SlideShare a Scribd company logo
1 of 12
ENGT 107: PRINCIPLES
OF HYDRAULICS AND
PNEUMATICS PROFESSOR JIM
EVANGELOS
Example ProblemsChapt. 2
Example Problems:
1 Example 2-4
2 Example 2-5
3 Example 2-6 & 2-6M
4 Example 2-7
5 Example 2-8
6 Example 2-9M
7 Example 2-12
8 Example 2-13
9 Example 2-17M
10 Example 2-19
11 Example 2-20
Example 2-4
Hydraulic Force Multiplication
 Figure 2-5 (pg. 17) shows an input
cylinder with a diameter of 1 in and an
output cylinder with a dia of 2.5 in. A
force of 250 lbs. is applied to the input
cylinder.
 What is the output force?
 How far would we need to move the input
cylinder to move the output cylinder 1 in?
𝐴𝑖𝑛 =
𝜋∙𝐷2
4
=
𝜋∙(1 𝑖𝑛)2
4
= 0.7854 𝑖𝑛2
𝐴 𝑜𝑢𝑡 =
𝜋∙𝐷2
4
=
𝜋∙(2.5 𝑖𝑛)2
4
= 4.909 𝑖𝑛2
From equation 2-3:
𝐹𝑜𝑢𝑡
𝐹 𝑖𝑛
=
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
𝐹𝑜𝑢𝑡 =
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
∙ 𝐹𝑖𝑛
𝐹𝑜𝑢𝑡 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙ 250 𝑙𝑏𝑠 = 1563 𝑙𝑏𝑠
From equation 2-5:
𝑑𝑖𝑛
𝑑 𝑜𝑢𝑡
=
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
𝑑𝑖𝑛 =
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
∙ 𝑑 𝑜𝑢𝑡
𝑑𝑖𝑛 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙ 1 𝑖𝑛 =
𝐹𝑜𝑢𝑡 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙ 250 𝑙𝑏𝑠 = 1563 𝑙𝑏𝑠
𝑑𝑖𝑛 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙ 1 𝑖𝑛 = 6.25 in
Example 2-5
Velocity trade off
 The output cylinder in
the previous example is
required to move at 4
in/s.
 At what speed must the
input cylinder move?
𝑣𝑖𝑛 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙
4 𝑖𝑛
𝑠
= 250 in/s
From equation 2-6:
𝑣 𝑖𝑛
𝑣 𝑜𝑢𝑡
=
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
𝑣𝑖𝑛 =
𝐴 𝑜𝑢𝑡
𝐴 𝑖𝑛
∙ 𝑣 𝑜𝑢𝑡
𝑣𝑖𝑛 =
4.909 𝑖𝑛2
0.7854 𝑖𝑛2 ∙
4 𝑖𝑛
𝑠
= 250 in/s
Example 2-6 & 2-6M
Weight versus Mass
 An object weighs 1000
lbs.
 What is the mass?
 What is the mass if the
weight is 200 N?
𝑤 = 𝑚 ∙ 𝑔
𝑚 =
𝑤
𝑔
𝑚 =
1000 𝑙𝑏𝑠
32. 2𝑓𝑡/𝑠2
= 31.06
𝑙𝑏 ∙ 𝑠2
𝑓𝑡
= 31.06 𝑠𝑙𝑢𝑔𝑠
𝑚 =
200 𝑁
9.81 𝑚/𝑠2 = 203.9
𝑁 ∙ 𝑠2
𝑚
= 31.06 𝐾𝑔
Example 2-7 Viscosity
 The top plate shown has a wetted
area of 0.5 ft2 and is moving at
velocity of 10 ft/s. The force
required to maintain this speed is 5
lbs. The fluid film thickness is 0.05
in.
 What is the viscosity of the fluid?
From equation 2−6:
𝜇 =
𝐹 ∙𝑦
𝑣 ∙𝐴
𝜇 =
5 𝑙𝑏 ∙(0.00417 𝑓𝑡)
10 𝑓𝑡/𝑠 ∙(0.5 𝑓𝑡2)
= 0.00417
𝑙𝑏 ∙𝑠
𝑓𝑡2
