SlideShare a Scribd company logo
1 of 84
Polarization of Light:
from Basics to Instruments
(in less than 100 slides)
N. Manset
CFHT
N. Manset / CFHTPolarization of Light: Basics to 2
Introduction
• Part I: Different polarization states of light
• Part II: Stokes parameters, Mueller matrices
• Part III: Optical components for polarimetry
• Part IV: Polarimeters
• Part V: ESPaDOnS
N. Manset / CFHTPolarization of Light: Basics to 3
Part I: Different polarization
states of light
• Light as an electromagnetic wave
• Mathematical and graphical descriptions of
polarization
• Linear, circular, elliptical light
• Polarized, unpolarized light
N. Manset / CFHTPolarization of Light: Basics to 4
Light as an electromagnetic
wave
Light is a transverse wave,
an electromagnetic wave
Part I: Polarization states
N. Manset / CFHTPolarization of Light: Basics to 5
Mathematical description of
the EM wave
Light wave that propagates in the z direction:
y)t-kzcos(E)tz,(E
xt)-kzcos(E)tz,(E
0yy
0xx


εω
ω
+=
=
Part I: Polarization states
N. Manset / CFHTPolarization of Light: Basics to 6
Graphical representation of the
EM wave (I)
One can go from:
to the equation of an ellipse (using trigonometric
identities, squaring, adding):
εε 2
0y
y
0x
x
2
0y
y
2
0x
x
sincos
E
E
E
E
2
E
E
E
E
=−








+





y)t-kzcos(E)tz,(E
xt)-kzcos(E)tz,(E
0yy
0xx


εω
ω
+=
=
Part I: Polarization states
N. Manset / CFHTPolarization of Light: Basics to 7
Graphical representation of the
EM wave (II)
An ellipse can be represented
by 4 quantities:
1. size of minor axis
2. size of major axis
3. orientation (angle)
4. sense (CW, CCW)
Light can be represented by 4 quantities...
Part I: Polarization states
N. Manset / CFHTPolarization of Light: Basics to 8
Vertically polarized light
If there is no amplitude in x (E0x = 0), there is
only one component, in y (vertical).
y)t-kzcos(E)tz,(E
xt)-kzcos(E)tz,(E
0yy
0xx


εω
ω
+=
=
Part I: Polarization states, linear polarization
N. Manset / CFHTPolarization of Light: Basics to 9
Polarization at 45º (I)
If there is no phase difference (=0) and
E0x = E0y, then Ex = Ey
y)t-kzcos(E)tz,(E
xt)-kzcos(E)tz,(E
0yy
0xx


εω
ω
+=
=
Part I: Polarization states, linear polarization
N. Manset / CFHTPolarization of Light: Basics to 10
Polarization at 45º (II)
Part I: Polarization states, linear polarization
N. Manset / CFHTPolarization of Light: Basics to 11
Circular polarization (I)
If the phase difference is = 90º and E0x = E0y
then: Ex / E0x = cos Θ , Ey / E0y = sin Θ
and we get the equation of a circle:
1sincos
E
E
E
E 22
2
0y
y
2
0x
x
=Θ+Θ=








+





y)t-kzcos(E)tz,(E
xt)-kzcos(E)tz,(E
0yy
0xx


εω
ω
+=
=
Part I: Polarization states, circular polarization
N. Manset / CFHTPolarization of Light: Basics to 12
Circular polarization (II)
Part I: Polarization states, circular polarization
N. Manset / CFHTPolarization of Light: Basics to 13
Circular polarization (III)
Part I: Polarization states, circular polarization
N. Manset / CFHTPolarization of Light: Basics to 14
Circular polarization (IV)
Part I: Polarization states, circular polarization... see it now?
N. Manset / CFHTPolarization of Light: Basics to 15
Elliptical polarization
Part I: Polarization states, elliptical polarization
• Linear + circular polarization = elliptical polarization
N. Manset / CFHTPolarization of Light: Basics to 16
Unpolarized light
(natural light)
Part I: Polarization states, unpolarized light
N. Manset / CFHTPolarization of Light: Basics to 17
A cool Applet
Electromagnetic Wave
Location: http://www.uno.edu/~jsulliva/java/EMWave.html
Part I: Polarization states
N. Manset / CFHTPolarization of Light: Basics to 18
Part II: Stokes parameters and
Mueller matrices
• Stokes parameters, Stokes vector
• Stokes parameters for linear and circular
polarization
• Stokes parameters and polarization P
• Mueller matrices, Mueller calculus
• Jones formalism
N. Manset / CFHTPolarization of Light: Basics to 19
Stokes parameters
A tiny itsy-bitsy little bit of history...
• 1669: Bartholinus discovers double refraction in calcite
• 17th
– 19th
centuries: Huygens, Malus, Brewster, Biot,
Fresnel and Arago, Nicol...
• 19th
century: unsuccessful attempts to describe unpolarized
light in terms of amplitudes
• 1852: Sir George Gabriel Stokes took a very different
approach and discovered that polarization can be described in
terms of observables using an experimental definition
Part II: Stokes parameters
N. Manset / CFHTPolarization of Light: Basics to 20
Stokes parameters (I)
The polarization ellipse is only valid at a given instant of time
(function of time):
εsinεcos
(t)E
(t)E
(t)E
(t)E
2
(t)E
(t)E
(t)E
(t)E 2
0y
y
0x
x
2
0y
y
2
0x
x
=−








+





To get the Stokes parameters, do a time average (integral over
time) and a little bit of algebra...
Part II: Stokes parameters
N. Manset / CFHTPolarization of Light: Basics to 21
Stokes parameters (II)
described in terms of the electric field
( ) ( ) ( ) ( )2
0y0x
2
0y0x
22
0y
2
0x
22
0y
2
0x εsinEE2εcosEE2EEEE =−−−+
The 4 Stokes parameters
are:
εsinEE2V
εcosEE2U
EEQ
EEI
0y0x3
0y0x2
2
0y
2
0x1
2
0y
2
0x0
==
==
−==
+==
S
S
S
S
Part II: Stokes parameters
N. Manset / CFHTPolarization of Light: Basics to 22
Stokes parameters (III)
described in geometrical terms














=












β
φβ
φβ
2sin
2sin2cos
2cos2cos
V
U
Q
I
2
2
2
2
a
a
a
a
Part II: Stokes parameters
N. Manset / CFHTPolarization of Light: Basics to 23
Stokes vector
The Stokes parameters can be arranged in a Stokes vector:
( ) ( )
( ) ( )
( ) ( )











−
°−°
°−°
=














−
+
=












LCPIRCPI
135I45I
90I0I
intensity
εsinEE2
εcosEE2
EE
EE
V
U
Q
I
0y0x
0y0x
2
0y
2
0x
2
0y
2
0x
• Linear polarization
• Circular polarization
• Fully polarized light
• Partially polarized light
• Unpolarized light 0VUQ
VUQI
VUQI
0V0,U0,Q
0V0,U0,Q
2222
2222
===
++>
++=
≠==
=≠≠
Part II: Stokes parameters, Stokes vectors
N. Manset / CFHTPolarization of Light: Basics to 24
Pictorial representation of the
Stokes parameters
Part II: Stokes parameters
Σ
∆
N. Manset / CFHTPolarization of Light: Basics to 25
Stokes vectors for linearly
polarized light
LHP light












