SlideShare a Scribd company logo
1 of 10
Intermediate Fluid Mechanics Project
Analysis of Flow over a Potato Using ANSYS Fluent
Team Vegetable:
Kris Saladin
Alex Bosko
Introduction
Thisexperimentdetailsthe analysisof fluidflow overapeeledpotatousingANSYSFluent14.5.
The versatilityof the Fluentprogramallowsforquickflow estimationsof objectsormore complex and
detailed analysisif needed. Flowestimationsare first calculated withrelevantequations fromclass and
bookvalues usingstatedinitialconditions.Thisestimationisthencomparedwiththe analysisgenerated
by Fluent. The accuracyand error of Fluentcalculationsare shownwithrefinementstudiesof meshsize,
convergence tolerance,boundarydistance,andReynoldsnumber; thenproved tobe importantor
negligible.VariablessuchasReynoldsnumber,coefficientof drag, and boundarylayerthickness are
calculatedand usedinbothwrittenequationsandFluent.Valuesfordragforce on the potato were
foundto be 0.01875 Newtons usingwrittenequationsand0.4023 Newtons usingthe Fluentcalculation;
showingasmall variationwithbothapproaches.Thisconcludedthateachapproach couldbe valid
dependingondesiredaccuracy.
Problem Specifications
OperatingConditionsand Estimated FlowProperties
An initial estimation forgeneral flow description overthe potatobegan withcalculatingthe
Reynoldsnumber. Forsimplicity,we assume the shape tobe aflat plate.Also,since ourobjectis
streamlined,we donothave to worryabout the calculationsforflow separation.Reynoldsnumber
equationisdefined:
𝑅𝑒 =
𝜌𝑉𝐿
𝜇
Equation (1)
Where:(𝜌) isdefinedasthe fluiddensity,(V)isthe fluidvelocity,(L) isthe lengthof the object,
and (𝜇) isthe fluidviscosity. Forourtheoretical experiment,boundaryconditionswere chosentobe:
𝜌 = 1.0
𝑘𝑔
𝑚3
V = 1
𝑚
𝑠
L = 0.25 m 𝜇 = 0.04
𝑘𝑔
𝑚∗𝑠
ComputingEquation(1) withthese valuesproduced aReynoldsnumberof 6.25. For a flatplate,thislow
Reynoldsnumbercorrelateswiththe Laminarflow region:Re < 1e5. Thisis nota Stokesorcreepingflow
because itisnot Re << 1.
Afterdeterminingthe flow type tobe laminar, total dragforce onour potato couldthenbe
estimatedusingthe equation:
𝐹𝐷 =
1
2
𝜌𝑉2 𝐶 𝐷 𝐴 .
Equation (2)
Coefficientof drag(𝐶 𝐷) and frontal area(A) were the only new variablesneeded. The frontal
area forour potato isdescribedasthe lengthtimesthe diameter,or:
𝐴 = 𝐿𝑑 = 0.0125 𝑚2 .
Equation (3)
Coefficientof dragcouldbe found byapproximatingthe potato’sshape asanellipsoid. FromTable 11-2
‘FluidMechanics’textbook, anellipsoid’scoefficientof drag inlaminarflow:
𝐶 𝐷 = 0.3 𝑓𝑜𝑟
𝐿
𝑑
= 2.5 𝑎𝑛𝑑 𝑅𝑒 < 2 ∗ 105.
Where (𝐿/𝑑) isdefinedasthe ellipsoid’s lengthtodiameterratio.Combiningthese valueswithEquation
(2) gave us a total drag force estimationof 0.001875 Newtons.
While ReynoldsnumberandNavier-Stokesrelationships describe the approximatebehaviorof
our fluidflowproperties;examiningmore closelynearthe boundariesof ourfluidrequiresthe
estimationof aboundarylayerthickness.Thisthicknessisdescribedas the approximatedistance
perpendiculartothe potato’ssurface where flow velocityhasreachedfree streamvelocity. The
equationforboundarylayerthickness (derivedfromthe Blasiussolution)forlaminarflow overaflat
plate isgivenas:
𝛿
𝐿
=
4.91
√ 𝑅𝑒 𝐿
.
Equation (4)
Where (𝛿) isthe boundarylayerthicknessand(𝑅𝑒 𝐿) isthe Reynolds numberwithrespecttolength.
Usingthe statedvariablesfor(L) and(Re) above,boundarylayerthicknesswasestimatedtobe 0.491 m
at the endof the potato. This boundaryconditionislaterusedwhencreatinganinflationlayerinFluent.
OtherboundaryconditionsneededbyFluentforsimulationinclude:avelocityinlet,apressure
outlet,andwalls (showninFigure 1).Forour initial testing,the velocityinletwasspecifiedasthe
leftmostarc(blue half circle) andourpressure outletasthe rightmostarc (redhalf circle).These two
arcs were made to be 5 timesthe characteristicsize of the potato(laterexplainedin analysisand
discussion).Finally,wallswere simplydefinedasthe outline of the potato.
Figure (1): Fluent Boundary Conditions Explained
Results with Analysis and Discussion
Generatinga Mesh
The Fluentprogramusesmesheswithinacreated geometrytocalculate flow properties.The
computercan analyze datain eachmeshsquare and then generate anoverall analysis.More mesh
divisions will increase the accuracyof the analysisbutalso requiresmore time toprocess.A more
complex systemwill take longerforcalculationstorun. Refiningthe mesh aroundourpotato couldbe
done byincreasingthe numberof divisionsselectedaroundthe walls,inlet,andoutlet.Forthe initial
case,the numberof divisions wassetequal to50 (Figure 2) and the methodof patternusedwas
triangles.The resultof thissettingproducedagoodbase flow analysiswithenoughmeshsizesnearthe
