Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

final

152 views

Published on

  • Be the first to comment

  • Be the first to like this

final

  1. 1. By Ahmed Sh. Yasiry EXPERIMENTAL STUDY OF THE EFFECT OF HYDROGEN BLENDING ON BURNING VELOCITY FOR DIFFERENT FUELS Supervised By Prof D. Haroun A.K. Shahad 01:12 PM
  2. 2. Introduction 01:12 PM
  3. 3. Introduction Increasing concern over the fossil fuel shortage and pollution of air, and the requirement for alternative fuels for Internal Combustion Engines have been considered by researchers. Researchers have re-evaluated the combustion process and the prospects of alternative fuels to improve the combustion characteristics. 01:12 PM
  4. 4. Flame Flame is a visible part of a highly exothermic chemical reaction. Flame can be classified according to : 1) Composition of The Reactants 2) Basic Character of Gas Flow 3) Motion of Flame Laminar. Turbulent. Stationary . Nonstationary . Premixed. Diffusion. 01:12 PM
  5. 5. Laminar Burning Velocity Laminar burning velocity (ul) is defined as the velocity at which unburned gases move through the combustion wave in the direction normal to the wave front. Burning velocity is a measure of the rate at which reactants are moving into the flame from a reference point located on the moving frame. The Flame speed is a measure of how quickly the flame is traveling from a fixed reference point 01:12 PM
  6. 6. • Liquefied petroleum gas (LPG) liquefied petroleum gas (LPG) consists mainly of butane and propane. Being one of the primary energy sources used for domestic and commercial applications. LPG has many advantages such as:  High heating value.  cleaner burning with low ash.  Less corrosion and engine wear.  Stable flame and low processing cost. Fuels Used in The Study 01:12 PM
  7. 7. Items C2H6 C3H8 C4H10 C5H12 Volumetric Fractions ) (% by Volume .0 9 .36 3 .62 3 .0 5 LPG component is supplied by Gas Filling Company/ Middle Euphrates Branch Fuels Used in The Study 01:12 PM
  8. 8. Fuels Used in The Study • Hydrogen Hydrogen (H2) is a colorless, odorless, tasteless, non-toxic, non-metallic and highly combustible diatomic gas. It has high flame speed, wide flammability limit, low minimum ignition energy and no emissions of HC or CO2. Hydrogen addition to a fuel could increase thermal efficiency, lean burn capability and mitigate the global warming concerns. 01:12 PM
  9. 9. Aims of The Study The scope of the present work covers: •To design and construct a constant volume combustionTo design and construct a constant volume combustion chamber with the required measuring instrumentationschamber with the required measuring instrumentations •To investigate the effect of equivalence ratio, initial pressureTo investigate the effect of equivalence ratio, initial pressure and hydrogen blending ratio on laminar burning velocity, flameand hydrogen blending ratio on laminar burning velocity, flame speed and other parameters.speed and other parameters. •To derive empirical correlations between studied variables ofTo derive empirical correlations between studied variables of HH22--LPG–air mixtures.LPG–air mixtures. 01:12 PM
  10. 10. Experimental Work 01:12 PM
  11. 11. Experimental Set up The study of flame propagation subject needs high speed photography system because of the very short combustion time and hence the period available for measurement. The set up consists of the following units: •Combustion chamber unit. •Ignition circuit and control unit. •Mixture preparing unit. •Capturing unit. 01:12 PM
  12. 12. Photograph of The Experimental Apparatus Used in The Study Combustion chamber Mixture preparing unit Ignition circuithigh-speed camera
  13. 13. Exhaust Air Compressor Mixer Ignition System Control System AC Power PC Temperature Recorder Data Logger Vacuum PC Combustion Chamber Fuel Storage Tank high-speed camera Illuminator Lens 01:12 PM
  14. 14. Combustion Chamber Unit
  15. 15. Ignition Circuit and Control Unit 01:12 PM