0
0
1
1
I0
LVP light +45º light -45º light












−
0
0
1
1
I0












0
1
0
1
I0












−
0
1
0
1
I0
Part II: Stokes parameters, examples
N. Manset / CFHTPolarization of Light: Basics to 26
Stokes vectors for circularly
polarized light
RCP light












1
0
0
1
I0
LCP light












− 1
0
0
1
I0
Part II: Stokes parameters, examples
N. Manset / CFHTPolarization of Light: Basics to 27
(Q,U) to (P,)
In the case of linear polarization (V=0):
I
UQ
P
22
+
= 





=Θ
Q
U
arctan
2
1
Θ= 2cosPQ Θ= 2sinPU
Part II: Stokes parameters
N. Manset / CFHTPolarization of Light: Basics to 28
Mueller matrices
If light is represented by Stokes vectors, optical components are
then described with Mueller matrices:
[output light] = [Muller matrix] [input light]
























=












V
U
Q
I
V'
U'
Q'
I'
44434241
34333231
24232221
14131211
mmmm
mmmm
mmmm
mmmm
Part II: Stokes parameters, Mueller matrices
N. Manset / CFHTPolarization of Light: Basics to 29
Mueller calculus (I)
Element 1 Element 2 Element 3
1M 2M 3M
I’ = M3 M2 M1 I
Part II: Stokes parameters, Mueller matrices
N. Manset / CFHTPolarization of Light: Basics to 30
Mueller calculus (II)
Mueller matrix M’ of an optical component with
Mueller matrix M rotated by an angle :
M’ = R(- ) M R() with:












−
=
1000
02cos2sin0
02sin2cos0
0001
)R(
αα
αα
α
Part II: Stokes parameters, Mueller matrices
N. Manset / CFHTPolarization of Light: Basics to 31
Jones formalism
Stokes vectors and Mueller matrices cannot describe
interference effects. If the phase information is important (radio-
astronomy, masers...), one has to use the Jones formalism, with
complex vectors and Jones matrices:
• Jones vectors to describe the
polarization of light:
• Jones matrices to represent
optical components:








=
(t)E
(t)E
(t)J
y
x









=
2221
1211
jj
jj
J
BUT: Jones formalism can only deal with 100% polarization...
Part II: Stokes parameters, Jones formalism, not that important here...
N. Manset / CFHTPolarization of Light: Basics to 32
Part III: Optical components
for polarimetry
• Complex index of refraction
• Polarizers
• Retarders
N. Manset / CFHTPolarization of Light: Basics to 33
Complex index of refraction
The index of refraction is actually a complex quantity:
iknm −=
• real part
• optical path length,
refraction: speed of light
depends on media
• birefringence: speed of
light also depends on P
• imaginary part
• absorption, attenuation,
extinction: depends on
media
• dichroism/diattenuation:
also depends on P
Part III: Optical components
N. Manset / CFHTPolarization of Light: Basics to 34
Polarizers
Polarizers absorb one component of the
polarization but not the other.
The input is natural light, the output is polarized light (linear,
circular, elliptical). They work by dichroism, birefringence,
reflection, or scattering.
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 35
Wire-grid polarizers (I)
[dichroism]
• Mainly used in the IR and longer
wavelengths
• Grid of parallel conducting wires with a
spacing comparable to the wavelength of
observation
• Electric field vector parallel to the wires is
attenuated because of currents induced in
the wires
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 36
Wide-grid polarizers (II)
[dichroism]
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 37
Dichroic crystals
[dichroism]
Dichroic crystals absorb one
polarization state over the other
one.
Example: tourmaline.
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 38
Polaroids
[dichroism]
Made by heating and stretching a sheet of PVA laminated
to a supporting sheet of cellulose acetate treated with iodine
solution (H-type polaroid). Invented in 1928.
Part III: Optical components, polarizers – Polaroids, like in sunglasses!
N. Manset / CFHTPolarization of Light: Basics to 39
Crystal polarizers (I)
[birefringence]
• Optically anisotropic crystals
• Mechanical model:
• the crystal is anisotropic, which means that
the electrons are bound with different
‘springs’ depending on the orientation
• different ‘spring constants’ gives different
propagation speeds, therefore different indices
of refraction, therefore 2 output beams
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 40
Crystal polarizers (II)
[birefringence]
The 2 output beams are polarized (orthogonally).
isotropic
crystal
(sodium
chloride)
anisotropic
crystal
(calcite)
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 41
Crystal polarizers (IV)
[birefringence]
• Crystal polarizers used as:
• Beam displacers,
• Beam splitters,
• Polarizers,
• Analyzers, ...
• Examples: Nicol prism, Glan-
Thomson polarizer, Glan or Glan-
Foucault prism, Wollaston prism,
Thin-film polarizer, ...
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 42
Mueller matrices of polarizers
(I)
• (Ideal) linear polarizer at angle χ:












0000
0χ2sinχ2cosχ2sinχ2sin
0χ2cosχ2sinχ2cosχ2cos
0χ2sinχ2cos1
2
1
2
2
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 43
Mueller matrices of polarizers
(II)
Linear (±Q)
polarizer at 0º:












±
±
0000
0000
0011
0011
5.0
Linear (±U)
polarizer at 0º :












±
±
0000
0101
0000
0101
5.0
Part III: Optical components, polarizers
Circular (±V)
polarizer at 0º :












±
±
1001
0000
0000
1001
5.0
N. Manset / CFHTPolarization of Light: Basics to 44
Mueller calculus with a
polarizer
Input light: unpolarized --- output light: polarized












=
























−
−
=












0
I-
0
I
5.0
0
0
0
I
0000
0101
0000
0101
5.0
V'
U'
Q'
I'
Total output intensity: 0.5 I
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 45
Retarders
• In retarders, one polarization gets ‘retarded’, or delayed,
with respect to the other one. There is a final phase
difference between the 2 components of the polarization.
Therefore, the polarization is changed.
• Most retarders are based on birefringent materials (quartz,
mica, polymers) that have different indices of refraction
depending on the polarization of the incoming light.
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 46
Half-Wave plate (I)
• Retardation of ½ wave
or 180º for one of the
polarizations.
• Used to flip the linear
polarization or change
the handedness of
circular polarization.
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 47
Half-Wave plate (II)
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 48
Quarter-Wave plate (I)
• Retardation of ¼ wave or 90º for one of the
polarizations
• Used to convert linear polarization to elliptical.
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 49
• Special case: incoming light polarized at 45º with respect to
the retarder’s axis
• Conversion from linear to circular polarization (vice versa)
Quarter-Wave plate (II)
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 50
Mueller matrix of retarders (I)
• Retarder of retardance τ and position angle ψ:
( ) ( )cosτ1
2
1
Handcosτ1
2
1
G:with
cosτcos2ψsinτsin2ψsinτ0
cos2ψsinτcos4ψHGsin4ψH0
sin2ψsinτsin4ψHcos4ψHG0
0001
−=+=












−
−
−+
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 51
Mueller matrix of retarders (II)
• Half-wave oriented at 0º
or 90º
• Half-wave oriented at
±45º












−
−
1000
0100
0010
0001
k












−
−
1000
0100
0010
0001
k
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 52
Mueller matrix of retarders
(III)
• Quarter-wave oriented at
0º
• Quarter-wave oriented at
±45º












