson, et al., 2007), thus the energy needed is:  
21.19	
93.00	%
	22.79	  
3.4. Fuel	generation	
The car fuel must be generated by conversion from another form of energy, in the case of gasoline, petrol 
refining is the necessary stage and it has an estimated average (see appendix) efficiency of 85.5% (Wang, 
2008), then, considering the energy required for the gasoline refinery, the total amount of energy grows 
into:  
57.95	
85.50	%
	67.78	  
The electricity which charges the battery has to be generated in a power plant, the range of different kind 
of electric energy plants is ample. Usually, for most of the energy resources, the base is the same: the 
energy resource is burnt to obtain heat which generates high pressurized steam from water, this is used to 
rotate a turbine connected to a magnet electric generator the output of which is finally electricity (Macchi, 
et al., 2015).  This is the classic method to generate electricity from fossil fuel, or from renewable energy 
resources such as bio‐diesels and biomass, but it is very similar to the method used for nuclear, geo‐
thermal and ocean‐thermal energy as well. However, for the other common renewable energy resources 
the aim is similarly to actuate the rotor of an electric generator, for example using wind, water or tides. 
Different approaches are generally required to use solar energy with photovoltaic panels and hydrogen in 
fuel‐cells (Vignolini & Ferrazza, 2015). 
Obviously every different energy plant has its own efficiency, but to have a first comparison with gasoline, a 
good approach is to consider oil power plants, so that it is possible to evaluate which is the most efficient 
car starting from the same resource: petroleum. 
A commonly used measure of energy efficiency of power plants is the heat rate, “the amount of energy 
used by an electrical generator or power plant to generate one kilowatt‐hour (kWh) of electricity” (U.S. 
Energy Information Administration, 2015). This value is expressed in British thermal units (Btu) per net kWh 
generated, that is the electricity provided to the grid after accounting the energy required for the plant 
itself and for its equipment, such as fuel feeding systems, boiler water pumps, cooling equipment, and 
pollution control devices (U.S. Energy Information Administration, 2015). The average heat rate for 
petroleum plants, including distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils) and residual fuel oil 
(No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil, is 10,713 
Btu (U.S. Energy Information Administration, 2015); but considering a combined cycle the value became 
9,937 Btu (U.S. Energy Information Administration, 2015), a reasonable choice is to use the average value 
of 10,325 Btu. 
To express the efficiency as a percentage, the equivalent Btu content of a kWh of electricity, which is 3,412 
Btu (U.S. Energy Information Administration, 2015), must be divided by the heat rate:  
3,412	
10,325	
	33.09% 
Therefore, the energy required before the conversion is:  
22.79	
33.09%
	68.86	  
A previous stage required is the refining of petrol into a usable form such as residual oil, which has an 
average (see appendix) efficiency of 93.2%, thus the energy needed grows:  
68.86	
93.20	%
	73.88	  
3.5. Petrol	transport	
The transportation of petroleum from the well to the refinery or to the energy plant could be done by 
tankers, barges, rail tank cars, tank trucks, and pipelines (U.S. Environmental Protection Agency, 2008). The 
efficiency of the process depends on the mode of transportation and  evidently on the distance covered, 
but an average value for the overall transportation and storage efficiency could be 99% (Wang, 2003). 
Consequently the energies required for the gasoline engine and for the electric engine become 
respectively: 
67.78	
99.00%
	68.47	  
73.88	
99.00%
	74.63	  
3.6. Petrol	recovery	
The extraction of petroleum from the ground, which is the final stage, requires energy as well, this means 
that another efficiency is needed for the calculation. Also in this step, the value depends on the technology 
used, but an overall average (see appendix) value of 97.5% could be used (Wang, 2002). 
Hence the total energies, in the usual order, are: 
	
