SlideShare a Scribd company logo
1 of 41
Download to read offline
NASDAQ: ERII
Energy Consumption and Desalination
May 07, 2020
Juan Miguel Pinto, Energy Recovery Inc.
Confidential & Proprietary
AGENDA
1. Introduction
2. Desalination
3. SWRO – Seawater Reverse Osmosis
4. Energy consumption
5. Renewable energy
6. Conclusion
2
Introduction
Confidential & Proprietary
INTRODUCTION
4
Source: https://www.wri.org/aqueduct
Confidential & Proprietary
INTRODUCTION
5
The Impact of Water Scarcity on GDP
Today’s Path A Better Path
Source: https://www.worldbank.org/en/topic/water/publication/high‐and‐dry‐climate‐change‐water‐and‐the‐economy
Desalination
Confidential & Proprietary
DESALINATION
7
Confidential & Proprietary
DESALINATION
8
1970 1982 2002 2005
Multistage Flash Membrane 
Technology
Membrane 
Technology 
Improvements
Renewable Energies
Source: Multistage picture ‐ Environmental XPRT. Membrane technology ‐ James Grellier / Wikimedia Commons 
Confidential & Proprietary
DESALINATION
9
Seawater Reverse Osmosis Cost Trend
Source: Watereuse association – Seawater Desalination Costs 2020 – Estimated cost breakdown.   
Jubail SWRO – 0.41 USD/m3 and Yanbu 4 – 0.47 USD/m3
Confidential & Proprietary
DESALINATION
10
Membrane Feed Pressure for Feedwater and Membrane Technology
80
70
60
50
40
10
20
30
Bar
RO
Sea Water
RO
Brackish water
RO
Low pressure
NF
Nano‐
filtration
UF
Ultra‐filtration
MF
Micro‐
filtration
Confidential & Proprietary
DESALINATION
11
Annual Contracted Capacity by Feedwater Type, 2000‐2019
Seawater is feedwater with higher contracted capacity
Dotted line indicates values through June 2019; Source: GWI
Confidential & Proprietary
DESALINATION
12
Annual Contracted Capacity by Region, 2000‐2019
Dotted line indicates values through June 2019; Source: GWI
Persian Gulf has the largest demand of SWRO desalination
Confidential & Proprietary
DESALINATION
13
Additional Contracted Desalination Capacity by Technology, 2000‐2019
Dotted line indicates values through June 2019; Source: GWI
Reverse Osmosis as preferred technology for SWRO desalination 
SWRO –
Seawater 
Reverse Osmosis
Confidential & Proprietary
SWRO DESALINATION PROCESS OVERVIEW
15
Confidential & Proprietary
SWRO DESALINATION PROCESS OVERVIEW
16
Source: www.Sciencedirect.com
Energy Consumption
Confidential & Proprietary
ENERGY CONSUMPTION FOR SWRO 
18
0
5
10
15
20
25
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Specific
energy
consumption
(kWh/m3)
Energy consumption over time
Multistage
Flash 
Evaporation
Multistage
Flash 
Evaporation
Reverse Osmosis
Francis
Turbine
Pelton
Turbine Isobaric
Energy Consumption Over Time
Confidential & Proprietary
RO Process 2 kWh/m3
Intake 0.45 kWh/m3
Pre‐Filtration 0.24
kWh/m3
Permeate Treatment
0.4 kWh/m3
Permeate Distribution
0.22 kWh/m3
2.98 kWh/m3
Energy consumption 
in SWRO
o RO Process is the most energy intensive 
process within the SWRO treatment plant
o ERD can reduce energy consumption of RO 
process up to 60%; therefore, it is a critical 
component to achieving 2 kWh/m3
o ERD CAPEX only represents 1% of overall 
plant CAPEX
ENERGY CONSUMPTION FOR SWRO 
19
Energy Consumption per Process
Permeate distribution
0.22 kWh/m3
Intake
0.45 kWh/m3
RO process
2 KWh/m3
Permeate treatment 
0.4 kWh/m3
Pre‐Filtration
0.24 kWh/m3
Source: www.Sciencedirect.com
Confidential & Proprietary
A full‐size main high‐pressure pump is use to supply the membranes with 100% of the feed flow + 
pressure in order to over come the osmotic pressure of the membranes. Potential energy is 
“wasted” across the discharge valve.
ENERGY CONSUMPTION FOR SWRO 
20
How it Works
HP Pump Provides Full Feed Flow and Pressure to SWRO Membranes
Problem Statements: 
o Energy consumption and costs made SWRO uneconomical historically
o Approx. 60% of energy wasted during SWRO prior to implementation of ERDs
SEC: 8 kwh/m3
Confidential & Proprietary
The Pelton Wheel converts hydraulic energy into mechanical energy to offload the work done by 
the high‐pressure pump’s motor. The Pelton Wheel’s shaft is directly connected to a dual‐shafted 
motor and must rotate at the pump’s design speed. The high‐pressure pump must be sized for the 
full flow and head required by the membranes.
ENERGY CONSUMPTION FOR SWRO 
21
How it Works
Pelton Wheel