0.05 𝑖𝑛 ∙
1 𝑓𝑡
12 𝑖𝑛
= 0.00417 𝑓𝑡
𝜇 =
5 𝑙𝑏 ∙(0.00417 𝑓𝑡)
10 𝑓𝑡/𝑠 ∙(0.5 𝑓𝑡2)
= 0.00417
𝑙𝑏 ∙𝑠
𝑓𝑡2
Example 2-8 Bulk Modulus
 In a system using hydraulic oil
(B = 250,000 psi), the pressure is
3000 psi.
 By what percentage is the oil being
compressed relative to the
unpressurized state (p = 0 psi)?
From equation 2−13: B =
−∆𝑝
∆𝑉
𝑉
calculate the change in pressure:
∆𝑝 = 3000 𝑝𝑠𝑖 − 0 𝑝𝑠𝑖 = 3000 𝑝𝑠𝑖
calculate the proportional change in
volume by manipulating 2−13:
∆𝑉
𝑉
=
−∆𝑝
𝐵
=
−3000 𝑝𝑠𝑖
250,000 𝑝𝑠𝑖
=
−3000 𝑝𝑠𝑖
250,000 𝑝𝑠𝑖
= −0.012
Next, we multiply by 100 to obtain % change
= - 1.2%
Example 2-9M Basic Flow rate
 A fluid flows at a velocity of 25 m/min through a
conduit with an ID of 30 mm. Determine the flow
rate.Calculate the conduit area: A =
𝜋∙𝐷2
4
=
𝜋∙(.030 𝑚)2
4
= .0007070 m2
Calculate the flow rate: Q = 𝑣 ∙ 𝐴 =25
𝑚
𝑚𝑖𝑛
∙ .0007070 m2 = .017675 m3/min
Flow rates are commonly in lpm, 1m3 =
1000 l
.017675 m3/min ∙ 1000 l/m3 = 17.67 𝑙/𝑚𝑖𝑛.017675 m3/min 1000 l/m3
Example 2-12 Continuity
Equation
 A fluid flows at a velocity of 120 in/min at point 1 in
the system shown. The diameter at point 1 is 2 in
and the diameter at point 2 is 1.5 in.
 Determine the flow velocity at point 2.
 Also determine the flow rate in gpm.
𝐴1 =
𝜋∙(𝐷1 )2
4
=
𝜋∙(2 𝑖𝑛)2
4
= 3.142 𝑖𝑛2
𝐴2 =
𝜋∙(𝐷2 )2
4
=
𝜋∙(1.5 𝑖𝑛)2
4
= 1.767 𝑖𝑛2
From equation 2−15: 𝑣1 𝐴1
= 𝑣2 𝐴2
𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔: 𝑣2 = 𝑣1 ∙
𝐴1
𝐴2
=
𝑄 = 𝑣1 𝐴1
120 𝑖𝑛/𝑚𝑖𝑛 ∙
3.142 𝑖𝑛2
1.767 𝑖𝑛2120 𝑖𝑛/𝑚𝑖𝑛 ∙
3.142 𝑖𝑛2
1,767 𝑖𝑛2
= 213.4
𝑖𝑛
𝑚𝑖𝑛
= 120
𝑖𝑛
𝑚𝑖𝑛
∙ (3.142 𝑖𝑛2
)
= 377.0
𝑖𝑛3
𝑚𝑖𝑛
377.0
𝑖𝑛3
𝑚𝑖𝑛
∙
1 𝑔𝑎𝑙
231 𝑖𝑛3377.0
𝑖𝑛3
𝑚𝑖𝑛
∙
1 𝑔𝑎𝑙
231 𝑖𝑛3
= 1.632
𝑔𝑎𝑙
𝑚𝑖𝑛
Example 2-13 Bernoulli’s
Equation
 A fluid (𝛾 = 0.0324 𝑙𝑏𝑠/𝑖𝑛3
) flows at a constant flow rate
of 150
𝑖𝑛3
𝑠
through the system shown in the figure. The
areas at points 1 & 2 are equal. The pressure at point1
is 100 psi and h = 200 in.
 Determine the pressure at point 2.
From equation 2−16:
ℎ1 +
𝑝1
𝛾
+
𝑣1
2
2𝑔
= ℎ2 +
𝑝2
𝛾
+
𝑣2
2
2𝑔
But the areas at points 1 and 2 are exactly the same, and
this means the velocity at both places are the same.
This cancels the velocity terms in the above equation:
ℎ1 +
𝑝1
𝛾
= ℎ2 +
𝑝2
𝛾
𝑝2 = 𝑝1 − 𝛾(ℎ2 − ℎ1)
𝑝2 = 100
𝑙𝑏𝑠
𝑖𝑛2
− 0.0324
𝑙𝑏𝑠
𝑖𝑛3
(200 𝑖𝑛)𝑝2 = 100
𝑙𝑏𝑠
𝑖𝑛2
− 0.0324
𝑙𝑏𝑠
𝑖𝑛2
(200 𝑖𝑛)
= 93.5
𝑙𝑏𝑠
𝑖𝑛2
Example 2-17M
 .
END OF LECTURE