68.47	
97.50%
	70.22	  
	
74.63	
97.50%
	76.54	  
3.7. Overall	efficiency	
At this point every step from well to wheel is covered, thus it is possible to calculate the overall efficiencies 
of the two cars multiplying each single efficiency. The results are: 
15.00%	 	99.50%	 	85.50%	 	99.00%	 	97.50% 	12.32% 
53.57%	 	76.19%	 	93.00%	 	33.09%	 	93.20%	 	99.00%	 	97.50%	 	11.30% 
 
 
 
Here it is a recapitulatory table of all the steps, the energy required after them, their efficiencies and the 
cumulative efficiencies: 
Gasoline  Electricity 
Stage  Energy  
(kWh) 
η 
stage 
(%) 
η 
tot  
(%) 
Stage  Energy 
(kWh) 
η 
stage 
(%) 
η 
tot 
(%) 
100 km  8.65      100 km  8.65     
Gasoline engine  57.67  15.00  15.00  Electric engine  16.15  53.57  53.57 
Battery  21.19  76.19  40.81 
Gasoline distribution  57.95  99.50  14.92  Electricity distribution  22.79  93.00  37.96 
Petrol refinery  67.78  85.50  12.76  Petrol power plant  68.86  33.09  12.56 
Petrol refinery  73.88  93.20  11.71 
Petrol transport  68.47  99.00  12.63  Petrol transport  74.63  99.00  11.59 
Petrol recovery  70.22  97.50  12.32  Petrol recovery  76.54  97.50  11.30 
4. CO2	emissions	
 
After stating the efficiencies of the two cars and therefore the total amount of energy required, it is now 
possible to evaluate the CO2 emissions. To do that the first step is to calculate the quantity of petroleum in 
the ground. Considering as the average (see appendix) petroleum energy content 44 MJ/kg (12.22 kWh/kg) 
(Shepelsky, 2002), from a simple division it is easy to calculate in the two cases, respectively: 
	
70.22	
12.22	
5.75	  
76.54	
12.22	
	6.26	  
Knowing that the approximate percent of Carbon atoms in crude oil is 85% (Shepelsky, 2002), it is possible 
to calculate the weight of C in the petroleum needed: 
5.75	 	 85.00% 	4.88	  
6.26	 	 85.00% 	5.32	  
Then, dividing these quantities in grams by the molecular weight of C, the moles of C are given: 
4,880	
12.01	
	406.62	  
5,320	
12.01	
	443.21	  
The	number	of	moles	of	C	in	a	perfect	combustion	is	the	same	number	of	moles	of	CO2  generated, 
therefore it is finally possible to evaluate the amount of emissions, multiplying the number of moles by the 
molecular weight of CO2: 
406.62	 	 44.01	
1000
	 	17.89	 	 
443.21	 	 44.01	
1000
	 	19.51	  
5. Alternatives	
 
