SlideShare a Scribd company logo
1 of 11
Ejercicios de algebra lineal
Espacios vectoriales-matriz de cambio
Sea 𝑉 = 𝑅2, 𝐹 = 𝑅, con las operaciones definidas por
𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1
𝑟 𝑥, 𝑦 = 𝑟 + 𝑟𝑥 − 1, 𝑟 + 𝑟𝑦 − 1
Analizar si V es un espacio vectorial.
Veamos si se verifican los 08 axiomas
A1. 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1
= 𝑥2 + 𝑥1 + 1, 𝑦2 + 𝑦1 + 1 = 𝑥2, 𝑦2 + 𝑥1, 𝑦1
A2. 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3
Por un lado
𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1 + 𝑥3, 𝑦3
= 𝑥1 + 𝑥2 + 1 + 𝑥3 + 1, 𝑦1 + 𝑦2 + 1 + 𝑦3 + 1
= 𝑥1 + 𝑥2 + 𝑥3 + 2, 𝑦1 + 𝑦2 + 𝑦3 + 2 (1)
Por otro lado
𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1, 𝑦1 + 𝑥2 + 𝑥3 + 1, 𝑦2 + 𝑦3 + 1
= 𝑥1 + 𝑥2 + 𝑥3 + 1 + 1, 𝑦1 + 𝑦2 + 𝑦3 + 1 + 1
= 𝑥1 + 𝑥2 + 𝑥3 + 2, 𝑦1 + 𝑦2 + 𝑦3 + 2 (2)
Comparando (1) y (2) se prueba la asociatividad.
A3. Existencia del elemento neutro. Sea 𝑎, 𝑏 el elemento neutro, se
debe verificar que
𝑥, 𝑦 + 𝑎, 𝑏 = 𝑥, 𝑦
𝑥 + 𝑎 + 1, 𝑦 + 𝑏 + 1 = 𝑥, 𝑦 ⟹ 𝑎, 𝑏 = (−1, −1)
A4. Existencia del elemento opuesto. Sea 𝑚, 𝑛 el elemento opuesto,
se debe verificar que
𝑥, 𝑦 + 𝑚, 𝑛 = −1, −1
𝑥 + 𝑚 + 1, 𝑦 + 𝑛 + 1 = −1, −1 ⟹ 𝑚, 𝑛 = −𝑥 − 2, −𝑦 − 2
A5. 1. 𝑥, 𝑦 = (𝑥, 𝑦)
1. 𝑥, 𝑦 = 1 + 𝑥 − 1,1 + 𝑦 − 1 = 𝑥, 𝑦
A6. 𝑟1. 𝑟2. 𝑥, 𝑦 = 𝑟1. 𝑟2 . 𝑥, 𝑦
𝑟1. 𝑟2. 𝑥, 𝑦 = 𝑟1. 𝑟2 + 𝑟2𝑥 − 1, 𝑟2 + 𝑟2𝑦 − 1
= 𝑟1 + 𝑟1 𝑟2 + 𝑟2𝑥 − 1 − 1, 𝑟1 + 𝑟1 𝑟2 + 𝑟2𝑦 − 1 − 1
= 𝑟1 + 𝑟1𝑟2 + 𝑟1𝑟2𝑥 − 𝑟1 − 1, 𝑟1 + 𝑟1𝑟2 + 𝑟1𝑟2𝑦 − 𝑟1 − 1
= 𝑟1𝑟2 + 𝑟1𝑟2𝑥 − 1, 𝑟1𝑟2 + 𝑟1𝑟2𝑦 − 1
= 𝑟1. 𝑟2 . 𝑥, 𝑦
A7. 𝑟1 + 𝑟2 . 𝑥, 𝑦 = 𝑟1 𝑥, 𝑦 + 𝑟2 𝑥, 𝑦
Por un lado
𝑟1 + 𝑟2 . 𝑥, 𝑦 = 𝑟1 + 𝑟2 + 𝑟1 + 𝑟2 𝑥 − 1, 𝑟1 + 𝑟2 + 𝑟1 + 𝑟2 𝑦 − 1 (∗)
Por otro lado
𝑟1 𝑥, 𝑦 + 𝑟2 𝑥, 𝑦 =
= 𝑟1 + 𝑟1𝑥 − 1, 𝑟1 + 𝑟1𝑦 − 1 + 𝑟2 + 𝑟2𝑥 − 1, 𝑟2 + 𝑟2𝑦 − 1
= 𝑟1 + 𝑟1𝑥 − 1 + 𝑟2 + 𝑟2𝑥 − 1 + 1, 𝑟1 + 𝑟1𝑦 − 1 + 𝑟2 + 𝑟2𝑦 − 1 + 1
= 𝑟1 + 𝑟2 + 𝑟1𝑥 + 𝑟2𝑥 − 1, 𝑟1 + 𝑟2 + 𝑟1𝑦 + 𝑟2𝑦 − 1 (∗∗)
Comparando (*) y (**) se ve que se cumple A7.
A8. 𝑟 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑟. 𝑥1, 𝑦1 + 𝑟. 𝑥2, 𝑦2
Por un lado
𝑟 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑟 𝑥1 + 𝑥2 + 1, +𝑦1 + 𝑦2 + 1
= 𝑟 + 𝑟 𝑥1 + 𝑥2 + 1 − 1, 𝑟 + 𝑟 𝑦1 + 𝑦2 + 1 − 1
= 2𝑟 + 𝑟𝑥1 + 𝑟𝑥2 − 1,2𝑟 + 𝑟𝑦1 + 𝑟𝑦2 − 1
Por otro lado