potatobody.In creatingan accurate meshrepresentation aninflationlayerhadtobe usedaswell.This
layertellsthe computerhowtoaccuratelycapture the boundarylayerregionnearthe walls byinputting
the layerthicknessfoundpreviouslytobe 0.491 metersfromEquation(4).
Figure (2): Mesh at 50 Divisions
Pressure OutletVelocityInlet
Walls
Alsoa factor consideredingeneratingthismeshbodywasthe distance of farfieldboundaries.
Thisis lookedatfurtherin the sectionon “Far-fieldBoundaryEffects”.Topreventthese conditionsfrom
impactingoursolution,boundarydistances(forthe inletandoutletarc) were setto5 timesthe
characteristicsize of the potato.
MeshRefinementStudy
One way todetermine accuracyanderror in 𝐶 𝐷 calculations byFluentiswithameshrefinement
study. Asstatedpreviously,meshrefinementinvolvesincreasingthe numberof meshdivisionstocreate
a more accurate flowrepresentation.The baseline numberof divisionsforall surfaceswassetto50
(shownabove inFigure 2).That numberwasdoubledeachtime fora total of four cases. At 50 divisions
the estimatedcoefficientof drag byFluentwas0.65632 (double thatof ourinitial estimate).
Figure(3): Mesh at 100 Divisions Figure (4):Mesh at 200 Divisions
The above Figures3 & 4 show meshdivisions becomingsmallerandmore frequent,especially
aroundthe body.Thisinturn, more adequatelycapturesregionswhere flow mightexperience rapid
change and as a result,betteranalysisconclusions.Coefficientof draginthese twoscenarioswas
calculatedtobe 0.65676 and 0.65711, respectively.
Figure (5): Mesh at 400 Divisions
In the final case of 400 divisions,the coefficientof dragoutput byFluentwas0.65764. At this
setting,the mostuniformpatternisseenaroundthe bodygivingan accurate representation of a
realisticscenario.Thisisfurtherexplained inFigures6& 7 below;the comparisonof analysesfor
velocityvectorfields at50 and 400 meshdivisions.
Figure (6): VelocityField at 50 Divisions Figure (7):Velocity Field at 400 Divisions
As predicted,the velocityflowpatternsare slightlybetterdefinedwith400 meshdivisions.This
allowsfora more accurate solutionto(inthiscase) the coefficientof dragoutput. Alsoseenispartof
the boundarylayerthickness, 𝛿.Streamvelocityisshownasorange/redarrows whichveerawayfrom
the potato afterpassingover.Thisseemstobe accurate,visually,since ourthicknesswasnearlytwice
that of the potato’slength. Comparingall fourcasesinTable (1) below,the valuesforcoefficientof drag
showan increasingtrendathighermeshresolutions.Thistrendisnotlinearhowever,andseemsto
converge ona value between0.657 and0.658. The convergence wasfoundbythe change in 𝐶 𝐷 value
decreasingasthe numberof divisionsincreased(showninthe 3rd
columnof Table 1).
Figure (8):Semi-Log Plot of Cd vs. Numberof Divisions Table (1)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.6562
0.6564
0.6566
0.6568
0.657
0.6572
0.6574
Relative mesh size based on number of divisions on potato surface
Dragcoefficient
Actual Data
Powerfit
Mesh Divisions 𝑪 𝑫 ∆𝑪 𝑫
50 0.65632 -
100 0.65676 0.00044
200 0.65711 0.00035
400 0.65724 0.00013
Withthisdata, a semi-logplotof 𝐶 𝐷 versusnumberof divisions (Figure 8) wasalsocreatedto
estimate the percenterrorin the mostrefinedsolution. 𝐶 𝐷 calculatedforthe finestmeshcompared
withitsexactvalue resultedinapercenterrorof 0.0547%. Thiserror islow and acceptable forthis
experiment. If anevenfinermeshwasused,say,1000 divisions,thenthe errorwouldbe evenlowerif
not zero.
Effectof Convergence Tolerance on 𝑪 𝑫
Additionally,errorcanalso be shownbythe impact of convergence tolerancesonthe coefficient
of drag.A refinementstudycanbe done in thiscase as well; takingthe valuesof 𝐶 𝐷 outputbyFluentat
smallertolerances. Datawastakenat a single Reynoldsnumberandmeshresolution toisolate errorand
are shownbelowinTable 2.
Figure (9):ConvergenceToleranceEffecton Cd Table (2)
We findthatas the tolerance became smaller, 𝐶 𝐷 alsobecame smaller. Again,muchlike the mesh
refinementstudy,thistrendisnotlinearshowing 𝐶 𝐷 meetingata single value.Forthis,itcanbe
assumed thatany tolerance value higherthan1E-12 will converge toanapproximate 𝐶 𝐷 of 0.657. Figure
(9) supportsthisargumentwithanear horizontal line atthisvalue.
Effectof Far-FieldBoundary Conditionson 𝑪 𝑫
The effectof far-fieldboundaryconditionsisanothercase where accuracy/errorin 𝐶 𝐷
calculationscanbe found.Boundaryconditionsare the velocityinletandpressure outletshownin
Figure (1).If these boundariesare tooclose tothe potato body, data will be corruptedandthe accuracy
of estimationswillbe lost.The bestwaytoavoidthisis to create a large boundarydistance tonegate