  16. 16. Mixture Preparing Unit • Gaseous mixer has been designed and constructed for gaseous fuels with low partial pressure. • The purpose of the mixture is to prepare a mixture at the preset mixing ratios at the required equivalence ratio, partial pressures and initial pressures. • The purpose of using the mixer is to increase the total pressure of the mixture. Consequently, this increases the partial pressure of each component of the mixture. 01:12 PM
  17. 17. 01:12 PM Capturing Unit high-speed camera lenselense CVC Illuminator
  18. 18. Test Procedure A- Mixture Preparation 1- Flushing Process 2- Vacuum Process 3- Mixing Process B- CVC Preparation 1- Flushing Process 2- Scavenging Process 3- Filling Process C- Combustion and Recoding 01:12 PM
  19. 19. Test Program 01:12 PM
  20. 20. Theoretical Analysis 01:12 PM
  21. 21. Flame Propagation Analysis 01:12 PM
  22. 22. Flame Propagation Analysis 01:12 PM
  23. 23. Flame Propagation Analysis A FORTRAN program is written to calculate the physical properties of reactance and expected product, in addition to adiabatic flame temperature and initial admitting pressure for each of reactance mixture. The program is designed to calculate the properties of neat hydrocarbon fuels (CH4, C2H6, C3H8, C4H10, C5H12), blend with H2 or mixture of multi hydrocarbons blended with H2. 01:12 PM
  24. 24. Results 01:12 PM
  25. 25. Validation Theoretical Analysis • The adiabatic flame temperate is the most influential parameter to determine the properties of the burnt mixture. • The validation has been done by comparing the flame temperature of CH4 and C3H8 with researcher [2] and 2 software. • Another companion to validate the blending and multi fuel with researcher [66] 01:12 PM
  26. 26. gaseqfortranerror %gaseqfortranerrorgaseqfortranerror product 1665.31661.5850.22333222262292.6412.9496042057.42013.7022.146741KAdiabatic Temperature 38.39838.284470.29610441.40441.5360.31830240.14339.42391.807536J/mol/kSpecific Heat 1366.911365.4280.1084791509.451503.1470.4184431551.771520.292.049439J/kg/kSpecific Heat 0.205570.2066560.5268950.150171.47E-012.2065380.159021.57E-011.55E+00kg/m 3 Density 9.89E-020.1098810.518251.32E-011.43E-018.0513721.38E-011.35E-011.85E+00W/m.KThermal Conductivity 3.53E-040.0003899.8262525.84E-046.48E-0410.385755.81E-055.69E-052.06E+00m 2 /secThermal Diffusivity reactance 29.49229.478070.04724429.71129.718710.02594729.86529.887510.075344J/mol/kSpecific Heat 1049.791045.5310.4065251075.131071.6230.3267261093.41090.4510.270073J/kg/kSpecific Heat 1.14121.1457420.3972121.12261.1269540.3870991.10951.1137740.384478kg/m 3 Density 0.0240.026339.2588912.42E-022.65E-029.061042.44E-022.66E-028.69E+00W/m.KThermal Conductivity 2.02E-052.2E-058.4400242.01E-052.19E-058.7556612.01E-052.19E-058.64E+00m 2 /secThermal Diffusivity 0.61.3 1 ch4 gaseqfortranerror %gaseqfortranerrorgaseqfortranerror product 1701.11690.9850.5963882267.323553.7946482125.12086.2441.845302KAdiabatic Temperature 38.51838.414950.26789641.34941.644990.71328140.16439.582721.457815J/mol/kSpecific Heat 1350.391349.0490.0993541473.431470.2660.2149681506.951481.771.685002J/kg/kSpecific Heat 0.204342.06E-010.5940510.150831.47E-012.8648290.152841.56E-011.880861kg/m 3 Density 9.89E-021.11E-0111.136911.31E-011.42E-018.2800791.35E-011.36E-010.795049W/m.KThermal Conductivity 3.59E-043.99E-0410.508215.86E-046.60E-0411.853865.85E-045.90E-040.775783m 2 /secThermal Diffusivity reactance 30.2330.186490.14403430.93530.894910.12967831.44931.411420.119566J/mol/kSpecific Heat 1034.321029.1130.5046931049.821044.7760.481621060.971056.0370.466035J/kg/kSpecific Heat 1.18721.1919990.4034131.1971.2016690.3892991.20411.2087190.382872kg/m 3 Density 2.33E-022.58E-0210.090862.31E-022.56E-0210.2422.90E-022.55E-0212.99082W/m.KThermal Conductivity 2.00E-052.10E-054.9381611.84E-052.04E-0510.2391.80E-051.99E-0510.26578m 2 /secThermal Diffusivity 0.61.3 1 C3H8 Percentage Error for CH4 and C3H8 Physical Properties at Different Equivalence Ratio Comparing with GASEQ Software.
