Coastal carbon_Andy Steven

541 views

Published on

'Coastal Carbon: significance and opportunities', presentation delivered by Dr Andy Steven as part of the TERN Carbon Briefing Session, 31 July 2012

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
541
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Coastal carbon_Andy Steven

  1. 1. Coastal  Carbon:    significance  and  opportuni4es   Andy  Steven–  Australian  Coastal  Ecosystem    Facility  Director        July  31,  2012  
  2. 2. Australia’s Coasts•  Biodiverse  •  Highly  producCve  •  Significant  store  of  carbon  •  Undergoing  significant   change  •  Un-­‐quanCfied  and   unaccounted  for    
  3. 3. Carbon  Carbon:  Types  and    Sources  Dissolved  Inorganic  Carbon  (DIC)  •  Biologically  and  chemically  mediated    Organic  Ma<er  (OM)  •  Dissolved  and  ParCculate  •  Autochthonous  and  Allochthonous  
  4. 4. What and Where is Blue Carbon?
  5. 5. Coastal  Carbon  has  significant   sequestraCon  potenCal Seagrasses   Soil-­‐carbon  values     Tidal  Salt  Marshes   for  first  meter     of  depth  only    Estuarine  Mangroves   (Total  depth    =     up  to     several  meters)   Oceanic  Mangroves   Organic  Soil  Carbon    For  Comparison:     Tropical  Forests   Living  Biomass     0   500   1000   1500   2000   2500   tCO2e  per  Hectare,  Global  Averages     5  
  6. 6. Carbon  losses  from  land  and  coastal   habitat  degradaCon   Global  rate  of  Loss   •  Seagrass:    1%  per  year,  global   loss  29%,  in  19th  century   •  Mangrove:    1,020  km2    y-­‐1   •  Saltmarsh:    1–2%  per  year,   30%  loss  in  SE  Australia   •  Release  ~  0.25  MtCO2    km2  m-­‐1       Sacramento  Delta     •  1,800  km2  of  wetlands   •  released  1  GtCO2  (1.5%  of   California  total  GHG  emissions)   •  C  sequestered  over  5,000   years,  released  in  100  y  
  7. 7. PotenCal  Significance  in  Australia   tidal saltmarsh mangrove Northern Territory mangrove seagrass seagrass saltmarsh Western Australia Wetlands South Australia Poten4al  C  burial   deserts croplands Tasmania ~  8.6  Mt  yr-­‐1   Boreal forests Victoriatemperate forest New South Walestropical forerests Queensland 0 50 100 150 200 250 Australia 2 -1 Long term rate of carbon accumulation in sediment (gC m y ) 0 20000 40000 60000 80000 Area (km2) Initial test of concept •  Science: how much carbon can be lost/restored over time? •  Economics: at what cost? •  Policy: can current policy frameworks adapt?
  8. 8. TERN  and  Coastal  Carbon  Australian  Coastal  Ecosystem  Facility  (ACEF)  •  Provide    enduring  access  to  coastal   data  of  naConal  importance  •  Habitat  mapping  •  Carbon  Cluster  parameter  Library  SEQ  Peri-­‐urban  Supersite  •  Measuring  changes  in  carbon  flux,   producCvity,  sequestraCon  
  9. 9. QuanCfying  Carbon  through  the  CSIRO  Marine   and  Carbon  Biogeochemistry  Cluster   QuanCtaCve  Modeling  and     Economic  Assessment  
  10. 10. CSIRO  CARBON  CLUSTER  ACTIVITIES  Objec4ves  •  carbon  inventory  informaCon  on  sources,  speciaCon,  stocks  and   flows    •  process  understanding  of  changes  in  carbon  cycling  resulCng  from   natural  and  anthropogenic  change    Ac4vi4es  1.  Carbon  sequestra4on,  stoichiometry  and  stores  potenCal  of   representaCve  Australian  coastal  ecosystems  2.  Benthic  community  metabolism  and  benthic-­‐pelagic  coupling  3.  Pelagic  community  metabolism  in  Australian  coastal  waters    4.  Scaling  up  to  regional  inventories  and  data  assimila4on  and   Parameter  and  Model  Uncertain4es  