any possible effects.Here we willprove thiseffectby documenting 𝐶 𝐷 valuesatboundarydistancesof 5,
10
-12
10
-10
10
-8
10
-6
10
-4
10
-2
0.655
0.66
0.665
0.67
0.675
0.68
CD vs. Convergence Tolerances
Convergence Tolerance
DragCoefficient
Convergence Tolerance 𝑪 𝑫 ∆𝑪 𝑫
1.00E-03 0.6752 -
1.00E-04 0.6590 -0.0162
1.00E-05 0.6578 -0.0012
1.00E-12 0.6575 -0.0003
20, and 80 timesthe characteristicsize of the potato.Figure (9) below showsthe three distances,
increasingfromlefttoright.
Figure (10): Boundary Distances of 5, 20, and 80 Times Characteristic Size
To isolate the errorof these three cases,meshsize andconvergence tolerance wereheld
constantat 400 divisionsand1E-12, respectively. 𝐶 𝐷 valuesoutputby Fluentforthe three casesshowed,
like othercases, adecreasingnon-lineartrend. Forthisexperiment,anyeffects seenatgreaterthan80
timesthe characteristicsize canbe considerednegligible due totheirsmall nature.Table (3) below
showsthe change in 𝐶 𝐷 withboundarydistance.
Boundary Distance 𝑪 𝑫 ∆𝑪 𝑫
5X 0.6593 -
20X 0.5746 -0.0847
80X 0.5554 -0.0192
Table (3)
From a boundarydistance of 5X to 20X, the 𝐶 𝐷 value changesalmostby0.1. Thisseemsquite
significantbutalsotapersoff dramatically from20Xto 80X, leavingthe conclusionstatedabove thatany
error seenfroma boundarydistance greaterthan80x isnegligible.
Effectof ReynoldsNumber on 𝑪 𝑫
The final variance on 𝐶 𝐷 can be foundthroughdifferencesinthe Reynoldsnumberforfluid
flow. If the propertiesforviscosity,density,andlengthof ourobjectare heldconstant;the onlywayto
vary Reynoldsnumberisthoughthe magnitude of flow velocity.Muchlike varying the system’smesh
size,convergence tolerance,andboundarydistance;varyingthe flow velocitywill alsovarythe
coefficientof drag. However,thiscancause the objectto have flow separation/turbulence if the
Reynoldsnumberbecomestoogreat.For the purposesof thisexperiment,flow needstoremainsteady
therefore the initial flowvelocityselectedwaslow. Figure (9) andTable (4) show the data forchanging
𝐶 𝐷 versusReynoldsnumber.Errorcalculatedinthe mostrefinedsolutionwasplottedaserrorbarsalong
withthe data trend.
Figure (11): 𝐶 𝐷 versusReynoldsNumber Table (4)
Althoughthe errorbars shownare small incomparison tothe data; scalingfor 𝐶 𝐷 islarge (from0.2 to
1.8) which is a much greaterrange than our data waspreviously. Ata laminarflow,dragcoefficientsfor
streamlined objectsdonotvary widelywithincreasingvelocity/Reynoldsnumber.Forthe case of our
potatoa small increase in Reynoldsnumbershowedalarge change in 𝐶 𝐷 unlike the original estimateof
0.3 for the entire range of Re < 2E5. The solutionstill convergedata flow velocityof 2m/sbut it could
be interpretedfromthe datathat if flowvelocitywasincreasedfurtherthissolutionwouldnotremain
steady.
Conclusions
Our original estimatefordragcoefficient,assumingthe shape of the potatoto be an ellipsoid,
provedacceptable forroughcalculationsbut wasnotnearlyas accurate as the Fluent flow analysis.This
was obviouslyaroughestimate provingthe benefitof acomputerizedcalculation. Since the potato
shape wasfoundnot to be as streamlinedasanellipsoid; dragcoefficientwasgreaterandvaried
drasticallywithsmall changesinthe Reynoldsnumber. While ourinitial valuefordragforce was
0.001875 Newtons, the total value producedbyFluentwas 0.4023 Newtons.Nota large change inthe
grand scheme of things,butthisdependsonthe scope of what’sneededinanexperiment.
The purpose of this analysiswasto shedlightonwhere valuesof errorcome fromin Fluentand
compare themto the solution approachesderivedinclass.Thisallowsustoapproachproblemsat
differentlevelsdependingonthe accuracy of calculationsneeded.Forexample,if a companyneededa
quickestimate fordragof an ellipse-shapedobject,aquickReynoldsnumbercalculationfollowedbya
bookcheck of 𝐶 𝐷 values couldtell youalmostinstantaneouslythe answer.However,if amore detailed
analysisisneeded - dependingonthe level of error;more time putintoFluentwouldyielda more
precise result.
3 4 5 6 7 8 9 10 11 12 13
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
CD vs RE: With Error Bars
RE
CD
Flow Velocity [m/s] 𝑹 𝒆 𝑪 𝑫 ∆𝑪 𝑫
0.5 3.125 0.26795
0.875 5.47 0.55016 0.28221
1.25 7.81 0.88686 0.3367
1.625 10.17 1.27022 0.38336
2 12.5 1.69525 0.42503
Works Cited
Çengel, Yunus A., and John M. Cimbala. Fluid Mechanics: Fundamentals and
Applications. 2nd ed. Boston: McGraw-Hill Higher Education, 2006. Print.
Nomenclature
Variable Definition Units
𝐴 Area m2
𝐶 𝐷 Drag Coefficient -
𝑑 Diameter m
𝛿 Boundary Layer Thickness m
𝐹𝐷 Drag Force N
𝐿 Length m
𝜇 Viscosity
𝑘𝑔
𝑚 ∗ 𝑠
𝜌 Density 𝑘𝑔/𝑚3
𝑅 𝑒 Reynolds number -
𝑉 Velocity
𝑚
𝑠

