SlideShare a Scribd company logo
1 of 13
Download to read offline
ENGINEERING EVALUATION
Evaluator: Kevin Wilson – Field Engineer Date: 5/24/11
Unit: 2 Building: Reactor Elevation: 622’
Location: On A Side D-Ring at Az. 65
References:
4RW0550-X2-02 - Structural Steel Primary Piping Jet Impingement Barriers
Problem Description:
The Jet Impingement Shield is suspended by cables and a chain hoist. Therefore, it is unstable.
Evaluation Summary:
The shield is attached with a base plate to the Secondary Shield (D-Ring) Wall. The base plate is tack welded
to the W14 which is part of the shield. This weld is not strong enough to hold the W14 and shield to the base
plate.
The options are:
1. Take the shield loose and raise it out of the D-Ring and place it on the floor at Elevation 700.
2. Temporarily Support the shield from the floor.
My recommendation is for a temporary support system. I have designed a temporary support system for the
shield. There are five sketches detailing the design along with a Bill of Material attached.
1 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Base Units: ksi 1000
lbf
in
2
⋅:= kip 1000 lbf⋅:= deg
π
180
rad⋅≡
Weight of Shield and Plate and Design Load:
Weight of W14x26: Ww 426
lbf
ft
7.5⋅ ft:= Ww 3.195 kip=
Weight of 2" Thick Plate: WP 81.69
lbf
ft
2
54in 5⋅ ft( )⋅:= WP 1.838 kip=
Weight of 2" Thick Gusset Plates: WGP 81.69
lbf
ft
2
⋅ 14 in⋅ 14⋅ in⋅( ) 0.65⋅[ ]⋅⎡
⎢
⎣
⎤
⎥
⎦
8⋅:= WGP 0.578 kip=
Weight of 2" Thick Interm. Plates: WIP 81.69
lbf
ft
2
⋅ 14 in⋅ 14⋅ in⋅( )⋅⎡
⎢
⎣
⎤
⎥
⎦
4⋅:= WIP 0.445 kip=
Total weight of Shield: WJIS Ww WP+ WGP+ WIP+( ) 1.1⋅:= WJIS 6.662 kip=
Design Load for support near wall: Pwall Ww 1.05⋅:= Pwall 3.355 kip=
Design Load for support at plate: Pplate
Ww
2
⎛
⎜
⎝
⎞
⎟
⎠
WP+ WGP+ WIP+
⎡
⎢
⎣
⎤
⎥
⎦
1.05⋅:= Pplate 4.681 kip=
___________________________________________________________________________________________________
2 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Calculations for Beam for Assembly No. 11 using formulas from Simple Beam No. 10 in AISC Steel Manual:
E 29000000psi:=
Fy 36ksi:=
P 1.8kip:=
a 31in:= l 71in:=
b 21in:=
Properties of the beam section:
I 11.3in
4
:= S 5.46in
3
:=
Area 3.83in
2
:=
R1
P
l
⎛
⎜
⎝
⎞
⎟
⎠
l a− b+( )⋅:= R1 1.546 kip=
R2
P
l
⎛
⎜
⎝
⎞
⎟
⎠
l b− a+( )⋅:= R2 2.054 kip=
Vmax max R1 R2,( ):=
Shear Stress Check:
Fv 0.4 Fy⋅:= Vmax 2.054 kip= Av 1.16in( )
2
:= fv
Vmax
Av
:=
fv 1.526 ksi= < Fv 14.4 ksi= Shear IR =
fv
Fv
0.106= < 1.0 OK
__________________________________________________________________________________________________
Bending Stress Check:
Mmax P max a b,( )⋅:= Mmax 55.8 kip in⋅= Fb 0.6 Fy⋅:= fb
Mmax
S
:=
fb 10.2198 ksi= < Fb 21.6 ksi= Bending IR =
fb
Fb
0.473= < 1.0 OK
__________________________________________________________________________________________________
Check Local Stresses - Web Crippling for Interior Loading
