SlideShare a Scribd company logo
1 of 7
Download to read offline
International Refereed Journal of Engineering and Science (IRJES)
ISSN (Online) 2319-183X, (Print) 2319-1821
Volume 6, Issue 6 (June 2017), PP.80-86
www.irjes.com 80 | Page
Analysis of IFT (Interfacial Tension) and Viscosity of Various
Polymer Based Fluids in Enhanced Oil Recovery
Safuvan C1*
, Mohammed Bilal Khan, 1
Arun Venugopal, 1
Nikhil Raj,
2
M.Nishanth, 3
Dr.Rajesh Kanna
1
Undergraduate Students, Department Of Petroleum Engineering, LORDS Institute Of Engineering And
Technology, Hyderabad, India.
2
Assistant Professor, Department Of Petroleum Engineering, LORDS Institute Of Engineering And Technology,
Hyderabad, India.
3
Professor & HOD, Department Of Petroleum Engineering, LORDS Institute Of Engineering And Technology,
Hyderabad, India.
Abstract: - The purpose of this experiment is to determine IFT and viscosity of various polymer based fluid in
Enhanced Oil Recovery (EOR). Viscosity is a property of a liquid and it is defined as the resistance of a liquid
to flow. Interfacial tension is the force that holds the surface of a particular phase together. Enhanced oil
recovery (EOR) is the implementation of various techniques for increasing the amount of crude oil that can
extracted from a well. One of the main techniques in EOR is by pushing crude oil by some fluids. Each fluid has
different viscosity and IFT. A correct knowledge of IFT and viscosity of fluids using in EOR gives petroleum
engineering tool of efficiently manage the production process of field. This study aimed to experimentally
investigate the effect of different concentration Sodium hydroxide (NaOH), Potassium hydroxide (KOH) &
Xanthangum on fluids using EOR. Four samples of fluids with different concentration of NaOH, KOH &
Xanthangum which is mixed with water and carbonated water were used in this study.
Keywords: - Redwood viscometer, Tensiometer, NaOH, KOH & Xanthangum different concentration with
water and carbonated water in varying temperature.
I. INTRODUCTION
The viscosity of a fluid is measure of its resistance to gradual deformation by shear stress or tensile stress or
viscosity is a quantity expressing the magnitude of internal friction in a fluid as measured by the force per unit
area resisting uniform flow. Interfacial tension (IFT) is somewhat similar to surface in that cohesive forces are
also involved. However the main forces involved in IFT are adhesive forces (tension) between the liquid phase
of one substance and either solid, liquid, and gas phase of another substance. The interaction occurs at the
surfaces of the substances involved that is at their interface. Oil production is separated into three phases.
Primary, secondary and tertiary which is also known as EOR. EOR can increase production from a well at 75%
recovery. It is used in fields that exhibit heavy oil, poor permeability and irregular faciltiness. When a fluid is
injected through injection well for EOR, the viscosity & IFT playing a major role to push the crude oil out to
surface. If the viscosity is high it will push more oil to out, but we use high viscosity fluid it is risk and we need
to give more power to push their fluid in through injection well. If IFT is high then, it helps to produce more oil
in EOR. Fluids vary their viscosity & IFT with temperature. A fluid has no resistance to shear stress is known as
ideal fluid zero viscosity is observes only at low temperature, in super fluids. Otherwise all fluid has positive
viscosity and are technically said to be viscous or viscous fluid. Here preparing fluid with NaOH, KOH and
Xanthangum. Adding these chemicals and polymer to 100ml of water in different concentration and finding
their IFT & viscosity at 40 and 60 degree Celsius. A redwood viscometer is used to determine the viscosity of
different liquid composition at two different temperatures. A Tensiometer is used to find the IFT and Surface
tension of these fluids.
II. BACKGROUND OF THE EXPERIMENTATION
The experiment is carried out on a Redwood viscometer to analyze viscosity and in Tensiometer to
measure the IFT of different concentration of NaOH, KOH and Xanthangum liquids which are mixed with water
and carbonated water at different temperature. The Redwood viscometer consists of a vertical cylindrical oil cup
with an orifice in the centre of its base. The orifice is closed by a thermometer. The cylindrical cup is
surrounded by water bath. The water bath maintains the temperature of the oil to be tested at constant
temperature. The oil is heated by heating the water bath by means of an immersed electric heater in the water
bath. The provision is made for stirring the water to maintain the uniform temperature in the water bath and
place the thermometer to record temperature of the oil.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 81 | Page
EOR is the implementation of various techniques for increasing the amount of crude oil that can extracted from
an oil field. It is also called as tertiary recovery. There are 3 primary techniques of EOR, thermal recovery, gas
injection and chemical injection. A tensiometer is an instrument used to measure the interfacial and surface
tension of liquids or surfaces. Tensiometers are used in research and development laboratories to determine IFT
and surface tension. There are 3 main methods of finding IFT. They are Du Nouy ring method, wihelmy plate
and maximum bubble pressure method. Here we using the ring or Du Nouy method of measuring the surface
and interfacial tension are commonly used and the apparatus is called Ring tensiometer. To measure interfacial
tension, a platinum ring is placed in the test liquid the force necessary to withdrawn it from the liquid is
determined when the ring is completely wetted by the liquid.
I. Enhanced Oil Recovery
Oil production is separated into three phases: primary, secondary and tertiary, which is also known as
Enhanced Oil Recovery (EOR). Primary oil recovery is limited to hydrocarbons that naturally rise to the surface,
or those that use artificial lift devices, such as pump jacks. Secondary recovery employs water and gas injection,
displacing the oil and driving it to the surface. According to the US Department of Energy, utilizing these two
methods of production can leave up to 75% of the oil in the well. The way to further increase oil production is
through the tertiary recovery method or EOR. Although more expensive to employ on a field, EOR can increase
production from a well up to 75% recovery. EOR entails changing the actual properties of the hydrocarbons,
which further distinguishes this phase of recovery from the secondary recovery method. While water flooding
and gas injection during the secondary recovery method are used to push the oil through the well, EOR applies
steam or gas to increase the production of the reservoir.
Whether it is used after both primary and secondary recovery have been exhausted or at the initial stage
of production, EOR restores formation pressure and enhances oil displacement in the reservoir. There are three
main types of EOR, including chemical flooding, gas injection and thermal recovery. Increasing the cost of
development alongside the hydrocarbons brought to the surface, producers do not use EOR on all wells and
reservoirs. The economics of the development equation must make sense. Therefore, each field must be heavily
evaluated to determine which type of EOR will work best on the reservoir. This is done through reservoir
characterization, screening, scoping, and reservoir modeling and simulation.
a. Thermal Recovery
Thermal recovery introduces heat to the reservoir to reduce the viscosity of the oil. Many times, steam
is applied to the reservoir, thinning the oil and enhancing its ability to flow. First applied in Venezuela in the
1960s, thermal recovery now accounts for more than 50% of applied EOR in the US.
b. Chemical Injection
Chemical injection EOR helps to free trapped oil within the reservoir. This method introduces long-
chained molecules called polymers into the reservoir to increase the efficiency of water flooding or to boost the
effectiveness of surfactants, which are cleansers that help lower surface tension that inhibits the flow of oil
through the reservoir. Less than 1% of all EOR methods presently utilized in the US consist of chemical
injections.
c. Gas Injection
Gas injection used as a tertiary method of recovery involves injecting natural gas, nitrogen or carbon dioxide
into the reservoir. The gases can either expand and push gases through the reservoir, or mix with or dissolve
within the oil, decreasing viscosity and increasing flow.
Ii. Application of EOR
Improving recovery with steps to full-field EOR projects
The global average recovery factor for a typical oil field is approximately 40%. This results in a large
amount of identified oil left behind despite an existing production infrastructure. The need to improve the
recovery factor and the accelerating of the associated production is the main driver behind the many EOR
schemes in practice around the world.
Accelerating the recovery of more oil
The challenge to EOR lays in the complex interaction of injected agents with the existing reservoir
fluids in an ever-changing downhole environment. Many of these challenges are well known from the
development of the field. The difficulty is ensuring the proper chemical interaction and subsequent flow
conformance of the EOR sweep front to recover more oil, more quickly.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 82 | Page
Making the right parametric decisions regarding a chosen EOR technique, by evaluating dynamic
economic conditions, compounds these complex challenges.