𝑟. 𝑥1, 𝑦1 + 𝑟. 𝑥2, 𝑦2 = 𝑟 + 𝑟𝑥1 − 1, 𝑟 + 𝑟𝑦1 − 1 + 𝑟 + 𝑟𝑥2 − 1, 𝑟 + 𝑟𝑦2 − 1
= 𝑟 + 𝑟𝑥1 − 1 + 𝑟 + 𝑟𝑥2 − 1 + 1, 𝑟 + 𝑟𝑦1 − 1 + 𝑟 + 𝑟𝑦2 − 1 + 1
= 2𝑟 + 𝑟𝑥1 + 𝑟𝑥2 − 1,2𝑟 + 𝑟𝑦1 + 𝑟𝑦2 − 1
Se cumplen los 08 axiomas.
Ejemplo 2
Sea 𝑉 = 𝑀2×2, 𝐹 = 𝑅, 𝑊 =
𝑥 𝑦
−𝑦 𝑧 ; 𝑥, 𝑦, 𝑧 ∈ 𝑅
a) Analizar si W es un subespacio de V.
b) Calcular la dimensión de W.
Veamos si W es cerrado con respecto a la operación +
Sean
𝑥 𝑦
−𝑦 𝑧 ,
𝑎 𝑏
−𝑏 𝑐
∈ 𝑊
𝑥 𝑦
−𝑦 𝑧 +
𝑎 𝑏
−𝑏 𝑐
=
𝑥 + 𝑎 𝑦 + 𝑏
−(𝑦 + 𝑏) 𝑧 + 𝑐
∈ 𝑊
Veamos si W es cerrado con respecto a la operación “.”
Sea 𝑟 ∈ 𝑅,
𝑥 𝑦
−𝑦 𝑧 ∈ 𝑊 ⟹ 𝑟.
𝑥 𝑦
−𝑦 𝑧 =
𝑟𝑥 𝑟𝑦
−𝑟𝑦 𝑟𝑧 ∈ 𝑊
Luego W es un subespacio de 𝑀2×2
Hallemos la dimensión de W
𝑥 𝑦
−𝑦 𝑧 =
𝑥 0
0 0
+
0 𝑦
−𝑦 0
+
0 0
0 𝑧
𝑥 𝑦
−𝑦 𝑧 = 𝑥
1 0
0 0
+ 𝑦
0 1
−1 0
+ 𝑧
0 0
0 1
Una base para W es
𝐵 =
1 0
0 0
,
0 1
−1 0
,
0 0
0 1
Luego
dim 𝑊 = 3
Que 𝐻1 𝑦 𝐻2 son sub espacios se procede como el ejemplo
anterior
Calculemos 𝐻 = 𝐻1 ∩ 𝐻2
𝐻1:
0 𝑦
𝑧 𝑤
, 𝐻2:
−𝑏 𝑎
𝑎 𝑏
Las matrices de H son de la forma
−0 𝑎
𝑎 0
= 𝑎
0 1
1 0
Una base para H es
𝐵 =
0 1
1 0
La dim 𝐻 = 1
Ejercicios
1. ¿Cuál es la dimensión del subespacio de 𝑹𝟑generado por los vectores
a) Los vectores 𝟐, 𝟏, −𝟏 , 𝟑, 𝟐, 𝟏 , 𝟏, 𝟎, −𝟑 ?
b) Los vectores 𝟏, −𝟏, 𝟐 , 𝟎, 𝟐, 𝟏 , −𝟏, 𝟎, 𝟏 ?
2. ¿Cuál es la dimensión del subespacio de 𝑹𝟒generado por los vectores
a) Los vectores 𝟏, 𝟎, 𝟐, −𝟏 , 𝟑, −𝟏, −𝟐, 𝟎 , 𝟏, −𝟏, −𝟔, 𝟐 , 𝟎, 𝟏, 𝟖. −𝟑 ?
b) Los vectores −
𝟏
𝟐
,
𝟏
𝟐
, 𝟑, −𝟏 ,
𝟏
𝟐
, 𝟎, 𝟏, −
𝟏
𝟐
, 𝟏, 𝟏, 𝟏𝟎, −𝟒 ?
3. Sea W el conjunto de todos los polinomios 𝑷𝒏 cuya segunda derivada es
cero; probar que W es un subespacio de 𝑷𝒏 y encontrar una base para W.
4. Sea W el conjunto de todos los polinomios 𝑷𝒏 tales que 𝒑 𝟏 = 𝒑′ 𝟏 = 𝟎;
probar que W es un subespacio de 𝑷𝒏 y encontrar una base para W.
5. Encontrar la dimensión del sub espacio de 𝑪 −𝝅, 𝝅 generado por los
vectores
𝟏, 𝐬𝐢𝐧 𝒙 , 𝐜𝐨𝐬 𝒙 , 𝒔𝒊𝒏𝟐𝒙, 𝒄𝒐𝒔𝟐𝒙
6. Sea 𝑩 = 𝟏, 𝒙.
𝟑
𝟐
𝒙𝟐 −
𝟏
𝟐
,
𝟓
𝟐
𝒙𝟑 −
𝟑
𝟐
𝒙
a) Demostrar que B es una base de 𝑷𝟑
b) Hallar las coordenadas de 𝒙𝟐 y𝒙𝟑.
7. Encontrar una base de 𝑹𝟒 con respecto a la cual el vector −𝟑, 𝟏, 𝟐 − 𝟏
tenga las coordenadas
𝟏
𝟏
𝟏
𝟏
.
8. Suponiendo que los vectores 𝜶𝟏, 𝜶𝟐, 𝜶𝟑 son linealmente independientes en
el espacio vectorial V, demostrar que 𝜶𝟏, +𝜶𝟐, 𝜶𝟏, +𝜶𝟑, 𝜶𝟐 +𝜶𝟑 son
linealmente independientes.

