SlideShare a Scribd company logo
1 of 27
“Direct observation of molecular
arrays in the organized smooth
endoplasmic reticulum”
Vladimir M. Korkhov
Benoît Zuber
Jason Dillon
December 9, 2010
Bio 441
Background and Terms
• ER
– Rough
– Smooth
• Evolutionary conservation
– Yeast to mammals
– 50-100 nm luminal
intermembrane distance
• Tubes vs. Sheets
– Cell cycles
Matthew Damstrom Organelles Project. Web.
<http://liquidbio.pbworks.com/w/page/11135266/
Matthew-Damstrom-Organelles-Project>.
Organized Smooth ER (OSER)
• Cubic
• Tubular
• Stacked sheets
• Membrane & organelle biogenesis
• Comprises part of nuclear envelope
• Peripheral ER – microtubules and
membrane sheets
Possible Stabilizers
• Reticulons and DP1 (tubule stabilization)
–Induce high membrane curvature
• Nuclear envelope
–Flat double sheet
–SUN prot.
•Span NE lumen (nucleus to
cytoskeleton via Nesprin)
More Possibilities
• Weak interactions, fluorescent prot. tags
–On ER-resident prot.’s (cytoch.-b5, Sec61)
–May stabilize ER sheets
–May induce OSER formation
• Peripheral ER sheets
–Climp63
• Microtubule-binding protein (binds to
cytoskeleton)
Calnexin
• Assists protein conformation/folding
• Lectin chaperone with a single
transmembrane-spanning domain
• Overexpression
–Induces stacked OSER membranes
•Very dynamic
OSER Membrane Expansion
• Emery-Dreiffuss disease
• Torsion dystonia
• Hodgkin’s lymphona
• Response to stress
–Excessive malformed proteins
Intent of Experiment
• Identify mol.’s inducing organization of
smooth ER sheets
• OSER membrane stracks highly regular
• Ordered tethering of membranes
–Large native complex (unknown)
–Not through heterologously
overexpressed proteins
Materials
• DMEM and standard cell-culture reagents
• SUN1 and SUN2 antibodies
• Nesprin-1 antibody
• Anti-rabbit antibody conjugated with Texas
Red
• Climp63-GFP construct
• Calnexin constructs
Methods
• HEK293 cells
–Cultured at 37°C
–Supplemented with 5% CO2
• Transfections – Lipofectamine-2000
–24 μg of plasmid DNA
• Individual transfection reaction per 3 cm
plate
–10 μg of plasmid DNA
• Transfect cells growing in 10 cm dishes
Confocal Microscopy
• Poly-l-glutamate-coated glass cover-slips
–Grown until 5080% confluence
• Transfection/fixation
–Cells fixed w/ 4% paraformaldehye
• PO4-buffered saline (PBS)
–Permeabilized 30 min.’s @ room temp.
• PBS w/ 1% BSA & 0.01% Triton-X100
–Stained 1 hr. with 1o
& 2o
antibodies
Confocal Microscopy contd.
• Stained coverslips washed 4x in PBS
–Mounted on glass slides in Vectashield
medium
• Images acquired by Zeiss LSM 510
confocal microscope
–63x obj. lens
Cryo-electron Microscopy of
Vitreous Sections (CEMOVIS)
• Cells centrifuged 5 min.’s @ 1400 rpm
– Resuspended in 30% dextran-PBS
• Cells introduced into 200μm deep cavity of
copper membrane carrier
– Vitrified by high pressure freezing
• Membrane carriers clamped into specimen
holder
– Trimmed in pyramidal shape w/ diamond knife
CEMOVIS
• Cryosections collected on 1000-mesh
grids
–Coated w/C
–Stored in liquid N
• Tecnai T12 microscope
–Film
–2,600,030,000x
Intermembrane Distances
• Images scanned and digitized
• OSER membranes stacked parallel & perp.
• Intermembrane distances measured
–~30% compression due to cutting
–Fourier transformation/filtered image
calculation
• Cutting by diamond knife did not affect
selected regions
Results
• GFP-tagged memb. proteins (hypothesized)
– Weakly interact w/ each other – may lead to
stacking
• Intrinsic extramembranous domains of ER
proteins
• Self-association
• Fluorescent prot. dimerization not a pre-requisite
– Calnexin-mCherry fusion as potent as
YFP-/CFP-calnexin
Co-expression of Calnexin- and
Climp63-GFP (HEK293)
• Climp63
– Contains extended luminal coiled-coil domain
– Large, rod-shaped aggregates
– Possible stacking of OSER membranes
• No colocalization
• Climp63-GFP
– Not found in calnexin-GFP positive multilamellar
bodies
– Doesn’t stabilize OSER stacks
LINC Complex & Nesprin 1
• Nuclear Envelope proteins
– SUN1 & SUN2 connect inner NE with outer
– Cells over-expressing calnexin
– Endogenous SUN proteins excluded from
calnexin-induced OSER memb.’s
• Endogenous Nesprin-1
– NE to actin cytoskeleton
– Spectrin repeats --> possible oligomerization
– Excluded from calnexin-CFP stained OSER memb.
Figure 1 – Confocal Microscopy
•OSER membrane
biogenesis sustained
by monomeric
fluorescent protein
fusion expression
•Does
not involve Climp63,
SUN, or Nesprin1
proteins
CEMOVIS Analysis of HEK293 Cells
• Over-expressing calnexin-YFP
• 55 vitreous section micrographs
• Intermembrane spacing uniformity
–Cytosolic & luminal compartments
–25.3 nm b/t cytosolic, 36.5 nm (perpendicular)
–38.6 nm b/t luminal, 49.8 nm (perpendicular)
Stabilization
• Over-expressed proteins (i.e. calnexin) not
enough
• Luminal domain length of calnexin too short
Figure 2 - Luminal and Cytosolic
Distances
Black arrowheads
demonstrate cytosolic
space
Open arrow =
cutting direction
CEMOVIS Micrographs
• Proteins packed tighter in OSER than
peripheral ER
• Closely spaced arrays of globular complexes at
cytosolic face
–On outermost membrane
–Trapped inside
–Complexes still unknown (less than ½ size of
ribosome)
Figure 3 – Molecular Arrays at
OSER membranes
F. Dynamic,
high flexibility
20nm
G. Plot of angle vs.
intermembrane distance
Conclusions
• CEMOVIS imaging technique preserved in
vivo-like conditions (hydrated)
• Ordered cytosolic and luminal
macromolecular arrays (complexes)
– OSER stacking
• Fluorescent protein dimerization does not
lead to induction of OSER sheets
• ER-localized proteins may act in stabilization
– Cytochrome B5, HMG-CoA reductase
New Proposed Model
• OSER membranes are stabilized by extended
arrays of “adhesion” molecules
– Less ordered than desmosome junctions
• Identity remains unknown
• Still unknown whether “adhesion” molecules
induce OSER stack formation, or stabilize after
formation

