SlideShare a Scribd company logo
1 of 12
Download to read offline
Ocean Sciences Meeting 2012											 Salt Lake City

           		 Optimality-based modeling of plankton 				
           			   for use in Earth-system modeling	
           				      	S. Lan Smith1, Markus Pahlow2, 							
              Agostino Merico3, Kai W. Wirtz4, Andreas Oschlies2
               1 Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokohama
                 2 Leibniz Institute of Marine Sciences at Kiel University (IFM-GEOMAR)
                        3 Leibniz Center for Tropical Marine Ecology (ZMT), Bremen
                     4 Helmholtz Center for Materials & Coastal Research, Geesthacht




S. Lan Smith                                                                        Feb. 23, 2012
Optimality-based models of plankton

 Assumptions

 	 Natural Selection produces optimally adapted organisms

 	 Fitness = Growth Rate 	             		 Goal-oriented

 Considerable success over the past decade

 Recent Developments:
 	 models of optimal foraging & Primary Production

 Major Challenge

 	 Dynamic models consistent with Evolutionarily Stable Strategy (ESS)
 		 ESS formulated in terms of steady state (John Maynard Smith)
 	    i.e., how to describe short-term dynamics, e.g., acclimation, 						
 	    consistent with evolutionary adaptation of the very ability to acclimate.

 from the review by Smith et al. (Limnology & Oceanography 56, 2011)

S. Lan Smith                p. 2                                       Feb. 23, 2012
Acclimation vs. Adaptation

  Acclimation
  	 short-term changes
  	 e.g., seasonal change of a dog’s coat of hair


  Adaptation
  	 long-term changes
  	 evolution (genetic changes in a species)
  	 species succession (changes in community composition)


  The same approaches can be used to model both.
  	    e.g., Wirtz and Eckhardt (Ecol. Mod., 1996), Merico et al. (Ecol. Mod., 2009)




S. Lan Smith                  p. 3                                                Feb. 23, 2012
Optimality at different levels of organization

                                                Maximal net growth rate

   Quantity                                                    Maximal specific growth rate
     being
   optimized
                                                                                      Maximal uptake rate



                   nutrients      zooplankton         light                                          nutrient
                                                                   N uptake                           uptake

                     uptake          defense
                                                                                        N used          N used
  trade-off                                           iron             iron
                                                                                       for other      for uptake
                                                  used for light    used for N
                                                   harvesting      assimilation        enzymes           sites
                         phytoplankton                                                (max. rate)      (affinity)

                                                          phytoplankton
                   Community dynamics,                 Autotrophic growth,                Nutrient uptake,
                e.g., grazers and phytoplankton      e.g., iron-light-nitrogen          e.g., Optimal Uptake
                   as in Merico et al. (2009)   colimitation as in Armstrong (1999)    as in Smith et al. (2009)
(Smith et al. L&O 2011, fig. 2)
S. Lan Smith                         p. 4                                                              Feb. 23, 2012
Trade-offs as ‘Hyper-Parameterizations’
  ‘Hyper-Parameters’ in hierarchical Bayesian modeling
  specify prior distributions of model parameters 	 	 	 	 	 	 	 	
  	    (e.g., Gelman et al. Bayesian Data Analysis, 2nd edition, 2004)	

  Trade-offs specify how the shapes of functional relationships
  may change, rather than fixing their shapes.
      									                      Optimal Uptake kinetics
                                Trade-off                       Adaptive Response
                                                          1.0




                                                Uptake
                                                          0.8




                                                 Rate
                                                          0.6

                                                          0.4
                         Vmax



                                                          0.2

                                                          0.0
                                                                0   200   400   600   800   1000   0   200   400   600   800   1000   0   200   400   600   800   1000



                                                                NO3 in incubation expts.