More Related Content

What's hot

2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
Komal Goyal
 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectors
Bed Dhakal
 

What's hot (20)

Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308
 
Linear Transformation Vector Matrices and Spaces
Linear Transformation Vector Matrices and SpacesLinear Transformation Vector Matrices and Spaces
Linear Transformation Vector Matrices and Spaces
 
S1 z(def., prop., y operaciones)
S1  z(def., prop., y operaciones)S1  z(def., prop., y operaciones)
S1 z(def., prop., y operaciones)
 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
 
Analytical Geometry of Three Dimensions
Analytical Geometry of Three DimensionsAnalytical Geometry of Three Dimensions
Analytical Geometry of Three Dimensions
 
Participación semana 9
Participación semana 9Participación semana 9
Participación semana 9
 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Per1 himpunan umn
Per1 himpunan umnPer1 himpunan umn
Per1 himpunan umn
 
Control 3 solucion
Control 3 solucionControl 3 solucion
Control 3 solucion
 
Linear sort
Linear sortLinear sort
Linear sort
 
Discrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of dualityDiscrete Mathematical Structures - Fundamentals of Logic - Principle of duality
Discrete Mathematical Structures - Fundamentals of Logic - Principle of duality
 
Physics M1 Vectors
Physics M1 VectorsPhysics M1 Vectors
Physics M1 Vectors
 
1.1 vectors
1.1   vectors1.1   vectors
1.1 vectors
 
Group Magic Labeling of Cycles With a Common Vertex
Group Magic Labeling of Cycles With a Common VertexGroup Magic Labeling of Cycles With a Common Vertex
Group Magic Labeling of Cycles With a Common Vertex
 
Estrada Index of stars
Estrada Index of starsEstrada Index of stars
Estrada Index of stars
 
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear EquationsTenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
 