More Related Content

What's hot

Corneal physiology ‫‬
Corneal physiology ‫‬Corneal physiology ‫‬
Corneal physiology ‫‬Opto Ihsan MH
 
Power pt on cell structure
Power pt on cell structurePower pt on cell structure
Power pt on cell structuredicabelle_100
 
Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2malcolmmackley
 
Chapter 06 A Tour of the Cell
Chapter 06 A Tour of the CellChapter 06 A Tour of the Cell
Chapter 06 A Tour of the CellTodd C
 
the cell
the cellthe cell
the cellmsarwa
 
IB Biology 1.1 Slides: Introduction to Cells
IB Biology 1.1 Slides: Introduction to CellsIB Biology 1.1 Slides: Introduction to Cells
IB Biology 1.1 Slides: Introduction to CellsJacob Cedarbaum
 
Lesson 2: Understanding cells
 Lesson 2: Understanding cells Lesson 2: Understanding cells
Lesson 2: Understanding cellsMailyn Morales
 
L04 nucleus
L04 nucleusL04 nucleus
L04 nucleusMUBOSScz
 
Histology & its methods of study
Histology & its methods of studyHistology & its methods of study
Histology & its methods of studyEneutron
 
DP Biology 1.2 Ultrastructure of Cells
DP Biology 1.2 Ultrastructure of CellsDP Biology 1.2 Ultrastructure of Cells
DP Biology 1.2 Ultrastructure of CellsR. Price
 
Lect 2 mitosis
Lect 2 mitosisLect 2 mitosis
Lect 2 mitosissyaheer77
 
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell Structure
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell StructureCambridge Pre-U Biology - 1.1 Eukaryotic Cell Structure
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell Structuremrexham
 