                                   KNO3
                                                                    0
                                                     log KNO3

                                                                    -1


                                                                    -2

                                                                                               n = 61 data pts.
                                                                    -3
                                                                          -2.5                               -1.0                     0.0
                          Smith et al. (MEPS 2009)                  log NO3 (in seawater)
S. Lan Smith                      p. 5                                                                                                                                   Feb. 23, 2012
Shape-shifting of the Growth vs. Irradiance curve

               Optimal Resource Allocation                                                   Flexible Response
                   subject to Trade-offs




                                                                          Max. Growth Rate
                 CO 2
                                C-uptake                   loss
                         Pigments          Rubisco
                        CHLa   Carot


                               fθ                     fR

                                          POC               PON   Q0
                                                      Q

                                          1-f θ-f R




                                                                          Growth Rate
                                                                  ?


                                                                   loss
                                                      N-uptake
                                    DIN



       Wirtz & Pahlow (MEPS 2010)                                                                  Light

S. Lan Smith                                  p. 6                                                          Feb. 23, 2012
New interpretations from optimality-based modeling

1. Instead of ‘Inhibition of NO3 uptake by NH4‘
	 -> co-limitation by Fe, light and nitrogen (Armstrong L&O 1999)
2. Instead of either multiplicative models or Liebig’s Law of the min.
	 -> co-limitation by N, P and light (Pahlow & Oschlies MEPS 2009)
3. Instead of fixed Droop-type quota equation
	 -> saturating response from optimization (Wirtz & Pahlow MEPS 2010)
4. Instead of Q10 ~ 2 for phytoplankton
	 -> Q10 ~ 3 for N uptake inferred from field obs. (Smith JGR 2011)


	 These have implications for ecology & Earth-System Modeling.




S. Lan Smith            p. 7                                         Feb. 23, 2012
T sensitivity for phytoplankton
   Common view: Bacteria are more T sensitivity than Phytoplankton. 			                 	
   			 Q10 ~ 2 to 3 (Pomeroy and Wiebe. Aquat. Microb. Ecol. 2001)
   OU kinetics applied to field obs. implies: Q10 ~ 3 for nutrient uptake 			
   (Smith. GRL 2010, JGR 2011), rather than Q10 ~ 2 (Eppley. 1972).

   Standard Assumption: Degradation has greater T sensitivity than Production

         CO2                                              CO2
    Inorganic C               Organic C                 Inorganic C             Organic C


                                              warming    Less Uptake &
                           sinking & export              Less Export        sinking & export


               However, if Production has the same T sensitivity as Degradation
         CO2                                              CO2

    Inorganic C               Organic C                 Inorganic C           Organic C

                                                        No Net Effect on
                                              warming
                           sinking & export             Uptake or Export sinking & export


S. Lan Smith                     p. 8                                              Feb. 23, 2012
Differences between species: Large-scale patterns of dominance
 Litchman et al. (Ecology Letters 10, 2007)
 	 “These trade-offs, arising from fundamental relations such as cellular scaling 	 	     	
 	 laws and enzyme kinetics, define contrasting ecological strategies ... [which] can
 	 explain the distribution patterns of major functional groups and size classes 	 	 	    	
 	 along nutrient availability gradients.”
 Applications in 3-D models (Follows et al. Science, 2007) & the MIT group.
      Monteiro et al. (GBC, 2011)
      ‘environment selects’ for N2 fixers
                                                     But how to model more
                                                     detailed (finely resolved)
                                                     & realistic biodiversity?
                                                     & account for the
                                                     adaptive capacity of each
                                                     species?




