SlideShare a Scribd company logo
1 of 1
Download to read offline
RESEARCH POSTER PRESENTATION DESIGN © 2012
www.PosterPresentations.com
The	
   purpose	
   of	
   this	
   work	
   was	
   to	
   iden/fy	
   the	
   accelerant	
   used	
   in	
   a	
  
possible	
  arson	
  case	
  from	
  the	
  burn	
  debris.	
  	
  Through	
  the	
  use	
  of	
  ac/vated	
  
charcoal	
  strips	
  and	
  the	
  gas	
  chromatograph/mass	
  spectrometer	
  (GCMS)	
  
it	
  is	
  possible	
  to	
  iden/fy	
  an	
  unknown	
  accelerant.	
  	
  The	
  ac/vated	
  charcoal	
  
strips	
   absorbed	
   the	
   vapors	
   from	
   the	
   burn	
   debris	
   and	
   then	
   the	
   vapor	
  
samples	
  were	
  extracted	
  using	
  a	
  solvent.	
   	
  The	
  chromatogram	
  from	
  the	
  
resul/ng	
   solu/on	
   was	
   then	
   compared	
   to	
   a	
   1%	
   standard	
   of	
   a	
   known	
  
accelerant,	
   which	
   led	
   to	
   correct	
   iden/fica/on	
   of	
   the	
   unknown	
  
accelerant	
  via	
  reten/on	
  /me	
  and	
  mass	
  spectral	
  informa/on.	
  
	
  
	
  
	
  
Abstract	
  
A	
   t-­‐shirt	
   was	
   put	
   into	
   a	
   burn	
   bucket	
   and	
   then	
   dowsed	
   with	
   an	
  
accelerant.	
  	
  The	
  t-­‐shirt	
  was	
  then	
  lit	
  on	
  fire	
  with	
  a	
  match	
  and	
  burned	
  for	
  
around	
   15	
   minutes.	
   	
   The	
   resul/ng	
   burn	
   debris	
   was	
   analyzed	
   by	
   first	
  
puWng	
  the	
  debris	
  in	
  an	
  empty,	
  unlined	
  paint	
  can.	
  	
  A	
  paper	
  clip	
  was	
  bent	
  
at	
  a	
  90°angle	
  and	
  taped	
  to	
  the	
  paint	
  can’s	
  lid.	
   	
  An	
  ac/vated	
  charcoal	
  
strip(ACS)	
  was	
  then	
  aZached	
  to	
  the	
  end	
  of	
  the	
  paper	
  clip.	
   	
  The	
  lid	
  was	
  
then	
  secured	
  allowing	
  no	
  vapor	
  to	
  escape.	
  	
  The	
  paint	
  can	
  containing	
  the	
  
debris	
  and	
  ACS	
  were	
  heated	
  at	
  different	
  temperatures(table	
  1)	
  in	
  order	
  
to	
   vaporize	
   the	
   burnt	
   accelerant.	
   Aer	
   the	
   the	
   ACS	
   adsorbed	
   the	
  
accelerant’s	
  vapor	
  it	
  was	
  put	
  in	
  a	
  GC	
  vial	
  containing	
  1ml	
  of	
  methylene	
  
chloride.	
   	
   Aer	
   30	
   minutes	
   the	
   sample	
   was	
   ran	
   in	
   the	
   GCMS.	
   	
   The	
  
chromatograms	
  were	
  then	
  compared	
  to	
  1%	
  standards	
  with	
  respect	
  to	
  
both	
  reten/on	
  /me	
  (obtained	
  by	
  measuring	
  total	
  ion	
  count	
  (or	
  TIC))	
  of	
  
the	
  components	
  as	
  well	
  as	
  iden/fica/on	
  of	
  the	
  ions	
  based	
  in	
  the	
  mass	
  
spectrum	
  in	
  order	
  to	
  iden/fy	
  the	
  accelerant	
  used	
  from	
  the	
  fire	
  debris.	
  	