What's hot (18)

cell cycle
cell cyclecell cycle
cell cycle
 
Cell lab
Cell labCell lab
Cell lab
 
Corneal physiology ‫‬
Corneal physiology ‫‬Corneal physiology ‫‬
Corneal physiology ‫‬
 
Power pt on cell structure
Power pt on cell structurePower pt on cell structure
Power pt on cell structure
 
Nucleus
Nucleus Nucleus
Nucleus
 
Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2
 
Chapter 06 A Tour of the Cell
Chapter 06 A Tour of the CellChapter 06 A Tour of the Cell
Chapter 06 A Tour of the Cell
 
06 cell text
06  cell text06  cell text
06 cell text
 
the cell
the cellthe cell
the cell
 
Cornea
Cornea Cornea
Cornea
 
IB Biology 1.1 Slides: Introduction to Cells
IB Biology 1.1 Slides: Introduction to CellsIB Biology 1.1 Slides: Introduction to Cells
IB Biology 1.1 Slides: Introduction to Cells
 
Lesson 2: Understanding cells
 Lesson 2: Understanding cells Lesson 2: Understanding cells
Lesson 2: Understanding cells
 
L04 nucleus
L04 nucleusL04 nucleus
L04 nucleus
 
Histology & its methods of study
Histology & its methods of studyHistology & its methods of study
Histology & its methods of study
 
DP Biology 1.2 Ultrastructure of Cells
DP Biology 1.2 Ultrastructure of CellsDP Biology 1.2 Ultrastructure of Cells
DP Biology 1.2 Ultrastructure of Cells
 
Lect 2 mitosis
Lect 2 mitosisLect 2 mitosis
Lect 2 mitosis
 
Lens
LensLens
Lens
 
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell Structure
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell StructureCambridge Pre-U Biology - 1.1 Eukaryotic Cell Structure
Cambridge Pre-U Biology - 1.1 Eukaryotic Cell Structure
 

Similar to Direct observation of molecular arrays stabilizing organized smooth endoplasmic reticulum sheets

Cell - structure and functions
Cell - structure and functionsCell - structure and functions
Cell - structure and functionsJanani Mathialagan
 
Cornea Anatomy and Physiology
Cornea Anatomy and PhysiologyCornea Anatomy and Physiology
Cornea Anatomy and PhysiologyShandilyan Mbbs
 
Chapter 48: Nuerons
Chapter 48: NueronsChapter 48: Nuerons
Chapter 48: NueronsAngel Vega
 
Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Cleophas Rwemera
 
Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Cleophas Rwemera
 
Nuclear envelope and nuclear lamina
Nuclear envelope and nuclear lamina Nuclear envelope and nuclear lamina
Nuclear envelope and nuclear lamina J K COLLEGE,PURULIA
 
Nucleus – morphology & function
Nucleus – morphology & functionNucleus – morphology & function
Nucleus – morphology & functionNaveen S
 
06 lecture presentation
06 lecture presentation06 lecture presentation
06 lecture presentationYazeed Samara
 
Cell structure
Cell structureCell structure
Cell structurejugafoce
 
Histology of cell and its components
Histology of cell and its components Histology of cell and its components
Histology of cell and its components Sriram Ranganathan
 
Bio chapter 1.pdf
Bio chapter 1.pdfBio chapter 1.pdf
Bio chapter 1.pdfNiveetha1
 
Biol101 chp6-pp-fall10-101024134531-phpapp02
Biol101 chp6-pp-fall10-101024134531-phpapp02Biol101 chp6-pp-fall10-101024134531-phpapp02
Biol101 chp6-pp-fall10-101024134531-phpapp02Cleophas Rwemera
 

Similar to Direct observation of molecular arrays stabilizing organized smooth endoplasmic reticulum sheets (20)

NUCLEUS
NUCLEUS NUCLEUS
NUCLEUS
 
NUCLEUS
NUCLEUS NUCLEUS
NUCLEUS
 
Cell - structure and functions
Cell - structure and functionsCell - structure and functions
Cell - structure and functions
 
Cornea Anatomy and Physiology
Cornea Anatomy and PhysiologyCornea Anatomy and Physiology
Cornea Anatomy and Physiology
 