After having evaluated the CO2 emissions related to the two different cars starting from petroleum, it 
would be interesting to consider different kind of fuels. 
5.1. Cellulosic	ethanol	
One of the most interesting alternatives for a combustion engine is using a renewable fuel, amongst them 
ethanol is a formidable alternative. This fuel could be used mixed in small percentage with gasoline or used 
almost pure in particular engines very similar to the usual gasoline ones (Alternative Fuels Data Center ‐ 
U.S. Department of Energy, 2014). Ethanol could be made starting from every part of plant which contain 
sugars through a process called biochemical conversion; probably one of the most promising is the 
cellulosic ethanol, the raw material of which is a non‐food based feedstock, that includes crop residues, 
wood residues, dedicated energy crops, and industrial and other wastes, all of those are composed of 
cellulose, hemicellulose, and lignin (Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014). 
The first step is to evaluate the quantity of ethanol required to drive for 100 km. It is possible to consider 
that the amount of energy requested to the ethanol is the same requested to the gasoline which was 
57.67kWh; therefore, considering the average (see appendix) energy content of 80,430 Btu/gal (6.23 
kWh/l) (Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014), it is possible to calculate the 
required volume of ethanol: 
57.67	
6.23	
	9.26	  
This quantity is burned in the combustion engine to produce the energy required, which obviously releases 
carbon dioxide, but this is balanced by the CO2 captured when the crops are grown to make ethanol 
(Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014). Therefore the only emissions to consider 
are those generated in the plants farming. 
Considering that the average (see appendix) ethanol yield per dry tonne of tree/grass is 89.5 gal/ton 
(338.79 l/ton) (Wang, 2002) it is easy to calculate the tonnes of dry tree/grass: 
9.26	
338.79	
	0.03	  
The average (see appendix) energy required in the farm per dry tonne of tree/grass is 227,875 Btu/ton 
(66.78 kWh/ton) (Wang, 2002), which converted in kg of petroleum is: 
66.78
12.22	
5.46	  
Therefore the kg of petroleum required to have the needed amount of ethanol is: 
0.03	 	 	5.46	 0.15	  
It is now possible to assess, as previously, the carbon dioxide emissions, passing through the calculation of 
the content of C: 
85%	 	0.15	 0.13	  
0.13	 	 1000
12.01	
10.57	  
Finally the amount of CO2 generated using cellulosic ethanol for driving 100 km is: 
10.57	 	 44.01	
1000
0.46	  
5.2. Electricity	generation	mix	
For the previous calculation of the energy required in the electric car it has been considered that the 
amount of energy was generated totally from petrol plants. These plants, as seen, have not a good overall 
efficiency and, using petrol, they release a large amount of carbon dioxide; therefore an important 
correction could be made using the average CO2 emission  of the European mix of energy resources used 
for electricity production, which is 0.43 kg/kWh (Svensson, et al., 2007), multiplying it by the electricity 
released in the distribution previously calculated: 
0.43 22.79	 	9.75	  
5.3. Electricity	renewably	generated	
Changing the kind of energy plant for the electricity production, as seen, remarkably affects the calculation 
of carbon dioxide emission. The best case is using renewable energy such as wind, solar power, tides, etc.; 
the energy converted from these is CO2 free because there is no combustion, therefore the emissions, 