  11. 11. CSIRO  &  TERN    Interests  &  AcCviCes  CSIRO  •  Model  Development  •  BioaccumulaCon   Model  development  •  Economic    Assessment   of  Carbon   SequestraCon     TERN   •  Data  and  imagery   •  Host  Parameter  library  
  12. 12. Measuring  Carbon  in  an  urbanising  estuary   -­‐  the  SEQ  Periurban  supersite  Key  Ques4ons  •  Dissolved  inorganic   Carbon  fluxes  •  Organic  Carbon  Sources   Logan   and  contribuCon  to   producCvity  •  Carbon  sequestraCon   Albert   potenCal  •  Trophic  Ecology  
  13. 13. Increased  anthropogenic  carbon  flux  with   landuse  development   STP   discharge   Urban     Aquaculture   Run-­‐off   Agriculture  
  14. 14. Food  Web  of  the  Logan-­‐Albert  Estuary   Mulloway   Bull  shark   Bull  shark   Yellowfin  bream   Ambassis   WhiCng   Bony  herring     Mullet   Oithona   Zooplankton   Ciliates  ??   Euaugap2lis   Phytoplankton   Prawns   Detritus   Prawns   CSIRO.    Fish-­‐ Catchment  C-­‐subsidy   ecosystem   Diatoms   Benthos  
  15. 15. InstrumentaCon   Windsonic  –    § Sontek  Argonaut  velocity,   Wind  Speed  and  DirecCondischarge,  depth    § YSI  6600-­‐    pH,  EC,  Temp,  DO  Chlorophyll,  Phycocyanin,  Turbidity  § Gill  Windsonic  -­‐Wind  speed,  dir   Sony  Web     Camera  § Wetlabs  Ecotriplet-­‐  CDOM,  suspended  sediment,    § SatlanCc  SUNA-­‐  Nitrate,  Cycle  -­‐phosphate    § Contros  pCO2  &  methane  
  16. 16. Seeing  Coastal  Water  Quality  in  real  4me   terninstruments.csiro.au/maps.html  
  17. 17. Dissolved Inorganic Carbon (pCO2) Patterns•  Higher pCO2 upstream and following floods •  Efflux and uptake•  Spatial and tidal variation in pCO2 and CH4 800 3 700 2.5 600 2 500 pCO2 µatm 400 1.5 Tide m CH4 µmol/L 300 1 200 0.5 100 0 0 27/07/2012 7:12:00 27/07/2012 9:36:00 27/07/2012 12:00:00 27/07/2012 14:24:00 27/07/2012 16:48:00
  18. 18. Dissolved Organic Carbon Patterns CDOM and DOM decreases with salinity DOC=S relationship. Logan July 2011 3.5 3 2.5 y = -0.9855Ln(x) + 4.2527 R2 = 0.8668 DOC (mg/L) 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 Tidal variation in CDOM and Nitrate salinity
  19. 19. POM  sources  vary  along  estuary   -­‐effects  of  landuse    
  20. 20. Different  Landuse  contribuCons-­‐  Isosource  frequency  plots  of  soil  sources   contribuCng  to  sediment  OC  using  CSA   Lower  Logan-­‐Channel  bank  dominated   Albert  –Forest  dominated   Lower Logan 80 Channel Bank n = 189 Cultivated Forest Bulk 13C Pasture 60 C14:0 Subsoils (cks) i15:0 C16:iw7 C18:0Frequency 40 20 0 0 10 20 30 40 50 60 70 80 90 100 Proportion (%)
  21. 21. Isotopic  Changes  in  trophic  ecology     Phytoplankton   Bony  Bream  
  22. 22. Mean  Trophic  Carbon  fluxes   The Pylon 10000 6700 7500 Fish/Phyt=0.001 (<0.010) Cop/Phyt= 0.08 (<0.10) 1000 565 Cil/Phyt= 1.12 (>>0.10) 100 10 8 1 Carbon Flux (mg C m yr ) -1 12780 8064 Skinners Park -3 10000 Fish/Phyt=0.001 (<0.010) 1000 570 Cop/Phyt= 0.04 (<0.10) Cil/Phyt= 0.63 (>>0.10) 100 20 10 1 40000 18420 10000 935 1000 Upper Albert 100 Fish/Phyt=0.0006 (<0.010) 10 Cop/Phyt= 0.051 (<0.10) 10 Cil/Phyt= 2.17 (>>0.10) 1 Phytoplankton Ciliates Fish Copepods
  23. 23. Further  InformaCon   Contact  Details:    Andy  Steven    andy.steven@csiro.au    or  0422  002  116   Access  Informa4on:   Australian  Coastal  Ecosystem  Facility:    h<p://acef.tern.org.au/   Logan  Data:    h<p://terninstruments.csiro.au/maps.html              

×