SEC: 4 kwh/m3
Confidential & Proprietary
Turbochargers convert hydraulic energy in the brine stream into mechanical energy reducing the 
amount of head required by the main high‐pressure pump. The turbine drives the pump section 
“boosting” the discharge of the high‐pressure pump to membrane feed pressure. The Turbocharger 
“decouples” the ERD from the pump and motor, allowing it to run at higher speeds and higher 
efficiency than the Pelton Wheel.
ENERGY CONSUMPTION FOR SWRO 
22
How it Works
Turbocharger
SEC: 3.6 kwh/m3
Confidential & Proprietary
The PX Pressure Exchanger converts hydraulic energy in the concentrated brine stream into 
hydraulic energy that supplements the flow from the main high‐pressure feed pump which feeds 
the membranes. This is done via direct contact between the concentrated brine and filtered 
seawater feed stream.
ENERGY CONSUMPTION FOR SWRO 
23
How it Works
PX
SEC: 2.98 kwh/m3
Confidential & Proprietary
0
20
40
60
80
100
Percent Efficiency
ERD Efficiencies
ENERGY CONSUMPTION FOR SWRO 
24
Isobaric energy recovery systems have high efficiency regardless of system size
Isobaric
Turbocharger
Pelton Turbine
Increasing Flow
Confidential & Proprietary
ENERGY CONSUMPTION FOR SWRO 
o Carlsbad SWRO
 Location: California
 Capacity: 189,250 m3/day (50 MGD)
 Energy recovery device: Isobaric – PX devices
 116 million kWh (kilowatt‐hours)
 Equivalent to 82,107 metrics tons per year of CO2
 Equivalent to 12 million dollar in electricity cost
25
https://www.epa.gov/energy/greenhouse‐gas‐equivalencies‐calculator
Photo courtesy of Poseidon Water
Renewable Energy
Confidential & Proprietary
RENEWABLE ENERGY POWERED DESALINATION
o The energy consumption of seawater desalination is higher than traditional water supply 
solutions (groundwater, rain catchment, rivers, lakes, etc.)
o This is a sustainable and cost effective solution thanks to decreasing cost of renewable 
energy systems
o Baseline scenario assumes 
compounded growth rate 
of water desalination of 
10% per year
o Target scenario assumes 
gradual introduction of 
fully renewable powered 
desalination until 2040 
27
Estimated CO2 Emissions of Global Water Desalination Plants
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
o Suitable option for remote locations 
and small islands where the reliable 
and safe provision of drinking water 
is a constraint and expensive
o Electric grid and water networks are 
often inadequate
o Small‐scale renewable energy 
powered desalination can be the 
optimal solution to address the 
water constraints
SMALL‐SCALE RENEWABLE ENERGY POWERED DESALINATION
28
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION –
DIRECT COUPLING (OFF‐GRID), NO STORAGE
o This configuration is ideally suited for very remote locations with limited access to a reliable 
electricity grid and service personnel
o The configuration avoids using batteries and uses water storage instead to allow a water supply 
during day and night
29
Daily Water Production
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
o Good option for locations with inadequate grid supply but access to service personnel for 
batteries or back‐up generators
o Distributed solution obviating the need for costly water transmission and distribution systems
TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION –
DIRECT COUPLING (OFF‐GRID) WITH STORAGE OR BACKUP GENERATION
30
Energy supply system
o Photovoltaic modules/Wind turbine
o Batteries storage
o Back‐up diesel
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
o Good option for locations with access to a reliable electric grid 
o The renewable energy supply system can be sized to completely offset the CO2 emissions of the 
desalination plant
o Reduced maintenance requirements due to absence of storage and backup generators 
TECHNOLOGY BRIEF: SMALL SCALE SOLAR SEAWATER DESALINATION – GRID CONNECTED
31
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
o The Desalination Plant and the Renewable Power Plant are connected to the grid and don’t need 
to be co‐located
o The Renewable Power Plant is sized to completely offset the CO2 emissions of the Desalination 
Plant (over the lifetime of the plant)
TECHNOLOGY BRIEF: UTILITY‐SCALE RENEWABLE DESALINATION –