  27. 27. 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 E q u iv a le n c e R a t io 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 AdiabaticFlameTemperature(K) 2 0 % H 2 8 0 % H 2 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 H y d r o g e n B le n d ( % ) 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 2 5 0 0 AdiabaticFlameTemperature(k) φ = 0 .6 φ = 0 .8 φ = 1 φ = 1 .1 φ = 1 .3 0 . 6 0 0 . 7 0 0 . 8 0 0 . 9 0 1 . 0 0 1 . 1 0 1 . 2 0 1 . 3 0 E q u iv a l e n c e R a t io 0 . 1 2 0 . 1 3 0 . 1 4 0 . 1 5 0 . 1 6 0 . 1 7 0 . 1 8 0 . 1 9 DensityRatio 1 0 0 % L P G 2 0 % H 2 5 0 % H 2 8 0 % H 2 9 0 % H 2 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 H y d r o g e n B le n d ( % ) 0 . 1 2 0 . 1 3 0 . 1 4 0 . 1 5 0 . 1 6 DensityRatio φ = 0 .8 φ = 1 φ = 1 .3 Theoretical Physical Properties Results
  28. 28. Experimental Results Repeatability • A pre-set mixture is prepared in the mixing chamber at fixed condition. Three consecutive combustion tests are carried out using the same mixture. Another three tests are performed using different pre-set mixture. • Also to test the accuracy of our system, the results of burning mixture of Methane and properties are compared with results of other researchers. 01:12 PM
  29. 29. Repeatability Results 0 . 0 0 5 0 . 0 1 0 0 .0 1 5 0 . 0 2 0 0 .0 2 5 0 . 0 3 0 0 . 0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(cm/s) T e s t 1 T e s t 2 T e s t 3 T e s t 4 T e s t 5 T e s t 6 0 . 6 0 0 .8 0 1 . 0 0 1 . 2 0 1 .4 0 1 .6 0 φ 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 ul (cm/s) C u r r e n t S tu d y ( 2 0 1 5 ) G o s w a m i e t a l. ( 2 0 1 3 ) L o w r y e t a l. ( 2 0 1 1 ) P a r k e t a l. ( 2 0 1 0 ) C o p p e n s e t a l. ( 2 0 0 7 ) H e g h e s ( 2 0 0 6 ) F a r r w ll e t a l. ( 2 0 0 4 ) F a r r w ll e t a l. ( 2 0 0 4 ) R o z e n c h a n e t a l. ( 2 0 0 2 ) G u e t a l. ( 2 0 0 0 ) E g o lo fo p o u lo s e t a l. ( 1 9 8 9 ) S h a r m a e t a l. ( 1 9 8 1 ) A n d r e w s a n d B r a d le y ( 1 9 7 2 ) Measured Schlieren Radius with Flame Speed for Six Consecutive Experiments with (60% H2 blend, =ϕ 0.8 and P0 = 1 bar). Comparison of Experimental Data for The Burning Velocity of Methane at T0 = 298 K and p0 = 1 bar with The Data Obtained from [33 & 83]. 01:12 PM
  30. 30. Photographs of Flame Propagation for Initial Pressure 3 bar with dt of 3.75 ms at Different Hydrogen Blend at Equivalence Ratio 0.8. 40% H2 60% H2 80% H2 01:12 PM
  31. 31. Photographs of Flame Propagation for Initial Pressure 3 bar with dt of 3.75 ms at Different Equivalence Ratio for 60% H2 Φ=0.8 Φ=1 Φ=1.3 01:12 PM
  32. 32. Φ=0.8 Φ=1 Φ=1.3 Stretched Laminar Flame Speed 0 .0 0 0 0 . 0 0 5 0 . 0 1 0 0 .0 1 5 0 .0 2 0 0 . 0 2 5 0 .0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( a ) 0 . 0 0 0 0 .0 0 5 0 .0 1 0 0 . 0 1 5 0 . 0 2 0 0 .0 2 5 0 .0 3 0 0 . 0 3 5 R a d iu s ( m ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( b ) 0 . 0 0 0 0 . 0 0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 . 0 2 5 0 . 0 3 0 R a d iu s ( m ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 Sn(m/s) p = 3 b a r p 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( c ) 0 . 0 0 0 0 .0 0 5 0 . 0 1 0 0 .0 1 5 0 . 0 2 0 0 .0 2 5 0 . 0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) ( a ) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r 0 . 0 0 0 0 .0 0 5 0 . 0 1 0 0 .0 1 5 0 . 0 2 0 0 .0 2 5 0 .0 3 0 0 . 0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) ( b ) P = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r 0 . 0 0 0 0 .0 0 5 0 . 0 1 0 0 .0 1 5 0 . 0 2 0 0 .0 2 5 0 . 0 3 0 0 .0 3 5 r a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) ( c ) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r 0 . 0 0 0 0 .0 0 5 0 . 0 1 0 0 . 0 1 5 0 .0 2 0 0 .0 2 5 0 . 0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( a ) 0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 .0 1 5 0 . 0 2 0 0 . 0 2 5 0 . 0 3 0 0 . 0 3 5 R a d iu s ( m ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( b ) 0 .0 0 0 0 .0 0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 .0 2 5 0 .0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( c ) 0 .0 0 0 0 .0 0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 .0 2 5 0 .0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( a ) 0 .0 0 0 0 .0 0 5 0 . 0 1 0 0 .0 1 5 0 .0 2 0 0 . 0 2 5 0 .0 3 0 0 . 0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( b ) 0 .0 0 0 0 .0 0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 .0 2 5 0 .0 3 0 0 .0 3 5 R a d iu s ( m ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( c ) 100% LPG 20 % H2 60 % H2 80 % H2