S. Lan Smith                 p. 9                                                 Feb. 23, 2012
‘adaptive dynamics’: modelling how fast traits change

 	    Trait x should change in proportion to its effect on fitness, F:

 			 dx = d ∂F(x,E)                                                 Also allows modeling 	
           x
 			 dt      ∂x                                                     the dist. of x, without
                                                                    discretely resoving it.
 		       dx: flexibility ~ diversity (trait distribution)
 		        E: Environment (light, temperature, etc.)
 		       For plankton F = Growth; dx/dt depends on E (Smith et al. L&O, 2011)
 	      		     Acclimation Rates depend on:
 				            1. possible range of trait values (adaptive capacity),
 				            2. environmental variability
 				            3. current distribution of trait values


 Remaining Challenge: modelled diversity tends to collapse
 immigration required to maintain diversity (Bruggeman & Kooijman L&O 2007)
 ‘Adaptive Dynamics’: evolutionary changes
 	    McGill and Brown (An. Rev. Ecol. Evol. Syst. 2007), Litchman et al. (PNAS 2009)
 ‘adaptive dynamics’: species succession, communities
 	    Wirtz & Eckhardt (Ecol. Modell. 1996), Wirtz (J. Biotech. 2002), Abrams (J. Evol. Biol. 2005)

S. Lan Smith                    p. 10                                                     Feb. 23, 2012
Different Postulates about the Nature of Life
 1. Life is tough and flexible     vs.   2. Life is fragile and inflexible
 	   because organisms and 				          	   so that any change in 						
 	   species had to be so 					          	   environmental conditions 				
 	   in order to survive 						          	   might cause Scary Disasters! 			
 	   throughout billions of 					        	   despite the fact that life 					
 	   years of evolution (for 				        	   evolved experiencing changes 		
 	   bacteria & plankton). 	             	   in climate & geography. 	
 Pro:                                    Pro:
  Basis for more general understanding   	 May identify real threats & risks.
  New interpretations of obs.            	 Many opportunities for					 	
                                         	 sensational papers (e.g., in Nature), 	 	
 Con:                                    	 which advance scientists’ careers.
 	 Risk: may over-estimate the			        Con:
 	 ‘Adaptive Capacity of Life’,			   	
 	 which does have limits; 				          	 Risk: loss of credibility, 						
 	 i.e., may miss some real threats.     	 if predicted Disasters do not occur.

 		      Humans have driven some 			     	   No basis for understanding or 			
 		      species extinct.                	   modeling ‘Adaptive Capacity of Life’.



S. Lan Smith             p. 11                                            Feb. 23, 2012
Conclusions

  Life is tough and flexible, to a non-neglible extent.


  Earth-System Models should account for ‘Adaptive Capacity of Life’.


  Optimality-based models are one means to do this
  	 using trade-offs as ‘Hyper-Parameterizations’
  	 to constrain adaptive responses.


  We need observations to keep this realistic.




S. Lan Smith            p. 12                                  Feb. 23, 2012

More Related Content

Viewers also liked

Presented at AMEMR 2008, Plymouth, UK
Presented at AMEMR 2008, Plymouth, UKPresented at AMEMR 2008, Plymouth, UK
Presented at AMEMR 2008, Plymouth, UKLanimal
 
Affinity: the meaningful trait-based alternative to the half-saturation constant
Affinity: the meaningful trait-based alternative to the half-saturation constantAffinity: the meaningful trait-based alternative to the half-saturation constant
Affinity: the meaningful trait-based alternative to the half-saturation constantLanimal
 
Lan Bristol July2011
Lan Bristol July2011Lan Bristol July2011
Lan Bristol July2011Lanimal
 
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Lanimal
 
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Lanimal
 
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...Universidad Popular Carmen de Michelena
 
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...Universidad Popular Carmen de Michelena
 
Lan\'s Presentation at the Ocean Sciences Meeting 2010
Lan\'s Presentation at the Ocean Sciences Meeting 2010Lan\'s Presentation at the Ocean Sciences Meeting 2010
Lan\'s Presentation at the Ocean Sciences Meeting 2010Lanimal
 
Una revisión de los conocimientos fundamentales de la biología de la célula. ...
Una revisión de los conocimientos fundamentales de la biología de la célula. ...Una revisión de los conocimientos fundamentales de la biología de la célula. ...
Una revisión de los conocimientos fundamentales de la biología de la célula. ...Universidad Popular Carmen de Michelena
 