apart from the energy required to build the plant, is equal to zero. 
6. Conclusions	
 
Before illustrating the conclusions it would be useful to recapitulate the results with few graphics. 
 
Table 1 
0
20
40
60
80
100
100 km Engine (Battery) Distribution (Electricity
generation)
Petrol
refinery
Petrol
transport
Petrol
recovery
kWh
Energy
Gasoline
Electricity
 
Table 2 
 
Table 3 
It is evident that, probably unexpectedly, using crude oil as energy resource the most efficient car from well 
to wheel is the gasoline one, which requires less energy to cover 100 km doing it more efficiently. 
The electric car, moved by electricity generated by a petrol plant, consumes 76.54 kWh, which compared to 
the 70.22 kWh of the gasoline car is: 
76.54	 	
70.22	
1 9.03% 
The electric car consumes approximately 9% more energy than the gasoline one, therefore is 9% less 
efficient and emits 9% more carbon dioxide. 
0
10
20
30
40
50
60
70
80
90
100
Engine (Battery) Distribution (Electricity
generation)
Petrol
refinery
Petrol
transport
Petrol
recovery
%
Step efficiency
Gasoline
Electricity
0
10
20
30
40
50
60
Engine (Battery) Distribution (Electricity
generation)
Petrol
refinery
Petrol
transport
Petrol
recovery
%
Cumulative efficiency
Gasoline
Electricity
The difference does not seem so big comparing the overall losses: 
100% 11.3%
100% 12.32%
1 	1.16% 
It is interesting to observe in table 2 that the less efficient steps for each car are the engine for the gasoline 
car and the electricity generation for the electric car. These are the steps that if developed could increase 
the cumulative efficiencies the most. 
Unfortunately, for the law of thermodynamics, the maximum efficiency of an internal combustion engine is 
represented by the Carnot efficiency that, as previously calculated, is around 32.55%, which substituted in 
the calculation could raise the cumulative efficiency to 26.73%, almost twice the previous value, and 
therefore could reduce the emission by 50%. That is positive, but very implausible to realise and still 
dangerous for the greenhouse gas emission problem. 
Differently, the problem of electric car lies in the electricity generation, which even at the moment, with 
the existent technology, could be totally solved using renewable energy resources which do not release any 
carbon dioxide emission while working (manufacturing emissions are not considered in this report). The 
current problem is that electricity is largely used all over the world for different uses and the request could 
not be solved just with renewable energy. For this reason, most of the countries use a mix of resources, 
that anyway generates less emissions in comparison to an only petrol generated electricity. 
9.75	
19.5	
50% 
Considering the average EU mix, the CO2 is decreased by 50%, which would make the electric car preferable 
to the gasoline one. 
Since not having a strong impact of renewable energy on the electricity generation mix, a very important 
alternative could be renewable fuels, that, because of their fast life cycle, could be considered CO2 free. 
Thus, the only emissions are those related to the energy used for farming, which, even if petrol generated, 
release a small quantity of carbon dioxide compared to the other solutions contemplated. A problem of 
these resources is the repercussion on agriculture, because growing them could steal space to food farms, 
but this issue could be partially solved by cellulosic ethanol which could be made from agricultural residues 
and wastes. 
 