Addition of Vectors | By Head to Tail Rule
Addition of Vectors | By Head to Tail RuleAddition of Vectors | By Head to Tail Rule
Addition of Vectors | By Head to Tail Rule
 
Use of quantifiers
Use of quantifiersUse of quantifiers
Use of quantifiers
 
Scalar product of vectors
Scalar product of vectorsScalar product of vectors
Scalar product of vectors
 

Similar to Ejercicios de algebra lineal

Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau
 

Similar to Ejercicios de algebra lineal (20)

lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
 
Gram-Schmidt process linear algbera.pptx
Gram-Schmidt process linear algbera.pptxGram-Schmidt process linear algbera.pptx
Gram-Schmidt process linear algbera.pptx
 
Least Squares
Least SquaresLeast Squares
Least Squares
 
lec12.ppt
lec12.pptlec12.ppt
lec12.ppt
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
A Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter ThreeA Course in Fuzzy Systems and Control Matlab Chapter Three
A Course in Fuzzy Systems and Control Matlab Chapter Three
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Motion in a plane
Motion in a planeMotion in a plane
Motion in a plane
 
Vector Algebra.pptx
Vector Algebra.pptxVector Algebra.pptx
Vector Algebra.pptx
 
Illustrating QE.pdf
Illustrating QE.pdfIllustrating QE.pdf
Illustrating QE.pdf
 
Applications of Multivariable differential Calculus.pptx
Applications of Multivariable differential Calculus.pptxApplications of Multivariable differential Calculus.pptx
Applications of Multivariable differential Calculus.pptx
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
 
Equation of a plane
Equation of a planeEquation of a plane
Equation of a plane
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 