More Related Content

What's hot

HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTIONHOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTIONbalupost
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsasghar123456
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsasghar123456
 
A density correction for the peng robinson equation
A density correction for the peng robinson equationA density correction for the peng robinson equation
A density correction for the peng robinson equationLuis Follegatti
 
Basic power factor_1_update1
Basic power factor_1_update1Basic power factor_1_update1
Basic power factor_1_update1foxtrot jp R
 
Numerical Experiments of Hydrogen-Air Premixed Flames
Numerical Experiments of Hydrogen-Air Premixed FlamesNumerical Experiments of Hydrogen-Air Premixed Flames
Numerical Experiments of Hydrogen-Air Premixed FlamesIJRES Journal
 
Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Muhammad Rashid Usman
 
Physical properties of liquid
Physical properties of liquidPhysical properties of liquid
Physical properties of liquidswapnil jadhav
 
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualEngineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualNortoner
 
Target_Nozzle_Characterization_and_Assessment_Report_Final2
Target_Nozzle_Characterization_and_Assessment_Report_Final2Target_Nozzle_Characterization_and_Assessment_Report_Final2
Target_Nozzle_Characterization_and_Assessment_Report_Final2Sean Tingey
 
On the coupling between Dissipartive Particle Dynamics and Computational Flui...
On the coupling between Dissipartive Particle Dynamics and Computational Flui...On the coupling between Dissipartive Particle Dynamics and Computational Flui...
On the coupling between Dissipartive Particle Dynamics and Computational Flui...Hermes Droghetti
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualVeronicaIngramss
 
Analysis of Flow in a Convering-Diverging Nozzle
Analysis of Flow in a Convering-Diverging NozzleAnalysis of Flow in a Convering-Diverging Nozzle
Analysis of Flow in a Convering-Diverging NozzleAlber Douglawi
 

What's hot (20)

HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTIONHOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
HOW TO PREDICT HEAT AND MASS TRANSFER FROM FLUID FRICTION
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
 
PhysRevSTAB.5.102001
PhysRevSTAB.5.102001PhysRevSTAB.5.102001
PhysRevSTAB.5.102001
 
A density correction for the peng robinson equation
A density correction for the peng robinson equationA density correction for the peng robinson equation
A density correction for the peng robinson equation
 
Fanno Flow
Fanno FlowFanno Flow
Fanno Flow
 
Repeatability Study
Repeatability StudyRepeatability Study
Repeatability Study
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
 
Engr207 assignment#1
Engr207   assignment#1Engr207   assignment#1
Engr207 assignment#1
 
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
Understanding and Predicting CO2 Properties for CCS Transport, Richard Graham...
 
Basic power factor_1_update1
Basic power factor_1_update1Basic power factor_1_update1
Basic power factor_1_update1
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
Numerical Experiments of Hydrogen-Air Premixed Flames
Numerical Experiments of Hydrogen-Air Premixed FlamesNumerical Experiments of Hydrogen-Air Premixed Flames
Numerical Experiments of Hydrogen-Air Premixed Flames
 
Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016Transport phenomena-Mass Transfer 31-Jul-2016
Transport phenomena-Mass Transfer 31-Jul-2016
 
Physical properties of liquid
Physical properties of liquidPhysical properties of liquid
Physical properties of liquid
 
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions ManualEngineering Fluid Mechanics 10th Edition Elger Solutions Manual
Engineering Fluid Mechanics 10th Edition Elger Solutions Manual
 
Target_Nozzle_Characterization_and_Assessment_Report_Final2
Target_Nozzle_Characterization_and_Assessment_Report_Final2Target_Nozzle_Characterization_and_Assessment_Report_Final2
Target_Nozzle_Characterization_and_Assessment_Report_Final2
 
On the coupling between Dissipartive Particle Dynamics and Computational Flui...
On the coupling between Dissipartive Particle Dynamics and Computational Flui...On the coupling between Dissipartive Particle Dynamics and Computational Flui...
On the coupling between Dissipartive Particle Dynamics and Computational Flui...
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
 
Analysis of Flow in a Convering-Diverging Nozzle
Analysis of Flow in a Convering-Diverging NozzleAnalysis of Flow in a Convering-Diverging Nozzle
Analysis of Flow in a Convering-Diverging Nozzle
 

Viewers also liked

Walk This Way! Talk This Way! How Social Media is Being Used in Delaware
Walk This Way! Talk This Way! How Social Media is Being Used in DelawareWalk This Way! Talk This Way! How Social Media is Being Used in Delaware
Walk This Way! Talk This Way! How Social Media is Being Used in DelawareLisa Flowers
 
The world at war and end of wwii
The world at war and end of wwiiThe world at war and end of wwii
The world at war and end of wwiiHeidi Schlegel
 
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRay
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRaySoftware-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRay
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRayIntel® Software
 
윤이형소설집(240~250)
윤이형소설집(240~250)윤이형소설집(240~250)
윤이형소설집(240~250)literat
 
Prezentacija: Zašto smo Bošnjaci
Prezentacija: Zašto smo BošnjaciPrezentacija: Zašto smo Bošnjaci
Prezentacija: Zašto smo Bošnjacijakubdurgut
 
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...J.J. Toothman
 
Informational Interviews
Informational InterviewsInformational Interviews
Informational Interviewsshariyaali
 
Infotheek Totaal Oplossingen0709
Infotheek Totaal Oplossingen0709Infotheek Totaal Oplossingen0709
Infotheek Totaal Oplossingen0709Danny1985
 
Assignment 2 observation lab
Assignment 2 observation labAssignment 2 observation lab
Assignment 2 observation labself-employed
 
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צ
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צמי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צ
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צTomer Paz
 
アイスランド旅のしおり
アイスランド旅のしおりアイスランド旅のしおり
アイスランド旅のしおりmasahiko79
 
Resume_Lukas_Ebner
Resume_Lukas_EbnerResume_Lukas_Ebner
Resume_Lukas_EbnerLukas Ebner
 
Bend dynamics and perceptions with conflict resolution and emotional safety tips
Bend dynamics and perceptions with conflict resolution and emotional safety tipsBend dynamics and perceptions with conflict resolution and emotional safety tips
Bend dynamics and perceptions with conflict resolution and emotional safety tipsJenn Turner
 
QR코드 소개 및 농업적 활용
QR코드 소개 및 농업적 활용QR코드 소개 및 농업적 활용
QR코드 소개 및 농업적 활용Youngduk Yun
 
10 lessons-from-neuroscience-to-improve-brain-health-wellness
10 lessons-from-neuroscience-to-improve-brain-health-wellness10 lessons-from-neuroscience-to-improve-brain-health-wellness
10 lessons-from-neuroscience-to-improve-brain-health-wellnessslashdot
 

Viewers also liked (20)

Walk This Way! Talk This Way! How Social Media is Being Used in Delaware
Walk This Way! Talk This Way! How Social Media is Being Used in DelawareWalk This Way! Talk This Way! How Social Media is Being Used in Delaware
Walk This Way! Talk This Way! How Social Media is Being Used in Delaware
 
Bodorrio
BodorrioBodorrio
Bodorrio
 
Egipto
EgiptoEgipto
Egipto
 
Mengurus stresss
Mengurus stresssMengurus stresss
Mengurus stresss
 
The world at war and end of wwii
The world at war and end of wwiiThe world at war and end of wwii
The world at war and end of wwii
 
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRay
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRaySoftware-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRay
Software-defined Visualization, High-Fidelity Visualization: OpenSWR and OSPRay
 
윤이형소설집(240~250)
윤이형소설집(240~250)윤이형소설집(240~250)
윤이형소설집(240~250)
 
Prezentacija: Zašto smo Bošnjaci
Prezentacija: Zašto smo BošnjaciPrezentacija: Zašto smo Bošnjaci
Prezentacija: Zašto smo Bošnjaci
 
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...
How To Use Open Source Solutions To Overcome Cultural, Legal And Policy Issue...
 
Informational Interviews
Informational InterviewsInformational Interviews
Informational Interviews
 
Infotheek Totaal Oplossingen0709
Infotheek Totaal Oplossingen0709Infotheek Totaal Oplossingen0709
Infotheek Totaal Oplossingen0709
 
Assignment 2 observation lab
Assignment 2 observation labAssignment 2 observation lab
Assignment 2 observation lab
 
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צ
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צמי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צ
מי אנחנו - מחזור מ"ב גימנסיה ריאלית ראשל"צ
 
アイスランド旅のしおり
アイスランド旅のしおりアイスランド旅のしおり
アイスランド旅のしおり
 
Resume_Lukas_Ebner
Resume_Lukas_EbnerResume_Lukas_Ebner
Resume_Lukas_Ebner
 
Certificate
CertificateCertificate
Certificate
 
Bend dynamics and perceptions with conflict resolution and emotional safety tips
Bend dynamics and perceptions with conflict resolution and emotional safety tipsBend dynamics and perceptions with conflict resolution and emotional safety tips
Bend dynamics and perceptions with conflict resolution and emotional safety tips
 
QR코드 소개 및 농업적 활용
QR코드 소개 및 농업적 활용QR코드 소개 및 농업적 활용
QR코드 소개 및 농업적 활용
 
Pbs tingkatan 1
Pbs tingkatan 1Pbs tingkatan 1
Pbs tingkatan 1
 
10 lessons-from-neuroscience-to-improve-brain-health-wellness
10 lessons-from-neuroscience-to-improve-brain-health-wellness10 lessons-from-neuroscience-to-improve-brain-health-wellness
10 lessons-from-neuroscience-to-improve-brain-health-wellness
 

Similar to FluidProjectFinal

tw1979 Exercise 2 Report
tw1979 Exercise 2 Reporttw1979 Exercise 2 Report
tw1979 Exercise 2 ReportThomas Wigg
 
REVIEW VProfiles Koutsiaris 2010b BULLETIN of PSHM
REVIEW  VProfiles Koutsiaris 2010b BULLETIN of PSHMREVIEW  VProfiles Koutsiaris 2010b BULLETIN of PSHM
REVIEW VProfiles Koutsiaris 2010b BULLETIN of PSHMKoutsiaris Aris
 
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...Dylan Henness
 
ME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportJordan Benn
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flowmiguelpgomes07
 
Conservation of Mass_ long form (Completed)
Conservation of Mass_ long form (Completed)Conservation of Mass_ long form (Completed)
Conservation of Mass_ long form (Completed)Dominic Waldorf
 
10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdfJahanTejarat
 
SPH Lab Report_Arya Dash
SPH Lab Report_Arya DashSPH Lab Report_Arya Dash
SPH Lab Report_Arya DashArya dash
 
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...erissano
 
AIAA Student Competition 2015 Research Paper
AIAA Student Competition 2015  Research PaperAIAA Student Competition 2015  Research Paper
AIAA Student Competition 2015 Research PaperKalendrix Cook
 
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...Mechanical Engineering Assignment Help
 
Seismic 13- Professor. Arthur B Weglein
Seismic 13- Professor. Arthur B WegleinSeismic 13- Professor. Arthur B Weglein
Seismic 13- Professor. Arthur B WegleinArthur Weglein
 
Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...ANIRBANMAJUMDAR18
 

Similar to FluidProjectFinal (20)

tw1979 Exercise 2 Report
tw1979 Exercise 2 Reporttw1979 Exercise 2 Report
tw1979 Exercise 2 Report
 
REVIEW VProfiles Koutsiaris 2010b BULLETIN of PSHM
REVIEW  VProfiles Koutsiaris 2010b BULLETIN of PSHMREVIEW  VProfiles Koutsiaris 2010b BULLETIN of PSHM
REVIEW VProfiles Koutsiaris 2010b BULLETIN of PSHM
 
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...
The Effect of Capilliary Number on Leading Edge Cavitation Cell Size, THESIS ...
 
ME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_Report
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flow
 
Conservation of Mass_ long form (Completed)
Conservation of Mass_ long form (Completed)Conservation of Mass_ long form (Completed)
Conservation of Mass_ long form (Completed)
 
Practice 1 flow around cylinder
Practice 1 flow around cylinderPractice 1 flow around cylinder
Practice 1 flow around cylinder
 
10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf10.1.1.31.6238ghhj.pdf
10.1.1.31.6238ghhj.pdf
 
SPH Lab Report_Arya Dash
SPH Lab Report_Arya DashSPH Lab Report_Arya Dash
SPH Lab Report_Arya Dash
 
Rtm assignment 2
Rtm assignment 2Rtm assignment 2
Rtm assignment 2
 
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...
Upscaling Improvement for Heterogeneous Fractured Reservoir Using a Geostatis...
 
0504006v1
0504006v10504006v1
0504006v1
 
Sdarticle 2
Sdarticle 2Sdarticle 2
Sdarticle 2
 
Sdarticle 2
Sdarticle 2Sdarticle 2
Sdarticle 2
 
Sdarticle 2
Sdarticle 2Sdarticle 2
Sdarticle 2
 
AIAA Student Competition 2015 Research Paper
AIAA Student Competition 2015  Research PaperAIAA Student Competition 2015  Research Paper
AIAA Student Competition 2015 Research Paper
 
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...
Microelectromechanical Assignment Help.com_Microelectromechanical Assignment ...
 
Seismic 13- Professor. Arthur B Weglein
Seismic 13- Professor. Arthur B WegleinSeismic 13- Professor. Arthur B Weglein
Seismic 13- Professor. Arthur B Weglein
 
Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...Linear regression [Theory and Application (In physics point of view) using py...
Linear regression [Theory and Application (In physics point of view) using py...
 
HDMICS Koutsiaris 2009
HDMICS Koutsiaris 2009HDMICS Koutsiaris 2009
HDMICS Koutsiaris 2009
 

FluidProjectFinal

  • 1. Intermediate Fluid Mechanics Project Analysis of Flow over a Potato Using ANSYS Fluent Team Vegetable: Kris Saladin Alex Bosko
  • 2. Introduction Thisexperimentdetailsthe analysisof fluidflow overapeeledpotatousingANSYSFluent14.5. The versatilityof the Fluentprogramallowsforquickflow estimationsof objectsormore complex and detailed analysisif needed. Flowestimationsare first calculated withrelevantequations fromclass and bookvalues usingstatedinitialconditions.Thisestimationisthencomparedwiththe analysisgenerated by Fluent. The accuracyand error of Fluentcalculationsare shownwithrefinementstudiesof meshsize, convergence tolerance,boundarydistance,andReynoldsnumber; thenproved tobe importantor negligible.VariablessuchasReynoldsnumber,coefficientof drag, and boundarylayerthickness are calculatedand usedinbothwrittenequationsandFluent.Valuesfordragforce on the potato were foundto be 0.01875 Newtons usingwrittenequationsand0.4023 Newtons usingthe Fluentcalculation; showingasmall variationwithbothapproaches.Thisconcludedthateachapproach couldbe valid dependingondesiredaccuracy. Problem Specifications OperatingConditionsand Estimated FlowProperties An initial estimation forgeneral flow description overthe potatobegan withcalculatingthe Reynoldsnumber. Forsimplicity,we assume the shape tobe aflat plate.Also,since ourobjectis streamlined,we donothave to worryabout the calculationsforflow separation.Reynoldsnumber equationisdefined: 𝑅𝑒 = 𝜌𝑉𝐿 𝜇 Equation (1) Where:(𝜌) isdefinedasthe fluiddensity,(V)isthe fluidvelocity,(L) isthe lengthof the object, and (𝜇) isthe fluidviscosity. Forourtheoretical experiment,boundaryconditionswere chosentobe: 𝜌 = 1.0 𝑘𝑔 𝑚3 V = 1 𝑚 𝑠 L = 0.25 m 𝜇 = 0.04 𝑘𝑔 𝑚∗𝑠 ComputingEquation(1) withthese valuesproduced aReynoldsnumberof 6.25. For a flatplate,thislow Reynoldsnumbercorrelateswiththe Laminarflow region:Re < 1e5. Thisis nota Stokesorcreepingflow because itisnot Re << 1. Afterdeterminingthe flow type tobe laminar, total dragforce onour potato couldthenbe estimatedusingthe equation: 𝐹𝐷 = 1 2 𝜌𝑉2 𝐶 𝐷 𝐴 . Equation (2)
  • 3. Coefficientof drag(𝐶 𝐷) and frontal area(A) were the only new variablesneeded. The frontal area forour potato isdescribedasthe lengthtimesthe diameter,or: 𝐴 = 𝐿𝑑 = 0.0125 𝑚2 . Equation (3) Coefficientof dragcouldbe found byapproximatingthe potato’sshape asanellipsoid. FromTable 11-2 ‘FluidMechanics’textbook, anellipsoid’scoefficientof drag inlaminarflow: 𝐶 𝐷 = 0.3 𝑓𝑜𝑟 𝐿 𝑑 = 2.5 𝑎𝑛𝑑 𝑅𝑒 < 2 ∗ 105. Where (𝐿/𝑑) isdefinedasthe ellipsoid’s lengthtodiameterratio.Combiningthese valueswithEquation (2) gave us a total drag force estimationof 0.001875 Newtons. While ReynoldsnumberandNavier-Stokesrelationships describe the approximatebehaviorof our fluidflowproperties;examiningmore closelynearthe boundariesof ourfluidrequiresthe estimationof aboundarylayerthickness.Thisthicknessisdescribedas the approximatedistance perpendiculartothe potato’ssurface where flow velocityhasreachedfree streamvelocity. The equationforboundarylayerthickness (derivedfromthe Blasiussolution)forlaminarflow overaflat plate isgivenas: 𝛿 𝐿 = 4.91 √ 𝑅𝑒 𝐿 . Equation (4) Where (𝛿) isthe boundarylayerthicknessand(𝑅𝑒 𝐿) isthe Reynolds numberwithrespecttolength. Usingthe statedvariablesfor(L) and(Re) above,boundarylayerthicknesswasestimatedtobe 0.491 m at the endof the potato. This boundaryconditionislaterusedwhencreatinganinflationlayerinFluent. OtherboundaryconditionsneededbyFluentforsimulationinclude:avelocityinlet,apressure outlet,andwalls (showninFigure 1).Forour initial testing,the velocityinletwasspecifiedasthe leftmostarc(blue half circle) andourpressure outletasthe rightmostarc (redhalf circle).These two arcs were made to be 5 timesthe characteristicsize of the potato(laterexplainedin analysisand discussion).Finally,wallswere simplydefinedasthe outline of the potato.
  • 4. Figure (1): Fluent Boundary Conditions Explained Results with Analysis and Discussion Generatinga Mesh The Fluentprogramusesmesheswithinacreated geometrytocalculate flow properties.The computercan analyze datain eachmeshsquare and then generate anoverall analysis.More mesh divisions will increase the accuracyof the analysisbutalso requiresmore time toprocess.A more complex systemwill take longerforcalculationstorun. Refiningthe mesh aroundourpotato couldbe done byincreasingthe numberof divisionsselectedaroundthe walls,inlet,andoutlet.Forthe initial case,the numberof divisions wassetequal to50 (Figure 2) and the methodof patternusedwas triangles.The resultof thissettingproducedagoodbase flow analysiswithenoughmeshsizesnearthe potatobody.In creatingan accurate meshrepresentation aninflationlayerhadtobe usedaswell.This layertellsthe computerhowtoaccuratelycapture the boundarylayerregionnearthe walls byinputting the layerthicknessfoundpreviouslytobe 0.491 metersfromEquation(4). Figure (2): Mesh at 50 Divisions Pressure OutletVelocityInlet Walls
  • 5. Alsoa factor consideredingeneratingthismeshbodywasthe distance of farfieldboundaries. Thisis lookedatfurtherin the sectionon “Far-fieldBoundaryEffects”.Topreventthese conditionsfrom impactingoursolution,boundarydistances(forthe inletandoutletarc) were setto5 timesthe characteristicsize of the potato. MeshRefinementStudy One way todetermine accuracyanderror in 𝐶 𝐷 calculations byFluentiswithameshrefinement study. Asstatedpreviously,meshrefinementinvolvesincreasingthe numberof meshdivisionstocreate a more accurate flowrepresentation.The baseline numberof divisionsforall surfaceswassetto50 (shownabove inFigure 2).That numberwasdoubledeachtime fora total of four cases. At 50 divisions the estimatedcoefficientof drag byFluentwas0.65632 (double thatof ourinitial estimate). Figure(3): Mesh at 100 Divisions Figure (4):Mesh at 200 Divisions The above Figures3 & 4 show meshdivisions becomingsmallerandmore frequent,especially aroundthe body.Thisinturn, more adequatelycapturesregionswhere flow mightexperience rapid change and as a result,betteranalysisconclusions.Coefficientof draginthese twoscenarioswas calculatedtobe 0.65676 and 0.65711, respectively. Figure (5): Mesh at 400 Divisions
  • 6. In the final case of 400 divisions,the coefficientof dragoutput byFluentwas0.65764. At this setting,the mostuniformpatternisseenaroundthe bodygivingan accurate representation of a realisticscenario.Thisisfurtherexplained inFigures6& 7 below;the comparisonof analysesfor velocityvectorfields at50 and 400 meshdivisions. Figure (6): VelocityField at 50 Divisions Figure (7):Velocity Field at 400 Divisions As predicted,the velocityflowpatternsare slightlybetterdefinedwith400 meshdivisions.This allowsfora more accurate solutionto(inthiscase) the coefficientof dragoutput. Alsoseenispartof the boundarylayerthickness, 𝛿.Streamvelocityisshownasorange/redarrows whichveerawayfrom the potato afterpassingover.Thisseemstobe accurate,visually,since ourthicknesswasnearlytwice that of the potato’slength. Comparingall fourcasesinTable (1) below,the valuesforcoefficientof drag showan increasingtrendathighermeshresolutions.Thistrendisnotlinearhowever,andseemsto converge ona value between0.657 and0.658. The convergence wasfoundbythe change in 𝐶 𝐷 value decreasingasthe numberof divisionsincreased(showninthe 3rd columnof Table 1). Figure (8):Semi-Log Plot of Cd vs. Numberof Divisions Table (1) 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.6562 0.6564 0.6566 0.6568 0.657 0.6572 0.6574 Relative mesh size based on number of divisions on potato surface Dragcoefficient Actual Data Powerfit Mesh Divisions 𝑪 𝑫 ∆𝑪 𝑫 50 0.65632 - 100 0.65676 0.00044 200 0.65711 0.00035 400 0.65724 0.00013
  • 7. Withthisdata, a semi-logplotof 𝐶 𝐷 versusnumberof divisions (Figure 8) wasalsocreatedto estimate the percenterrorin the mostrefinedsolution. 𝐶 𝐷 calculatedforthe finestmeshcompared withitsexactvalue resultedinapercenterrorof 0.0547%. Thiserror islow and acceptable forthis experiment. If anevenfinermeshwasused,say,1000 divisions,thenthe errorwouldbe evenlowerif not zero. Effectof Convergence Tolerance on 𝑪 𝑫 Additionally,errorcanalso be shownbythe impact of convergence tolerancesonthe coefficient of drag.A refinementstudycanbe done in thiscase as well; takingthe valuesof 𝐶 𝐷 outputbyFluentat smallertolerances. Datawastakenat a single Reynoldsnumberandmeshresolution toisolate errorand are shownbelowinTable 2. Figure (9):ConvergenceToleranceEffecton Cd Table (2) We findthatas the tolerance became smaller, 𝐶 𝐷 alsobecame smaller. Again,muchlike the mesh refinementstudy,thistrendisnotlinearshowing 𝐶 𝐷 meetingata single value.Forthis,itcanbe assumed thatany tolerance value higherthan1E-12 will converge toanapproximate 𝐶 𝐷 of 0.657. Figure (9) supportsthisargumentwithanear horizontal line atthisvalue. Effectof Far-FieldBoundary Conditionson 𝑪 𝑫 The effectof far-fieldboundaryconditionsisanothercase where accuracy/errorin 𝐶 𝐷 calculationscanbe found.Boundaryconditionsare the velocityinletandpressure outletshownin Figure (1).If these boundariesare tooclose tothe potato body, data will be corruptedandthe accuracy of estimationswillbe lost.The bestwaytoavoidthisis to create a large boundarydistance tonegate any possible effects.Here we willprove thiseffectby documenting 𝐶 𝐷 valuesatboundarydistancesof 5, 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 0.655 0.66 0.665 0.67 0.675 0.68 CD vs. Convergence Tolerances Convergence Tolerance DragCoefficient Convergence Tolerance 𝑪 𝑫 ∆𝑪 𝑫 1.00E-03 0.6752 - 1.00E-04 0.6590 -0.0162 1.00E-05 0.6578 -0.0012 1.00E-12 0.6575 -0.0003