  	
  
	
  
	
  
	
  
Procedure	
  
•  Accelerants	
  (kerosene,	
  gasoline,	
  
lamp	
  oil)	
  
•  T-­‐shirts	
  
•  Burn	
  Bucket	
  
•  Matches	
  
•  Fire	
  Ex/nguisher	
  	
  
•  Unknown	
  Burn	
  Debris	
  
•  Unlined,	
  empty	
  gallon	
  paint	
  cans	
  
•  Scotch	
  Tape	
  
•  Unpainted,	
  uncoated	
  paperclips	
  
•  Albrayco	
  Technology	
  Ac/vated	
  
Charcoal	
  Strips	
  (8x20	
  mm)	
  
•  Incubator	
  
•  Oven	
  
•  GC	
  Vials	
  
•  MicropipeZe	
  (P1000,P10)	
  
•  Methylene	
  Chloride,	
  99.5%	
  
•  Agilent	
  7820A	
  GC	
  
•  Agilent	
  5977E	
  Mass	
  Spectrometer	
  
•  Agilent	
  7693	
  Automa/c	
  Liquid	
  
Sampler	
  
Materials	
  
Results	
  
Setup	
   Discussion	
  
In	
  order	
  to	
  find	
  a	
  method	
  that	
  correctly	
  iden/fies	
  accelerants	
  from	
  burn	
  
debris	
   the	
   paint	
   cans	
   containing	
   the	
   burn	
   debris	
   and	
   an	
   ACS	
   were	
  
heated	
  and	
  incubated	
  at	
  different	
  temps	
  for	
  different	
  amounts	
  of	
  /me.	
  	
  
To	
  test	
  the	
  different	
  methods(Table	
  1)	
  the	
  resul/ng	
  chromatogram	
  from	
  
an	
   ACS	
   with	
   a	
   known	
   accelerant	
   was	
   compared	
   to	
   it’s	
   1%	
   standard.	
  	
  
Aer	
  incuba/ng	
  the	
  ACS	
  in	
  a	
  paint	
  can	
  with	
  burn	
  debris	
  for	
  24	
  hours	
  at	
  
room	
   temperature	
   (method	
   1)	
   there	
   were	
   no	
   iden/fiable	
   peaks	
  
produced	
  in	
  its	
  chromatogram.	
  	
  The	
  next	
  aZempt	
  was	
  to	
  heat	
  the	
  paint	
  
can	
  for	
  16	
  hours	
  at	
  65	
  °C	
  (method	
  2).	
   	
  This	
  method	
  was	
  successful	
  in	
  
iden/fying	
  the	
  known	
  accelerant	
  however,	
  when	
  aZemp/ng	
  to	
  repeat	
  
the	
   experiment	
   with	
   this	
   method	
   no	
   iden/fiable	
   peaks	
   in	
   the	
  
chromatograms	
   could	
   be	
   produced.	
   	
   The	
   probable	
   success	
   for	
   this	
  
method	
  was	
  due	
  to	
  a	
  large	
  amount	
  of	
  unburnt	
  accelerant	
  was	
  le	
  on	
  
the	
   debris	
   allowing	
   the	
   ACS	
   to	
   easily	
   adsorb	
   the	
   vapor.	
   Since	
   that	
  
method	
  was	
  not	
  repeatable	
  this	
  lead	
  to	
  the	
  final	
  method	
  of	
  hea/ng	
  the	
  
paint	
   cans	
   at	
   95	
   °C	
   for	
   4-­‐5	
   hours(method	
   3).	
   	
   This	
   method	
   produced	
  	
  
iden/fiable	
  chromatograms	
  when	
  compared	
  to	
  1%	
  standards.	
  
In	
   figure	
   2	
   the	
   chromatogram	
   produced	
   by	
   the	
   kerosene	
   ACS	
   was	
  
overlapped	
   with	
   the	
   1%	
   kerosene	
   solu/on’s	
   chromatogram.	
   	
   	
   When	
  
comparing	
  both	
  chromatograms	
  peaks	
  with	
  regards	
  to	
  abundance	
  and	
  
reten/on	
   /me	
   the	
   accelerant	
   can	
   be	
   iden/fied	
   correctly.	
   	
   Using	
   this	
  
method	
   again	
   for	
   lamp	
   oil	
   similar	
   results	
   were	
   produced	
   and	
   can	
   be	
  
seen	
   in	
   figure	
   3.	
   	
   Now	
   that	
   a	
   method	
   proved	
   to	
   successfully	
   iden/fy	
  
known	
   accelerants	
   the	
   next	
   step	
   was	
   to	
   obtain	
   burn	
   debris	
   that	
  
contained	
   an	
   unknown	
   accelerant	
   and	
   test	
   the	
   method	
   again.	
   	