Table 4 
   
0
5
10
15
20
25
gasoline electricity cellulosic ethanol electricity mix renewable electricity
kg
CO2 emission
Reference	list	
Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014. Ethanol. [Online]  
Available at: http://www.afdc.energy.gov/fuels/ethanol.html 
[Accessed April 2015]. 
Alternative Fuels Data Center ‐ U.S. Department of Energy, 2014. Fuel Comparison Chart. [Online]  
Available at: http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf 
[Accessed April 2015]. 
Bomford, A., 2013. How environmentally friendly are electric cars?. [Online]  
Available at: http://www.bbc.co.uk/news/magazine‐22001356 
[Accessed April 2015]. 
Carpages, 2015. smart fortwo guide. [Online]  
Available at: http://www.carpages.co.uk/guide/smart/smart‐fortwo‐guide.asp 
[Accessed April 2015]. 
Darryl, J., n.d. Typical Radiator Temperature. [Online]  
Available at: http://www.ehow.com/facts_7509100_typicalradiatortemperature. 
[Accessed April 2015]. 
Department of Energy & Climate Change ‐ UK government, 2015. Public attitudes tracking survey: wave 12. 
[Online]  
Available at: https://www.gov.uk/government/statistics/public‐attitudes‐tracking‐survey‐wave‐12 
[Accessed April 2015]. 
Edwards, R., Larivé, . J.‐F. & Beziat, J.‐C., 2011. Well‐to‐wheels Analysis of Future Automotive Fuels and 
Powertrains in the European Context, Luxembourg: European Commission Joint Research Centre Institute 
for Energy and Transport. 
Kobayashi, S., Plotkin, S. & Ribeiro, S. K., 2009. Energy efficiency technologies for road vehicles. Energy 
Efficiency, Issue 2, pp. 125‐137. 
Macchi, E., Lozza, G. & Consonni, S., 2015. Generazione elettrica da fonti fossili. In: Enciclopedia degli 
idrocarburi ‐ Volume III. s.l.:Treccani, pp. 375‐420. 
Nealer, R., 2014. How Clean are Electric Cars? A Life Cycle Assessment of Advanced Vehicle Technologies. 
[Online]  
Available at: http://blog.ucsusa.org/how‐clean‐are‐electric‐cars‐a‐life‐cycle‐assessment‐of‐advanced‐
vehicle‐technologies‐656 
[Accessed April 2015]. 
Shani, C., 2003. Ignition Temperature of Gasoline. [Online]  
Available at: http://hypertextbook.com/facts/2003/ShaniChristopher.shtml 
[Accessed April 2015]. 
Shepelsky, K., 2002. Energy Density of Petroleum. [Online]  
Available at: http://hypertextbook.com/facts/2002/KarolShepelsky.shtml 
[Accessed April 2015]. 
Smart, 2015. Technical data. [Online]  
Available at: http://www.thesmart.ca/ca/en/index/smart‐fortwo‐electric‐drive/electric‐
engine.html#engine0 
[Accessed March 2015]. 
Svensson, A. M., Møller‐Holst, S., Glockner, R. & Maurstad, O., 2007. Well‐to‐wheel study of passenger 
vehicles in the Norwegian energy system. Elsevier Energy, Issue 32, p. 437–445. 
U.S. Energy Information Administration, 2015. Table 8.1. Average Operating Heat Rate for Selected Energy 
Sources. [Online]  
Available at: http://www.eia.gov/electricity/annual/html/epa_08_01.html 
[Accessed April 2015]. 
U.S. Energy Information Administration, 2015. Table 8.2. Average Tested Heat Rates by Prime Mover and 
Energy Source, 2007 ‐ 2013. [Online]  
Available at: http://www.eia.gov/electricity/annual/html/epa_08_02.html 
[Accessed April 2015]. 
U.S. Energy Information Administration, 2015. What is the efficiency of different types of power plants?. 
[Online]  
[Accessed April 2015]. 
U.S. Environmental Protection Agency, 2008. Transportation And Marketing Of Petroleum Liquids. [Online]  
Available at: http://www.epa.gov/ttnchie1/ap42/ch05/final/c05s02.pdf 
[Accessed Aprile 2015]. 
Vignolini, M. & Ferrazza, F., 2015. Generazione elettrica da fonti rinnovabili. In: Enciclopedia degli 
idrocarburi ‐ Volume III. s.l.:Treccani, pp. 529‐560. 
Wang, M., 2002. Fuel choice for fuel‐cell vehicles: well‐to‐wheels energy and emission impact. Journal of 
Power Sources, Issue 112, pp. 307‐321. 
Wang, M., 2003. Well‐to‐Wheels Energy and Emission Impacts of Vehicle/Fuel Systems. [Online]  
Available at: http://www.transportation.anl.gov/pdfs/TA/273.pdf 
[Accessed March 2015]. 
Wang, M., 2008. Estimation of Energy Efficiencies of U.S. Petroleum Refineries, s.l.: Center for 
Transportation Research ‐ Argonne National Laboratory. 
Wikipedia, 2015. Zero‐emissions vehicle. [Online]  
Available at: http://en.wikipedia.org/wiki/Zero‐emissions_vehicle 
[Accessed April 2015]. 
 