− 0100
1000
0010
0001
k












± 0010
0100
1000
0001

k
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 53
Mueller calculus with a
retarder












=
























+
−
=












1
0
0
1
0
0
1
1
0010
0100
1000
0001
V'
U'
Q'
I'
kk
• Input light linear polarized (Q=1)
• Quarter-wave at +45º
• Output light circularly polarized (V=1)
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 54
(Back to polarizers, briefly)
Circular polarizers
• Input light: unpolarized ---
Output light: circularly polarized
• Made of a linear polarizer
glued to a quarter-wave plate
oriented at 45º with respect to
one another.
Part III: Optical components, polarizers
N. Manset / CFHTPolarization of Light: Basics to 55
Achromatic retarders (I)
• Retardation depends on wavelength
• Achromatic retarders: made of 2 different materials with
opposite variations of index of refraction as a function of wavelength
• Pancharatnam achromatic retarders: made of 3
identical plates rotated w/r one another
• Superachromatic retarders: 3 pairs of quartz and MgF2
plates
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 56
Achromatic retarders (II)
Part III: Optical components, retarders
=140-220º
not very
achromatic!
= 177-183º
much better!
N. Manset / CFHTPolarization of Light: Basics to 57
Retardation on total internal
reflection
• Total internal
reflection
produces
retardation (phase
shift)
• In this case, retardation is very achromatic
since it only depends on the refractive index
• Application: Fresnel rhombs
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 58
Fresnel rhombs
• Quarter-wave and half-wave rhombs are
achieved with 2 or 4 reflections
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 59
Other retarders
• Soleil-Babinet: variable retardation to better than 0.01 waves
• Nematic liquid crystals... Liquid crystal
variable retarders... Ferroelectric liquid
crystals... Piezo-elastic modulators...
Pockels and Kerr cells...
Part III: Optical components, retarders
N. Manset / CFHTPolarization of Light: Basics to 60
Part IV: Polarimeters
• Polaroid-type polarimeters
• Dual-beam polarimeters
N. Manset / CFHTPolarization of Light: Basics to 61
Polaroid-type polarimeter
for linear polarimetry (I)
• Use a linear polarizer (polaroid) to measure
linear polarization ... [another cool applet]
Location: http://www.colorado.edu/physics/2000/applets/lens.html
• Polarization percentage and position angle:
)II(
II
II
P
max
minmax
minmax
=Θ=Θ
+
−
=
Part IV: Polarimeters, polaroid-type
Σ
∆
N. Manset / CFHTPolarization of Light: Basics to 62
Polaroid-type polarimeter
for linear polarimetry (II)
• Advantage: very simple to make
• Disadvantage: half of the light is cut out
• Other disadvantages: non-simultaneous
measurements, cross-talk...
• Move the polaroid to 2 positions, 0º and 45º
(to measure Q, then U)
Part IV: Polarimeters, polaroid-type
N. Manset / CFHTPolarization of Light: Basics to 63
Polaroid-type polarimeter
for circular polarimetry
• Polaroids are not sensitive to circular
polarization, so convert circular polarization
to linear first, by using a quarter-wave plate
• Polarimeter now uses a quarter-wave plate
and a polaroid
• Same disadvantages as before
Part IV: Polarimeters, polaroid-type
N. Manset / CFHTPolarization of Light: Basics to 64
Dual-beam polarimeters
Principle
• Instead of cutting out one polarization and keeping
the other one (polaroid), split the 2 polarization
states and keep them both
• Use a Wollaston prism as an analyzer
• Disadvantages: need 2 detectors (PMTs, APDs) or
an array; end up with 2 ‘pixels’ with different gain
• Solution: rotate the Wollaston or keep it fixed and
use a half-wave plate to switch the 2 beams
Part IV: Polarimeters, dual-beam type
N. Manset / CFHTPolarization of Light: Basics to 65
Dual-beam polarimeters
Switching beams
Part IV: Polarimeters, dual-beam type
• Unpolarized light: two beams have
identical intensities whatever the prism’s
position if the 2 pixels have the same gain
• To compensate different gains, switch the
2 beams and average the 2 measurements
Σ
∆
N. Manset / CFHTPolarization of Light: Basics to 66
Dual-beam polarimeters
Switching beams by rotating the prism
rotate by
180º
Part IV: Polarimeters, dual-beam type
N. Manset / CFHTPolarization of Light: Basics to 67
Dual-beam polarimeters
Switching beams using a ½ wave plate
Rotated
by 45º
Part IV: Polarimeters, dual-beam type
N. Manset / CFHTPolarization of Light: Basics to 69
A real circular polarimeter
Semel, Donati, Rees (1993)
Quarter-wave plate, rotated at -45º and +45º
Analyser: double calcite crystal
Part IV: Polarimeters, example of circular polarimeter
N. Manset / CFHTPolarization of Light: Basics to 70
A real circular polarimeter
free from gain (g) and atmospheric
transmission (α) variation effects
• First measurement with quarter-wave plate at -45º, signal
in the (r)ight and (l)eft beams:
• Second measurement with quarter-wave plate at +45º,
signal in the (r)ight and (l)eft beams:
• Measurements of the signals:
rl
SS 11 ,
rl
SS 22,
)()(
)()(
22222222
11111111
VIgSVIgS
VIgSVIgS
rrll
rrll
−=+=
−=+=
αα
αα
Part IV: Polarimeters, example of circular polarimeter
N. Manset / CFHTPolarization of Light: Basics to 71
A real circular polarimeter
free from gain and atmospheric
transmission variation effects
• Build a ratio of measured signals which is free of gain and
variable atmospheric transmission effects:
1for
2
1
2
1
1
4
1
2
2
1
1
21211221
2112
1
2
2
1
<<