   The	
  
resul/ng	
  chromatogram	
  from	
  the	
  unknown	
  was	
  then	
  compared	
  to	
  1%	
  
standards.	
  	
  The	
  unknown	
  accelerant	
  was	
  iden/fied	
  as	
  kerosene	
  and	
  the	
  
comparison	
  of	
  chromatograms	
  can	
  be	
  seen	
  in	
  figure	
  4.	
  To	
  further	
  prove	
  
the	
   unknown	
   was	
   kerosene	
   the	
   peaks	
   of	
   both	
   kerosene	
   1%	
   standard	
  
and	
  the	
  unknown	
  at	
  5.134	
  minutes	
  mass	
  specs.	
  were	
  analyzed.	
  	
  In	
  both	
  
cases	
  the	
  mass	
  spec.	
  iden/fied	
  the	
  compound	
  to	
  be	
  ethylcyclohexane,	
  a	
  
common	
  hydrocarbon	
  found	
  in	
  kerosene.	
  
	
  
	
  
	
  
Future	
  DirecBons	
  
Throughout	
   this	
   research	
   gasoline	
   was	
   never	
   iden/fiable	
   when	
  
compared	
   to	
   it’s	
   1%	
   standard.	
   	
   The	
   gasoline	
   ACS	
   never	
   provided	
   any	
  
iden/fiable	
  peaks	
  on	
  it’s	
  chromatogram.	
   	
  One	
  possible	
  reason	
  was	
  the	
  
solvent	
  we	
  used,	
  methylene	
  chloride,	
  did	
  not	
  allow	
  the	
  gasoline	
  vapors	
  
to	
  properly	
  desorb	
  from	
  the	
  ACS.	
   	
  The	
  next	
  experiment	
  I	
  would	
  do	
  to	
  
solve	
   this	
   problem	
   is	
   to	
   use	
   carbon	
   disulfide	
   as	
   the	
   solvent	
   when	
  
desorbing	
  the	
  ACS.	
  	
  	
  
Acknowledgements	
  
I	
  would	
  like	
  to	
  thank	
  Dr.	
  Spudich	
  for	
  guiding	
  me	
  in	
  the	
  right	
  direc/on	
  
throughout	
  this	
  research	
  project	
  and	
  supplying	
  me	
  with	
  resources	
  that	
  
contained	
  answers	
  to	
  any	
  problems.	
  	
  I	
  would	
  	
  also	
  like	
  to	
  thank	
  Mr.	
  Pete	
  
Kleine	
   for	
   guidance	
   with	
   GCMS	
   set	
   up	
   and	
   discussion	
   on	
   subs/tute	
  
solvents	
  for	
  carbon	
  disulfide.	
  
Kory	
  Clawson	
  
IdenBficaBon	
  of	
  Accelerants	
  Used	
  in	
  Arson	
  Crime	
  
Tape	
  
Paper	
  
Clip	
  
Ac/vated	
  
Charcoal	
  Strip	
  
(ACS)	
  
Burn	
  
	
  Debris	
  
Paint	
  Can	
  
Fig.	
  2	
  
Fig.	
  3	
  
Fig.	
  4	
  
This	
   figure	
   shows	
   the	
   1%	
   kerosene	
   standard	
   chromatogram	
   overlapped	
  
with	
  the	
  chromatogram	
  from	
  the	
  burn	
  debris	
  where	
  kerosene	
  was	
  used	
  
as	
  the	
  accelerant.	
  
This	
   figure	
   shows	
   the	
   1%	
   lamp	
   oil	
   standard	
   chromatogram	
   overlapped	
  
with	
  the	
  chromatogram	
  from	
  the	
  burn	
  debris	
  where	
  lamp	
  oil	
  was	
  used	
  as	
  
the	
  accelerant.	
  
This	
   figure	
   shows	
   the	
   1%	
   kerosene	
   standard	
   chromatogram	
   overlapped	
  
with	
   the	
   chromatogram	
   from	
   the	
   burn	
   debris	
   where	
   an	
   unknown	
   was	
  
used	
  as	
  the	
  accelerant.	
  
Conclusion	
  
Using	
  this	
  method	
  it	
  is	
  possible	
  to	
  iden/fy	
  an	
  unknown	
  accelerant	
  used	
  in	
  
an	
   arson	
   crime	
   through	
   the	
   use	
   of	
   ac/vated	
   charcoal	
   strips	
   and	
   	
   gas	
  
chromatograph/mass	
  spectrometer.	
  