   
Appendix	
 
STAGE REFERENCE LOW HIGH AVERAGE
petroleum recovery US (Wang, 2002) 96 99 97,5
petroleum transport and storage (Wang, 2003) 99 99 99
refining energy efficiency to gasoline (Wang, 2008) 83,3 87,7 85,5
gasoline transport, storage and distribution (Wang, 2003) 99,5 99,5 99,5
DATA
electricity ge
VALUE
Btu of kWh of electricity (EIA, 2015) 3412 3412 3412
US heat rate petroleum 2013 (Average ‐ Combined clycle) (EIA, 2015) 10713 9937 10325
petroleum conversion to electr. efficiency 31,84916 34,33632 33,09274
electricity ge
petroleum refinery to residual fuel oil (Wang, 2008) 92,1 94,3 93,2
EU electricity
electricity generation (average european with resources mix)(Svensson et al., 2005) 35 35 35
CO2 generated (average european) (kg/kWh) (Svensson et al., 2005) 0,428 0,428 0,428
electric distribution (average european) (Svensson et al., 2005) 93 93 93
cellulosic ethanol
EU electricity
energy use for tree/grass farming (BTU per dry tonne) (Wang, 2002) 162290 293460 227875
energy use for tree/grass farming (kWh per dry tonne) 47,56249 86,00462 66,78355
soil CO2  sequestration in tree/grass farm (g per dry tonne) (Wang, 2002) ‐225000 0 ‐112500
ethanol yield (gal per dry tonne of trees/grass) (Wang, 2002) 76 103 89,5
ethanol yield (l per dry tonne of trees/grass) 287,6913 389,8974 338,7944
ethanol energy content (Btu/gal) (afdc, 2014) 76330 84530 80430
ethanol energy content (Btu/l) 20164,25 22330,46 21247,36
ethanol energy content (kWh/l) 5,909557 6,544411 6,226984
cellulosic ethanol
Gasoline eng
Engine power (kW) (smart, 2015) 52 52 52
Fuel consumption (L/100km) (smart, 2015) 6,9 5,7 6,3
CO2 emission (g/km) (smart, 2015) 130 130 130
Electric engine
Gasoline eng
Engine max power (kW) (smart, 2015) 55 55 55
continuous output (kW) (smart, 2015) 35 35 35
range (km) (smart, 2015) 109 109 109
battery capacity (kWh) (smart, 2015) 17,6 17,6 17,6
charger (kW) (230V) (smart, 2015) 3,3 3,3 3,3
charging time (h) (smart, 2015) 8 6 7
gasoline energy content (Btu/gal) (afdc, 2014) 112114 124340 118227
gasoline energy content (Btu/l) 29617,38 32847,15 31232,27
gasoline energy content (kWh/l) 8,679996 9,626547 9,153272
petroleum energy content (MJ/kg) (Shepelsky, 2002) 42 46 44
petroleum energy content (kWh/kg) 11,66668 12,77779 12,22223
%carbon in crude oil (Shepelsky, 2002) 85 85 85
overall gasoline engine efficiency (Kobayashi et al., 2009) 15 15 15
gasoline ignition temperature (K) (Shani, 2003) 530 553 541,5
radiator normal temperature (F) (Darryl, N.D.) 195 200 197,5
radiator normal temperature (K) 363,7056 366,4833 365,0944
Carnot efficiency of gasoline engine 0,313763 0,337281 0,325522
Electric engine

More Related Content

What's hot

Electric Vehicles: How to connect with people
Electric Vehicles: How to connect with people  Electric Vehicles: How to connect with people
Electric Vehicles: How to connect with people Anya Liddiard
 
Revolution of e vehicles
Revolution of e vehiclesRevolution of e vehicles
Revolution of e vehiclesHaneesh Km
 
Ctc Slide Show 5 Sept 2007478
Ctc Slide Show 5 Sept 2007478Ctc Slide Show 5 Sept 2007478
Ctc Slide Show 5 Sept 2007478shaomiaolei
 
Kinetic Presentation1
Kinetic Presentation1Kinetic Presentation1
Kinetic Presentation1JrChildress
 
Built for Training - Sustainability Workshop
Built for Training - Sustainability Workshop Built for Training - Sustainability Workshop
Built for Training - Sustainability Workshop Built for:
 
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...Car-sharing can slash greenhouse emissions by one-third - environmentalresear...
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...poisson_chat
 
Living with a plug-in electric car in Canberra
Living with a plug-in electric car in CanberraLiving with a plug-in electric car in Canberra
Living with a plug-in electric car in CanberraDave Southgate
 
Senior design final report
Senior design final reportSenior design final report
Senior design final reportSifat Syed
 
Electrical Vehicles| Analysis and Commentary| February 2019
Electrical Vehicles| Analysis and Commentary| February 2019Electrical Vehicles| Analysis and Commentary| February 2019
Electrical Vehicles| Analysis and Commentary| February 2019paul young cpa, cga
 

What's hot (13)

Electric Vehicles: How to connect with people
Electric Vehicles: How to connect with people  Electric Vehicles: How to connect with people
Electric Vehicles: How to connect with people
 