Inputs
tw 0.28in:= k 0.6875in:= N 4.0in:=
FLocal max R1 R2,( ):=
Calculation:
Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:=
LMax 40.635 kip= > FLocal 2.054 kip=
Local IR for Web Crippling =
FLocal
LMax
0.051= < 1.0 OK Therefore, no stiffener is required.
3 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Calculations for loading on Assembly No. 8 as Simple Beam No. 5 in AISC Steel Manual:
E 29000000psi:=
Fy 36ksi:=
w 0.078
kip
in
:=
a 60in:= l 70in:=
Properties of the beam section:
I 11.3in
4
:= S 5.46in
3
:=
Area 3.83in
2
:=
R1
w a⋅
2 l⋅
2l a−( )⋅:=
R1 2.674 kip=
R2
w a
2
⋅
2 l⋅
:= R2 2.006 kip=
Shear Stress Check:
Fv 0.52 Fy⋅:= Vmax max R1 R2,( ):= Vmax 2.674 kip= Av 1.16in( )
2
:=
fv
Vmax
Av
:= fv 1.987 ksi= < Fv 18.72 ksi= OK
Bending Stress Check:
Mmax
R1
2
2 w⋅
:=
Mmax 45.845 in·kip= Fb 0.66 Fy⋅:=
fb
Mmax
S
:= fb 8.3965 ksi= < Fb 23.76 ksi= OK
Check Local Stresses - Web Crippling for Interior Loading
Inputs
tw 0.28in:= k 0.6875in:= N 4.0in:=
FLocal max R1 R2,( ):= FLocal 2.674 kip=
Calculation:
Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:=
LMax 40.635 kip= > FLocal 2.674 kip=
Local IR for Web Crippling =
FLocal
LMax
0.066= < 1.0 OK Therefore, no stiffener is required.
4 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Calculations for loading on Assembly No. 4 as Column:
Per Steel Manual, a W4x13 with KL=7 has a capacity of 57 kips.
The maximum column load is 2.674 kips. Therefore, the W4x13 is okay as a column.
Check for Combined Bending and Axial Loading:
fa 2.674kip:= fb 55.8kip in⋅:=
Fa 57kip:=
Fb 5.46in
3
36ksi 0.6⋅( )⋅:= Fb 117.936 kip in⋅=
Combined Stresses:
fa
Fa
⎛
⎜
⎝
⎞
⎟
⎠
fb
Fb
⎛
⎜
⎝
⎞
⎟
⎠
+ 0.52= < 1.0
___________________________________________________________________________________________________
Check Local Stresses - Web Crippling for Interior Loading
Inputs
tw 0.28in:= k 0.6875in:= N 2.0in:=
FLocal 1.8kip:=
Calculation:
Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:=
LMax 25.515 kip= > FLocal 1.8kip=
Local IR for Web Crippling =
FLocal
LMax
0.071= < 1.0 OK Therefore, no stiffener is required.
5 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Calculations for welded connection:
kip 1000 lb⋅:= ksi 1000
lb
in
2
⋅:= CHECK WELD BETWEEN ITEM ___ AND ___ Ref: 14
Axis 1-1 = Z Dir., Axis 2-2 = Y Dir., Axis 3-3 = X Dir.
bf 4.06 in⋅:= d 4.16 in⋅:= tw 0.28 in⋅:= tf 0.345in:=
Weld electrode minimum tensile
strength for E70XX.
Fu 70 ksi⋅:=
Base metal yield strength for
ASTM A36 Gr. A @ 100° F.
Fy 36.0 ksi⋅:=
Forces and Moments on weld group:
F1 0.0 kip⋅:= F2 0 kip⋅:= F3 0.0 kip⋅:=
M1 0.0 kip⋅ in⋅:= M2 0.0 kip⋅ in⋅:= M3 55.8 kip⋅ in⋅:=
Weld group section properties:
AW2 d tf− tf−( ) 2⋅:= AW2 0.578 ft=
JW
2 bf
3
⋅ 6 bf⋅ d
2
⋅+ d
3
+
6
:= JW 0.061 ft
3
= AW3 bf 4⋅( ) bf tw−( )2[ ]+:= AW3 1.983 ft=
AW1 AW2 AW3+:= AW1 2.562 ft=