+≈
+−−
+
=





−=
V
I
V
I
V
F
VVVIVIII
VIVI
S
S
S
S
F r
r
l
l
average of the 2 measurements
Part IV: Polarimeters, example of circular polarimeter
N. Manset / CFHTPolarization of Light: Basics to 72
Polarimeters - Summary
• 2 types:
– polaroid-type: easy to make but ½ light is lost, and affected
by variable atmospheric transmission
– dual-beam type: no light lost but affected by gain
differences and variable transmission problems
• Linear polarimetry:
– analyzer, rotatable
– analyzer + half-wave plate
• Circular polarimetry:
– analyzer + quarter-wave plate
 2 positions minimum
 1 position minimum
Part IV: Polarimeters, summary
N. Manset / CFHTPolarization of Light: Basics to 73
Part V: ESPaDOnS
Optical components of the
polarimeter part :
• Wollaston prism: analyses the
polarization and separates the 2
(linear!) orthogonal polarization
states
• Retarders, 3 Fresnel rhombs:
– Two half-wave plates to switch the
beams around
– Quarter-wave plate to do circular
polarimetry
N. Manset / CFHTPolarization of Light: Basics to 74
ESPaDOnS: circular
polarimetry
• Fixed quarter-wave rhomb
• Rotating bottom half-wave, at 22.5º
increments
• Top half-wave rotates continuously at about
1Hz to average out linear polarization when
measuring circular polarization
Part V: ESPaDOnS, circular polarimetry mode
N. Manset / CFHTPolarization of Light: Basics to 75
ESPaDOnS: circular
polarimetry of circular polarization
• half-wave
• 22.5º positions
• flips
polarization
• gain,
transmission
• quarter-
wave
• fixed
• circular
to linear
• analyzer
Part V: ESPaDOnS, circular polarimetry mode
Σ
∆
N. Manset / CFHTPolarization of Light: Basics to 76
ESPaDOnS: circular polarimetry of
(unwanted) linear polarization
• half-wave
• 22.5º
positions
• gain,
transmission
• quarter-
wave
• fixed
• linear to
elliptical
• analyzer
• circular part
goes through
not analyzed
and adds same
intensities to
both beams
• linear part is
analyzed!
• Add a
rotating
half-wave
to “spread
out” the
unwanted
signal
Part V: ESPaDOnS, circular polarimetry mode
N. Manset / CFHTPolarization of Light: Basics to 77
ESPaDOnS: linear polarimetry
• Half-Wave rhombs positioned at 22.5º
increments
• Quarter-Wave fixed
Part V: ESPaDOnS, linear polarimetry
N. Manset / CFHTPolarization of Light: Basics to 78
ESPaDOnS: linear polarimetry
• Half-Wave rhombs positioned as 22.5º
increments
– First position gives Q
– Second position gives U
– Switch beams for gain and atmosphere effects
• Quarter-Wave fixed
Part V: ESPaDOnS, linear polarimetry
Σ
∆
N. Manset / CFHTPolarization of Light: Basics to 79
ESPaDOnS - Summary
• ESPaDOnS can do linear and circular
polarimetry (quarter-wave plate)
• Beams are switched around to do the
measurements, compensate for gain and
atmospheric effects
• Fesnel rhombs are very achromatic
Part V: ESPaDOnS, summary
N. Manset / CFHTPolarization of Light: Basics to 80
N. Manset / CFHTPolarization of Light: Basics to 81
Credits for pictures and movies
• Christoph Keller’s home page – his 5 lectures
http://www.noao.edu/noao/staff/keller/
• “Basic Polarisation techniques and devices”, Meadowlark Optics Inc.
http://www.meadowlark.com/
• Optics, E. Hecht and Astronomical Polarimetry, J. Tinbergen
• Planets, Stars and Nebulae Studied With Photopolarimetry, T.
Gehrels
• Circular polarization movie
http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm
• Unpolarized light movie
http://www.colorado.edu/physics/2000/polarization/polarizationII.html
• Reflection of wave http://www.physicsclassroom.com/mmedia/waves/fix.html
• ESPaDOnS web page and documents
N. Manset / CFHTPolarization of Light: Basics to 82
References/Further reading
On the Web
• Very short and quick introduction, no equation
http://www.cfht.hawaii.edu/~manset/PolarIntro_eng.html
• Easy fun page with Applets, on polarizing filters
http://www.colorado.edu/physics/2000/polarization/polarizationI.html
• Polarization short course
http://www.glenbrook.k12.il.us/gbssci/phys/Class/light/u12l1e.html
• “Instrumentation for Astrophysical
Spectropolarimetry”, a series of 5 lectures given at the
IAC Winter School on Astrophysical Spectropolarimetry,
November 2000 –
http://www.noao.edu/noao/staff/keller/lectures/index.html
N. Manset / CFHTPolarization of Light: Basics to 83
References/Further reading
Polarization basics
• Polarized Light, D. Goldstein – excellent book,
easy read, gives a lot of insight, highly
recommended
• Undergraduate textbooks, either will do:
– Optics, E. Hecht
– Waves, F. S. Crawford, Berkeley Physics Course vol. 3
N. Manset / CFHTPolarization of Light: Basics to 84
References/Further reading
Astronomy, easy/intermediate
• Astronomical Polarimetry, J. Tinbergen –
instrumentation-oriented
• La polarisation de la lumière et l'observation
astronomique, J.-L. Leroy – astronomy-oriented
• Planets, Stars and Nebulae Studied With
Photopolarimetry, T. Gehrels – old but classic
• 3 papers by K. Serkowski – instrumentation-oriented
N. Manset / CFHTPolarization of Light: Basics to 85
References/Further reading
Astronomy, advanced
• Introduction to Spectropolarimetry, J.C.
del Toro Iniesta – radiative transfer – ouch!
• Astrophysical Spectropolarimetry,
Trujillo-Bueno et al. (eds) – applications to
astronomy

More Related Content

What's hot

Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its ApplicationTariq Al Fayad
 
OPTOMETRY - Part V POLARIZATION OF LIGHT
OPTOMETRY - Part V       POLARIZATION OF LIGHTOPTOMETRY - Part V       POLARIZATION OF LIGHT
OPTOMETRY - Part V POLARIZATION OF LIGHTBurdwan University
 
Types of polarisation
Types of polarisationTypes of polarisation
Types of polarisationvaani pathak
 
Alpha decay - physical background and practical applications
Alpha decay - physical background and practical applicationsAlpha decay - physical background and practical applications
Alpha decay - physical background and practical applicationsAndrii Sofiienko
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FTClaudio Attaccalite
 
3 energy levels and quanta
3 energy levels and quanta3 energy levels and quanta
3 energy levels and quantaMissingWaldo
 
Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)Bikash Sapkota
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2HIMANSHU DIWAKAR
 
Wave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceWave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceSubhankar Roy
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsClaudio Attaccalite
 
Laser Basics
Laser BasicsLaser Basics
Laser Basicsdlorenser
 

What's hot (20)

Polarization and its Application
Polarization and its ApplicationPolarization and its Application
Polarization and its Application
 
Polarization of Light
Polarization of LightPolarization of Light
Polarization of Light
 
OPTOMETRY - Part V POLARIZATION OF LIGHT
OPTOMETRY - Part V       POLARIZATION OF LIGHTOPTOMETRY - Part V       POLARIZATION OF LIGHT
OPTOMETRY - Part V POLARIZATION OF LIGHT
 
Types of polarisation
Types of polarisationTypes of polarisation
Types of polarisation
 
TYBSc :Types of LASER
TYBSc :Types of LASERTYBSc :Types of LASER
TYBSc :Types of LASER
 
Basic optics
Basic opticsBasic optics
Basic optics
 
Alpha decay - physical background and practical applications
Alpha decay - physical background and practical applicationsAlpha decay - physical background and practical applications
Alpha decay - physical background and practical applications
 
Nonlinear response of solids with Green's functions and TD-D(P)FT
Nonlinear response  of solids with Green's functions and TD-D(P)FTNonlinear response  of solids with Green's functions and TD-D(P)FT
Nonlinear response of solids with Green's functions and TD-D(P)FT
 
3 energy levels and quanta
3 energy levels and quanta3 energy levels and quanta
3 energy levels and quanta
 
Polarisation
PolarisationPolarisation
Polarisation
 
Chapter 3a
Chapter 3aChapter 3a
Chapter 3a
 
Anamolous zeeman effect
Anamolous zeeman effectAnamolous zeeman effect
Anamolous zeeman effect
 
Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)Polarization of Light and its Application (healthkura.com)
Polarization of Light and its Application (healthkura.com)
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
 
Wave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceWave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in Science
 
Chapter 5 diffraction
Chapter 5 diffractionChapter 5 diffraction
Chapter 5 diffraction
 