Ejercicios de algebra lineal

  • 1. Ejercicios de algebra lineal Espacios vectoriales-matriz de cambio
  • 2. Sea 𝑉 = 𝑅2, 𝐹 = 𝑅, con las operaciones definidas por 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1 𝑟 𝑥, 𝑦 = 𝑟 + 𝑟𝑥 − 1, 𝑟 + 𝑟𝑦 − 1 Analizar si V es un espacio vectorial. Veamos si se verifican los 08 axiomas A1. 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1 = 𝑥2 + 𝑥1 + 1, 𝑦2 + 𝑦1 + 1 = 𝑥2, 𝑦2 + 𝑥1, 𝑦1 A2. 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 Por un lado 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1 + 𝑥2 + 1, 𝑦1 + 𝑦2 + 1 + 𝑥3, 𝑦3 = 𝑥1 + 𝑥2 + 1 + 𝑥3 + 1, 𝑦1 + 𝑦2 + 1 + 𝑦3 + 1 = 𝑥1 + 𝑥2 + 𝑥3 + 2, 𝑦1 + 𝑦2 + 𝑦3 + 2 (1)
  • 3. Por otro lado 𝑥1, 𝑦1 + 𝑥2, 𝑦2 + 𝑥3, 𝑦3 = 𝑥1, 𝑦1 + 𝑥2 + 𝑥3 + 1, 𝑦2 + 𝑦3 + 1 = 𝑥1 + 𝑥2 + 𝑥3 + 1 + 1, 𝑦1 + 𝑦2 + 𝑦3 + 1 + 1 = 𝑥1 + 𝑥2 + 𝑥3 + 2, 𝑦1 + 𝑦2 + 𝑦3 + 2 (2) Comparando (1) y (2) se prueba la asociatividad. A3. Existencia del elemento neutro. Sea 𝑎, 𝑏 el elemento neutro, se debe verificar que 𝑥, 𝑦 + 𝑎, 𝑏 = 𝑥, 𝑦 𝑥 + 𝑎 + 1, 𝑦 + 𝑏 + 1 = 𝑥, 𝑦 ⟹ 𝑎, 𝑏 = (−1, −1) A4. Existencia del elemento opuesto. Sea 𝑚, 𝑛 el elemento opuesto, se debe verificar que 𝑥, 𝑦 + 𝑚, 𝑛 = −1, −1 𝑥 + 𝑚 + 1, 𝑦 + 𝑛 + 1 = −1, −1 ⟹ 𝑚, 𝑛 = −𝑥 − 2, −𝑦 − 2
  • 4. A5. 1. 𝑥, 𝑦 = (𝑥, 𝑦) 1. 𝑥, 𝑦 = 1 + 𝑥 − 1,1 + 𝑦 − 1 = 𝑥, 𝑦 A6. 𝑟1. 𝑟2. 𝑥, 𝑦 = 𝑟1. 𝑟2 . 𝑥, 𝑦 𝑟1. 𝑟2. 𝑥, 𝑦 = 𝑟1. 𝑟2 + 𝑟2𝑥 − 1, 𝑟2 + 𝑟2𝑦 − 1 = 𝑟1 + 𝑟1 𝑟2 + 𝑟2𝑥 − 1 − 1, 𝑟1 + 𝑟1 𝑟2 + 𝑟2𝑦 − 1 − 1 = 𝑟1 + 𝑟1𝑟2 + 𝑟1𝑟2𝑥 − 𝑟1 − 1, 𝑟1 + 𝑟1𝑟2 + 𝑟1𝑟2𝑦 − 𝑟1 − 1 = 𝑟1𝑟2 + 𝑟1𝑟2𝑥 − 1, 𝑟1𝑟2 + 𝑟1𝑟2𝑦 − 1 = 𝑟1. 𝑟2 . 𝑥, 𝑦
  • 5. A7. 𝑟1 + 𝑟2 . 𝑥, 𝑦 = 𝑟1 𝑥, 𝑦 + 𝑟2 𝑥, 𝑦 Por un lado 𝑟1 + 𝑟2 . 𝑥, 𝑦 = 𝑟1 + 𝑟2 + 𝑟1 + 𝑟2 𝑥 − 1, 𝑟1 + 𝑟2 + 𝑟1 + 𝑟2 𝑦 − 1 (∗) Por otro lado 𝑟1 𝑥, 𝑦 + 𝑟2 𝑥, 𝑦 = = 𝑟1 + 𝑟1𝑥 − 1, 𝑟1 + 𝑟1𝑦 − 1 + 𝑟2 + 𝑟2𝑥 − 1, 𝑟2 + 𝑟2𝑦 − 1 = 𝑟1 + 𝑟1𝑥 − 1 + 𝑟2 + 𝑟2𝑥 − 1 + 1, 𝑟1 + 𝑟1𝑦 − 1 + 𝑟2 + 𝑟2𝑦 − 1 + 1 = 𝑟1 + 𝑟2 + 𝑟1𝑥 + 𝑟2𝑥 − 1, 𝑟1 + 𝑟2 + 𝑟1𝑦 + 𝑟2𝑦 − 1 (∗∗) Comparando (*) y (**) se ve que se cumple A7.
  • 6. A8. 𝑟 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑟. 𝑥1, 𝑦1 + 𝑟. 𝑥2, 𝑦2 Por un lado 𝑟 𝑥1, 𝑦1 + 𝑥2, 𝑦2 = 𝑟 𝑥1 + 𝑥2 + 1, +𝑦1 + 𝑦2 + 1 = 𝑟 + 𝑟 𝑥1 + 𝑥2 + 1 − 1, 𝑟 + 𝑟 𝑦1 + 𝑦2 + 1 − 1 = 2𝑟 + 𝑟𝑥1 + 𝑟𝑥2 − 1,2𝑟 + 𝑟𝑦1 + 𝑟𝑦2 − 1 Por otro lado 𝑟. 𝑥1, 𝑦1 + 𝑟. 𝑥2, 𝑦2 = 𝑟 + 𝑟𝑥1 − 1, 𝑟 + 𝑟𝑦1 − 1 + 𝑟 + 𝑟𝑥2 − 1, 𝑟 + 𝑟𝑦2 − 1 = 𝑟 + 𝑟𝑥1 − 1 + 𝑟 + 𝑟𝑥2 − 1 + 1, 𝑟 + 𝑟𝑦1 − 1 + 𝑟 + 𝑟𝑦2 − 1 + 1 = 2𝑟 + 𝑟𝑥1 + 𝑟𝑥2 − 1,2𝑟 + 𝑟𝑦1 + 𝑟𝑦2 − 1 Se cumplen los 08 axiomas.