More Related Content

What's hot

Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3dr walid
 
Cálculo de h convectiva cuando tfilm es desconocida
Cálculo de h convectiva cuando tfilm es desconocidaCálculo de h convectiva cuando tfilm es desconocida
Cálculo de h convectiva cuando tfilm es desconocidawww.youtube.com/cinthiareyes
 
Evaporation Pond Process Design in Oil & Gas Industry
Evaporation Pond Process Design in Oil & Gas IndustryEvaporation Pond Process Design in Oil & Gas Industry
Evaporation Pond Process Design in Oil & Gas IndustryVijay Sarathy
 
Stability of A Floating Body | Jameel Academy
Stability of  A Floating Body | Jameel AcademyStability of  A Floating Body | Jameel Academy
Stability of A Floating Body | Jameel AcademyJameel Academy
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGSAJJAD KHUDHUR ABBAS
 

What's hot (9)

Fluid tutorial 3
Fluid tutorial 3Fluid tutorial 3
Fluid tutorial 3
 
Setting of concrete
Setting of concreteSetting of concrete
Setting of concrete
 
Cálculo de h convectiva cuando tfilm es desconocida
Cálculo de h convectiva cuando tfilm es desconocidaCálculo de h convectiva cuando tfilm es desconocida
Cálculo de h convectiva cuando tfilm es desconocida
 
أسئلة 1
أسئلة 1أسئلة 1
أسئلة 1
 
Evaporation Pond Process Design in Oil & Gas Industry
Evaporation Pond Process Design in Oil & Gas IndustryEvaporation Pond Process Design in Oil & Gas Industry
Evaporation Pond Process Design in Oil & Gas Industry
 
X10704 (me8594)
X10704 (me8594)X10704 (me8594)
X10704 (me8594)
 
Stability of A Floating Body | Jameel Academy
Stability of  A Floating Body | Jameel AcademyStability of  A Floating Body | Jameel Academy
Stability of A Floating Body | Jameel Academy
 
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYINGEpisode 40 :  DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
Episode 40 : DESIGN EXAMPLE – DILUTE PHASE PNEUMATIC CONVEYING
 
X10238 (ce8394)
X10238 (ce8394)X10238 (ce8394)
X10238 (ce8394)
 

Viewers also liked

How Religious Are Canadians?
How Religious Are Canadians?How Religious Are Canadians?
How Religious Are Canadians?Dan Postma
 
Final Research Design
Final Research Design Final Research Design
Final Research Design Anthony Malky
 
Guðrún jóhannsdóttir resume
Guðrún jóhannsdóttir resumeGuðrún jóhannsdóttir resume
Guðrún jóhannsdóttir resumeGu
 
Перечень дидактического материала
Перечень дидактического материалаПеречень дидактического материала
Перечень дидактического материалаIIIIIPresentationIIIII
 
Lecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential LogicLecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential LogicJames Evangelos
 
chapter25 Optical Instruments
chapter25 Optical Instrumentschapter25 Optical Instruments
chapter25 Optical InstrumentsJames Evangelos
 

Viewers also liked (9)

Palm powerpoint
Palm powerpointPalm powerpoint
Palm powerpoint
 
How Religious Are Canadians?
How Religious Are Canadians?How Religious Are Canadians?
How Religious Are Canadians?
 