Table	
  1	
  
Method	
   Temperature	
   IncubaBon	
  Time	
  
Method	
  1	
   ~25	
  °C	
   24	
  hours	
  
Method	
  2	
   65	
  °C	
   16	
  hours	
  
Method	
  3	
   95	
  	
  °C	
   4-­‐5	
  hours	
  
In	
   table	
   1	
   each	
   method	
   is	
   in	
   reference	
   to	
   a	
   paint	
   can	
   containing	
   burn	
  
debris	
  and	
  an	
  ACS(Fig	
  1).	
  
Fig.	
  1	
  
Methods	
  
Fig.	
  5A	
  
Fig.	
  5B	
  
Figure	
  5A	
  shows	
  a	
  comparison	
  of	
  the	
  MS	
  of	
  the	
  unknown	
  peak	
  circled	
  in	
  
red	
  in	
  figure	
  4	
  to	
  ethylcyclohexane’s	
  MS.	
  	
  Figure	
  5B	
  shows	
  the	
  actual	
  MS	
  
of	
  ethylcyclohexane.	
  

More Related Content

What's hot

IA on effect of bleach concentration on the rate of decolorization of blue dy...
IA on effect of bleach concentration on the rate of decolorization of blue dy...IA on effect of bleach concentration on the rate of decolorization of blue dy...
IA on effect of bleach concentration on the rate of decolorization of blue dy...Lawrence kok
 
PACES chemistry Session 1 2009
PACES chemistry Session 1 2009PACES chemistry Session 1 2009
PACES chemistry Session 1 2009Richard Meagher
 
Rate of reaction temperature
Rate of reaction   temperatureRate of reaction   temperature
Rate of reaction temperaturemmandylou
 
Acidbasetitrationsupdated (1)
Acidbasetitrationsupdated (1)Acidbasetitrationsupdated (1)
Acidbasetitrationsupdated (1)Student
 
IA Design and interesting reseach questions
IA Design and interesting reseach questionsIA Design and interesting reseach questions
IA Design and interesting reseach questionsLawrence kok
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionLawrence kok
 
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...IA on effect of concentration of NaOH on the rate of hydrogen production, bet...
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...Lawrence kok
 
TOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABTOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABprojecteciencies
 
Effect Temperature Reaction rate
Effect Temperature Reaction rateEffect Temperature Reaction rate
Effect Temperature Reaction rateguest2dee35
 
Synthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoSynthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoDr Robert Craig PhD
 
Commercial Vinegar Test
Commercial Vinegar Test Commercial Vinegar Test
Commercial Vinegar Test ravikanya
 
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINAL
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINALAn Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINAL
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINALStroma Service Consulting
 
Aniline point - petroleum - UOS
Aniline point - petroleum - UOSAniline point - petroleum - UOS
Aniline point - petroleum - UOShazhiresmail
 
Lab Report on copper cycle
 Lab Report on copper cycle  Lab Report on copper cycle
Lab Report on copper cycle Karanvir Sidhu
 
Discussion exp 1
Discussion exp 1Discussion exp 1
Discussion exp 1haifairiana
 

What's hot (20)

IA on effect of bleach concentration on the rate of decolorization of blue dy...
IA on effect of bleach concentration on the rate of decolorization of blue dy...IA on effect of bleach concentration on the rate of decolorization of blue dy...
IA on effect of bleach concentration on the rate of decolorization of blue dy...
 
PACES chemistry Session 1 2009
PACES chemistry Session 1 2009PACES chemistry Session 1 2009
PACES chemistry Session 1 2009
 
Rate of reaction temperature
Rate of reaction   temperatureRate of reaction   temperature
Rate of reaction temperature
 
Energy Of Reaction
Energy Of ReactionEnergy Of Reaction
Energy Of Reaction
 
Acidbasetitrationsupdated (1)
Acidbasetitrationsupdated (1)Acidbasetitrationsupdated (1)
Acidbasetitrationsupdated (1)
 
IA Design and interesting reseach questions
IA Design and interesting reseach questionsIA Design and interesting reseach questions
IA Design and interesting reseach questions
 
Titrations
TitrationsTitrations
Titrations
 
Uncertainty calculation for rate of reaction
Uncertainty calculation for rate of reactionUncertainty calculation for rate of reaction
Uncertainty calculation for rate of reaction
 
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...IA on effect of concentration of NaOH on the rate of hydrogen production, bet...
IA on effect of concentration of NaOH on the rate of hydrogen production, bet...
 
TOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LABTOPIC 5. RATE OF REACTION-LAB
TOPIC 5. RATE OF REACTION-LAB
 
Effect Temperature Reaction rate
Effect Temperature Reaction rateEffect Temperature Reaction rate
Effect Temperature Reaction rate
 
Acid base
Acid baseAcid base
Acid base
 
Synthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry twoSynthesizing nickle ammonium chloride chemistry two
Synthesizing nickle ammonium chloride chemistry two
 
Commercial Vinegar Test
Commercial Vinegar Test Commercial Vinegar Test
Commercial Vinegar Test
 
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINAL
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINALAn Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINAL
An Experimental Method for Micro-Particle Ammonium Nitrate (MP-AN)_FINAL
 
Volumetric analysis ppt
Volumetric analysis pptVolumetric analysis ppt
Volumetric analysis ppt
 
Qc pharmceutical
Qc pharmceuticalQc pharmceutical
Qc pharmceutical
 
Aniline point - petroleum - UOS
Aniline point - petroleum - UOSAniline point - petroleum - UOS
Aniline point - petroleum - UOS
 
Lab Report on copper cycle
 Lab Report on copper cycle  Lab Report on copper cycle
Lab Report on copper cycle
 
Discussion exp 1
Discussion exp 1Discussion exp 1
Discussion exp 1
 

Viewers also liked

Técnicas de estudio
Técnicas de estudioTécnicas de estudio
Técnicas de estudioLaurasclass
 
Peter Etim-CV.
Peter Etim-CV. Peter Etim-CV.
Peter Etim-CV. Peter Etim
 
Técnicas de estudio Social Unit 1
Técnicas de estudio Social Unit 1Técnicas de estudio Social Unit 1
Técnicas de estudio Social Unit 1Laurasclass
 
Proyecto inf grupo5
Proyecto inf grupo5Proyecto inf grupo5
Proyecto inf grupo5carola033
 
Capítulo 7 - Libro Azúl
Capítulo 7 - Libro AzúlCapítulo 7 - Libro Azúl
Capítulo 7 - Libro Azúlfredur
 
Actividad 2 tema 4
Actividad 2 tema 4Actividad 2 tema 4
Actividad 2 tema 4inma
 
MAHESH CV updated on 13.10.16
MAHESH CV updated on 13.10.16MAHESH CV updated on 13.10.16
MAHESH CV updated on 13.10.16MAHESH PANDIT
 
CIPS - Advance Diploma Guide
CIPS - Advance Diploma GuideCIPS - Advance Diploma Guide
CIPS - Advance Diploma GuideZdenek Kompanek
 
Bestiario imagen 2010
Bestiario imagen 2010Bestiario imagen 2010
Bestiario imagen 2010ESTER ALONSO
 

Viewers also liked (12)

Técnicas de estudio
Técnicas de estudioTécnicas de estudio
Técnicas de estudio
 
Peter Etim-CV.
Peter Etim-CV. Peter Etim-CV.
Peter Etim-CV.
 
Presentación1
Presentación1Presentación1
Presentación1
 
Técnicas de estudio Social Unit 1
Técnicas de estudio Social Unit 1Técnicas de estudio Social Unit 1
Técnicas de estudio Social Unit 1
 
Presentación1
Presentación1Presentación1
Presentación1
 
Proyecto inf grupo5
Proyecto inf grupo5Proyecto inf grupo5
Proyecto inf grupo5
 
Capítulo 7 - Libro Azúl
Capítulo 7 - Libro AzúlCapítulo 7 - Libro Azúl
Capítulo 7 - Libro Azúl
 
Actividad 2 tema 4
Actividad 2 tema 4Actividad 2 tema 4
Actividad 2 tema 4
 
MAHESH CV updated on 13.10.16
MAHESH CV updated on 13.10.16MAHESH CV updated on 13.10.16
MAHESH CV updated on 13.10.16
 
CIPS - Advance Diploma Guide
CIPS - Advance Diploma GuideCIPS - Advance Diploma Guide
CIPS - Advance Diploma Guide
 
Company Report
Company ReportCompany Report
Company Report
 
Bestiario imagen 2010
Bestiario imagen 2010Bestiario imagen 2010
Bestiario imagen 2010
 