Taking measurements that solve recovery problems
To ensure successful long-term recovery, engineers and geoscientists use earth models, numerical
simulators, pilot studies, and sophisticated monitoring tools to make the best decisions. A dynamic reservoir
model, using the full-field model built from the initial development plan, is constantly updated with the latest
monitoring data acquired from surface seismic, single well logs, and inter-well data. It is the application of this
collective knowledge of accurate reservoir data coupled with detailed production history that leads to the best
decisions for these complex EOR problems.
Offshore EOR Applications
Although EOR applications are predominantly employed onshore, technologies are being developed to
expand the reach of EOR to offshore applications. Challenges that presently exist for offshore EOR include
economics of the development; the weight, space and power limitations of retrofitting existing offshore
facilities; and fewer wells that are more widely spaced contributing to displacement, sweep and lag time.
Currently, the application of EOR is being considered for a number of offshore developments. With successful
subsea processing and secondary recovery methods employed in offshore environments through water and gas
injection, the technologies to apply EOR methods is quickly nearing
III. EQUIPMENT DISCRIPTION
A. Tensiometer
A tensiometer is an instrument used to measure the interfacial and surface tension of liquids or
surfaces. Tensiometer is used in research and development laboratories to determine IFT and surface tension.
Here are 3 main methods of finding IFT. They are Du Nouy ring method, wihelmy plate and maximum bubble
pressure method. Here we using the ring or Du Nouy method of measuring the surface and interfacial tension is
commonly used and the apparatus is called Ring tensiometer. To measure interfacial tension, a platinum ring is
placed in the test liquid the force necessary to withdrawn it from the liquid is determined when the ring is
completely wetted by the liquid.
Du Nouy Ring Tensiometer: - This type of tensiometer uses a platinum ring which is submersed in a
liquid. As the ring is pulled out of the liquid, the force required is precisely measured in order to determine the
surface tension of the liquid. This method requires that the platinum ring be nearly perfect; even a small blemish
or scratch can greatly alter the accuracy of the results. A correction for buoyancy must be made. This method is
considered less accurate than the plate method but is still widely used for interfacial tension measurement
between two liquid.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 83 | Page
B. Redwood Viscometer
The redwood viscometer consists of a vertical cylindrical oil cup with an orifice in the centre of its
base. The orifice is closed by a thermometer. The cylindrical cup is surrounded by water bath. The water bath
maintains the temperature of the oil to be tested at constant temperature. The oil is heated by heating the water
bath by means of an immersed electric heater in the water bath. The provision is made for stirring the water to
maintain the uniform temperature in the water bath and to place the thermometer record temperature of oil.
Fig.2, Viscometer used for analyze viscosity.
IV. MATERIALS USED
A. Xanthangum
Xanthangum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive
and rheology modifier commonly used as a food thickening agent and a stabilizer (in cosmetic products, for
example, to prevent ingredients from separating). It is composed of pentasaccharide repeat units, comprising
glucose, mannose, and glucuronic acid in the molar ratio 2:2:1. It is produced by the fermentation of glucose,
sucrose, or lactose. After a fermentation period the polysaccharide is precipitated from a growth medium with
isopropyl alcohol, dried and grounded into a fine powder. Later it is added to a liquid medium to form the gum.
B. Sodium Hydroxide (NaOH)
Sodium hydroxide (NaOH), also known as lye and caustic soda, is an inorganic compound. It is a white
solid and highly caustic metallic base and alkali of sodium which is available in pellets, flakes, granules and as
prepared solutions at different concentrations. Sodium hydroxide forms an approximately 50% saturated
solution with water. Sodium hydroxide is soluble in water, ethanol and methanol. This alkali is deliquescent and
readily absorbs moisture and carbon dioxide in air. Sodium hydroxide is used in many industries, mostly as a
strong chemical base in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents and as
a drain cleaner. Worldwide production in 2004 was approximately 60 million tons, while demand was 51
million tons.
C. Potassium Hydroxide (KOH)
Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic
potash. Along with sodium hydroxide (NaOH), this colorless solid is a prototypical strong base. It has many
industrial and niche applications, most of which exploit its corrosive nature and its reactivity toward acids. An
estimated 7,00,000 to 8,00,000 tons were produced in 2005. Approximately 100 times more NaOH than KOH is
produced annually. KOH is noteworthy as the precursor to most soft and liquid soaps as well as numerous
potassium containing chemicals.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 84 | Page
D. Carbonated Water (H2co3)
Carbonated water (also known as club soda, soda water) is water into which carbon dioxide gas under
pressure has been dissolved. Some of these have additives such as sodium chloride, sodium bicarbonate,
magnesium and other minerals. This process, known as carbonation, is a process that causes the water to
become effervescent. Most carbonated water is sold in ready to drink bottles as carbonated beverages such as
soft drinks.
V. Procedure
To find the viscosity
1. Clean the cylindrical oil cup and ensure the orifice tube is free from dirt.
2. Close the orifice with ball valve.
3. Place the conical flask below the opening of the Orifice.
4. Fill water in the water bath.
5. Take 100mL of water and mix it with 15 gm of NaOH and stir well with the stirrer.
6. Pour the chemical solution to orifice and heat it by heating water bath and maintain uniform temperature.
7. At particular temperature, lift the thermometer and collect the solution in conical flask and note down the
time taken for collecting 100mL by using a stop watch.
8. Increase the concentration of chemicals in fluid and repeat 5, 6, 7 steps for KOH and Xanthangum.
9. Repeat the above procedure steps with carbonated water.
To find the IFT
1. Clean the container and dry well.
2. Fill the container with prepared solution at same temperature to calculated viscosity.
3. Turn the spin slowly and notice when the platinum ring getting detach from fluid.
4. Do same procedure for the entire fluid sample to find IFT.
VI. OBSERVATION TABLES
Table 1: - Viscosity (in seconds) of various polymer based fluids in water at different temperature.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 85 | Page
Table:-2 Viscosity (in seconds) of various polymer based fluids in carbonated water (H2Co3) at different temperature.
TABLE:-3 IFT (in Dynes/cm2) of various polymer based fluids in water at different temperature.
Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer……
www.irjes.com 86 | Page
VII. CONCLUSION
Accurate knowledge of viscosity and IFT of fluids used in Enhanced Oil Recovery (EOR) is very
essential in petroleum engineering or for a petroleum engineer for the production of maximum crude oil or
efficient use of the well. This experiment shows designing of high viscosity and IFT fluid with NaOH, KOH and
Xanthangum for recovery of maximum crude oil from a well. It is observed that viscosity of
NaOH/KOH/Xanthangum decreases with increase in temperature of these fluids and vice versa. This is due to
temperature rise of molecule of which causes decreases in cohesive forces of molecule.
The decreases in cohesive force tend to increase in intermolecular distance and it leads to decrease in the
interfacial tension (IFT). High viscosity and high IFT is need to maintain for better production.
ACKNOWLEDGEMENT
This is my sincere attempt to condense the wealth of knowledge “Analyze the IFT and Viscosity of
polymer based fluid in enhanced oil recovery” at LORDS Institute of Engineering and Technology, Hyderabad.
I am immensely grateful to Dr. Rajesh Kanna, HOD & Professor, Department of Petroleum Engineering for
providing me valuable suggestions and necessary information during my project work. I am immensely indebted
to my guide Mr. M.Nishanth, (Asst.Prof, Dept of Petroleum Engineering) whose guidance and expertise has
helped me during the tenure of my project. I am also expressing my deep sense of gratitude to Mr. K.Sreekanth,
(Asst.Prof, Dept. of Petroleum Engineering), Mr. Nagaraju, (Asst.Prof, Dept. of Petroleum Engineering), Mr.
Venkateshwar Iyer, (Asst.Prof, Dept. of Petroleum Engineering), Mr. Anup, (Lab Asst. Dept. of Petroleum
Engineering) for helped us to complete this project work.
REFERENCES
Journal Papers:
[1]. International journal of innovative research in science, engineering and technology, "Analysis of
kinematic viscosity for liquids by varying temperature, vol 4, Issue 4, April 2015.
[2]. Nick Desiderio: “Determination of saybolt, kinamtic and shear viscosity for variety of liquids". ,
npd5050@psu.edu,april 15, 2014.
[3]. Denton E.L,”Liquid viscosity and temperature”, California state science fair 2004 project summery.
Search links:
[4]. http://www.rigzone.com/training/insight.asp?insight_id=313.
[5]. http://www.slb.com/services/technical_challenges/enhanced_oil_recovery.aspx.