CRP Finished
CRP FinishedCRP Finished
CRP Finished
 
Final Research Design
Final Research Design Final Research Design
Final Research Design
 
Guðrún jóhannsdóttir resume
Guðrún jóhannsdóttir resumeGuðrún jóhannsdóttir resume
Guðrún jóhannsdóttir resume
 
Перечень дидактического материала
Перечень дидактического материалаПеречень дидактического материала
Перечень дидактического материала
 
Lecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential LogicLecture 5 Synchronous Sequential Logic
Lecture 5 Synchronous Sequential Logic
 
chapter25 Optical Instruments
chapter25 Optical Instrumentschapter25 Optical Instruments
chapter25 Optical Instruments
 
updated resume 2016
updated resume 2016updated resume 2016
updated resume 2016
 

Similar to ENGT_107 Lecture 02_Examples

J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7Malaysia
 
T3a - Finding the operating point of a pumping system 2023.pptx
T3a - Finding the operating point of a pumping system 2023.pptxT3a - Finding the operating point of a pumping system 2023.pptx
T3a - Finding the operating point of a pumping system 2023.pptxKeith Vaugh
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxRasaniyaShreem
 
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...iosrjce
 
aci-mix-design-example-1.pdf
aci-mix-design-example-1.pdfaci-mix-design-example-1.pdf
aci-mix-design-example-1.pdfXamyto
 
ME449_OConnor_Presentation
ME449_OConnor_PresentationME449_OConnor_Presentation
ME449_OConnor_PresentationDillon O'Connor
 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .happycocoman
 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptxNelyJay
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfKaiwan B. Hamasalih
 
Practica física II Estática de fluidos
Practica física II Estática de fluidosPractica física II Estática de fluidos
Practica física II Estática de fluidosjoseluis1261
 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesVijay Sarathy
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediateG.Balachandran
 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptxamirashraf61
 

Similar to ENGT_107 Lecture 02_Examples (20)

Hidraulica ejercicios
Hidraulica ejercicios Hidraulica ejercicios
Hidraulica ejercicios
 
UNIT-II FMM
UNIT-II FMMUNIT-II FMM
UNIT-II FMM
 
J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7J2006 termodinamik 1 unit7
J2006 termodinamik 1 unit7
 
Examination in open channel flow
Examination in open channel flowExamination in open channel flow
Examination in open channel flow
 
T3a - Finding the operating point of a pumping system 2023.pptx
T3a - Finding the operating point of a pumping system 2023.pptxT3a - Finding the operating point of a pumping system 2023.pptx
T3a - Finding the operating point of a pumping system 2023.pptx
 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
 
PED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptxPED_Distillation_Column_designing_Sum (1).pptx
PED_Distillation_Column_designing_Sum (1).pptx
 
J012665565
J012665565J012665565
J012665565
 
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...
Generation of Air Swirl through Inlet Poppet Valve Modification and To Enhanc...
 
aci-mix-design-example-1.pdf
aci-mix-design-example-1.pdfaci-mix-design-example-1.pdf
aci-mix-design-example-1.pdf
 
ME449_OConnor_Presentation
ME449_OConnor_PresentationME449_OConnor_Presentation
ME449_OConnor_Presentation
 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .
 
Lecture 7.pptx
Lecture 7.pptxLecture 7.pptx
Lecture 7.pptx
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdf
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Practica física II Estática de fluidos
Practica física II Estática de fluidosPractica física II Estática de fluidos
Practica física II Estática de fluidos
 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediate
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
pipe lines lec 1.pptx
pipe lines lec 1.pptxpipe lines lec 1.pptx
pipe lines lec 1.pptx
 