Viewers also liked (19)

Viaje cultural a Tordesillas, Arévalo y Peñafiel
Viaje cultural a Tordesillas, Arévalo y PeñafielViaje cultural a Tordesillas, Arévalo y Peñafiel
Viaje cultural a Tordesillas, Arévalo y Peñafiel
 
Presented at AMEMR 2008, Plymouth, UK
Presented at AMEMR 2008, Plymouth, UKPresented at AMEMR 2008, Plymouth, UK
Presented at AMEMR 2008, Plymouth, UK
 
Affinity: the meaningful trait-based alternative to the half-saturation constant
Affinity: the meaningful trait-based alternative to the half-saturation constantAffinity: the meaningful trait-based alternative to the half-saturation constant
Affinity: the meaningful trait-based alternative to the half-saturation constant
 
Lan Bristol July2011
Lan Bristol July2011Lan Bristol July2011
Lan Bristol July2011
 
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
 
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
Affinity: the meaningful trait-based alternative to the obsolete obfuscation ...
 
El cerebro humano: una perspectiva científica y filosófica
El cerebro humano: una perspectiva científica y filosóficaEl cerebro humano: una perspectiva científica y filosófica
El cerebro humano: una perspectiva científica y filosófica
 
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...
2015: 4/4 - Seminario de Libertad Emocional - Prácticas: Enfermedades psicoso...
 
Las voces femeninas
Las voces femeninasLas voces femeninas
Las voces femeninas
 
Viaje cultural a Brihuega
Viaje cultural a BrihuegaViaje cultural a Brihuega
Viaje cultural a Brihuega
 
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...
Complemento literario de las sesiones presenciales del programa "Madrid..¡me ...
 
Viaje Cultural a la población de Villarejo de Salvanés
Viaje Cultural a la población de Villarejo de SalvanésViaje Cultural a la población de Villarejo de Salvanés
Viaje Cultural a la población de Villarejo de Salvanés
 
Viaje cultural a Colmenar de Oreja
Viaje cultural a Colmenar de OrejaViaje cultural a Colmenar de Oreja
Viaje cultural a Colmenar de Oreja
 
Madrid me-gustas-siglo xviii-parte 1
Madrid me-gustas-siglo xviii-parte 1Madrid me-gustas-siglo xviii-parte 1
Madrid me-gustas-siglo xviii-parte 1
 
Lan\'s Presentation at the Ocean Sciences Meeting 2010
Lan\'s Presentation at the Ocean Sciences Meeting 2010Lan\'s Presentation at the Ocean Sciences Meeting 2010
Lan\'s Presentation at the Ocean Sciences Meeting 2010
 
Una revisión de los conocimientos fundamentales de la biología de la célula. ...
Una revisión de los conocimientos fundamentales de la biología de la célula. ...Una revisión de los conocimientos fundamentales de la biología de la célula. ...
Una revisión de los conocimientos fundamentales de la biología de la célula. ...
 
¿Debemos vacunarnos?
¿Debemos vacunarnos?¿Debemos vacunarnos?
¿Debemos vacunarnos?
 
Viaje cultural la Rioja
Viaje cultural la RiojaViaje cultural la Rioja
Viaje cultural la Rioja
 
Juan Luis Vives. Vida y Obra
Juan Luis Vives. Vida y ObraJuan Luis Vives. Vida y Obra
Juan Luis Vives. Vida y Obra
 