Consultation Man
Consultation ManConsultation Man
Consultation Man
 
Final usea workshop (2)
Final usea workshop (2)Final usea workshop (2)
Final usea workshop (2)
 
Revolution of e vehicles
Revolution of e vehiclesRevolution of e vehicles
Revolution of e vehicles
 
CEI Email 4.7.03 (c)
CEI Email 4.7.03 (c)CEI Email 4.7.03 (c)
CEI Email 4.7.03 (c)
 
Ctc Slide Show 5 Sept 2007478
Ctc Slide Show 5 Sept 2007478Ctc Slide Show 5 Sept 2007478
Ctc Slide Show 5 Sept 2007478
 
Kinetic Presentation1
Kinetic Presentation1Kinetic Presentation1
Kinetic Presentation1
 
Energy Interim Committee 9/29/2011
Energy Interim Committee 9/29/2011Energy Interim Committee 9/29/2011
Energy Interim Committee 9/29/2011
 
Built for Training - Sustainability Workshop
Built for Training - Sustainability Workshop Built for Training - Sustainability Workshop
Built for Training - Sustainability Workshop
 
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...Car-sharing can slash greenhouse emissions by one-third - environmentalresear...
Car-sharing can slash greenhouse emissions by one-third - environmentalresear...
 
Living with a plug-in electric car in Canberra
Living with a plug-in electric car in CanberraLiving with a plug-in electric car in Canberra
Living with a plug-in electric car in Canberra
 
Senior design final report
Senior design final reportSenior design final report
Senior design final report
 
Electrical Vehicles| Analysis and Commentary| February 2019
Electrical Vehicles| Analysis and Commentary| February 2019Electrical Vehicles| Analysis and Commentary| February 2019
Electrical Vehicles| Analysis and Commentary| February 2019
 

Similar to ENERGY EFFICIENCY REPORT

sustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdfsustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdft8hru8nj9a
 
Solar in the driving seat: Solar Mobility report
Solar in the driving seat: Solar Mobility reportSolar in the driving seat: Solar Mobility report
Solar in the driving seat: Solar Mobility reportSolarPower Europe
 
20 Sustainability Trends
20 Sustainability Trends20 Sustainability Trends
20 Sustainability Trendsmadisontom
 
Electric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeElectric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeLeonardo ENERGY
 
The role of subnational actors in energy system transitions
The role of subnational actors in energy system transitionsThe role of subnational actors in energy system transitions
The role of subnational actors in energy system transitionsipcc-media
 
Modes of commuting, workplace choice and energy use at home
Modes of commuting, workplace choice and energy use at homeModes of commuting, workplace choice and energy use at home
Modes of commuting, workplace choice and energy use at homeBen Anderson
 
Fuelling the energy debate
Fuelling the energy debateFuelling the energy debate
Fuelling the energy debateDiana Kool
 
The Cap And Trade Program
The Cap And Trade ProgramThe Cap And Trade Program
The Cap And Trade ProgramTara Smith
 
Sustainable energy and transportation
Sustainable energy and transportationSustainable energy and transportation
Sustainable energy and transportationPablo Martin
 
Greening The Energy Supply Final 2nd Edition
Greening The Energy Supply Final 2nd EditionGreening The Energy Supply Final 2nd Edition
Greening The Energy Supply Final 2nd EditionRyan Wampler
 
1-s2.0-S2772783122000462-main-2.pdf
1-s2.0-S2772783122000462-main-2.pdf1-s2.0-S2772783122000462-main-2.pdf
1-s2.0-S2772783122000462-main-2.pdflvskumar1
 
50 BIG Ideas - EV City Casebook
50 BIG Ideas - EV City Casebook 50 BIG Ideas - EV City Casebook
50 BIG Ideas - EV City Casebook Roger Atkins
 
Switched on or switched off? Public attitudes to the UK’s energy challenges
Switched on or switched off? Public attitudes to the UK’s energy challengesSwitched on or switched off? Public attitudes to the UK’s energy challenges
Switched on or switched off? Public attitudes to the UK’s energy challengesIpsos UK
 