More Related Content

What's hot

Alkaline flooding
Alkaline floodingAlkaline flooding
Alkaline floodingshinaskm
 
Trickle bed reactor
Trickle bed reactorTrickle bed reactor
Trickle bed reactorGopika Menon
 
Effect of operating conditions on the solvent recovery by the method of evapo
Effect of operating conditions on the solvent recovery by the method of evapoEffect of operating conditions on the solvent recovery by the method of evapo
Effect of operating conditions on the solvent recovery by the method of evapoIAEME Publication
 
Absorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAbsorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAngel Darío González-Delgado
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17AFATous
 
Q923+rrl+l03
Q923+rrl+l03Q923+rrl+l03
Q923+rrl+l03AFATous
 
Hydraulic fracturing
Hydraulic fracturingHydraulic fracturing
Hydraulic fracturingAnkit Sharma
 
Spe 107739-ms-p
Spe 107739-ms-pSpe 107739-ms-p
Spe 107739-ms-pmsmsoft
 
Article k-mansour-vers-09 en-
Article k-mansour-vers-09 en-Article k-mansour-vers-09 en-
Article k-mansour-vers-09 en-IAEME Publication
 
Trickle bed reactors
Trickle bed reactorsTrickle bed reactors
Trickle bed reactorsWaleed Akbar
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactorsArun kumar
 
6 simple aodd pump fixes
6 simple aodd pump fixes6 simple aodd pump fixes
6 simple aodd pump fixesAntlia Works
 
Power Requirements for Mixing in Bioreactor
Power Requirements for Mixing in Bioreactor Power Requirements for Mixing in Bioreactor
Power Requirements for Mixing in Bioreactor vishalachihari
 

What's hot (20)

Alkaline flooding
Alkaline floodingAlkaline flooding
Alkaline flooding
 
Trickle bed reactor
Trickle bed reactorTrickle bed reactor
Trickle bed reactor
 
Polymer flooding
Polymer floodingPolymer flooding
Polymer flooding
 
Unit process
Unit processUnit process
Unit process
 
Effect of operating conditions on the solvent recovery by the method of evapo
Effect of operating conditions on the solvent recovery by the method of evapoEffect of operating conditions on the solvent recovery by the method of evapo
Effect of operating conditions on the solvent recovery by the method of evapo
 
Absorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific ProgressAbsorption Column: Foundations, Applications and Scientific Progress
Absorption Column: Foundations, Applications and Scientific Progress
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17
 
Q923+rrl+l03
Q923+rrl+l03Q923+rrl+l03
Q923+rrl+l03
 
Hydraulic fracturing
Hydraulic fracturingHydraulic fracturing
Hydraulic fracturing
 
Troubleshooting of Catalytic Reactors
Troubleshooting of Catalytic ReactorsTroubleshooting of Catalytic Reactors
Troubleshooting of Catalytic Reactors
 
Reservoir
ReservoirReservoir
Reservoir
 
Packed bed reactor
Packed bed reactorPacked bed reactor
Packed bed reactor
 
Spe 107739-ms-p
Spe 107739-ms-pSpe 107739-ms-p
Spe 107739-ms-p
 
Article k-mansour-vers-09 en-
Article k-mansour-vers-09 en-Article k-mansour-vers-09 en-
Article k-mansour-vers-09 en-
 
Agc wp-hydroscavprincop
Agc wp-hydroscavprincopAgc wp-hydroscavprincop
Agc wp-hydroscavprincop
 
Trickle bed reactors
Trickle bed reactorsTrickle bed reactors
Trickle bed reactors
 
Packed bed reactors
Packed bed reactorsPacked bed reactors
Packed bed reactors
 
L43056874
L43056874L43056874
L43056874
 
6 simple aodd pump fixes
6 simple aodd pump fixes6 simple aodd pump fixes
6 simple aodd pump fixes
 
Power Requirements for Mixing in Bioreactor
Power Requirements for Mixing in Bioreactor Power Requirements for Mixing in Bioreactor
Power Requirements for Mixing in Bioreactor
 

Similar to Analysis of IFT (Interfacial Tension) and Viscosity of Various Polymer Based Fluids in Enhanced Oil Recovery

Enhanced oil recovery - Lecture 1
Enhanced oil recovery - Lecture 1Enhanced oil recovery - Lecture 1
Enhanced oil recovery - Lecture 1Student
 
Reservoir dive mechanisms
Reservoir dive mechanismsReservoir dive mechanisms
Reservoir dive mechanismsumar umar
 
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptx
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptxADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptx
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptxRAOULMartialTIENTCHE
 
Scientific research.docx new
Scientific research.docx newScientific research.docx new
Scientific research.docx newzana wasman
 
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AEsam Yahya
 
A brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationA brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationIOSR Journals
 
Eor 1 introduction
Eor 1 introductionEor 1 introduction
Eor 1 introductionAktham Ehab
 
Presentation on enhanced oil recovery.pptx
Presentation on enhanced oil recovery.pptxPresentation on enhanced oil recovery.pptx
Presentation on enhanced oil recovery.pptxIsmailKatun1
 
EOR from the prospective of nanotechnology--- wetabillity changes and r...
    EOR from the prospective of nanotechnology---   wetabillity changes and r...    EOR from the prospective of nanotechnology---   wetabillity changes and r...
EOR from the prospective of nanotechnology--- wetabillity changes and r...Adjei Sephen
 
Application of Thermal Methods for Heavy Oil.pdf
Application of Thermal Methods for Heavy Oil.pdfApplication of Thermal Methods for Heavy Oil.pdf
Application of Thermal Methods for Heavy Oil.pdfLuisarmandoGarcianav
 
CamScanner 09-30-2023 09.22.pdf
CamScanner 09-30-2023 09.22.pdfCamScanner 09-30-2023 09.22.pdf
CamScanner 09-30-2023 09.22.pdfJalal Neshat
 
Production Engineering
Production EngineeringProduction Engineering
Production EngineeringAli .Y.J
 
New Frontiers In EOR Methodologies By Application Of Enzymes
New Frontiers In EOR Methodologies By Application Of EnzymesNew Frontiers In EOR Methodologies By Application Of Enzymes
New Frontiers In EOR Methodologies By Application Of EnzymesUPES Dehradun
 
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...Ionic liquids as novel surfactants for the potential use in enhanced oil reco...
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...Khalid Al-Khidir
 
Paper id 35201541
Paper id 35201541Paper id 35201541
Paper id 35201541IJRAT
 
Estimating the Amount of Moisture Content in Crude Oil Samples
Estimating the Amount of Moisture Content in Crude Oil SamplesEstimating the Amount of Moisture Content in Crude Oil Samples
Estimating the Amount of Moisture Content in Crude Oil SamplesIRJESJOURNAL
 
Thermo-physical properties of selected oil samples as predictor of marine eng...
Thermo-physical properties of selected oil samples as predictor of marine eng...Thermo-physical properties of selected oil samples as predictor of marine eng...
Thermo-physical properties of selected oil samples as predictor of marine eng...IOSR Journals
 
Determining Changes in Interfacial Tension of Crude Oil using Alkalis
Determining Changes in Interfacial Tension of Crude Oil using AlkalisDetermining Changes in Interfacial Tension of Crude Oil using Alkalis
Determining Changes in Interfacial Tension of Crude Oil using AlkalisIRJESJOURNAL
 

Similar to Analysis of IFT (Interfacial Tension) and Viscosity of Various Polymer Based Fluids in Enhanced Oil Recovery (20)

Enhanced oil recovery - Lecture 1
Enhanced oil recovery - Lecture 1Enhanced oil recovery - Lecture 1
Enhanced oil recovery - Lecture 1
 
Oil and Gas Reservoir Engineering
Oil and Gas Reservoir EngineeringOil and Gas Reservoir Engineering
Oil and Gas Reservoir Engineering
 
Reservoir dive mechanisms
Reservoir dive mechanismsReservoir dive mechanisms
Reservoir dive mechanisms
 
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptx
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptxADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptx
ADVANCED ENHANCE OIL RECOVERY. LECTURE NOTES.pptx
 
Scientific research.docx new
Scientific research.docx newScientific research.docx new
Scientific research.docx new
 
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
 
A brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilizationA brief study on synthesis of surfactants and the mechanism of oil mobilization
A brief study on synthesis of surfactants and the mechanism of oil mobilization
 
Eor 1 introduction
Eor 1 introductionEor 1 introduction
Eor 1 introduction
 
Presentation on enhanced oil recovery.pptx
Presentation on enhanced oil recovery.pptxPresentation on enhanced oil recovery.pptx
Presentation on enhanced oil recovery.pptx
 
EOR from the prospective of nanotechnology--- wetabillity changes and r...
    EOR from the prospective of nanotechnology---   wetabillity changes and r...    EOR from the prospective of nanotechnology---   wetabillity changes and r...
EOR from the prospective of nanotechnology--- wetabillity changes and r...
 