SW2 2
bf
2
3
⎛
⎜
⎝
⎞
⎟
⎠
⋅ bf d⋅( )+:= SW2 0.194 ft
2
=
C2
d
2
:= C3
bf
2
:=
SW3 2 bf⋅ d⋅( )
d
2
3
⎛
⎜
⎝
⎞
⎟
⎠
+:= SW3 0.275 ft
2
=
Forces on weld:
f2
F2
AW2
⎛
⎜
⎝
⎞
⎟
⎠
M1 C2⋅
JW
⎛
⎜
⎝
⎞
⎟
⎠
+:= f3
F3
AW3
⎛
⎜
⎝
⎞
⎟
⎠
M1 C3⋅
JW
⎛
⎜
⎝
⎞
⎟
⎠
+:=
f1
F1
AW1
⎛
⎜
⎝
⎞
⎟
⎠
M3
SW3
⎛
⎜
⎝
⎞
⎟
⎠
+
M2
SW2
⎛
⎜
⎝
⎞
⎟
⎠
+:=
f1 1.411
kip
in
= f2 0
kip
in
=
f3 0
kip
in
=
fr f1
2
f2
2
+ f3
2
+:= fr 1.411
kip
in
=
Weld size required:
wbase_metal
fr
0.4 Fy⋅
:= wbase_metal 0.098 in= wweld_metal
fr
0.707 0.3⋅ Fu⋅
:= wweld_metal 0.095 in=
wprovided 0.1875in:= IR
max wbase_metal wweld_metal,( )
wprovided
:= IR 0.523= <1.0 ∴ OK
6 of 7
Calculation for Temporary Support of Jet
Impingment Shield
Engineering Evaluation
Bellefonte Nuclear Plant
Calculations for bolted connection:
MBolt 55.8kip in⋅:=
Capacity of 1/2" Bolt: FBolt_t 8.6kip:= Plate Thickness: TPl 0.75in:=
Section Modulus of Front of Plate: SF_Pl
4.5in TPl( )2
⋅
6
:= SF_Pl 0.422 in
3
=
Section Modulus of Rear of Plate: SR_Pl
3.38in TPl( )2
⋅
6
:= SR_Pl 0.317 in
3
=
Moment Capacity of Front of Plate: MF_Pl SF_Pl 36ksi 0.75⋅( )⋅:= MF_Pl 11.391 kip in⋅=
Moment Capacity of Rear of Plate: MR_Pl SR_Pl 36ksi 0.75⋅( )⋅:= MR_Pl 8.556 kip in⋅=
7 of 7
36 36
6.3 lbs.
36.00 Pieces 45.00 Pieces 1.35 lbs.
Total: 1130.91 lbs.
Temporary Support for Jet Impingement Shield attached to shield wall in Reactor Building No. 2 at Approx. Az.75 at Floor El. 622'.
Purpose for Ordering Material:
BILL OF MATERIAL
Assm'y No. of Lin. Feet No. of sq. ft. No. Required
No. W4x13 C5x6.7 L‐2x2x1/4 1/2" Plate 1/2"x1 3/4" Bolts 1/2"x1 1/2" Bolts 1/2" Hex Nut 1/2" Washer
1 4.50 0.00 0.00 1.00 0 0 0 0
2 5.50 0.00 0.00 0.80 0 0 0 0
3 0.00 0.00 8.00 0.00 0 0 0 0
4 5.00 0.00 0.00 1.00 0 0 0 0
5 13.00 0.00 0.00 0.00 0 0 0 0
6 0.00 0.00 0.00 0.00 28 0 24 24
7 0.00 0.00 0.00 0.00 0 12 12 12
8 7.00 7.00 0.00 0.00 0 0 0 0
9 3.33 0.00 0.00 1.00 0 0 0 0
10 0.00 0.00 12.20 0.00 0 0 0 0
11 7.10 0.00 0.00 0.00 0 0 0 0
12 0.00 0.00 8.33 0.25 0 0 0 0
13 0.00 0.00 4.00 0.00 0 0 0 0
14 4.75 0.00 0.00 1.00 0 0 0 0
15 0.00 0.00 7.00 0.00 0 0 0 0
16 0.00 0.00 12.40 0.00 0 0 0 0
Total: 50.18 7.00 51.93 5.05 28 12
Materials to be Ordered
Materials Description Required Qty. to be ordered including Extra Weight
W4x13: 50.18 Lin. Feet 70.00 Lin. Feet 910 lbs.
C5x6.7: 7.00 Lin. Feet 7.00 Lin. Feet 46.9 lbs.
L‐2x2x14: 51.93 Lin. Feet 70.00 Lin. Feet 223.3 lbs.
1/2" Thick Plate: 5.05 Sq. Feet 8.00 Sq. Feet 163.36 lbs.
1/2" x 1 3/4" Lg. Hex Head Bolt: 28.00 Pieces 30.00 Pieces
1/2" x 1 1/2" Lg. Hex Head Bolt: 12.00 Pieces 15.00 Pieces 3 lbs.
36.00 Pieces 45.001/2" Hex Nut: Pieces Included with Hex Bolt
1/2" Washer:
SI33_Evaluation_Temp_Support_Jet_Imping
SI33_Evaluation_Temp_Support_Jet_Imping
SI33_Evaluation_Temp_Support_Jet_Imping
SI33_Evaluation_Temp_Support_Jet_Imping
SI33_Evaluation_Temp_Support_Jet_Imping