Similar to ArsonPoster_KC

how to determine the Carbon residue
how to determine the Carbon residuehow to determine the Carbon residue
how to determine the Carbon residueAbdul Rahman
 
Optimal Production of Methyl Acetate using a Micro-Reactor
Optimal Production of Methyl Acetate using a Micro-ReactorOptimal Production of Methyl Acetate using a Micro-Reactor
Optimal Production of Methyl Acetate using a Micro-ReactorSasha Kozmonaut
 
And automotive gas oil [ago].
 And automotive gas oil [ago]. And automotive gas oil [ago].
And automotive gas oil [ago].Alexander Decker
 
C7 lesson part three
C7 lesson part threeC7 lesson part three
C7 lesson part threesamuelaylward
 
Experiment A- Dye Adsorption Technical Memo
Experiment A- Dye Adsorption Technical MemoExperiment A- Dye Adsorption Technical Memo
Experiment A- Dye Adsorption Technical MemoVanessa Ferrero
 
Determination of Thermodynamic Properties of OLED Compounds
Determination of Thermodynamic Properties of OLED CompoundsDetermination of Thermodynamic Properties of OLED Compounds
Determination of Thermodynamic Properties of OLED CompoundsLogan Williamson
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...eSAT Journals
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...eSAT Publishing House
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...IJERA Editor
 
1.Analytical Chemistry Historical Perspective
1.Analytical Chemistry Historical Perspective1.Analytical Chemistry Historical Perspective
1.Analytical Chemistry Historical PerspectiveMalcolm Ross
 
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...PerkinElmer, Inc.
 
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...PerkinElmer, Inc.
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...CrimsonpublishersMCDA
 
Color lab pres
Color lab presColor lab pres
Color lab presAbebe Teka
 
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...Ryan Baker
 
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...IOSR Journals
 
GHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEGHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEQian Xie
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy AyeshaRasty
 
Qualitative and Quantitative Analysis, Empirical and Molecular Formula
Qualitative and Quantitative Analysis, Empirical and Molecular FormulaQualitative and Quantitative Analysis, Empirical and Molecular Formula
Qualitative and Quantitative Analysis, Empirical and Molecular FormulaFawad Mueen Arbi
 

Similar to ArsonPoster_KC (20)

how to determine the Carbon residue
how to determine the Carbon residuehow to determine the Carbon residue
how to determine the Carbon residue
 
Optimal Production of Methyl Acetate using a Micro-Reactor
Optimal Production of Methyl Acetate using a Micro-ReactorOptimal Production of Methyl Acetate using a Micro-Reactor
Optimal Production of Methyl Acetate using a Micro-Reactor
 
And automotive gas oil [ago].
 And automotive gas oil [ago]. And automotive gas oil [ago].
And automotive gas oil [ago].
 
C7 lesson part three
C7 lesson part threeC7 lesson part three
C7 lesson part three
 
Experiment A- Dye Adsorption Technical Memo
Experiment A- Dye Adsorption Technical MemoExperiment A- Dye Adsorption Technical Memo
Experiment A- Dye Adsorption Technical Memo
 
Determination of Thermodynamic Properties of OLED Compounds
Determination of Thermodynamic Properties of OLED CompoundsDetermination of Thermodynamic Properties of OLED Compounds
Determination of Thermodynamic Properties of OLED Compounds
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
 
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
Feasibility study of mtbe physical adsorption from polluted water on gac, pac...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...
Removal of Harmful Textile Dye Congo Red from Aqueous Solution Using Chitosan...
 
1.Analytical Chemistry Historical Perspective
1.Analytical Chemistry Historical Perspective1.Analytical Chemistry Historical Perspective
1.Analytical Chemistry Historical Perspective
 
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...
Toxic Trace Metals in Edible Oils by Graphite Furnace Atomic Absorption Spect...
 
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...
Trace Elemental Characterization of Edible Oils with Graphite Furnace Atomic ...
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
 
Color lab pres
Color lab presColor lab pres
Color lab pres
 
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...
A Quantitative Analysis of Ethanol in Beer using Gas Liquid Chromatography – ...
 
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...
Multi-Element Determination of Cu, Mn, and Se using Electrothermal Atomic Abs...
 
GHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIEGHGT 11-poster-QIAN XIE
GHGT 11-poster-QIAN XIE
 
Atomic absorption spectroscopy
Atomic absorption spectroscopy Atomic absorption spectroscopy
Atomic absorption spectroscopy
 
Qualitative and Quantitative Analysis, Empirical and Molecular Formula
Qualitative and Quantitative Analysis, Empirical and Molecular FormulaQualitative and Quantitative Analysis, Empirical and Molecular Formula
Qualitative and Quantitative Analysis, Empirical and Molecular Formula
 

ArsonPoster_KC

  • 1. RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com The   purpose   of   this   work   was   to   iden/fy   the   accelerant   used   in   a   possible  arson  case  from  the  burn  debris.    Through  the  use  of  ac/vated   charcoal  strips  and  the  gas  chromatograph/mass  spectrometer  (GCMS)   it  is  possible  to  iden/fy  an  unknown  accelerant.    The  ac/vated  charcoal   strips   absorbed   the   vapors   from   the   burn   debris   and   then   the   vapor   samples  were  extracted  using  a  solvent.    The  chromatogram  from  the   resul/ng   solu/on   was   then   compared   to   a   1%   standard   of   a   known   accelerant,   which   led   to   correct   iden/fica/on   of   the   unknown   accelerant  via  reten/on  /me  and  mass  spectral  informa/on.         Abstract   A   t-­‐shirt   was   put   into   a   burn   bucket   and   then   dowsed   with   an   accelerant.    The  t-­‐shirt  was  then  lit  on  fire  with  a  match  and  burned  for   around   15   minutes.     The   resul/ng   burn   debris   was   analyzed   by   first   puWng  the  debris  in  an  empty,  unlined  paint  can.    A  paper  clip  was  bent   at  a  90°angle  and  taped  to  the  paint  can’s  lid.    An  ac/vated  charcoal   strip(ACS)  was  then  aZached  to  the  end  of  the  paper  clip.    The  lid  was   then  secured  allowing  no  vapor  to  escape.    The  paint  can  containing  the   debris  and  ACS  were  heated  at  different  temperatures(table  1)  in  order   to   vaporize   the   burnt   accelerant.   Aer   the   the   ACS   adsorbed   the   accelerant’s  vapor  it  was  put  in  a  GC  vial  containing  1ml  of  methylene   chloride.     Aer   30   minutes   the   sample   was   ran   in   the   GCMS.     The   chromatograms  were  then  compared  to  1%  standards  with  respect  to   both  reten/on  /me  (obtained  by  measuring  total  ion  count  (or  TIC))  of   the  components  as  well  as  iden/fica/on  of  the  ions  based  in  the  mass   spectrum  in  order  to  iden/fy  the  accelerant  used  from  the  fire  debris.             Procedure   •  Accelerants  (kerosene,  gasoline,   lamp  oil)   •  T-­‐shirts   •  Burn  Bucket   •  Matches   •  Fire  Ex/nguisher     •  Unknown  Burn  Debris   •  Unlined,  empty  gallon  paint  cans   •  Scotch  Tape   •  Unpainted,  uncoated  paperclips   •  Albrayco  Technology  Ac/vated   Charcoal  Strips  (8x20  mm)   •  Incubator   •  Oven   •  GC  Vials   •  MicropipeZe  (P1000,P10)   •  Methylene  Chloride,  99.5%   •  Agilent  7820A  GC   •  Agilent  5977E  Mass  Spectrometer   •  Agilent  7693  Automa/c  Liquid   Sampler   Materials   Results   Setup   Discussion   In  order  to  find  a  method  that  correctly  iden/fies  accelerants  from  burn   debris   the   paint   cans   containing   the   burn   debris   and   an   ACS   were   heated  and  incubated  at  different  temps  for  different  amounts  of  /me.     To  test  the  different  methods(Table  1)  the  resul/ng  chromatogram  from   an   ACS   with   a   known   accelerant   was   compared   to   it’s   1%   standard.     Aer  incuba/ng  the  ACS  in  a  paint  can  with  burn  debris  for  24  hours  at   room   temperature   (method   1)   there   were   no   iden/fiable   peaks   produced  in  its  chromatogram.    The  next  aZempt  was  to  heat  the  paint   can  for  16  hours  at  65  °C  (method  2).    This  method  was  successful  in   iden/fying  the  known  accelerant  however,  when  aZemp/ng  to  repeat   the   experiment   with   this   method   no   iden/fiable   peaks   in   the   chromatograms   could   be   produced.     The   probable   success   for   this   method  was  due  to  a  large  amount  of  unburnt  accelerant  was  le  on   the   debris   allowing   the   ACS   to   easily   adsorb   the   vapor.   Since   that   method  was  not  repeatable  this  lead  to  the  final  method  of  hea/ng  the   paint   cans   at   95   °C   for   4-­‐5   hours(method   3).     This   method   produced     iden/fiable  chromatograms  when  compared  to  1%  standards.   In   figure   2   the   chromatogram   produced   by   the   kerosene   ACS   was   overlapped   with   the   1%   kerosene   solu/on’s   chromatogram.       When   comparing  both  chromatograms  peaks  with  regards  to  abundance  and   reten/on   /me   the   accelerant   can   be   iden/fied   correctly.     Using   this   method   again   for   lamp   oil   similar   results   were   produced   and   can   be   seen   in   figure   3.     Now   that   a   method   proved   to   successfully   iden/fy   known   accelerants   the   next   step   was   to   obtain   burn   debris   that   contained   an   unknown   accelerant   and   test   the   method   again.     The   resul/ng  chromatogram  from  the  unknown  was  then  compared  to  1%   standards.    The  unknown  accelerant  was  iden/fied  as  kerosene  and  the   comparison  of  chromatograms  can  be  seen  in  figure  4.  To  further  prove   the   unknown   was   kerosene   the   peaks   of   both   kerosene   1%   standard   and  the  unknown  at  5.134  minutes  mass  specs.  were  analyzed.    In  both   cases  the  mass  spec.  iden/fied  the  compound  to  be  ethylcyclohexane,  a   common  hydrocarbon  found  in  kerosene.         Future  DirecBons   Throughout   this   research   gasoline   was   never   iden/fiable   when   compared   to   it’s   1%   standard.     The   gasoline   ACS   never   provided   any   iden/fiable  peaks  on  it’s  chromatogram.    One  possible  reason  was  the   solvent  we  used,  methylene  chloride,  did  not  allow  the  gasoline  vapors   to  properly  desorb  from  the  ACS.    The  next  experiment  I  would  do  to   solve   this   problem   is   to   use   carbon   disulfide   as   the   solvent   when   desorbing  the  ACS.       Acknowledgements   I  would  like  to  thank  Dr.  Spudich  for  guiding  me  in  the  right  direc/on   throughout  this  research  project  and  supplying  me  with  resources  that   contained  answers  to  any  problems.    I  would    also  like  to  thank  Mr.  Pete   Kleine   for   guidance   with   GCMS   set   up   and   discussion   on   subs/tute   solvents  for  carbon  disulfide.   Kory  Clawson   IdenBficaBon  of  Accelerants  Used  in  Arson  Crime   Tape   Paper   Clip   Ac/vated   Charcoal  Strip   (ACS)   Burn    Debris   Paint  Can   Fig.  2   Fig.  3   Fig.  4   This   figure   shows   the   1%   kerosene   standard   chromatogram   overlapped   with  the  chromatogram  from  the  burn  debris  where  kerosene  was  used   as  the  accelerant.   This   figure   shows   the   1%   lamp   oil   standard   chromatogram   overlapped   with  the  chromatogram  from  the  burn  debris  where  lamp  oil  was  used  as   the  accelerant.   This   figure   shows   the   1%   kerosene   standard   chromatogram   overlapped   with   the   chromatogram   from   the   burn   debris   where   an   unknown   was   used  as  the  accelerant.   Conclusion   Using  this  method  it  is  possible  to  iden/fy  an  unknown  accelerant  used  in   an   arson   crime   through   the   use   of   ac/vated   charcoal   strips   and     gas   chromatograph/mass  spectrometer.   Table  1   Method   Temperature   IncubaBon  Time   Method  1   ~25  °C   24  hours   Method  2   65  °C   16  hours   Method  3   95    °C   4-­‐5  hours   In   table   1   each   method   is   in   reference   to   a   paint   can   containing   burn   debris  and  an  ACS(Fig  1).   Fig.  1   Methods   Fig.  5A   Fig.  5B   Figure  5A  shows  a  comparison  of  the  MS  of  the  unknown  peak  circled  in   red  in  figure  4  to  ethylcyclohexane’s  MS.    Figure  5B  shows  the  actual  MS   of  ethylcyclohexane.