GRID CONNECTED WITH VIRTUAL NET METERING
32
Desalination Plant Electricity Grid Renewable Power Plant
o Operates 24h per day
o Connected to the grid, 
using existing 
infrastructure to supply 
electricity 24h per day
o Operates only during certain hours of 
the day producing electricity from 
sunlight or wind
o Connected to the grid, using existing 
infrastructure
Source: Global Clean Water Desalination Alliance
Confidential & Proprietary
Item Description
Owner/promoter
Elemental Water 
Makers
Location of 
SWRO Plant
La Union, Luzon, 
Philippines
Year of construction 2018
Capacity of  
SWRO Plant
11 m3/d
Type of RE Plant PV plant
Capacity of RE Plant 4 kWp
REFERENCES: SMALL‐SCALE SOLAR DESALINATION (OFF‐GRID) – PHILIPPINES
33
General Information
11 m3/d PV powered RO system from Elemental 
Water Makers, Philippines
Source: https://www.elementalwatermakers.com/project‐philippines/
Confidential & Proprietary
Item Description
Owner/promoter Dafeng Plant
Location of 
SWRO Plant
Jiangsu province, 
China
Year of construction 2014
Capacity of  
SWRO Plant
5,000 m3/d
Type of RE Plant Wind power
Capacity of RE Plant 2.5 MW turbine
REFERENCES: MEDIUM‐SCALE WIND AND SOLAR‐POWERED DESALINATION – CHINA
34
An independent grid was designed to support the desalination of 10,000 m3/day of sea water a day. 
The current production line has a capacity of 5,000 m3/day.
Containerized system 
Source: http://en.fhned.com/product/equipments/
Confidential & Proprietary
Item Description
Owner/promoter Water Corporation
Location of 
SWRO Plant
Kwinana, Perth
Western Australia
Year of construction 2006
Capacity of  
SWRO Plant
144,000 m3/d
TDS (design) 35,000 – 37,000 mg/l
Specific Energy 
Consumption
4 ‐ 6 kWh/m3
Power requirement 
of SWRO Plant
24 MW
D&C Joint Venture
Suez‐Degrémont/
Multiplex/Worley
Parsons/Water Corporation
REFERENCES: UTILITY‐SCALE RENEWABLE POWERED DESALINATION – PERTH, AUSTRALIA
35
It is the first large‐scale seawater RO plant in 
the world powered by renewable energy using 
green electricity procured from an Australian 
wind farm.
Source: Global Clean Water Desalination Alliance
o The green electricity consumed by the 
desalination plant is provided by the 
80 MW Emu Downs Wind Farm. 
o The wind farm comprises 48 wind turbines 
and is located in a distance of 200 km from 
the desalination plant.
Kwinana SWRO 
Plant – Perth 
Emu Downs 
Wind Farm
General Information
Conclusion
Confidential & Proprietary
o Seawater Reverse Osmosis (SWRO) is a feasible option to increase water availability for isolate 
locations, cities, industrial applications or others
o Reverse Osmosis is the preferred technology for desalination
o If the SWRO plant uses the correct technology, the SWRO design will reduce energy consumption 
and operational cost
CONCLUSION
o Energy renewable + SWRO are a good 
match to reduce water cost, and 
environmental impact 
 Wind power
 Wave power
 DOE Announces Prize 
Competition for Wave Energy 
Water Desalination
 Solar Power
 Other options
37
Confidential & Proprietary
4
20
4
1.3 1.3
0
10
20
30
Microwave oven TV plasma Space heater Water heater 3 tons ‐ AC
hours of operation equivalent to 6 kWh
SWRO energy consumption to produce water for a family of four for one day is equivalent to:
o 1 m3 of desalinated water requires 2.98 kwh
o 1 family of 4 persons – 100 gallons per person per day [1] – 400 gallons (1.5 m3) per family
 Equivalent to 4.5 kwh to produce desalinated water + 1.5 kwh for distribution
o 6 kwh is the same energy consumption for the following appliances [2]:
 Equivalent to 3 tons of air conditioning capacity running for 1.3 hour (covers 1,200‐
1,500 sf) [3]
CONCLUSION
38
Hours of Operation Equivalent to 6 kWh
[1]source: USCG, [2] Source: energy.gov, [3] Source: hvac.com
Confidential & Proprietary
CONTACT US
39
Juan Miguel Pinto
+1.786.925.8500 | Office
+1.510.325.7412 | Mobile
jmpinto@energyrecovery.com
Energy Recovery, Inc.
1717 Doolittle Drive
San Leandro, CA 94577, USA
energyrecovery.com
Thank You
energy-recovery-presentation-2020-water-forum.pdf

More Related Content

Featured

Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Saba Software
 

Featured (20)

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 

energy-recovery-presentation-2020-water-forum.pdf