Ph 101-1
Ph 101-1Ph 101-1
Ph 101-1
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Compton effect
Compton effectCompton effect
Compton effect
 
Laser Basics
Laser BasicsLaser Basics
Laser Basics
 

Similar to Polarization light introduction

Similar to Polarization light introduction (20)

POLARIMERTER
POLARIMERTERPOLARIMERTER
POLARIMERTER
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Magnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point PresentationMagnetic Resonance Imaging Final Power point Presentation
Magnetic Resonance Imaging Final Power point Presentation
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
MRI_1.ppt
MRI_1.pptMRI_1.ppt
MRI_1.ppt
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)Quantum Nanomagetism (USA, 2011)
Quantum Nanomagetism (USA, 2011)
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
 
Nonlinear optics
Nonlinear opticsNonlinear optics
Nonlinear optics
 
lezione_3.ppt
lezione_3.pptlezione_3.ppt
lezione_3.ppt
 
Atomic structure presentation
Atomic structure presentationAtomic structure presentation
Atomic structure presentation
 
Tutorial 1
Tutorial 1Tutorial 1
Tutorial 1
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
3(1) (1).pptx
3(1) (1).pptx3(1) (1).pptx
3(1) (1).pptx
 
PH 101 Polarization
PH 101 PolarizationPH 101 Polarization
PH 101 Polarization
 
Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
 
Fismod ke 14
Fismod ke 14Fismod ke 14
Fismod ke 14
 
Electronics devices unit 1.pptx
Electronics devices unit 1.pptxElectronics devices unit 1.pptx
Electronics devices unit 1.pptx
 
Brewster law
Brewster lawBrewster law
Brewster law
 
Photoelectric effect .pptx
Photoelectric effect .pptxPhotoelectric effect .pptx
Photoelectric effect .pptx
 

Recently uploaded

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 

Recently uploaded (20)

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 

Polarization light introduction

  • 1. Polarization of Light: from Basics to Instruments (in less than 100 slides) N. Manset CFHT
  • 2. N. Manset / CFHTPolarization of Light: Basics to 2 Introduction • Part I: Different polarization states of light • Part II: Stokes parameters, Mueller matrices • Part III: Optical components for polarimetry • Part IV: Polarimeters • Part V: ESPaDOnS
  • 3. N. Manset / CFHTPolarization of Light: Basics to 3 Part I: Different polarization states of light • Light as an electromagnetic wave • Mathematical and graphical descriptions of polarization • Linear, circular, elliptical light • Polarized, unpolarized light
  • 4. N. Manset / CFHTPolarization of Light: Basics to 4 Light as an electromagnetic wave Light is a transverse wave, an electromagnetic wave Part I: Polarization states
  • 5. N. Manset / CFHTPolarization of Light: Basics to 5 Mathematical description of the EM wave Light wave that propagates in the z direction: y)t-kzcos(E)tz,(E xt)-kzcos(E)tz,(E 0yy 0xx   εω ω += = Part I: Polarization states
  • 6. N. Manset / CFHTPolarization of Light: Basics to 6 Graphical representation of the EM wave (I) One can go from: to the equation of an ellipse (using trigonometric identities, squaring, adding): εε 2 0y y 0x x 2 0y y 2 0x x sincos E E E E 2 E E E E =−         +      y)t-kzcos(E)tz,(E xt)-kzcos(E)tz,(E 0yy 0xx   εω ω += = Part I: Polarization states
  • 7. N. Manset / CFHTPolarization of Light: Basics to 7 Graphical representation of the EM wave (II) An ellipse can be represented by 4 quantities: 1. size of minor axis 2. size of major axis 3. orientation (angle) 4. sense (CW, CCW) Light can be represented by 4 quantities... Part I: Polarization states
  • 8. N. Manset / CFHTPolarization of Light: Basics to 8 Vertically polarized light If there is no amplitude in x (E0x = 0), there is only one component, in y (vertical). y)t-kzcos(E)tz,(E xt)-kzcos(E)tz,(E 0yy 0xx   εω ω += = Part I: Polarization states, linear polarization
  • 9. N. Manset / CFHTPolarization of Light: Basics to 9 Polarization at 45º (I) If there is no phase difference (=0) and E0x = E0y, then Ex = Ey y)t-kzcos(E)tz,(E xt)-kzcos(E)tz,(E 0yy 0xx   εω ω += = Part I: Polarization states, linear polarization
  • 10. N. Manset / CFHTPolarization of Light: Basics to 10 Polarization at 45º (II) Part I: Polarization states, linear polarization
  • 11. N. Manset / CFHTPolarization of Light: Basics to 11 Circular polarization (I) If the phase difference is = 90º and E0x = E0y then: Ex / E0x = cos Θ , Ey / E0y = sin Θ and we get the equation of a circle: 1sincos E E E E 22 2 0y y 2 0x x =Θ+Θ=         +      y)t-kzcos(E)tz,(E xt)-kzcos(E)tz,(E 0yy 0xx   εω ω += = Part I: Polarization states, circular polarization
  • 12. N. Manset / CFHTPolarization of Light: Basics to 12 Circular polarization (II) Part I: Polarization states, circular polarization
  • 13. N. Manset / CFHTPolarization of Light: Basics to 13 Circular polarization (III) Part I: Polarization states, circular polarization
  • 14. N. Manset / CFHTPolarization of Light: Basics to 14 Circular polarization (IV) Part I: Polarization states, circular polarization... see it now?
  • 15. N. Manset / CFHTPolarization of Light: Basics to 15 Elliptical polarization Part I: Polarization states, elliptical polarization • Linear + circular polarization = elliptical polarization
  • 16. N. Manset / CFHTPolarization of Light: Basics to 16 Unpolarized light (natural light) Part I: Polarization states, unpolarized light
  • 17. N. Manset / CFHTPolarization of Light: Basics to 17 A cool Applet Electromagnetic Wave Location: http://www.uno.edu/~jsulliva/java/EMWave.html Part I: Polarization states
  • 18. N. Manset / CFHTPolarization of Light: Basics to 18 Part II: Stokes parameters and Mueller matrices • Stokes parameters, Stokes vector • Stokes parameters for linear and circular polarization • Stokes parameters and polarization P • Mueller matrices, Mueller calculus • Jones formalism
  • 19. N. Manset / CFHTPolarization of Light: Basics to 19 Stokes parameters A tiny itsy-bitsy little bit of history... • 1669: Bartholinus discovers double refraction in calcite • 17th – 19th centuries: Huygens, Malus, Brewster, Biot, Fresnel and Arago, Nicol... • 19th century: unsuccessful attempts to describe unpolarized light in terms of amplitudes • 1852: Sir George Gabriel Stokes took a very different approach and discovered that polarization can be described in terms of observables using an experimental definition Part II: Stokes parameters
  • 20. N. Manset / CFHTPolarization of Light: Basics to 20 Stokes parameters (I) The polarization ellipse is only valid at a given instant of time (function of time): εsinεcos (t)E (t)E (t)E (t)E 2 (t)E (t)E (t)E (t)E 2 0y y 0x x 2 0y y 2 0x x =−         +      To get the Stokes parameters, do a time average (integral over time) and a little bit of algebra... Part II: Stokes parameters
  • 21. N. Manset / CFHTPolarization of Light: Basics to 21 Stokes parameters (II) described in terms of the electric field ( ) ( ) ( ) ( )2 0y0x 2 0y0x 22 0y 2 0x 22 0y 2 0x εsinEE2εcosEE2EEEE =−−−+ The 4 Stokes parameters are: εsinEE2V εcosEE2U EEQ EEI 0y0x3 0y0x2 2 0y 2 0x1 2 0y 2 0x0 == == −== +== S S S S Part II: Stokes parameters
  • 22. N. Manset / CFHTPolarization of Light: Basics to 22 Stokes parameters (III) described in geometrical terms               =             β φβ φβ 2sin 2sin2cos 2cos2cos V U Q I 2 2 2 2 a a a a Part II: Stokes parameters
  • 23. N. Manset / CFHTPolarization of Light: Basics to 23 Stokes vector The Stokes parameters can be arranged in a Stokes vector: ( ) ( ) ( ) ( ) ( ) ( )            − °−° °−° =               − + =             LCPIRCPI 135I45I 90I0I intensity εsinEE2 εcosEE2 EE EE V U Q I 0y0x 0y0x 2 0y 2 0x 2 0y 2 0x • Linear polarization • Circular polarization • Fully polarized light • Partially polarized light • Unpolarized light 0VUQ VUQI VUQI 0V0,U0,Q 0V0,U0,Q 2222 2222 === ++> ++= ≠== =≠≠ Part II: Stokes parameters, Stokes vectors
  • 24. N. Manset / CFHTPolarization of Light: Basics to 24 Pictorial representation of the Stokes parameters Part II: Stokes parameters Σ ∆
  • 25. N. Manset / CFHTPolarization of Light: Basics to 25 Stokes vectors for linearly polarized light LHP light             0 0 1 1 I0 LVP light +45º light -45º light             − 0 0 1 1 I0             0 1 0 1 I0             − 0 1 0 1 I0 Part II: Stokes parameters, examples
  • 26. N. Manset / CFHTPolarization of Light: Basics to 26 Stokes vectors for circularly polarized light RCP light             1 0 0 1 I0 LCP light             − 1 0 0 1 I0 Part II: Stokes parameters, examples
  • 27. N. Manset / CFHTPolarization of Light: Basics to 27 (Q,U) to (P,) In the case of linear polarization (V=0): I UQ P 22 + =       =Θ Q U arctan 2 1 Θ= 2cosPQ Θ= 2sinPU Part II: Stokes parameters
  • 28. N. Manset / CFHTPolarization of Light: Basics to 28 Mueller matrices If light is represented by Stokes vectors, optical components are then described with Mueller matrices: [output light] = [Muller matrix] [input light]                         =             V U Q I V' U' Q' I' 44434241 34333231 24232221 14131211 mmmm mmmm mmmm mmmm Part II: Stokes parameters, Mueller matrices
  • 29. N. Manset / CFHTPolarization of Light: Basics to 29 Mueller calculus (I) Element 1 Element 2 Element 3 1M 2M 3M I’ = M3 M2 M1 I Part II: Stokes parameters, Mueller matrices
  • 30. N. Manset / CFHTPolarization of Light: Basics to 30 Mueller calculus (II) Mueller matrix M’ of an optical component with Mueller matrix M rotated by an angle : M’ = R(- ) M R() with:             − = 1000 02cos2sin0 02sin2cos0 0001 )R( αα αα α Part II: Stokes parameters, Mueller matrices
  • 31. N. Manset / CFHTPolarization of Light: Basics to 31 Jones formalism Stokes vectors and Mueller matrices cannot describe interference effects. If the phase information is important (radio- astronomy, masers...), one has to use the Jones formalism, with complex vectors and Jones matrices: • Jones vectors to describe the polarization of light: • Jones matrices to represent optical components:         = (t)E (t)E (t)J y x          = 2221 1211 jj jj J BUT: Jones formalism can only deal with 100% polarization... Part II: Stokes parameters, Jones formalism, not that important here...
  • 32. N. Manset / CFHTPolarization of Light: Basics to 32 Part III: Optical components for polarimetry • Complex index of refraction • Polarizers • Retarders
  • 33. N. Manset / CFHTPolarization of Light: Basics to 33 Complex index of refraction The index of refraction is actually a complex quantity: iknm −= • real part • optical path length, refraction: speed of light depends on media • birefringence: speed of light also depends on P • imaginary part • absorption, attenuation, extinction: depends on media • dichroism/diattenuation: also depends on P Part III: Optical components
  • 34. N. Manset / CFHTPolarization of Light: Basics to 34 Polarizers Polarizers absorb one component of the polarization but not the other. The input is natural light, the output is polarized light (linear, circular, elliptical). They work by dichroism, birefringence, reflection, or scattering. Part III: Optical components, polarizers
  • 35. N. Manset / CFHTPolarization of Light: Basics to 35 Wire-grid polarizers (I) [dichroism] • Mainly used in the IR and longer wavelengths • Grid of parallel conducting wires with a spacing comparable to the wavelength of observation • Electric field vector parallel to the wires is attenuated because of currents induced in the wires Part III: Optical components, polarizers
  • 36. N. Manset / CFHTPolarization of Light: Basics to 36 Wide-grid polarizers (II) [dichroism] Part III: Optical components, polarizers
  • 37. N. Manset / CFHTPolarization of Light: Basics to 37 Dichroic crystals [dichroism] Dichroic crystals absorb one polarization state over the other one. Example: tourmaline. Part III: Optical components, polarizers
  • 38. N. Manset / CFHTPolarization of Light: Basics to 38 Polaroids [dichroism] Made by heating and stretching a sheet of PVA laminated to a supporting sheet of cellulose acetate treated with iodine solution (H-type polaroid). Invented in 1928. Part III: Optical components, polarizers – Polaroids, like in sunglasses!
  • 39. N. Manset / CFHTPolarization of Light: Basics to 39 Crystal polarizers (I) [birefringence] • Optically anisotropic crystals • Mechanical model: • the crystal is anisotropic, which means that the electrons are bound with different ‘springs’ depending on the orientation • different ‘spring constants’ gives different propagation speeds, therefore different indices of refraction, therefore 2 output beams Part III: Optical components, polarizers
  • 40. N. Manset / CFHTPolarization of Light: Basics to 40 Crystal polarizers (II) [birefringence] The 2 output beams are polarized (orthogonally). isotropic crystal (sodium chloride) anisotropic crystal (calcite) Part III: Optical components, polarizers
  • 41. N. Manset / CFHTPolarization of Light: Basics to 41 Crystal polarizers (IV) [birefringence] • Crystal polarizers used as: • Beam displacers, • Beam splitters, • Polarizers, • Analyzers, ... • Examples: Nicol prism, Glan- Thomson polarizer, Glan or Glan- Foucault prism, Wollaston prism, Thin-film polarizer, ... Part III: Optical components, polarizers
  • 42. N. Manset / CFHTPolarization of Light: Basics to 42 Mueller matrices of polarizers (I) • (Ideal) linear polarizer at angle χ:             0000 0χ2sinχ2cosχ2sinχ2sin 0χ2cosχ2sinχ2cosχ2cos 0χ2sinχ2cos1 2 1 2 2 Part III: Optical components, polarizers
  • 43. N. Manset / CFHTPolarization of Light: Basics to 43 Mueller matrices of polarizers (II) Linear (±Q) polarizer at 0º:             ± ± 0000 0000 0011 0011 5.0 Linear (±U) polarizer at 0º :             ± ± 0000 0101 0000 0101 5.0 Part III: Optical components, polarizers Circular (±V) polarizer at 0º :             ± ± 1001 0000 0000 1001 5.0
  • 44. N. Manset / CFHTPolarization of Light: Basics to 44 Mueller calculus with a polarizer Input light: unpolarized --- output light: polarized             =                         − − =             0 I- 0 I 5.0 0 0 0 I 0000 0101 0000 0101 5.0 V' U' Q' I' Total output intensity: 0.5 I Part III: Optical components, polarizers
  • 45. N. Manset / CFHTPolarization of Light: Basics to 45 Retarders • In retarders, one polarization gets ‘retarded’, or delayed, with respect to the other one. There is a final phase difference between the 2 components of the polarization. Therefore, the polarization is changed. • Most retarders are based on birefringent materials (quartz, mica, polymers) that have different indices of refraction depending on the polarization of the incoming light. Part III: Optical components, retarders
  • 46. N. Manset / CFHTPolarization of Light: Basics to 46 Half-Wave plate (I) • Retardation of ½ wave or 180º for one of the polarizations. • Used to flip the linear polarization or change the handedness of circular polarization. Part III: Optical components, retarders
  • 47. N. Manset / CFHTPolarization of Light: Basics to 47 Half-Wave plate (II) Part III: Optical components, retarders
  • 48. N. Manset / CFHTPolarization of Light: Basics to 48 Quarter-Wave plate (I) • Retardation of ¼ wave or 90º for one of the polarizations • Used to convert linear polarization to elliptical. Part III: Optical components, retarders
  • 49. N. Manset / CFHTPolarization of Light: Basics to 49 • Special case: incoming light polarized at 45º with respect to the retarder’s axis • Conversion from linear to circular polarization (vice versa) Quarter-Wave plate (II) Part III: Optical components, retarders
  • 50. N. Manset / CFHTPolarization of Light: Basics to 50 Mueller matrix of retarders (I) • Retarder of retardance τ and position angle ψ: ( ) ( )cosτ1 2 1 Handcosτ1 2 1 G:with cosτcos2ψsinτsin2ψsinτ0 cos2ψsinτcos4ψHGsin4ψH0 sin2ψsinτsin4ψHcos4ψHG0 0001 −=+=             − − −+ Part III: Optical components, retarders
  • 51. N. Manset / CFHTPolarization of Light: Basics to 51 Mueller matrix of retarders (II) • Half-wave oriented at 0º or 90º • Half-wave oriented at ±45º             − − 1000 0100 0010 0001 k             − − 1000 0100 0010 0001 k Part III: Optical components, retarders
  • 52. N. Manset / CFHTPolarization of Light: Basics to 52 Mueller matrix of retarders (III) • Quarter-wave oriented at 0º • Quarter-wave oriented at ±45º             − 0100 1000 0010 0001 k             ± 0010 0100 1000 0001  k Part III: Optical components, retarders
  • 53. N. Manset / CFHTPolarization of Light: Basics to 53 Mueller calculus with a retarder             =                         + − =             1 0 0 1 0 0 1 1 0010 0100 1000 0001 V' U' Q' I' kk • Input light linear polarized (Q=1) • Quarter-wave at +45º • Output light circularly polarized (V=1) Part III: Optical components, retarders
  • 54. N. Manset / CFHTPolarization of Light: Basics to 54 (Back to polarizers, briefly) Circular polarizers • Input light: unpolarized --- Output light: circularly polarized • Made of a linear polarizer glued to a quarter-wave plate oriented at 45º with respect to one another. Part III: Optical components, polarizers
  • 55. N. Manset / CFHTPolarization of Light: Basics to 55 Achromatic retarders (I) • Retardation depends on wavelength • Achromatic retarders: made of 2 different materials with opposite variations of index of refraction as a function of wavelength • Pancharatnam achromatic retarders: made of 3 identical plates rotated w/r one another • Superachromatic retarders: 3 pairs of quartz and MgF2 plates Part III: Optical components, retarders
  • 56. N. Manset / CFHTPolarization of Light: Basics to 56 Achromatic retarders (II) Part III: Optical components, retarders =140-220º not very achromatic! = 177-183º much better!
  • 57. N. Manset / CFHTPolarization of Light: Basics to 57 Retardation on total internal reflection • Total internal reflection produces retardation (phase shift) • In this case, retardation is very achromatic since it only depends on the refractive index • Application: Fresnel rhombs Part III: Optical components, retarders
  • 58. N. Manset / CFHTPolarization of Light: Basics to 58 Fresnel rhombs • Quarter-wave and half-wave rhombs are achieved with 2 or 4 reflections Part III: Optical components, retarders
  • 59. N. Manset / CFHTPolarization of Light: Basics to 59 Other retarders • Soleil-Babinet: variable retardation to better than 0.01 waves • Nematic liquid crystals... Liquid crystal variable retarders... Ferroelectric liquid crystals... Piezo-elastic modulators... Pockels and Kerr cells... Part III: Optical components, retarders
  • 60. N. Manset / CFHTPolarization of Light: Basics to 60 Part IV: Polarimeters • Polaroid-type polarimeters • Dual-beam polarimeters
  • 61. N. Manset / CFHTPolarization of Light: Basics to 61 Polaroid-type polarimeter for linear polarimetry (I) • Use a linear polarizer (polaroid) to measure linear polarization ... [another cool applet] Location: http://www.colorado.edu/physics/2000/applets/lens.html • Polarization percentage and position angle: )II( II II P max minmax minmax =Θ=Θ + − = Part IV: Polarimeters, polaroid-type Σ ∆
  • 62. N. Manset / CFHTPolarization of Light: Basics to 62 Polaroid-type polarimeter for linear polarimetry (II) • Advantage: very simple to make • Disadvantage: half of the light is cut out • Other disadvantages: non-simultaneous measurements, cross-talk... • Move the polaroid to 2 positions, 0º and 45º (to measure Q, then U) Part IV: Polarimeters, polaroid-type
  • 63. N. Manset / CFHTPolarization of Light: Basics to 63 Polaroid-type polarimeter for circular polarimetry • Polaroids are not sensitive to circular polarization, so convert circular polarization to linear first, by using a quarter-wave plate • Polarimeter now uses a quarter-wave plate and a polaroid • Same disadvantages as before Part IV: Polarimeters, polaroid-type
  • 64. N. Manset / CFHTPolarization of Light: Basics to 64 Dual-beam polarimeters Principle • Instead of cutting out one polarization and keeping the other one (polaroid), split the 2 polarization states and keep them both • Use a Wollaston prism as an analyzer • Disadvantages: need 2 detectors (PMTs, APDs) or an array; end up with 2 ‘pixels’ with different gain • Solution: rotate the Wollaston or keep it fixed and use a half-wave plate to switch the 2 beams Part IV: Polarimeters, dual-beam type
  • 65. N. Manset / CFHTPolarization of Light: Basics to 65 Dual-beam polarimeters Switching beams Part IV: Polarimeters, dual-beam type • Unpolarized light: two beams have identical intensities whatever the prism’s position if the 2 pixels have the same gain • To compensate different gains, switch the 2 beams and average the 2 measurements Σ ∆
  • 66. N. Manset / CFHTPolarization of Light: Basics to 66 Dual-beam polarimeters Switching beams by rotating the prism rotate by 180º Part IV: Polarimeters, dual-beam type
  • 67. N. Manset / CFHTPolarization of Light: Basics to 67 Dual-beam polarimeters Switching beams using a ½ wave plate Rotated by 45º Part IV: Polarimeters, dual-beam type
  • 68. N. Manset / CFHTPolarization of Light: Basics to 69 A real circular polarimeter Semel, Donati, Rees (1993) Quarter-wave plate, rotated at -45º and +45º Analyser: double calcite crystal Part IV: Polarimeters, example of circular polarimeter
  • 69. N. Manset / CFHTPolarization of Light: Basics to 70 A real circular polarimeter free from gain (g) and atmospheric transmission (α) variation effects • First measurement with quarter-wave plate at -45º, signal in the (r)ight and (l)eft beams: • Second measurement with quarter-wave plate at +45º, signal in the (r)ight and (l)eft beams: • Measurements of the signals: rl SS 11 , rl SS 22, )()( )()( 22222222 11111111 VIgSVIgS VIgSVIgS rrll rrll −=+= −=+= αα αα Part IV: Polarimeters, example of circular polarimeter
  • 70. N. Manset / CFHTPolarization of Light: Basics to 71 A real circular polarimeter free from gain and atmospheric transmission variation effects • Build a ratio of measured signals which is free of gain and variable atmospheric transmission effects: 1for 2 1 2 1 1 4 1 2 2 1 1 21211221 2112 1 2 2 1 <<      +≈ +−− + =      −= V I V I V F VVVIVIII VIVI S S S S F r r l l average of the 2 measurements Part IV: Polarimeters, example of circular polarimeter
  • 71. N. Manset / CFHTPolarization of Light: Basics to 72 Polarimeters - Summary • 2 types: – polaroid-type: easy to make but ½ light is lost, and affected by variable atmospheric transmission – dual-beam type: no light lost but affected by gain differences and variable transmission problems • Linear polarimetry: – analyzer, rotatable – analyzer + half-wave plate • Circular polarimetry: – analyzer + quarter-wave plate  2 positions minimum  1 position minimum Part IV: Polarimeters, summary
  • 72. N. Manset / CFHTPolarization of Light: Basics to 73 Part V: ESPaDOnS Optical components of the polarimeter part : • Wollaston prism: analyses the polarization and separates the 2 (linear!) orthogonal polarization states • Retarders, 3 Fresnel rhombs: – Two half-wave plates to switch the beams around – Quarter-wave plate to do circular polarimetry
  • 73. N. Manset / CFHTPolarization of Light: Basics to 74 ESPaDOnS: circular polarimetry • Fixed quarter-wave rhomb • Rotating bottom half-wave, at 22.5º increments • Top half-wave rotates continuously at about 1Hz to average out linear polarization when measuring circular polarization Part V: ESPaDOnS, circular polarimetry mode
  • 74. N. Manset / CFHTPolarization of Light: Basics to 75 ESPaDOnS: circular polarimetry of circular polarization • half-wave • 22.5º positions • flips polarization • gain, transmission • quarter- wave • fixed • circular to linear • analyzer Part V: ESPaDOnS, circular polarimetry mode Σ ∆
  • 75. N. Manset / CFHTPolarization of Light: Basics to 76 ESPaDOnS: circular polarimetry of (unwanted) linear polarization • half-wave • 22.5º positions • gain, transmission • quarter- wave • fixed • linear to elliptical • analyzer • circular part goes through not analyzed and adds same intensities to both beams • linear part is analyzed! • Add a rotating half-wave to “spread out” the unwanted signal Part V: ESPaDOnS, circular polarimetry mode
  • 76. N. Manset / CFHTPolarization of Light: Basics to 77 ESPaDOnS: linear polarimetry • Half-Wave rhombs positioned at 22.5º increments • Quarter-Wave fixed Part V: ESPaDOnS, linear polarimetry
  • 77. N. Manset / CFHTPolarization of Light: Basics to 78 ESPaDOnS: linear polarimetry • Half-Wave rhombs positioned as 22.5º increments – First position gives Q – Second position gives U – Switch beams for gain and atmosphere effects • Quarter-Wave fixed Part V: ESPaDOnS, linear polarimetry Σ ∆
  • 78. N. Manset / CFHTPolarization of Light: Basics to 79 ESPaDOnS - Summary • ESPaDOnS can do linear and circular polarimetry (quarter-wave plate) • Beams are switched around to do the measurements, compensate for gain and atmospheric effects • Fesnel rhombs are very achromatic Part V: ESPaDOnS, summary
  • 79. N. Manset / CFHTPolarization of Light: Basics to 80
  • 80. N. Manset / CFHTPolarization of Light: Basics to 81 Credits for pictures and movies • Christoph Keller’s home page – his 5 lectures http://www.noao.edu/noao/staff/keller/ • “Basic Polarisation techniques and devices”, Meadowlark Optics Inc. http://www.meadowlark.com/ • Optics, E. Hecht and Astronomical Polarimetry, J. Tinbergen • Planets, Stars and Nebulae Studied With Photopolarimetry, T. Gehrels • Circular polarization movie http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm • Unpolarized light movie http://www.colorado.edu/physics/2000/polarization/polarizationII.html • Reflection of wave http://www.physicsclassroom.com/mmedia/waves/fix.html • ESPaDOnS web page and documents
  • 81. N. Manset / CFHTPolarization of Light: Basics to 82 References/Further reading On the Web • Very short and quick introduction, no equation http://www.cfht.hawaii.edu/~manset/PolarIntro_eng.html • Easy fun page with Applets, on polarizing filters http://www.colorado.edu/physics/2000/polarization/polarizationI.html • Polarization short course http://www.glenbrook.k12.il.us/gbssci/phys/Class/light/u12l1e.html • “Instrumentation for Astrophysical Spectropolarimetry”, a series of 5 lectures given at the IAC Winter School on Astrophysical Spectropolarimetry, November 2000 – http://www.noao.edu/noao/staff/keller/lectures/index.html
  • 82. N. Manset / CFHTPolarization of Light: Basics to 83 References/Further reading Polarization basics • Polarized Light, D. Goldstein – excellent book, easy read, gives a lot of insight, highly recommended • Undergraduate textbooks, either will do: – Optics, E. Hecht – Waves, F. S. Crawford, Berkeley Physics Course vol. 3
  • 83. N. Manset / CFHTPolarization of Light: Basics to 84 References/Further reading Astronomy, easy/intermediate • Astronomical Polarimetry, J. Tinbergen – instrumentation-oriented • La polarisation de la lumière et l'observation astronomique, J.-L. Leroy – astronomy-oriented • Planets, Stars and Nebulae Studied With Photopolarimetry, T. Gehrels – old but classic • 3 papers by K. Serkowski – instrumentation-oriented
  • 84. N. Manset / CFHTPolarization of Light: Basics to 85 References/Further reading Astronomy, advanced • Introduction to Spectropolarimetry, J.C. del Toro Iniesta – radiative transfer – ouch! • Astrophysical Spectropolarimetry, Trujillo-Bueno et al. (eds) – applications to astronomy