More Related Content

Viewers also liked

Aux_Bldg_Cover_Load_Capacity
Aux_Bldg_Cover_Load_CapacityAux_Bldg_Cover_Load_Capacity
Aux_Bldg_Cover_Load_CapacityKevin Wilson
 
SI33_Jet_Impingement_Shield_Sketches
SI33_Jet_Impingement_Shield_SketchesSI33_Jet_Impingement_Shield_Sketches
SI33_Jet_Impingement_Shield_SketchesKevin Wilson
 
SI71_Grating_Capacity_Turbine_Bldg
SI71_Grating_Capacity_Turbine_BldgSI71_Grating_Capacity_Turbine_Bldg
SI71_Grating_Capacity_Turbine_BldgKevin Wilson
 
Safety_Trailer_Addition
Safety_Trailer_AdditionSafety_Trailer_Addition
Safety_Trailer_AdditionKevin Wilson
 
U2_OUTAGE_BLDG_7-16-15
U2_OUTAGE_BLDG_7-16-15U2_OUTAGE_BLDG_7-16-15
U2_OUTAGE_BLDG_7-16-15Kevin Wilson
 
Mathematics and applications of the Hartley and Fourier Transforms
Mathematics and applications of the Hartley and Fourier TransformsMathematics and applications of the Hartley and Fourier Transforms
Mathematics and applications of the Hartley and Fourier Transformsmmjalbiaty
 
Calculation_Tubelock_Load_Capacity
Calculation_Tubelock_Load_CapacityCalculation_Tubelock_Load_Capacity
Calculation_Tubelock_Load_CapacityKevin Wilson
 
SI63_Hanger_Bracket_Evaluation
SI63_Hanger_Bracket_EvaluationSI63_Hanger_Bracket_Evaluation
SI63_Hanger_Bracket_EvaluationKevin Wilson
 
Mac protocol for wmn
Mac protocol for wmnMac protocol for wmn
Mac protocol for wmnmmjalbiaty
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...mmjalbiaty
 
Wireless sensor network lifetime constraints
Wireless sensor network lifetime constraintsWireless sensor network lifetime constraints
Wireless sensor network lifetime constraintsmmjalbiaty
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom ConceptsImage Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom Conceptsmmjalbiaty
 

Viewers also liked (15)

Aux_Bldg_Cover_Load_Capacity
Aux_Bldg_Cover_Load_CapacityAux_Bldg_Cover_Load_Capacity
Aux_Bldg_Cover_Load_Capacity
 
SI33_Jet_Impingement_Shield_Sketches
SI33_Jet_Impingement_Shield_SketchesSI33_Jet_Impingement_Shield_Sketches
SI33_Jet_Impingement_Shield_Sketches
 
SI51_PACK
SI51_PACKSI51_PACK
SI51_PACK
 
SI71_Grating_Capacity_Turbine_Bldg
SI71_Grating_Capacity_Turbine_BldgSI71_Grating_Capacity_Turbine_Bldg
SI71_Grating_Capacity_Turbine_Bldg
 
Safety_Trailer_Addition
Safety_Trailer_AdditionSafety_Trailer_Addition
Safety_Trailer_Addition
 
U2_OUTAGE_BLDG_7-16-15
U2_OUTAGE_BLDG_7-16-15U2_OUTAGE_BLDG_7-16-15
U2_OUTAGE_BLDG_7-16-15
 
Mathematics and applications of the Hartley and Fourier Transforms
Mathematics and applications of the Hartley and Fourier TransformsMathematics and applications of the Hartley and Fourier Transforms
Mathematics and applications of the Hartley and Fourier Transforms
 
Cv for solomon n
Cv for solomon nCv for solomon n
Cv for solomon n
 
Calculation_Tubelock_Load_Capacity
Calculation_Tubelock_Load_CapacityCalculation_Tubelock_Load_Capacity
Calculation_Tubelock_Load_Capacity
 
SI63_Hanger_Bracket_Evaluation
SI63_Hanger_Bracket_EvaluationSI63_Hanger_Bracket_Evaluation
SI63_Hanger_Bracket_Evaluation
 
Mac protocol for wmn
Mac protocol for wmnMac protocol for wmn
Mac protocol for wmn
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
 
Wireless sensor network lifetime constraints
Wireless sensor network lifetime constraintsWireless sensor network lifetime constraints
Wireless sensor network lifetime constraints
 