S. Lan Smith Ocean Sciences Meeting 2012

  • 1. Ocean Sciences Meeting 2012 Salt Lake City Optimality-based modeling of plankton for use in Earth-system modeling S. Lan Smith1, Markus Pahlow2, Agostino Merico3, Kai W. Wirtz4, Andreas Oschlies2 1 Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokohama 2 Leibniz Institute of Marine Sciences at Kiel University (IFM-GEOMAR) 3 Leibniz Center for Tropical Marine Ecology (ZMT), Bremen 4 Helmholtz Center for Materials & Coastal Research, Geesthacht S. Lan Smith Feb. 23, 2012
  • 2. Optimality-based models of plankton Assumptions Natural Selection produces optimally adapted organisms Fitness = Growth Rate Goal-oriented Considerable success over the past decade Recent Developments: models of optimal foraging & Primary Production Major Challenge Dynamic models consistent with Evolutionarily Stable Strategy (ESS) ESS formulated in terms of steady state (John Maynard Smith) i.e., how to describe short-term dynamics, e.g., acclimation, consistent with evolutionary adaptation of the very ability to acclimate. from the review by Smith et al. (Limnology & Oceanography 56, 2011) S. Lan Smith p. 2 Feb. 23, 2012
  • 3. Acclimation vs. Adaptation Acclimation short-term changes e.g., seasonal change of a dog’s coat of hair Adaptation long-term changes evolution (genetic changes in a species) species succession (changes in community composition) The same approaches can be used to model both. e.g., Wirtz and Eckhardt (Ecol. Mod., 1996), Merico et al. (Ecol. Mod., 2009) S. Lan Smith p. 3 Feb. 23, 2012
  • 4. Optimality at different levels of organization Maximal net growth rate Quantity Maximal specific growth rate being optimized Maximal uptake rate nutrients zooplankton light nutrient N uptake uptake uptake defense N used N used trade-off iron iron for other for uptake used for light used for N harvesting assimilation enzymes sites phytoplankton (max. rate) (affinity) phytoplankton Community dynamics, Autotrophic growth, Nutrient uptake, e.g., grazers and phytoplankton e.g., iron-light-nitrogen e.g., Optimal Uptake as in Merico et al. (2009) colimitation as in Armstrong (1999) as in Smith et al. (2009) (Smith et al. L&O 2011, fig. 2) S. Lan Smith p. 4 Feb. 23, 2012
  • 5. Trade-offs as ‘Hyper-Parameterizations’ ‘Hyper-Parameters’ in hierarchical Bayesian modeling specify prior distributions of model parameters (e.g., Gelman et al. Bayesian Data Analysis, 2nd edition, 2004) Trade-offs specify how the shapes of functional relationships may change, rather than fixing their shapes. Optimal Uptake kinetics Trade-off Adaptive Response 1.0 Uptake 0.8 Rate 0.6 0.4 Vmax 0.2 0.0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 NO3 in incubation expts. KNO3 0 log KNO3 -1 -2 n = 61 data pts. -3 -2.5 -1.0 0.0 Smith et al. (MEPS 2009) log NO3 (in seawater) S. Lan Smith p. 5 Feb. 23, 2012
  • 6. Shape-shifting of the Growth vs. Irradiance curve Optimal Resource Allocation Flexible Response subject to Trade-offs Max. Growth Rate CO 2 C-uptake loss Pigments Rubisco CHLa Carot fθ fR POC PON Q0 Q 1-f θ-f R Growth Rate ? loss N-uptake DIN Wirtz & Pahlow (MEPS 2010) Light S. Lan Smith p. 6 Feb. 23, 2012
  • 7. New interpretations from optimality-based modeling 1. Instead of ‘Inhibition of NO3 uptake by NH4‘ -> co-limitation by Fe, light and nitrogen (Armstrong L&O 1999) 2. Instead of either multiplicative models or Liebig’s Law of the min. -> co-limitation by N, P and light (Pahlow & Oschlies MEPS 2009) 3. Instead of fixed Droop-type quota equation -> saturating response from optimization (Wirtz & Pahlow MEPS 2010) 4. Instead of Q10 ~ 2 for phytoplankton -> Q10 ~ 3 for N uptake inferred from field obs. (Smith JGR 2011) These have implications for ecology & Earth-System Modeling. S. Lan Smith p. 7 Feb. 23, 2012