ENGT_107 Lecture 02_Examples

  • 1. ENGT 107: PRINCIPLES OF HYDRAULICS AND PNEUMATICS PROFESSOR JIM EVANGELOS Example ProblemsChapt. 2
  • 2. Example Problems: 1 Example 2-4 2 Example 2-5 3 Example 2-6 & 2-6M 4 Example 2-7 5 Example 2-8 6 Example 2-9M 7 Example 2-12 8 Example 2-13 9 Example 2-17M 10 Example 2-19 11 Example 2-20
  • 3. Example 2-4 Hydraulic Force Multiplication  Figure 2-5 (pg. 17) shows an input cylinder with a diameter of 1 in and an output cylinder with a dia of 2.5 in. A force of 250 lbs. is applied to the input cylinder.  What is the output force?  How far would we need to move the input cylinder to move the output cylinder 1 in? 𝐴𝑖𝑛 = 𝜋∙𝐷2 4 = 𝜋∙(1 𝑖𝑛)2 4 = 0.7854 𝑖𝑛2 𝐴 𝑜𝑢𝑡 = 𝜋∙𝐷2 4 = 𝜋∙(2.5 𝑖𝑛)2 4 = 4.909 𝑖𝑛2 From equation 2-3: 𝐹𝑜𝑢𝑡 𝐹 𝑖𝑛 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 𝐹𝑜𝑢𝑡 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 ∙ 𝐹𝑖𝑛 𝐹𝑜𝑢𝑡 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 250 𝑙𝑏𝑠 = 1563 𝑙𝑏𝑠 From equation 2-5: 𝑑𝑖𝑛 𝑑 𝑜𝑢𝑡 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 𝑑𝑖𝑛 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 ∙ 𝑑 𝑜𝑢𝑡 𝑑𝑖𝑛 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 1 𝑖𝑛 = 𝐹𝑜𝑢𝑡 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 250 𝑙𝑏𝑠 = 1563 𝑙𝑏𝑠 𝑑𝑖𝑛 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 1 𝑖𝑛 = 6.25 in
  • 4. Example 2-5 Velocity trade off  The output cylinder in the previous example is required to move at 4 in/s.  At what speed must the input cylinder move? 𝑣𝑖𝑛 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 4 𝑖𝑛 𝑠 = 250 in/s From equation 2-6: 𝑣 𝑖𝑛 𝑣 𝑜𝑢𝑡 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 𝑣𝑖𝑛 = 𝐴 𝑜𝑢𝑡 𝐴 𝑖𝑛 ∙ 𝑣 𝑜𝑢𝑡 𝑣𝑖𝑛 = 4.909 𝑖𝑛2 0.7854 𝑖𝑛2 ∙ 4 𝑖𝑛 𝑠 = 250 in/s
  • 5. Example 2-6 & 2-6M Weight versus Mass  An object weighs 1000 lbs.  What is the mass?  What is the mass if the weight is 200 N? 𝑤 = 𝑚 ∙ 𝑔 𝑚 = 𝑤 𝑔 𝑚 = 1000 𝑙𝑏𝑠 32. 2𝑓𝑡/𝑠2 = 31.06 𝑙𝑏 ∙ 𝑠2 𝑓𝑡 = 31.06 𝑠𝑙𝑢𝑔𝑠 𝑚 = 200 𝑁 9.81 𝑚/𝑠2 = 203.9 𝑁 ∙ 𝑠2 𝑚 = 31.06 𝐾𝑔
  • 6. Example 2-7 Viscosity  The top plate shown has a wetted area of 0.5 ft2 and is moving at velocity of 10 ft/s. The force required to maintain this speed is 5 lbs. The fluid film thickness is 0.05 in.  What is the viscosity of the fluid? From equation 2−6: 𝜇 = 𝐹 ∙𝑦 𝑣 ∙𝐴 𝜇 = 5 𝑙𝑏 ∙(0.00417 𝑓𝑡) 10 𝑓𝑡/𝑠 ∙(0.5 𝑓𝑡2) = 0.00417 𝑙𝑏 ∙𝑠 𝑓𝑡2 0.05 𝑖𝑛 ∙ 1 𝑓𝑡 12 𝑖𝑛 = 0.00417 𝑓𝑡 𝜇 = 5 𝑙𝑏 ∙(0.00417 𝑓𝑡) 10 𝑓𝑡/𝑠 ∙(0.5 𝑓𝑡2) = 0.00417 𝑙𝑏 ∙𝑠 𝑓𝑡2
  • 7. Example 2-8 Bulk Modulus  In a system using hydraulic oil (B = 250,000 psi), the pressure is 3000 psi.  By what percentage is the oil being compressed relative to the unpressurized state (p = 0 psi)? From equation 2−13: B = −∆𝑝 ∆𝑉 𝑉 calculate the change in pressure: ∆𝑝 = 3000 𝑝𝑠𝑖 − 0 𝑝𝑠𝑖 = 3000 𝑝𝑠𝑖 calculate the proportional change in volume by manipulating 2−13: ∆𝑉 𝑉 = −∆𝑝 𝐵 = −3000 𝑝𝑠𝑖 250,000 𝑝𝑠𝑖 = −3000 𝑝𝑠𝑖 250,000 𝑝𝑠𝑖 = −0.012 Next, we multiply by 100 to obtain % change = - 1.2%
  • 8. Example 2-9M Basic Flow rate  A fluid flows at a velocity of 25 m/min through a conduit with an ID of 30 mm. Determine the flow rate.Calculate the conduit area: A = 𝜋∙𝐷2 4 = 𝜋∙(.030 𝑚)2 4 = .0007070 m2 Calculate the flow rate: Q = 𝑣 ∙ 𝐴 =25 𝑚 𝑚𝑖𝑛 ∙ .0007070 m2 = .017675 m3/min Flow rates are commonly in lpm, 1m3 = 1000 l .017675 m3/min ∙ 1000 l/m3 = 17.67 𝑙/𝑚𝑖𝑛.017675 m3/min 1000 l/m3
  • 9. Example 2-12 Continuity Equation  A fluid flows at a velocity of 120 in/min at point 1 in the system shown. The diameter at point 1 is 2 in and the diameter at point 2 is 1.5 in.  Determine the flow velocity at point 2.  Also determine the flow rate in gpm. 𝐴1 = 𝜋∙(𝐷1 )2 4 = 𝜋∙(2 𝑖𝑛)2 4 = 3.142 𝑖𝑛2 𝐴2 = 𝜋∙(𝐷2 )2 4 = 𝜋∙(1.5 𝑖𝑛)2 4 = 1.767 𝑖𝑛2 From equation 2−15: 𝑣1 𝐴1 = 𝑣2 𝐴2 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔: 𝑣2 = 𝑣1 ∙ 𝐴1 𝐴2 = 𝑄 = 𝑣1 𝐴1 120 𝑖𝑛/𝑚𝑖𝑛 ∙ 3.142 𝑖𝑛2 1.767 𝑖𝑛2120 𝑖𝑛/𝑚𝑖𝑛 ∙ 3.142 𝑖𝑛2 1,767 𝑖𝑛2 = 213.4 𝑖𝑛 𝑚𝑖𝑛 = 120 𝑖𝑛 𝑚𝑖𝑛 ∙ (3.142 𝑖𝑛2 ) = 377.0 𝑖𝑛3 𝑚𝑖𝑛 377.0 𝑖𝑛3 𝑚𝑖𝑛 ∙ 1 𝑔𝑎𝑙 231 𝑖𝑛3377.0 𝑖𝑛3 𝑚𝑖𝑛 ∙ 1 𝑔𝑎𝑙 231 𝑖𝑛3 = 1.632 𝑔𝑎𝑙 𝑚𝑖𝑛
  • 10. Example 2-13 Bernoulli’s Equation  A fluid (𝛾 = 0.0324 𝑙𝑏𝑠/𝑖𝑛3 ) flows at a constant flow rate of 150 𝑖𝑛3 𝑠 through the system shown in the figure. The areas at points 1 & 2 are equal. The pressure at point1 is 100 psi and h = 200 in.  Determine the pressure at point 2. From equation 2−16: ℎ1 + 𝑝1 𝛾 + 𝑣1 2 2𝑔 = ℎ2 + 𝑝2 𝛾 + 𝑣2 2 2𝑔 But the areas at points 1 and 2 are exactly the same, and this means the velocity at both places are the same. This cancels the velocity terms in the above equation: ℎ1 + 𝑝1 𝛾 = ℎ2 + 𝑝2 𝛾 𝑝2 = 𝑝1 − 𝛾(ℎ2 − ℎ1) 𝑝2 = 100 𝑙𝑏𝑠 𝑖𝑛2 − 0.0324 𝑙𝑏𝑠 𝑖𝑛3 (200 𝑖𝑛)𝑝2 = 100 𝑙𝑏𝑠 𝑖𝑛2 − 0.0324 𝑙𝑏𝑠 𝑖𝑛2 (200 𝑖𝑛) = 93.5 𝑙𝑏𝑠 𝑖𝑛2