  33. 33. 1 . 0 1 . 5 2 .0 2 . 5 3 . 0 I n it ia l P r e s s u r e ( b a r ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) 1 0 0 % L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 Variation of Sn with Initial Pressures for LPG with Various Hydrogen Blends at ( =1).ϕ 0 .8 0 0 . 9 0 1 .0 0 1 . 1 0 1 .2 0 1 . 3 0 E q u iv a le n c e R a tio 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) 1 0 0 % L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 Variation of Sn with Equivalence Ratios for LPG with Various Hydrogen blend. 0 2 0 4 0 6 0 8 0 1 0 0 H y d r o g e n B le n d ( % ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sn(m/s) P = 3 b a r P = 2 . 5 b a r P = 2 b a r P = 1 . 5 b a r P = 1 b a r Variation of Sn with Hydrogen blend with different initial Pressure. Factors Effect on Stretched Laminar Flame Speed Hydrogen Blend at Atmospheric Pressure Stoichiometry at Atmospheric Pressure Initial Pressure All Data at Flame Radius of 20 mm 01:12 PM
  34. 34. Φ=0.8 Φ=1 Φ=1.3 Stretched rate 100% LPG 20 % H2 60 % H2 80 % H2 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 S t r e t c h R a t e ( 1 / s ) 1 .0 1 . 5 2 .0 2 .5 3 . 0 3 .5 4 .0 4 . 5 5 .0 5 .5 Sn(m/s) P = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( a ) 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 S t r e t c h R a t e ( 1 / s ) 1 .0 1 . 5 2 .0 2 .5 3 . 0 3 .5 4 .0 4 . 5 5 .0 5 .5 Sn(m/s) P = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( b ) 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 S tr e tc h R a te ( 1 /s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) P = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( c ) 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 S t r e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( a ) 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 S t r e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( b ) 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 S t r e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( c ) 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 S t r e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( a ) 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 S t r e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( b ) 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 s tr e tc h r a t e ( 1 /s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( c ) 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 S tr e t c h R a t e ( 1 / s ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 Sn(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r ( a ) 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 S tr e tc h R a te ( 1 /s ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( b ) 0 2 5 0 5 0 0 7 5 0 1 0 0 0 S tr e tc h R a te ( 1 / s e c ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 Sn(m/s) p = 3 b a r p = 2 .5 b a r p = 2 b a r p = 1 .5 b a r p = 1 b a r ( c )
  35. 35. Unstretched Flame Propagation Speed Versus Different Initial Pressure for Stoichiometric Mixtures Unstretched Flame Propagation Speed Versus Equivalence Ratios with Different Hydrogen Blends. Unstretched Flame Propagation Speed Versus Hydrogen Blends for Stoichiometric Mixtures Factors Effect on Unstretched Laminar Flame Speed Hydrogen Blend at Atmospheric Pressure Stoichiometry at Atmospheric Pressure Initial Pressure 1 . 0 1 .5 2 .0 2 .5 3 .0 I n it ia l P r e s s u r e ( b a r ) 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sl(m/s) 1 0 0 % L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 0 .7 0 .8 0 .9 1 . 0 1 .1 1 .2 1 . 3 1 .4 E q u iv a le n c e R a tio 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0 5 .5 6 .0 Sl(m/s) L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 0 2 0 4 0 6 0 8 0 H y d r o g e n B le n d ( % ) 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 Sl(m/s) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r 01:12 PM