Chapter 48: Nuerons
Chapter 48: NueronsChapter 48: Nuerons
Chapter 48: Nuerons
 
Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891
 
Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891Chapter48nuerons 151125144534-lva1-app6891
Chapter48nuerons 151125144534-lva1-app6891
 
Nuclear envelope and nuclear lamina
Nuclear envelope and nuclear lamina Nuclear envelope and nuclear lamina
Nuclear envelope and nuclear lamina
 
A tour of the cell
A tour of the cellA tour of the cell
A tour of the cell
 
Cell biology techniques
Cell biology techniquesCell biology techniques
Cell biology techniques
 
Cell ppt
Cell pptCell ppt
Cell ppt
 
Nucleus – morphology & function
Nucleus – morphology & functionNucleus – morphology & function
Nucleus – morphology & function
 
Presen tisse
Presen tissePresen tisse
Presen tisse
 
06 lecture presentation
06 lecture presentation06 lecture presentation
06 lecture presentation
 
Cell structure
Cell structureCell structure
Cell structure
 
Histology of cell and its components
Histology of cell and its components Histology of cell and its components
Histology of cell and its components
 
4 Cell membranes and transport
4 Cell membranes and transport4 Cell membranes and transport
4 Cell membranes and transport
 
Bio chapter 1.pdf
Bio chapter 1.pdfBio chapter 1.pdf
Bio chapter 1.pdf
 
Cornea
CorneaCornea
Cornea
 
Biol101 chp6-pp-fall10-101024134531-phpapp02
Biol101 chp6-pp-fall10-101024134531-phpapp02Biol101 chp6-pp-fall10-101024134531-phpapp02
Biol101 chp6-pp-fall10-101024134531-phpapp02
 

Direct observation of molecular arrays stabilizing organized smooth endoplasmic reticulum sheets

  • 1. “Direct observation of molecular arrays in the organized smooth endoplasmic reticulum” Vladimir M. Korkhov Benoît Zuber Jason Dillon December 9, 2010 Bio 441
  • 2. Background and Terms • ER – Rough – Smooth • Evolutionary conservation – Yeast to mammals – 50-100 nm luminal intermembrane distance • Tubes vs. Sheets – Cell cycles Matthew Damstrom Organelles Project. Web. <http://liquidbio.pbworks.com/w/page/11135266/ Matthew-Damstrom-Organelles-Project>.
  • 3. Organized Smooth ER (OSER) • Cubic • Tubular • Stacked sheets • Membrane & organelle biogenesis • Comprises part of nuclear envelope • Peripheral ER – microtubules and membrane sheets
  • 4. Possible Stabilizers • Reticulons and DP1 (tubule stabilization) –Induce high membrane curvature • Nuclear envelope –Flat double sheet –SUN prot. •Span NE lumen (nucleus to cytoskeleton via Nesprin)
  • 5. More Possibilities • Weak interactions, fluorescent prot. tags –On ER-resident prot.’s (cytoch.-b5, Sec61) –May stabilize ER sheets –May induce OSER formation • Peripheral ER sheets –Climp63 • Microtubule-binding protein (binds to cytoskeleton)
  • 6. Calnexin • Assists protein conformation/folding • Lectin chaperone with a single transmembrane-spanning domain • Overexpression –Induces stacked OSER membranes •Very dynamic
  • 7. OSER Membrane Expansion • Emery-Dreiffuss disease • Torsion dystonia • Hodgkin’s lymphona • Response to stress –Excessive malformed proteins
  • 8. Intent of Experiment • Identify mol.’s inducing organization of smooth ER sheets • OSER membrane stracks highly regular • Ordered tethering of membranes –Large native complex (unknown) –Not through heterologously overexpressed proteins
  • 9. Materials • DMEM and standard cell-culture reagents • SUN1 and SUN2 antibodies • Nesprin-1 antibody • Anti-rabbit antibody conjugated with Texas Red • Climp63-GFP construct • Calnexin constructs
  • 10. Methods • HEK293 cells –Cultured at 37°C –Supplemented with 5% CO2 • Transfections – Lipofectamine-2000 –24 μg of plasmid DNA • Individual transfection reaction per 3 cm plate –10 μg of plasmid DNA • Transfect cells growing in 10 cm dishes
  • 11. Confocal Microscopy • Poly-l-glutamate-coated glass cover-slips –Grown until 5080% confluence • Transfection/fixation –Cells fixed w/ 4% paraformaldehye • PO4-buffered saline (PBS) –Permeabilized 30 min.’s @ room temp. • PBS w/ 1% BSA & 0.01% Triton-X100 –Stained 1 hr. with 1o & 2o antibodies
  • 12. Confocal Microscopy contd. • Stained coverslips washed 4x in PBS –Mounted on glass slides in Vectashield medium • Images acquired by Zeiss LSM 510 confocal microscope –63x obj. lens
  • 13. Cryo-electron Microscopy of Vitreous Sections (CEMOVIS) • Cells centrifuged 5 min.’s @ 1400 rpm – Resuspended in 30% dextran-PBS • Cells introduced into 200μm deep cavity of copper membrane carrier – Vitrified by high pressure freezing • Membrane carriers clamped into specimen holder – Trimmed in pyramidal shape w/ diamond knife
  • 14. CEMOVIS • Cryosections collected on 1000-mesh grids –Coated w/C –Stored in liquid N • Tecnai T12 microscope –Film –2,600,030,000x
  • 15. Intermembrane Distances • Images scanned and digitized • OSER membranes stacked parallel & perp. • Intermembrane distances measured –~30% compression due to cutting –Fourier transformation/filtered image calculation • Cutting by diamond knife did not affect selected regions
  • 16. Results • GFP-tagged memb. proteins (hypothesized) – Weakly interact w/ each other – may lead to stacking • Intrinsic extramembranous domains of ER proteins • Self-association • Fluorescent prot. dimerization not a pre-requisite – Calnexin-mCherry fusion as potent as YFP-/CFP-calnexin
  • 17. Co-expression of Calnexin- and Climp63-GFP (HEK293) • Climp63 – Contains extended luminal coiled-coil domain – Large, rod-shaped aggregates – Possible stacking of OSER membranes • No colocalization • Climp63-GFP – Not found in calnexin-GFP positive multilamellar bodies – Doesn’t stabilize OSER stacks
  • 18. LINC Complex & Nesprin 1 • Nuclear Envelope proteins – SUN1 & SUN2 connect inner NE with outer – Cells over-expressing calnexin – Endogenous SUN proteins excluded from calnexin-induced OSER memb.’s • Endogenous Nesprin-1 – NE to actin cytoskeleton – Spectrin repeats --> possible oligomerization – Excluded from calnexin-CFP stained OSER memb.
  • 19. Figure 1 – Confocal Microscopy •OSER membrane biogenesis sustained by monomeric fluorescent protein fusion expression •Does not involve Climp63, SUN, or Nesprin1 proteins
  • 20. CEMOVIS Analysis of HEK293 Cells • Over-expressing calnexin-YFP • 55 vitreous section micrographs • Intermembrane spacing uniformity –Cytosolic & luminal compartments –25.3 nm b/t cytosolic, 36.5 nm (perpendicular) –38.6 nm b/t luminal, 49.8 nm (perpendicular)
  • 21. Stabilization • Over-expressed proteins (i.e. calnexin) not enough • Luminal domain length of calnexin too short
  • 22. Figure 2 - Luminal and Cytosolic Distances Black arrowheads demonstrate cytosolic space Open arrow = cutting direction
  • 23. CEMOVIS Micrographs • Proteins packed tighter in OSER than peripheral ER • Closely spaced arrays of globular complexes at cytosolic face –On outermost membrane –Trapped inside –Complexes still unknown (less than ½ size of ribosome)
  • 24. Figure 3 – Molecular Arrays at OSER membranes
  • 25. F. Dynamic, high flexibility 20nm G. Plot of angle vs. intermembrane distance
  • 26. Conclusions • CEMOVIS imaging technique preserved in vivo-like conditions (hydrated) • Ordered cytosolic and luminal macromolecular arrays (complexes) – OSER stacking • Fluorescent protein dimerization does not lead to induction of OSER sheets • ER-localized proteins may act in stabilization – Cytochrome B5, HMG-CoA reductase
  • 27. New Proposed Model • OSER membranes are stabilized by extended arrays of “adhesion” molecules – Less ordered than desmosome junctions • Identity remains unknown • Still unknown whether “adhesion” molecules induce OSER stack formation, or stabilize after formation