Ivr system
Ivr systemIvr system
Ivr system
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom ConceptsImage Interpolation Techniques with Optical and Digital Zoom Concepts
Image Interpolation Techniques with Optical and Digital Zoom Concepts
 

Similar to SI33_Evaluation_Temp_Support_Jet_Imping

12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...Hossam Shafiq II
 
MSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdfMSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdfZin Soul
 
Analysis and design of high rise rc building under seismic load
Analysis and design of high rise rc building under seismic loadAnalysis and design of high rise rc building under seismic load
Analysis and design of high rise rc building under seismic loadHtinKyawHloon1
 
Design of security room
Design of security roomDesign of security room
Design of security roomNabendu Lodh
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Unit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxUnit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxRESHMAFEGADE
 
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxBaf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxDES Engineers Ltd
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)sufiyan shaikh
 
Math cad prime ncees excercise 444 solution
Math cad prime   ncees excercise 444 solutionMath cad prime   ncees excercise 444 solution
Math cad prime ncees excercise 444 solutionJulio Banks
 
Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latestVedachalam Mani
 
App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfpingu111
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorberEcway Technologies
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRobin Arthur Flores
 

Similar to SI33_Evaluation_Temp_Support_Jet_Imping (20)

Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
 
MSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdfMSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdf
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
Analysis and design of high rise rc building under seismic load
Analysis and design of high rise rc building under seismic loadAnalysis and design of high rise rc building under seismic load
Analysis and design of high rise rc building under seismic load
 
Design of security room
Design of security roomDesign of security room
Design of security room
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Mcb c60 h dc
Mcb c60 h dcMcb c60 h dc
Mcb c60 h dc
 
Unit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptxUnit 4 Class Notes -2019 pat..pptx
Unit 4 Class Notes -2019 pat..pptx
 
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptxBaf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
Baf Shaheen College (B+12) ETABS Dynamic Analysis.pptx
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
psad 1.pdf
psad 1.pdfpsad 1.pdf
psad 1.pdf
 
gantry crane report
gantry crane reportgantry crane report
gantry crane report
 
Math cad prime ncees excercise 444 solution
Math cad prime   ncees excercise 444 solutionMath cad prime   ncees excercise 444 solution
Math cad prime ncees excercise 444 solution
 
Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latest
 
App E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdfApp E3 - Monorail System Calc - B.pdf
App E3 - Monorail System Calc - B.pdf
 
Piezo electric power generating shock absorber
Piezo electric power generating shock absorberPiezo electric power generating shock absorber
Piezo electric power generating shock absorber
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 

More from Kevin Wilson

Proposal Conemaugh Bottom Supports
Proposal Conemaugh Bottom SupportsProposal Conemaugh Bottom Supports
Proposal Conemaugh Bottom SupportsKevin Wilson
 
TEE_STIRRUP Standard
TEE_STIRRUP StandardTEE_STIRRUP Standard
TEE_STIRRUP StandardKevin Wilson
 
Proposal_Coutant_SW_Upgrade
Proposal_Coutant_SW_UpgradeProposal_Coutant_SW_Upgrade
Proposal_Coutant_SW_UpgradeKevin Wilson
 
47A400-11-99_Rev002
47A400-11-99_Rev00247A400-11-99_Rev002
47A400-11-99_Rev002Kevin Wilson
 
74-2RHR-R059_Rev002
74-2RHR-R059_Rev00274-2RHR-R059_Rev002
74-2RHR-R059_Rev002Kevin Wilson
 
Exploded_View_Reedy_Motor3
Exploded_View_Reedy_Motor3Exploded_View_Reedy_Motor3
Exploded_View_Reedy_Motor3Kevin Wilson
 
SI58_SKETCHES_EVAL
SI58_SKETCHES_EVALSI58_SKETCHES_EVAL
SI58_SKETCHES_EVALKevin Wilson
 
Kelly_Building_Sketches
Kelly_Building_SketchesKelly_Building_Sketches
Kelly_Building_SketchesKevin Wilson
 

More from Kevin Wilson (13)

Proposal Conemaugh Bottom Supports
Proposal Conemaugh Bottom SupportsProposal Conemaugh Bottom Supports
Proposal Conemaugh Bottom Supports
 
TEE_STIRRUP Standard
TEE_STIRRUP StandardTEE_STIRRUP Standard
TEE_STIRRUP Standard
 
Proposal_Coutant_SW_Upgrade
Proposal_Coutant_SW_UpgradeProposal_Coutant_SW_Upgrade
Proposal_Coutant_SW_Upgrade
 