  • 8. T sensitivity for phytoplankton Common view: Bacteria are more T sensitivity than Phytoplankton. Q10 ~ 2 to 3 (Pomeroy and Wiebe. Aquat. Microb. Ecol. 2001) OU kinetics applied to field obs. implies: Q10 ~ 3 for nutrient uptake (Smith. GRL 2010, JGR 2011), rather than Q10 ~ 2 (Eppley. 1972). Standard Assumption: Degradation has greater T sensitivity than Production CO2 CO2 Inorganic C Organic C Inorganic C Organic C warming Less Uptake & sinking & export Less Export sinking & export However, if Production has the same T sensitivity as Degradation CO2 CO2 Inorganic C Organic C Inorganic C Organic C No Net Effect on warming sinking & export Uptake or Export sinking & export S. Lan Smith p. 8 Feb. 23, 2012
  • 9. Differences between species: Large-scale patterns of dominance Litchman et al. (Ecology Letters 10, 2007) “These trade-offs, arising from fundamental relations such as cellular scaling laws and enzyme kinetics, define contrasting ecological strategies ... [which] can explain the distribution patterns of major functional groups and size classes along nutrient availability gradients.” Applications in 3-D models (Follows et al. Science, 2007) & the MIT group. Monteiro et al. (GBC, 2011) ‘environment selects’ for N2 fixers But how to model more detailed (finely resolved) & realistic biodiversity? & account for the adaptive capacity of each species? S. Lan Smith p. 9 Feb. 23, 2012
  • 10. ‘adaptive dynamics’: modelling how fast traits change Trait x should change in proportion to its effect on fitness, F: dx = d ∂F(x,E) Also allows modeling x dt ∂x the dist. of x, without discretely resoving it. dx: flexibility ~ diversity (trait distribution) E: Environment (light, temperature, etc.) For plankton F = Growth; dx/dt depends on E (Smith et al. L&O, 2011) Acclimation Rates depend on: 1. possible range of trait values (adaptive capacity), 2. environmental variability 3. current distribution of trait values Remaining Challenge: modelled diversity tends to collapse immigration required to maintain diversity (Bruggeman & Kooijman L&O 2007) ‘Adaptive Dynamics’: evolutionary changes McGill and Brown (An. Rev. Ecol. Evol. Syst. 2007), Litchman et al. (PNAS 2009) ‘adaptive dynamics’: species succession, communities Wirtz & Eckhardt (Ecol. Modell. 1996), Wirtz (J. Biotech. 2002), Abrams (J. Evol. Biol. 2005) S. Lan Smith p. 10 Feb. 23, 2012
  • 11. Different Postulates about the Nature of Life 1. Life is tough and flexible vs. 2. Life is fragile and inflexible because organisms and so that any change in species had to be so environmental conditions in order to survive might cause Scary Disasters! throughout billions of despite the fact that life years of evolution (for evolved experiencing changes bacteria & plankton). in climate & geography. Pro: Pro: Basis for more general understanding May identify real threats & risks. New interpretations of obs. Many opportunities for sensational papers (e.g., in Nature), Con: which advance scientists’ careers. Risk: may over-estimate the Con: ‘Adaptive Capacity of Life’, which does have limits; Risk: loss of credibility, i.e., may miss some real threats. if predicted Disasters do not occur. Humans have driven some No basis for understanding or species extinct. modeling ‘Adaptive Capacity of Life’. S. Lan Smith p. 11 Feb. 23, 2012
  • 12. Conclusions Life is tough and flexible, to a non-neglible extent. Earth-System Models should account for ‘Adaptive Capacity of Life’. Optimality-based models are one means to do this using trade-offs as ‘Hyper-Parameterizations’ to constrain adaptive responses. We need observations to keep this realistic. S. Lan Smith p. 12 Feb. 23, 2012