Application of Thermal Methods for Heavy Oil.pdf
Application of Thermal Methods for Heavy Oil.pdfApplication of Thermal Methods for Heavy Oil.pdf
Application of Thermal Methods for Heavy Oil.pdf
 
CamScanner 09-30-2023 09.22.pdf
CamScanner 09-30-2023 09.22.pdfCamScanner 09-30-2023 09.22.pdf
CamScanner 09-30-2023 09.22.pdf
 
Production Engineering
Production EngineeringProduction Engineering
Production Engineering
 
Tratamiento de agua y crudo
Tratamiento de agua y crudoTratamiento de agua y crudo
Tratamiento de agua y crudo
 
New Frontiers In EOR Methodologies By Application Of Enzymes
New Frontiers In EOR Methodologies By Application Of EnzymesNew Frontiers In EOR Methodologies By Application Of Enzymes
New Frontiers In EOR Methodologies By Application Of Enzymes
 
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...Ionic liquids as novel surfactants for the potential use in enhanced oil reco...
Ionic liquids as novel surfactants for the potential use in enhanced oil reco...
 
Paper id 35201541
Paper id 35201541Paper id 35201541
Paper id 35201541
 
Estimating the Amount of Moisture Content in Crude Oil Samples
Estimating the Amount of Moisture Content in Crude Oil SamplesEstimating the Amount of Moisture Content in Crude Oil Samples
Estimating the Amount of Moisture Content in Crude Oil Samples
 
Thermo-physical properties of selected oil samples as predictor of marine eng...
Thermo-physical properties of selected oil samples as predictor of marine eng...Thermo-physical properties of selected oil samples as predictor of marine eng...
Thermo-physical properties of selected oil samples as predictor of marine eng...
 
Determining Changes in Interfacial Tension of Crude Oil using Alkalis
Determining Changes in Interfacial Tension of Crude Oil using AlkalisDetermining Changes in Interfacial Tension of Crude Oil using Alkalis
Determining Changes in Interfacial Tension of Crude Oil using Alkalis
 

More from IRJESJOURNAL

Drying of agricultural products using forced convection indirect solar dryer
Drying of agricultural products using forced convection indirect solar dryerDrying of agricultural products using forced convection indirect solar dryer
Drying of agricultural products using forced convection indirect solar dryerIRJESJOURNAL
 
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV Systems
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV SystemsThe Problems of Constructing Optimal Onboard Colored RGB Depicting UAV Systems
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV SystemsIRJESJOURNAL
 
Flexible Design Processes to Reduce the Early Obsolescence of Buildings
Flexible Design Processes to Reduce the Early Obsolescence of BuildingsFlexible Design Processes to Reduce the Early Obsolescence of Buildings
Flexible Design Processes to Reduce the Early Obsolescence of BuildingsIRJESJOURNAL
 
Study on Performance Enhancement of Solar Ejector Cooling System
Study on Performance Enhancement of Solar Ejector Cooling SystemStudy on Performance Enhancement of Solar Ejector Cooling System
Study on Performance Enhancement of Solar Ejector Cooling SystemIRJESJOURNAL
 
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - Indonesia
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - IndonesiaFlight Safety Case Study: Adi Sucipto Airport Jogjakarta - Indonesia
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - IndonesiaIRJESJOURNAL
 
A Review of Severe Plastic Deformation
A Review of Severe Plastic DeformationA Review of Severe Plastic Deformation
A Review of Severe Plastic DeformationIRJESJOURNAL
 
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...IRJESJOURNAL
 
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...IRJESJOURNAL
 
Correlation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude OilCorrelation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude OilIRJESJOURNAL
 
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...IRJESJOURNAL
 
ICT governance in Higher Education
ICT governance in Higher EducationICT governance in Higher Education
ICT governance in Higher EducationIRJESJOURNAL
 
Gobernanzade las TIC en la Educacion Superior
Gobernanzade las TIC en la Educacion SuperiorGobernanzade las TIC en la Educacion Superior
Gobernanzade las TIC en la Educacion SuperiorIRJESJOURNAL
 
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...IRJESJOURNAL
 
Research on The Bottom Software of Electronic Control System In Automobile El...
Research on The Bottom Software of Electronic Control System In Automobile El...Research on The Bottom Software of Electronic Control System In Automobile El...
Research on The Bottom Software of Electronic Control System In Automobile El...IRJESJOURNAL
 
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...IRJESJOURNAL
 
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium System
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium SystemLinking Ab Initio-Calphad for the Assessment of the AluminiumLutetium System
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium SystemIRJESJOURNAL
 
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemThermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemIRJESJOURNAL
 
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, Kosovo
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, KosovoElisa Test for Determination of Grapevine Viral Infection in Rahovec, Kosovo
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, KosovoIRJESJOURNAL
 
Modelling of Sealing Elements Wearing
Modelling of Sealing Elements WearingModelling of Sealing Elements Wearing
Modelling of Sealing Elements WearingIRJESJOURNAL
 
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...Determining Loss of Liquid from Different Types of Mud by Various Addictives ...
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...IRJESJOURNAL
 

More from IRJESJOURNAL (20)

Drying of agricultural products using forced convection indirect solar dryer
Drying of agricultural products using forced convection indirect solar dryerDrying of agricultural products using forced convection indirect solar dryer
Drying of agricultural products using forced convection indirect solar dryer
 
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV Systems
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV SystemsThe Problems of Constructing Optimal Onboard Colored RGB Depicting UAV Systems
The Problems of Constructing Optimal Onboard Colored RGB Depicting UAV Systems
 
Flexible Design Processes to Reduce the Early Obsolescence of Buildings
Flexible Design Processes to Reduce the Early Obsolescence of BuildingsFlexible Design Processes to Reduce the Early Obsolescence of Buildings
Flexible Design Processes to Reduce the Early Obsolescence of Buildings
 
Study on Performance Enhancement of Solar Ejector Cooling System
Study on Performance Enhancement of Solar Ejector Cooling SystemStudy on Performance Enhancement of Solar Ejector Cooling System
Study on Performance Enhancement of Solar Ejector Cooling System
 
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - Indonesia
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - IndonesiaFlight Safety Case Study: Adi Sucipto Airport Jogjakarta - Indonesia
Flight Safety Case Study: Adi Sucipto Airport Jogjakarta - Indonesia
 
A Review of Severe Plastic Deformation
A Review of Severe Plastic DeformationA Review of Severe Plastic Deformation
A Review of Severe Plastic Deformation
 
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...
Annealing Response of Aluminum Alloy AA6014 Processed By Severe Plastic Defor...
 