02964-4E9256-00
02964-4E9256-0002964-4E9256-00
02964-4E9256-00
 
47A400-11-99_Rev002
47A400-11-99_Rev00247A400-11-99_Rev002
47A400-11-99_Rev002
 
74-2RHR-R059_Rev002
74-2RHR-R059_Rev00274-2RHR-R059_Rev002
74-2RHR-R059_Rev002
 
2-01A-312_Rev002
2-01A-312_Rev0022-01A-312_Rev002
2-01A-312_Rev002
 
Exploded_View_Reedy_Motor3
Exploded_View_Reedy_Motor3Exploded_View_Reedy_Motor3
Exploded_View_Reedy_Motor3
 
JD317-01-Pack
JD317-01-PackJD317-01-Pack
JD317-01-Pack
 
SI58_SKETCHES_EVAL
SI58_SKETCHES_EVALSI58_SKETCHES_EVAL
SI58_SKETCHES_EVAL
 
Kelly_Building_Sketches
Kelly_Building_SketchesKelly_Building_Sketches
Kelly_Building_Sketches
 
SK-FE038_DWG_PACK
SK-FE038_DWG_PACKSK-FE038_DWG_PACK
SK-FE038_DWG_PACK
 
S1
S1S1
S1
 

SI33_Evaluation_Temp_Support_Jet_Imping

  • 1. ENGINEERING EVALUATION Evaluator: Kevin Wilson – Field Engineer Date: 5/24/11 Unit: 2 Building: Reactor Elevation: 622’ Location: On A Side D-Ring at Az. 65 References: 4RW0550-X2-02 - Structural Steel Primary Piping Jet Impingement Barriers Problem Description: The Jet Impingement Shield is suspended by cables and a chain hoist. Therefore, it is unstable. Evaluation Summary: The shield is attached with a base plate to the Secondary Shield (D-Ring) Wall. The base plate is tack welded to the W14 which is part of the shield. This weld is not strong enough to hold the W14 and shield to the base plate. The options are: 1. Take the shield loose and raise it out of the D-Ring and place it on the floor at Elevation 700. 2. Temporarily Support the shield from the floor. My recommendation is for a temporary support system. I have designed a temporary support system for the shield. There are five sketches detailing the design along with a Bill of Material attached. 1 of 7
  • 2. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Base Units: ksi 1000 lbf in 2 ⋅:= kip 1000 lbf⋅:= deg π 180 rad⋅≡ Weight of Shield and Plate and Design Load: Weight of W14x26: Ww 426 lbf ft 7.5⋅ ft:= Ww 3.195 kip= Weight of 2" Thick Plate: WP 81.69 lbf ft 2 54in 5⋅ ft( )⋅:= WP 1.838 kip= Weight of 2" Thick Gusset Plates: WGP 81.69 lbf ft 2 ⋅ 14 in⋅ 14⋅ in⋅( ) 0.65⋅[ ]⋅⎡ ⎢ ⎣ ⎤ ⎥ ⎦ 8⋅:= WGP 0.578 kip= Weight of 2" Thick Interm. Plates: WIP 81.69 lbf ft 2 ⋅ 14 in⋅ 14⋅ in⋅( )⋅⎡ ⎢ ⎣ ⎤ ⎥ ⎦ 4⋅:= WIP 0.445 kip= Total weight of Shield: WJIS Ww WP+ WGP+ WIP+( ) 1.1⋅:= WJIS 6.662 kip= Design Load for support near wall: Pwall Ww 1.05⋅:= Pwall 3.355 kip= Design Load for support at plate: Pplate Ww 2 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ WP+ WGP+ WIP+ ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ 1.05⋅:= Pplate 4.681 kip= ___________________________________________________________________________________________________ 2 of 7
  • 3. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Calculations for Beam for Assembly No. 11 using formulas from Simple Beam No. 10 in AISC Steel Manual: E 29000000psi:= Fy 36ksi:= P 1.8kip:= a 31in:= l 71in:= b 21in:= Properties of the beam section: I 11.3in 4 := S 5.46in 3 := Area 3.83in 2 := R1 P l ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ l a− b+( )⋅:= R1 1.546 kip= R2 P l ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ l b− a+( )⋅:= R2 2.054 kip= Vmax max R1 R2,( ):= Shear Stress