  36. 36. Laminar Burning Velocity Versus Initial Pressure for Different Hydrogen Blend at Stoichiometric Mixture Laminar burning velocity versus equivalence ratio for different hydrogen blend at atmosphere pressure Laminar burning velocity versus hydrogen blend for different equivalence ratio at atmosphere pressure Factors Effect on Unstretched Laminar Burning Velocity Hydrogen Blend at Atmospheric Pressure Stoichiometry at Atmospheric Pressure Initial Pressure 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 I n it ia l P r e s s u r e ( b a r ) 2 0 3 0 4 0 5 0 6 0 ul(cm/s) 1 0 0 % L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 0 . 8 0 .9 1 . 0 1 . 1 1 .2 1 . 3 E q u a v a la n c e R a t io 2 0 3 0 4 0 5 0 6 0 ul(cm/s) L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 0 2 0 4 0 6 0 8 0 H y d r o g e n B le n d ( % ) 2 0 3 0 4 0 5 0 6 0 ul(cm/s) φ = 0 .8 φ = 1 φ = 1 .3 01:12 PM
  37. 37. )9.0J0bar,1P1,(,29.4031.00821509)0exp(J=)(Hu 22 HH2l ≤≤==×× φ )bar3Pbar1LPG,00%11,(,36.9441P)804exp(-0.202=(p)ul ≤≤=×× φ )bar3Pbar1,9.0J01,(,J*36+ P P *5.22-u=u 22 HH 0 ol,l ≤≤≤≤=      φ 0.942422 0.947844 0.9216 (R-squared) 01:12 PM Correlation of Laminar Burning Velocity
  38. 38. Flame Thickness Versus Equivalence Ratio for different Hydrogen Blend at Initial Pressure of 1.0 bar Maximum Combustion Pressure Versus Hydrogen blend for different Initial Pressure at Equivalence Ratio =1.3. Flame Thickness and Combustion Pressure Combustion PressureFlame Thickness 0 .8 0 .9 1 .0 1 .1 1 .2 1 .3 φ 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 δ(mm) L P G 2 0 % H 2 4 0 % H 2 6 0 % H 2 8 0 % H 2 0 2 0 4 0 6 0 8 0 H y d r o g e n B le n d ( % ) 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 MaximumPressure(bar) p = 3 b a r p = 2 . 5 b a r p = 2 b a r p = 1 . 5 b a r p = 1 b a r 01:12 PM
  39. 39. Conclusions and Suggestions 01:12 PM
  40. 40. Conclusions • A new experimental apparatus has been built for the measurement of laminar flame speed and burning velocity of the fuel-air mixture. • Experiments are conducted to study LBV of LPG at different H2 blends under varying initial pressure of 0.1- 0.3 MPa and temperature of 308 K. • H2 addition accelerates LBV of LPG flames for all equivalence ratios and pressures. The effectiveness is more evident when H2 blend is larger than 60%. 01:12 PM
  41. 41. Conclusions • Increasing the initial pressure, decreases LBV. • Increasing H2 blend decreases the flame thickness while increases with increasing the initial pressure. • H2 addition increases thermal diffusivity of reacting mixtures, the density ratio and adiabatic flame temperature. • Combustion pressure increases with increasing the equivalence ratio, H2 blends and initial pressure. • Correlations between variables are derived for H2-LPG-air mixtures. 01:12 PM
  42. 42. Suggestions for Future Work • Using the experimental apparatus to study LBV for other types of gaseous fuels. • Modifying the rig to study LBV for other types of liquid fuels. • Studying the effect of initial temperature on LBV. • Improving the capturing unit by replacing the current unit by Z-type schlieren photography or using another two perpendicular windows with two high-speed cameras to perform the capturing measurements. 01:12 PM
  43. 43. Suggestions for Future Work • Developing the CVC to derive burning velocity measurements from the pressure history record. • Increasing the diameter of the glass window to detect cellularity. • Modifying ignition unit to study the effect of ignition energy and spark gap. • Extending the theoretical part to study the laminar burning velocity of blended fuel theoretically. 01:12 PM
  44. 44. Published Articles 01:12 PM
  45. 45. 01:12 PM

×