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...
Evaluation of Thresholding Based Noncontact Respiration Rate Monitoring using...
 
Correlation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude OilCorrelation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude Oil
 
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...
Combined Geophysical And Geotechnical Techniques For Assessment Of Foundation...
 
ICT governance in Higher Education
ICT governance in Higher EducationICT governance in Higher Education
ICT governance in Higher Education
 
Gobernanzade las TIC en la Educacion Superior
Gobernanzade las TIC en la Educacion SuperiorGobernanzade las TIC en la Educacion Superior
Gobernanzade las TIC en la Educacion Superior
 
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...
The Analysis and Perspective on Development of Chinese Automotive Heavy-duty ...
 
Research on The Bottom Software of Electronic Control System In Automobile El...
Research on The Bottom Software of Electronic Control System In Automobile El...Research on The Bottom Software of Electronic Control System In Automobile El...
Research on The Bottom Software of Electronic Control System In Automobile El...
 
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...
Evaluation of Specialized Virtual Health Libraries in Scholar Education Evalu...
 
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium System
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium SystemLinking Ab Initio-Calphad for the Assessment of the AluminiumLutetium System
Linking Ab Initio-Calphad for the Assessment of the AluminiumLutetium System
 
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium SystemThermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
Thermodynamic Assessment (Suggestions) Of the Gold-Rubidium System
 
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, Kosovo
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, KosovoElisa Test for Determination of Grapevine Viral Infection in Rahovec, Kosovo
Elisa Test for Determination of Grapevine Viral Infection in Rahovec, Kosovo
 
Modelling of Sealing Elements Wearing
Modelling of Sealing Elements WearingModelling of Sealing Elements Wearing
Modelling of Sealing Elements Wearing
 
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...Determining Loss of Liquid from Different Types of Mud by Various Addictives ...
Determining Loss of Liquid from Different Types of Mud by Various Addictives ...
 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 

Analysis of IFT (Interfacial Tension) and Viscosity of Various Polymer Based Fluids in Enhanced Oil Recovery