Check: Fv 0.4 Fy⋅:= Vmax 2.054 kip= Av 1.16in( ) 2 := fv Vmax Av := fv 1.526 ksi= < Fv 14.4 ksi= Shear IR = fv Fv 0.106= < 1.0 OK __________________________________________________________________________________________________ Bending Stress Check: Mmax P max a b,( )⋅:= Mmax 55.8 kip in⋅= Fb 0.6 Fy⋅:= fb Mmax S := fb 10.2198 ksi= < Fb 21.6 ksi= Bending IR = fb Fb 0.473= < 1.0 OK __________________________________________________________________________________________________ Check Local Stresses - Web Crippling for Interior Loading Inputs tw 0.28in:= k 0.6875in:= N 4.0in:= FLocal max R1 R2,( ):= Calculation: Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:= LMax 40.635 kip= > FLocal 2.054 kip= Local IR for Web Crippling = FLocal LMax 0.051= < 1.0 OK Therefore, no stiffener is required. 3 of 7
  • 4. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Calculations for loading on Assembly No. 8 as Simple Beam No. 5 in AISC Steel Manual: E 29000000psi:= Fy 36ksi:= w 0.078 kip in := a 60in:= l 70in:= Properties of the beam section: I 11.3in 4 := S 5.46in 3 := Area 3.83in 2 := R1 w a⋅ 2 l⋅ 2l a−( )⋅:= R1 2.674 kip= R2 w a 2 ⋅ 2 l⋅ := R2 2.006 kip= Shear Stress Check: Fv 0.52 Fy⋅:= Vmax max R1 R2,( ):= Vmax 2.674 kip= Av 1.16in( ) 2 := fv Vmax Av := fv 1.987 ksi= < Fv 18.72 ksi= OK Bending Stress Check: Mmax R1 2 2 w⋅ := Mmax 45.845 in·kip= Fb 0.66 Fy⋅:= fb Mmax S := fb 8.3965 ksi= < Fb 23.76 ksi= OK Check Local Stresses - Web Crippling for Interior Loading Inputs tw 0.28in:= k 0.6875in:= N 4.0in:= FLocal max R1 R2,( ):= FLocal 2.674 kip= Calculation: Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:= LMax 40.635 kip= > FLocal 2.674 kip= Local IR for Web Crippling = FLocal LMax 0.066= < 1.0 OK Therefore, no stiffener is required. 4 of 7
  • 5. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Calculations for loading on Assembly No. 4 as Column: Per Steel Manual, a W4x13 with KL=7 has a capacity of 57 kips. The maximum column load is 2.674 kips. Therefore, the W4x13 is okay as a column. Check for Combined Bending and Axial Loading: fa 2.674kip:= fb 55.8kip in⋅:= Fa 57kip:= Fb 5.46in 3 36ksi 0.6⋅( )⋅:= Fb 117.936 kip in⋅= Combined Stresses: fa Fa ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ fb Fb ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ + 0.52= < 1.0 ___________________________________________________________________________________________________ Check Local Stresses - Web Crippling for Interior Loading Inputs tw 0.28in:= k 0.6875in:= N 2.0in:= FLocal 1.8kip:= Calculation: Maximum Interior Load = LMax 0.75Fy tw⋅ N 2 k⋅( )+[ ]⋅:= LMax 25.515 kip= > FLocal 1.8kip= Local IR for Web Crippling = FLocal LMax 0.071= < 1.0 OK Therefore, no stiffener is required. 5 of 7
  • 6. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Calculations for welded connection: kip 1000 lb⋅:= ksi 1000 lb in 2 ⋅:= CHECK WELD BETWEEN ITEM ___ AND ___ Ref: 14 Axis 1-1 = Z Dir., Axis 2-2 = Y Dir., Axis 3-3 = X Dir. bf 4.06 in⋅:= d 4.16 in⋅:= tw 0.28 in⋅:= tf 0.345in:= Weld electrode minimum tensile strength for E70XX. Fu 70 ksi⋅:= Base metal yield strength for ASTM A36 Gr. A @ 100° F. Fy 36.0 ksi⋅:= Forces and Moments on weld group: F1 0.0 kip⋅:= F2 0 kip⋅:= F3 0.0 kip⋅:= M1 0.0 kip⋅ in⋅:= M2 0.0 kip⋅ in⋅:= M3 55.8 kip⋅ in⋅:= Weld group section properties: AW2 d tf− tf−( ) 2⋅:= AW2 0.578 ft= JW 2 bf 3 ⋅ 6 bf⋅ d 2 ⋅+ d 3 + 6 := JW 0.061 ft 3 = AW3 bf 4⋅( ) bf tw−( )2[ ]+:= AW3 1.983 ft= AW1 AW2 AW3+:= AW1 2.562 ft= SW2 2 bf 2 3 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ ⋅ bf d⋅( )+:= SW2 0.194 ft 2 = C2 d 2 := C3 bf 2 := SW3 2 bf⋅ d⋅( ) d 2 3 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ +:= SW3 0.275 ft 2 = Forces on weld: f2 F2 AW2 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ M1 C2⋅ JW ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ +:= f3 F3 AW3 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ M1 C3⋅ JW ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ +:= f1 F1 AW1 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ M3 SW3 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ + M2 SW2 ⎛ ⎜ ⎝ ⎞ ⎟ ⎠ +:= f1 1.411 kip in = f2 0 kip in = f3 0 kip in = fr f1 2 f2 2 + f3 2 +:= fr 1.411 kip in = Weld size required: wbase_metal fr 0.4 Fy⋅ := wbase_metal 0.098 in= wweld_metal fr 0.707 0.3⋅ Fu⋅ := wweld_metal 0.095 in= wprovided 0.1875in:= IR max wbase_metal wweld_metal,( ) wprovided := IR 0.523= <1.0 ∴ OK 6 of 7
  • 7. Calculation for Temporary Support of Jet Impingment Shield Engineering Evaluation Bellefonte Nuclear Plant Calculations for bolted connection: MBolt 55.8kip in⋅:= Capacity of 1/2" Bolt: FBolt_t 8.6kip:= Plate Thickness: TPl 0.75in:= Section Modulus of Front of Plate: SF_Pl 4.5in TPl( )2 ⋅ 6 := SF_Pl 0.422 in 3 = Section Modulus of Rear of Plate: SR_Pl 3.38in TPl( )2 ⋅ 6 := SR_Pl 0.317 in 3 = Moment Capacity of Front of Plate: MF_Pl SF_Pl 36ksi 0.75⋅( )⋅:= MF_Pl 11.391 kip in⋅= Moment Capacity of Rear of Plate: MR_Pl SR_Pl 36ksi 0.75⋅( )⋅:= MR_Pl 8.556 kip in⋅= 7 of 7
  • 8. 36 36 6.3 lbs. 36.00 Pieces 45.00 Pieces 1.35 lbs. Total: 1130.91 lbs. Temporary Support for Jet Impingement Shield attached to shield wall in Reactor Building No. 2 at Approx. Az.75 at Floor El. 622'. Purpose for Ordering Material: BILL OF MATERIAL Assm'y No. of Lin. Feet No. of sq. ft. No. Required No. W4x13 C5x6.7 L‐2x2x1/4 1/2" Plate 1/2"x1 3/4" Bolts 1/2"x1 1/2" Bolts 1/2" Hex Nut 1/2" Washer 1 4.50 0.00 0.00 1.00 0 0 0 0 2 5.50 0.00 0.00 0.80 0 0 0 0 3 0.00 0.00 8.00 0.00 0 0 0 0 4 5.00 0.00 0.00 1.00 0 0 0 0 5 13.00 0.00 0.00 0.00 0 0 0 0 6 0.00 0.00 0.00 0.00 28 0 24 24 7 0.00 0.00 0.00 0.00 0 12 12 12 8 7.00 7.00 0.00 0.00 0 0 0 0 9 3.33 0.00 0.00 1.00 0 0 0 0 10 0.00 0.00 12.20 0.00 0 0 0 0 11 7.10 0.00 0.00 0.00 0 0 0 0 12 0.00 0.00 8.33 0.25 0 0 0 0 13 0.00 0.00 4.00 0.00 0 0 0 0 14 4.75 0.00 0.00 1.00 0 0 0 0 15 0.00 0.00 7.00 0.00 0 0 0 0 16 0.00 0.00 12.40 0.00 0 0 0 0 Total: 50.18 7.00 51.93 5.05 28 12 Materials to be Ordered Materials Description Required Qty. to be ordered including Extra Weight W4x13: 50.18 Lin. Feet 70.00 Lin. Feet 910 lbs. C5x6.7: 7.00 Lin. Feet 7.00 Lin. Feet 46.9 lbs. L‐2x2x14: 51.93 Lin. Feet 70.00 Lin. Feet 223.3 lbs. 1/2" Thick Plate: 5.05 Sq. Feet 8.00 Sq. Feet 163.36 lbs. 1/2" x 1 3/4" Lg. Hex Head Bolt: 28.00 Pieces 30.00 Pieces 1/2" x 1 1/2" Lg. Hex Head Bolt: 12.00 Pieces 15.00 Pieces 3 lbs. 36.00 Pieces 45.001/2" Hex Nut: Pieces Included with Hex Bolt 1/2" Washer: