SlideShare a Scribd company logo
1 of 12
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org 
ISSN (e): 2250-3021, ISSN (p): 2278-8719 
Vol. 04, Issue 10 (October. 2014), ||V3|| PP 07-18 
International organization of Scientific Research 7 | P a g e 
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel under the Influence of Soil pH and Resistivity *I. S. Anyanwu 1, O. Eseonu2, H. U. Nwosu 3 1(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) 2(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) 3(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) Abstract: - Experiments were conducted to investigated the correlation of soil properties towards metal loss of API 5L X42 carbon steel coupons, with emphasis on soil pH and resistivity. A total of four pieces of X42 coupons were placed in four soil samples gotten from four different states within the Niger Delta region for 2352 hours, to study the influence of soil properties towards metal loss via weight loss method. The soil coupons were buried in the soil samples placed in a plastic container, allowed to corrode naturally and then retrieved every 168 hours. Results showed that both parameters had an influence on buried steel but soil resistivity value had a dominating influence compared to soil pH. It was also observed from the ANOVA that, soil resistivity had a major contribution to corrosion reaction in soil. A mathematical model is also developed using multiple regression analysis. The result indicated that the model developed was suitable for prediction of corrosion growth rate with soil pH and resistivity as the two independent variables. Since the coefficient of determination 푅2=0.8129 was significantly high, the predicted and measured values also were fairly close to each other. Keywords: Underground Corrosion, Soil, carbon Steel, pH, mils per year (MPY) 
I. INTRODUCTION 
This study is the outgrowth of continuing interest throughout the oil industry, especially in the oil rich part of Nigeria in a bid to reducing the incidence of oil spillages caused by corrosion. This involves identifying the key processes and environmental conditions which mostly influences the equipment deterioration rate. Once identified, a strategy is established to routinely monitor these key processes and environmental parameters and maintain them within prescribed limits to control corrosion or material deterioration to acceptable levels (Mbamalu & Edeko, 2004). The word corrosion is derived from the Latin corrosus which means eaten away or consumed by degrees; an unpleasant word for an unpleasant process (Syed, 2006). As such, when corrosion is being discussed, it is important to think of a combination of a material and an environment. The corrosion behaviour of a material cannot be described unless the environment in which the material is to be exposed is appropriately identified. Similarly, the corrosivity or aggressiveness of an environment cannot be described unless the material that is to be exposed to that environment is also identified. Summarily therefore, the corrosion behaviour of the material depends on the environment to which it is subjected, and the corrosivity of an environment depends on the material exposed to that environment. Soil which is the electrolyte is a complex environmental material which has made the study of corrosion in carbon steel vague. However, understanding the physicochemical compostion of soil is a key to unravelling how a soil can influence corrosion reaction. It has become expedient that operators should examine every particular site to explain the corrosion mechanisms models resulting from the steel interaction with the soil environment which depends on several factors such as soil type, moisture content, soil resistivity soil pH, oxidation – reduction potential and microbial load. 
II. LITERATURE SURVEY 
Some investigators have carried out extensive experiments as regards the corrosion rate of steel and its interactions with soil parameters. It has been reported that soil resistivity is by far the best criterion for estimating the corrosivity of a given soil in the laboratory, where the vital parameter of moisture can be controlled (Dayal and others, 1988). In their work, they studied a number of Indian soils so as to identify a link between the different soil properties and its corrosivity to the underground metallic structures. Microbiologically influenced corrosion (MIC) of carbon steel exposed to anaerobic soil and in model soil has been investigated respectively by Li and others (2001) and Hirfumi and others (2003). 
Rim-rukeh and Awatefe (2006) studied the corrosion of a 10 inch crude oil pipeline by analyzing the physic- chemical characteristics of the soil environment. The study of soil concentrations, pH, temperature and other
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 8 | P a g e 
important soil parameters showed it to be clay soil environment. The corrosivity of the soil samples were evaluated using AWWA C-105 numerical scale. A total sum index of 21 recorded implied that the soil tested was extremely corrosive for low carbon steel. Maslehuddin and others (2007) studied the just effect of chloride concentration in soil on the corrosion behaviour of reinforcing steels. Also Sjögren and others (2007) in their work aimed at clarifying the resistance against external corrosion of stainless steel pipes in soil. The core of the project was actually done in-situ and the specimens buried in soil both in Sweden and in France. Study on the mechanical properties of steel in aqueous corrosion showed that losses in mechanical properties for specimens exposed to sea water were higher than those exposed to fresh water for every properties tested (Cho, 2010). Fang and others (2010) conducted a research to investigate the effect of a high salt concentration on corrosion from low partial pressures of hydrogen