Green Energy
Green EnergyGreen Energy
Green EnergyEtiemana
 
World Energy Council Scenarios Project: An International Perspective
World Energy Council Scenarios Project: An International PerspectiveWorld Energy Council Scenarios Project: An International Perspective
World Energy Council Scenarios Project: An International PerspectiveNERI_NZ
 
The Search For Alternative Energy
The Search For Alternative EnergyThe Search For Alternative Energy
The Search For Alternative Energytclythgoe84
 

Similar to ENERGY EFFICIENCY REPORT (20)

sustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdfsustainability-13-mlkmmmmmmmmmn12379.pdf
sustainability-13-mlkmmmmmmmmmn12379.pdf
 
Energy cultures transport research overview
Energy cultures transport research overviewEnergy cultures transport research overview
Energy cultures transport research overview
 
Solar in the driving seat: Solar Mobility report
Solar in the driving seat: Solar Mobility reportSolar in the driving seat: Solar Mobility report
Solar in the driving seat: Solar Mobility report
 
20 Sustainability Trends
20 Sustainability Trends20 Sustainability Trends
20 Sustainability Trends
 
Electric vehicles - DecarbEurope
Electric vehicles - DecarbEuropeElectric vehicles - DecarbEurope
Electric vehicles - DecarbEurope
 
The role of subnational actors in energy system transitions
The role of subnational actors in energy system transitionsThe role of subnational actors in energy system transitions
The role of subnational actors in energy system transitions
 
Modes of commuting, workplace choice and energy use at home
Modes of commuting, workplace choice and energy use at homeModes of commuting, workplace choice and energy use at home
Modes of commuting, workplace choice and energy use at home
 
Fuelling the energy debate
Fuelling the energy debateFuelling the energy debate
Fuelling the energy debate
 
NRC july 6
NRC july 6NRC july 6
NRC july 6
 
Mobility and Energy Futures Series - Self Driving Cars
Mobility and Energy Futures Series - Self Driving CarsMobility and Energy Futures Series - Self Driving Cars
Mobility and Energy Futures Series - Self Driving Cars
 
The Cap And Trade Program
The Cap And Trade ProgramThe Cap And Trade Program
The Cap And Trade Program
 
Sustainable energy and transportation
Sustainable energy and transportationSustainable energy and transportation
Sustainable energy and transportation
 
Lca electric vehicles
Lca electric vehiclesLca electric vehicles
Lca electric vehicles
 
Greening The Energy Supply Final 2nd Edition
Greening The Energy Supply Final 2nd EditionGreening The Energy Supply Final 2nd Edition
Greening The Energy Supply Final 2nd Edition
 
1-s2.0-S2772783122000462-main-2.pdf
1-s2.0-S2772783122000462-main-2.pdf1-s2.0-S2772783122000462-main-2.pdf
1-s2.0-S2772783122000462-main-2.pdf
 
50 BIG Ideas - EV City Casebook
50 BIG Ideas - EV City Casebook 50 BIG Ideas - EV City Casebook
50 BIG Ideas - EV City Casebook
 
Switched on or switched off? Public attitudes to the UK’s energy challenges
Switched on or switched off? Public attitudes to the UK’s energy challengesSwitched on or switched off? Public attitudes to the UK’s energy challenges
Switched on or switched off? Public attitudes to the UK’s energy challenges
 
Green Energy
Green EnergyGreen Energy
Green Energy
 
World Energy Council Scenarios Project: An International Perspective
World Energy Council Scenarios Project: An International PerspectiveWorld Energy Council Scenarios Project: An International Perspective
World Energy Council Scenarios Project: An International Perspective
 
The Search For Alternative Energy
The Search For Alternative EnergyThe Search For Alternative Energy
The Search For Alternative Energy
 

ENERGY EFFICIENCY REPORT