  • 1. International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 6, Issue 6 (June 2017), PP.80-86 www.irjes.com 80 | Page Analysis of IFT (Interfacial Tension) and Viscosity of Various Polymer Based Fluids in Enhanced Oil Recovery Safuvan C1* , Mohammed Bilal Khan, 1 Arun Venugopal, 1 Nikhil Raj, 2 M.Nishanth, 3 Dr.Rajesh Kanna 1 Undergraduate Students, Department Of Petroleum Engineering, LORDS Institute Of Engineering And Technology, Hyderabad, India. 2 Assistant Professor, Department Of Petroleum Engineering, LORDS Institute Of Engineering And Technology, Hyderabad, India. 3 Professor & HOD, Department Of Petroleum Engineering, LORDS Institute Of Engineering And Technology, Hyderabad, India. Abstract: - The purpose of this experiment is to determine IFT and viscosity of various polymer based fluid in Enhanced Oil Recovery (EOR). Viscosity is a property of a liquid and it is defined as the resistance of a liquid to flow. Interfacial tension is the force that holds the surface of a particular phase together. Enhanced oil recovery (EOR) is the implementation of various techniques for increasing the amount of crude oil that can extracted from a well. One of the main techniques in EOR is by pushing crude oil by some fluids. Each fluid has different viscosity and IFT. A correct knowledge of IFT and viscosity of fluids using in EOR gives petroleum engineering tool of efficiently manage the production process of field. This study aimed to experimentally investigate the effect of different concentration Sodium hydroxide (NaOH), Potassium hydroxide (KOH) & Xanthangum on fluids using EOR. Four samples of fluids with different concentration of NaOH, KOH & Xanthangum which is mixed with water and carbonated water were used in this study. Keywords: - Redwood viscometer, Tensiometer, NaOH, KOH & Xanthangum different concentration with water and carbonated water in varying temperature. I. INTRODUCTION The viscosity of a fluid is measure of its resistance to gradual deformation by shear stress or tensile stress or viscosity is a quantity expressing the magnitude of internal friction in a fluid as measured by the force per unit area resisting uniform flow. Interfacial tension (IFT) is somewhat similar to surface in that cohesive forces are also involved. However the main forces involved in IFT are adhesive forces (tension) between the liquid phase of one substance and either solid, liquid, and gas phase of another substance. The interaction occurs at the surfaces of the substances involved that is at their interface. Oil production is separated into three phases. Primary, secondary and tertiary which is also known as EOR. EOR can increase production from a well at 75% recovery. It is used in fields that exhibit heavy oil, poor permeability and irregular faciltiness. When a fluid is injected through injection well for EOR, the viscosity & IFT playing a major role to push the crude oil out to surface. If the viscosity is high it will push more oil to out, but we use high viscosity fluid it is risk and we need to give more power to push their fluid in through injection well. If IFT is high then, it helps to produce more oil in EOR. Fluids vary their viscosity & IFT with temperature. A fluid has no resistance to shear stress is known as ideal fluid zero viscosity is observes only at low temperature, in super fluids. Otherwise all fluid has positive viscosity and are technically said to be viscous or viscous fluid. Here preparing fluid with NaOH, KOH and Xanthangum. Adding these chemicals and polymer to 100ml of water in different concentration and finding their IFT & viscosity at 40 and 60 degree Celsius. A redwood viscometer is used to determine the viscosity of different liquid composition at two different temperatures. A Tensiometer is used to find the IFT and Surface tension of these fluids. II. BACKGROUND OF THE EXPERIMENTATION The experiment is carried out on a Redwood viscometer to analyze viscosity and in Tensiometer to measure the IFT of different concentration of NaOH, KOH and Xanthangum liquids which are mixed with water and carbonated water at different temperature. The Redwood viscometer consists of a vertical cylindrical oil cup with an orifice in the centre of its base. The orifice is closed by a thermometer. The cylindrical cup is surrounded by water bath. The water bath maintains the temperature of the oil to be tested at constant temperature. The oil is heated by heating the water bath by means of an immersed electric heater in the water bath. The provision is made for stirring the water to maintain the uniform temperature in the water bath and place the thermometer to record temperature of the oil.
  • 2. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 81 | Page EOR is the implementation of various techniques for increasing the amount of crude oil that can extracted from an oil field. It is also called as tertiary recovery. There are 3 primary techniques of EOR, thermal recovery, gas injection and chemical injection. A tensiometer is an instrument used to measure the interfacial and surface tension of liquids or surfaces. Tensiometers are used in research and development laboratories to determine IFT and surface tension. There are 3 main methods of finding IFT. They are Du Nouy ring method, wihelmy plate and maximum bubble pressure method. Here we using the ring or Du Nouy method of measuring the surface and interfacial tension are commonly used and the apparatus is called Ring tensiometer. To measure interfacial tension, a platinum ring is placed in the test liquid the force necessary to withdrawn it from the liquid is determined when the ring is completely wetted by the liquid. I. Enhanced Oil Recovery Oil production is separated into three phases: primary, secondary and tertiary, which is also known as Enhanced Oil Recovery (EOR). Primary oil recovery is limited to hydrocarbons that naturally rise to the surface, or those that use artificial lift devices, such as pump jacks. Secondary recovery employs water and gas injection, displacing the oil and driving it to the surface. According to the US Department of Energy, utilizing these two methods of production can leave up to 75% of the oil in the well. The way to further increase oil production is through the tertiary recovery method or EOR. Although more expensive to employ on a field, EOR can increase production from a well up to 75% recovery. EOR entails changing the actual properties of the hydrocarbons, which further distinguishes this phase of recovery from the secondary recovery method. While water flooding and gas injection during the secondary recovery method are used to push the oil through the well, EOR applies steam or gas to increase the production of the reservoir. Whether it is used after both primary and secondary recovery have been exhausted or at the initial stage of production, EOR restores formation pressure and enhances oil displacement in the reservoir. There are three main types of EOR, including chemical flooding, gas injection and thermal recovery. Increasing the cost of development alongside the hydrocarbons brought to the surface, producers do not use EOR on all wells and reservoirs. The economics of the development equation must make sense. Therefore, each field must be heavily evaluated to determine which type of EOR will work best on the reservoir. This is done through reservoir characterization, screening, scoping, and reservoir modeling and simulation. a. Thermal Recovery Thermal recovery introduces heat to the reservoir to reduce the viscosity of the oil. Many times, steam is applied to the reservoir, thinning the oil and enhancing its ability to flow. First applied in Venezuela in the 1960s, thermal recovery now accounts for more than 50% of applied EOR in the US. b. Chemical Injection Chemical injection EOR helps to free trapped oil within the reservoir. This method introduces long- chained molecules called polymers into the reservoir to increase the efficiency of water flooding or to boost the effectiveness of surfactants, which are cleansers that help lower surface tension that inhibits the flow of oil through the reservoir. Less than 1% of all EOR methods presently utilized in the US consist of chemical injections. c. Gas Injection Gas injection used as a tertiary method of recovery involves injecting natural gas, nitrogen or carbon dioxide into the reservoir. The gases can either expand and push gases through the reservoir, or mix with or dissolve within the oil, decreasing viscosity and increasing flow. Ii. Application of EOR Improving recovery with steps to full-field EOR projects The global average recovery factor for a typical oil field is approximately 40%. This results in a large amount of identified oil left behind despite an existing production infrastructure. The need to improve the recovery factor and the accelerating of the associated production is the main driver behind the many EOR schemes in practice around the world. Accelerating the recovery of more oil The challenge to EOR lays in the complex interaction of injected agents with the existing reservoir fluids in an ever-changing downhole environment. Many of these challenges are well known from the development of the field. The difficulty is ensuring the proper chemical interaction and subsequent flow conformance of the EOR sweep front to recover more oil, more quickly.