  • 8. 20, and 80 timesthe characteristicsize of the potato.Figure (9) below showsthe three distances, increasingfromlefttoright. Figure (10): Boundary Distances of 5, 20, and 80 Times Characteristic Size To isolate the errorof these three cases,meshsize andconvergence tolerance wereheld constantat 400 divisionsand1E-12, respectively. 𝐶 𝐷 valuesoutputby Fluentforthe three casesshowed, like othercases, adecreasingnon-lineartrend. Forthisexperiment,anyeffects seenatgreaterthan80 timesthe characteristicsize canbe considerednegligible due totheirsmall nature.Table (3) below showsthe change in 𝐶 𝐷 withboundarydistance. Boundary Distance 𝑪 𝑫 ∆𝑪 𝑫 5X 0.6593 - 20X 0.5746 -0.0847 80X 0.5554 -0.0192 Table (3) From a boundarydistance of 5X to 20X, the 𝐶 𝐷 value changesalmostby0.1. Thisseemsquite significantbutalsotapersoff dramatically from20Xto 80X, leavingthe conclusionstatedabove thatany error seenfroma boundarydistance greaterthan80x isnegligible. Effectof ReynoldsNumber on 𝑪 𝑫 The final variance on 𝐶 𝐷 can be foundthroughdifferencesinthe Reynoldsnumberforfluid flow. If the propertiesforviscosity,density,andlengthof ourobjectare heldconstant;the onlywayto vary Reynoldsnumberisthoughthe magnitude of flow velocity.Muchlike varying the system’smesh size,convergence tolerance,andboundarydistance;varyingthe flow velocitywill alsovarythe coefficientof drag. However,thiscancause the objectto have flow separation/turbulence if the Reynoldsnumberbecomestoogreat.For the purposesof thisexperiment,flow needstoremainsteady therefore the initial flowvelocityselectedwaslow. Figure (9) andTable (4) show the data forchanging 𝐶 𝐷 versusReynoldsnumber.Errorcalculatedinthe mostrefinedsolutionwasplottedaserrorbarsalong withthe data trend.
  • 9. Figure (11): 𝐶 𝐷 versusReynoldsNumber Table (4) Althoughthe errorbars shownare small incomparison tothe data; scalingfor 𝐶 𝐷 islarge (from0.2 to 1.8) which is a much greaterrange than our data waspreviously. Ata laminarflow,dragcoefficientsfor streamlined objectsdonotvary widelywithincreasingvelocity/Reynoldsnumber.Forthe case of our potatoa small increase in Reynoldsnumbershowedalarge change in 𝐶 𝐷 unlike the original estimateof 0.3 for the entire range of Re < 2E5. The solutionstill convergedata flow velocityof 2m/sbut it could be interpretedfromthe datathat if flowvelocitywasincreasedfurtherthissolutionwouldnotremain steady. Conclusions Our original estimatefordragcoefficient,assumingthe shape of the potatoto be an ellipsoid, provedacceptable forroughcalculationsbut wasnotnearlyas accurate as the Fluent flow analysis.This was obviouslyaroughestimate provingthe benefitof acomputerizedcalculation. Since the potato shape wasfoundnot to be as streamlinedasanellipsoid; dragcoefficientwasgreaterandvaried drasticallywithsmall changesinthe Reynoldsnumber. While ourinitial valuefordragforce was 0.001875 Newtons, the total value producedbyFluentwas 0.4023 Newtons.Nota large change inthe grand scheme of things,butthisdependsonthe scope of what’sneededinanexperiment. The purpose of this analysiswasto shedlightonwhere valuesof errorcome fromin Fluentand compare themto the solution approachesderivedinclass.Thisallowsustoapproachproblemsat differentlevelsdependingonthe accuracy of calculationsneeded.Forexample,if a companyneededa quickestimate fordragof an ellipse-shapedobject,aquickReynoldsnumbercalculationfollowedbya bookcheck of 𝐶 𝐷 values couldtell youalmostinstantaneouslythe answer.However,if amore detailed analysisisneeded - dependingonthe level of error;more time putintoFluentwouldyielda more precise result. 3 4 5 6 7 8 9 10 11 12 13 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 CD vs RE: With Error Bars RE CD Flow Velocity [m/s] 𝑹 𝒆 𝑪 𝑫 ∆𝑪 𝑫 0.5 3.125 0.26795 0.875 5.47 0.55016 0.28221 1.25 7.81 0.88686 0.3367 1.625 10.17 1.27022 0.38336 2 12.5 1.69525 0.42503
  • 10. Works Cited Çengel, Yunus A., and John M. Cimbala. Fluid Mechanics: Fundamentals and Applications. 2nd ed. Boston: McGraw-Hill Higher Education, 2006. Print. Nomenclature Variable Definition Units 𝐴 Area m2 𝐶 𝐷 Drag Coefficient - 𝑑 Diameter m 𝛿 Boundary Layer Thickness m 𝐹𝐷 Drag Force N 𝐿 Length m 𝜇 Viscosity 𝑘𝑔 𝑚 ∗ 𝑠 𝜌 Density 𝑘𝑔/𝑚3 𝑅 𝑒 Reynolds number - 𝑉 Velocity 𝑚 𝑠