  • 7. Ejemplo 2 Sea 𝑉 = 𝑀2×2, 𝐹 = 𝑅, 𝑊 = 𝑥 𝑦 −𝑦 𝑧 ; 𝑥, 𝑦, 𝑧 ∈ 𝑅 a) Analizar si W es un subespacio de V. b) Calcular la dimensión de W. Veamos si W es cerrado con respecto a la operación + Sean 𝑥 𝑦 −𝑦 𝑧 , 𝑎 𝑏 −𝑏 𝑐 ∈ 𝑊 𝑥 𝑦 −𝑦 𝑧 + 𝑎 𝑏 −𝑏 𝑐 = 𝑥 + 𝑎 𝑦 + 𝑏 −(𝑦 + 𝑏) 𝑧 + 𝑐 ∈ 𝑊 Veamos si W es cerrado con respecto a la operación “.” Sea 𝑟 ∈ 𝑅, 𝑥 𝑦 −𝑦 𝑧 ∈ 𝑊 ⟹ 𝑟. 𝑥 𝑦 −𝑦 𝑧 = 𝑟𝑥 𝑟𝑦 −𝑟𝑦 𝑟𝑧 ∈ 𝑊 Luego W es un subespacio de 𝑀2×2
  • 8. Hallemos la dimensión de W 𝑥 𝑦 −𝑦 𝑧 = 𝑥 0 0 0 + 0 𝑦 −𝑦 0 + 0 0 0 𝑧 𝑥 𝑦 −𝑦 𝑧 = 𝑥 1 0 0 0 + 𝑦 0 1 −1 0 + 𝑧 0 0 0 1 Una base para W es 𝐵 = 1 0 0 0 , 0 1 −1 0 , 0 0 0 1 Luego dim 𝑊 = 3
  • 9. Que 𝐻1 𝑦 𝐻2 son sub espacios se procede como el ejemplo anterior Calculemos 𝐻 = 𝐻1 ∩ 𝐻2 𝐻1: 0 𝑦 𝑧 𝑤 , 𝐻2: −𝑏 𝑎 𝑎 𝑏 Las matrices de H son de la forma −0 𝑎 𝑎 0 = 𝑎 0 1 1 0 Una base para H es 𝐵 = 0 1 1 0 La dim 𝐻 = 1
  • 10. Ejercicios 1. ¿Cuál es la dimensión del subespacio de 𝑹𝟑generado por los vectores a) Los vectores 𝟐, 𝟏, −𝟏 , 𝟑, 𝟐, 𝟏 , 𝟏, 𝟎, −𝟑 ? b) Los vectores 𝟏, −𝟏, 𝟐 , 𝟎, 𝟐, 𝟏 , −𝟏, 𝟎, 𝟏 ? 2. ¿Cuál es la dimensión del subespacio de 𝑹𝟒generado por los vectores a) Los vectores 𝟏, 𝟎, 𝟐, −𝟏 , 𝟑, −𝟏, −𝟐, 𝟎 , 𝟏, −𝟏, −𝟔, 𝟐 , 𝟎, 𝟏, 𝟖. −𝟑 ? b) Los vectores − 𝟏 𝟐 , 𝟏 𝟐 , 𝟑, −𝟏 , 𝟏 𝟐 , 𝟎, 𝟏, − 𝟏 𝟐 , 𝟏, 𝟏, 𝟏𝟎, −𝟒 ? 3. Sea W el conjunto de todos los polinomios 𝑷𝒏 cuya segunda derivada es cero; probar que W es un subespacio de 𝑷𝒏 y encontrar una base para W. 4. Sea W el conjunto de todos los polinomios 𝑷𝒏 tales que 𝒑 𝟏 = 𝒑′ 𝟏 = 𝟎; probar que W es un subespacio de 𝑷𝒏 y encontrar una base para W.
  • 11. 5. Encontrar la dimensión del sub espacio de 𝑪 −𝝅, 𝝅 generado por los vectores 𝟏, 𝐬𝐢𝐧 𝒙 , 𝐜𝐨𝐬 𝒙 , 𝒔𝒊𝒏𝟐𝒙, 𝒄𝒐𝒔𝟐𝒙 6. Sea 𝑩 = 𝟏, 𝒙. 𝟑 𝟐 𝒙𝟐 − 𝟏 𝟐 , 𝟓 𝟐 𝒙𝟑 − 𝟑 𝟐 𝒙 a) Demostrar que B es una base de 𝑷𝟑 b) Hallar las coordenadas de 𝒙𝟐 y𝒙𝟑. 7. Encontrar una base de 𝑹𝟒 con respecto a la cual el vector −𝟑, 𝟏, 𝟐 − 𝟏 tenga las coordenadas 𝟏 𝟏 𝟏 𝟏 . 8. Suponiendo que los vectores 𝜶𝟏, 𝜶𝟐, 𝜶𝟑 son linealmente independientes en el espacio vectorial V, demostrar que 𝜶𝟏, +𝜶𝟐, 𝜶𝟏, +𝜶𝟑, 𝜶𝟐 +𝜶𝟑 son linealmente independientes.