  • 3. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 82 | Page Making the right parametric decisions regarding a chosen EOR technique, by evaluating dynamic economic conditions, compounds these complex challenges. Taking measurements that solve recovery problems To ensure successful long-term recovery, engineers and geoscientists use earth models, numerical simulators, pilot studies, and sophisticated monitoring tools to make the best decisions. A dynamic reservoir model, using the full-field model built from the initial development plan, is constantly updated with the latest monitoring data acquired from surface seismic, single well logs, and inter-well data. It is the application of this collective knowledge of accurate reservoir data coupled with detailed production history that leads to the best decisions for these complex EOR problems. Offshore EOR Applications Although EOR applications are predominantly employed onshore, technologies are being developed to expand the reach of EOR to offshore applications. Challenges that presently exist for offshore EOR include economics of the development; the weight, space and power limitations of retrofitting existing offshore facilities; and fewer wells that are more widely spaced contributing to displacement, sweep and lag time. Currently, the application of EOR is being considered for a number of offshore developments. With successful subsea processing and secondary recovery methods employed in offshore environments through water and gas injection, the technologies to apply EOR methods is quickly nearing III. EQUIPMENT DISCRIPTION A. Tensiometer A tensiometer is an instrument used to measure the interfacial and surface tension of liquids or surfaces. Tensiometer is used in research and development laboratories to determine IFT and surface tension. Here are 3 main methods of finding IFT. They are Du Nouy ring method, wihelmy plate and maximum bubble pressure method. Here we using the ring or Du Nouy method of measuring the surface and interfacial tension is commonly used and the apparatus is called Ring tensiometer. To measure interfacial tension, a platinum ring is placed in the test liquid the force necessary to withdrawn it from the liquid is determined when the ring is completely wetted by the liquid. Du Nouy Ring Tensiometer: - This type of tensiometer uses a platinum ring which is submersed in a liquid. As the ring is pulled out of the liquid, the force required is precisely measured in order to determine the surface tension of the liquid. This method requires that the platinum ring be nearly perfect; even a small blemish or scratch can greatly alter the accuracy of the results. A correction for buoyancy must be made. This method is considered less accurate than the plate method but is still widely used for interfacial tension measurement between two liquid.
  • 4. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 83 | Page B. Redwood Viscometer The redwood viscometer consists of a vertical cylindrical oil cup with an orifice in the centre of its base. The orifice is closed by a thermometer. The cylindrical cup is surrounded by water bath. The water bath maintains the temperature of the oil to be tested at constant temperature. The oil is heated by heating the water bath by means of an immersed electric heater in the water bath. The provision is made for stirring the water to maintain the uniform temperature in the water bath and to place the thermometer record temperature of oil. Fig.2, Viscometer used for analyze viscosity. IV. MATERIALS USED A. Xanthangum Xanthangum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and rheology modifier commonly used as a food thickening agent and a stabilizer (in cosmetic products, for example, to prevent ingredients from separating). It is composed of pentasaccharide repeat units, comprising glucose, mannose, and glucuronic acid in the molar ratio 2:2:1. It is produced by the fermentation of glucose, sucrose, or lactose. After a fermentation period the polysaccharide is precipitated from a growth medium with isopropyl alcohol, dried and grounded into a fine powder. Later it is added to a liquid medium to form the gum. B. Sodium Hydroxide (NaOH) Sodium hydroxide (NaOH), also known as lye and caustic soda, is an inorganic compound. It is a white solid and highly caustic metallic base and alkali of sodium which is available in pellets, flakes, granules and as prepared solutions at different concentrations. Sodium hydroxide forms an approximately 50% saturated solution with water. Sodium hydroxide is soluble in water, ethanol and methanol. This alkali is deliquescent and readily absorbs moisture and carbon dioxide in air. Sodium hydroxide is used in many industries, mostly as a strong chemical base in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tons, while demand was 51 million tons. C. Potassium Hydroxide (KOH) Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash. Along with sodium hydroxide (NaOH), this colorless solid is a prototypical strong base. It has many industrial and niche applications, most of which exploit its corrosive nature and its reactivity toward acids. An estimated 7,00,000 to 8,00,000 tons were produced in 2005. Approximately 100 times more NaOH than KOH is produced annually. KOH is noteworthy as the precursor to most soft and liquid soaps as well as numerous potassium containing chemicals.
  • 5. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 84 | Page D. Carbonated Water (H2co3) Carbonated water (also known as club soda, soda water) is water into which carbon dioxide gas under pressure has been dissolved. Some of these have additives such as sodium chloride, sodium bicarbonate, magnesium and other minerals. This process, known as carbonation, is a process that causes the water to become effervescent. Most carbonated water is sold in ready to drink bottles as carbonated beverages such as soft drinks. V. Procedure To find the viscosity 1. Clean the cylindrical oil cup and ensure the orifice tube is free from dirt. 2. Close the orifice with ball valve. 3. Place the conical flask below the opening of the Orifice. 4. Fill water in the water bath. 5. Take 100mL of water and mix it with 15 gm of NaOH and stir well with the stirrer. 6. Pour the chemical solution to orifice and heat it by heating water bath and maintain uniform temperature. 7. At particular temperature, lift the thermometer and collect the solution in conical flask and note down the time taken for collecting 100mL by using a stop watch. 8. Increase the concentration of chemicals in fluid and repeat 5, 6, 7 steps for KOH and Xanthangum. 9. Repeat the above procedure steps with carbonated water. To find the IFT 1. Clean the container and dry well. 2. Fill the container with prepared solution at same temperature to calculated viscosity. 3. Turn the spin slowly and notice when the platinum ring getting detach from fluid. 4. Do same procedure for the entire fluid sample to find IFT. VI. OBSERVATION TABLES Table 1: - Viscosity (in seconds) of various polymer based fluids in water at different temperature.
  • 6. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 85 | Page Table:-2 Viscosity (in seconds) of various polymer based fluids in carbonated water (H2Co3) at different temperature. TABLE:-3 IFT (in Dynes/cm2) of various polymer based fluids in water at different temperature.
  • 7. Analysis of IFT (Interfacial Tension) And Viscosity of Various Polymer…… www.irjes.com 86 | Page VII. CONCLUSION Accurate knowledge of viscosity and IFT of fluids used in Enhanced Oil Recovery (EOR) is very essential in petroleum engineering or for a petroleum engineer for the production of maximum crude oil or efficient use of the well. This experiment shows designing of high viscosity and IFT fluid with NaOH, KOH and Xanthangum for recovery of maximum crude oil from a well. It is observed that viscosity of NaOH/KOH/Xanthangum decreases with increase in temperature of these fluids and vice versa. This is due to temperature rise of molecule of which causes decreases in cohesive forces of molecule. The decreases in cohesive force tend to increase in intermolecular distance and it leads to decrease in the interfacial tension (IFT). High viscosity and high IFT is need to maintain for better production. ACKNOWLEDGEMENT This is my sincere attempt to condense the wealth of knowledge “Analyze the IFT and Viscosity of polymer based fluid in enhanced oil recovery” at LORDS Institute of Engineering and Technology, Hyderabad. I am immensely grateful to Dr. Rajesh Kanna, HOD & Professor, Department of Petroleum Engineering for providing me valuable suggestions and necessary information during my project work. I am immensely indebted to my guide Mr. M.Nishanth, (Asst.Prof, Dept of Petroleum Engineering) whose guidance and expertise has helped me during the tenure of my project. I am also expressing my deep sense of gratitude to Mr. K.Sreekanth, (Asst.Prof, Dept. of Petroleum Engineering), Mr. Nagaraju, (Asst.Prof, Dept. of Petroleum Engineering), Mr. Venkateshwar Iyer, (Asst.Prof, Dept. of Petroleum Engineering), Mr. Anup, (Lab Asst. Dept. of Petroleum Engineering) for helped us to complete this project work. REFERENCES Journal Papers: [1]. International journal of innovative research in science, engineering and technology, "Analysis of kinematic viscosity for liquids by varying temperature, vol 4, Issue 4, April 2015. [2]. Nick Desiderio: “Determination of saybolt, kinamtic and shear viscosity for variety of liquids". , npd5050@psu.edu,april 15, 2014. [3]. Denton E.L,”Liquid viscosity and temperature”, California state science fair 2004 project summery. Search links: [4]. http://www.rigzone.com/training/insight.asp?insight_id=313. [5]. http://www.slb.com/services/technical_challenges/enhanced_oil_recovery.aspx.