sulfide (H2S). The main objective was to study if the high concentration of chloride could initiate localized attack in this type of H2S system. Their experimental results revealed that a high salt concentration significantly slowed down the reaction rate in H2S corrosion. The effect of pH value to corrosion growth rate on API 5L X70 low carbon steel exposed to soil condition was studied by Farah (2011). Noor and others (2012) investigated the relationship between soil properties and corrosion of carbon steel. The test focussed on three types of major soil engineering properties towards metal loss of X70 carbon steel coupons. The three properties soil properties were moisture content, clay content and plasticity index. It was found that the soil moisture content had a more observable influence towards corrosion more than clay content and plasticity index. Cunha Lins and others (2012) conducted a similar experiment with the aim of evaluating the corrosion resistance of the API 5L X52 steel in soil from the Serra do Ouro Branco and Minas Gerais in Brazil. According to their result findings, a corrosion product layer of iron oxide/hydroxide was identified on the surface of steel. Bhattarai (2013) in his work focussed to investigate soil parameters such as moisture content, pH, resistivity, oxidation-reduction potential, chloride and sulphate contents on the corrosivity of buried-galvanized steels and cast iron pipelines in an attempt to specify the corrosive nature of soils in Panga-kirtipur- Tyanglaphant areas of Municipality. Corrosion behaviours of Q235 steel in indoor soil for 21 days and the soil parameter being moisture content has also been investigated by Wan and others (2013). In essence they stated that moisture had a noticeable influence on corrosion of steel. Zenati and others (2013) researched on the corrosion of C-Mn steel type API X60 in simulated soil solution environment and inhibitive effect. The main objective of their investigation was to study the susceptibility interactions of steel with the soil environment. Okiongbo and Ogobiri (2013), investigated soil corrosivity along a pipeline route in the Niger Delta Basin (along the Obrikom-Ebocha areas) using Geoelectrical method. The test was conducted to predict the corrosivity of the top three meters of the soil along a slumberger pipeline route using soil electrical resistivity as the parameter. Therefore, this research is carried out to investigate the relationship between soil pH and resistivity towards carbon steels and also develop a suitable model for the relationship. 
III. MATERIALS AND METHOD 
3.1 Work piece Materials 3.2 Steel Sample API 5L X42 was the specimen chosen for this investigation. The API 5L X42 steel pipe segment used for this research work was obtained from Pipeline and Product Marketing Company (PPMC) Port Harcourt, Nigeria. 3.3 Soil Sample Four different states were chosen and soil collected from each state. All soil samples were taken from the depth of at least one (1) meter from the ground level. All of which were collected from four different sites along the Niger Delta region of Nigeria. The Niger Delta region is located at an elevation of 96 meters above sea level with latitude of 4o 49’ 60”N and within longitude of 6o 0’ 0” E. The soil samples were taken to the laboratory for analysis in an air tight polyvinyl bag less than 24 hours after collection from actual site. 3.4 Specimen preparation of steel sample 
The steel pipe segment was sectioned (cut) into coupons of 72푚푚×35푚푚×10푚푚 using a hacksaw. The cutting process was chosen so as not to alter the microstructure of the sample. To prevent inconsistent coating protection which may lead to bias result, the coatings of the samples were removed in a bid to allowing the coupons corrode under worst case scenario. As such, the samples were thoroughly cleaned before installation to avoid any contamination or any possible entities that could affect the corrosion process. The procedures of the preparation and cleaning process referred to ASTM G01- 03 (American Society for Testing and Material, 2003). A sample was subjected to chemical analysis using the metal analyzer. This was
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 9 | P a g e 
done by exposing the well-polished surface of the sample to light emission from the spectrometer. The elements contained and their proportions in the sample were revealed on the digital processor attached to the spectrometer. The results as shown in table 3.1 below Table 3.1: Chemical composition of API 5L X42 carbon steel (wt %). 
C 
Mn 
P 
S 
Si 0.234 1.28 0.028 0.0215 0.4375 
The close up view of coupon blank used for the investigation is shown below (Figure 3.1). 
Fig. 3.1 Coupon blank freshly cut. 3.5 Specimen preparation of soil sample The procedures followed in preparing the soil medium are referred to ASTM G162-99 (American Society for Testing and Material, 2010). Since the soil samples were collected from four different sites along the Niger Delta region of Nigeria, the soils were first packaged in polyvinyl bags and transferred from its actual site to a laboratory for determination of its chemical properties. The results are shown below Table 3.2: Chemical analysis of experimental soils. 
Parameters 
Abia State 
Bayelsa State 
Delta State 
Rivers State 
pH 
5.6 
5.65 
5.71 
5.64 
Redox Potential [mV] 
147.8 
142.8 
140.5 
148.6 
Temperature [oC] 
29.30 
28.90 
29.20 
28.80 
Soil Resistivity [Ω.푐푚] 
7013.77 
6878.89 
6973.50 
6984.88 
Chloride [mg/kg] 
36.23 
41.10 
28.33 
36.60 
Sulphate [mg/kg] 
11.10 
12.45 
9.87 
13.99 
Table 3.3 Mechanical and Physical analysis of experimental soil 
States 
% 푆푎푛푑 
% 푆푖푙푡 
% 퐶푙푎푦 
% 푚표푖푠푡푢푟푒 
% 푝표푟표푠푖푡푦 
Permeability [cm/sec] 
Abia 
61.5 
23.9 
14.6 
10.26 
68 
1.7 
Bayelsa 
73.1 
15.2 
11.7 
21.05 
58 
0.9 
Delta 
71.2 
17.6 
11.2 
11.27 
65 
1.5 
Rivers 
58.8 
21.3 
19.9 
10.41 
70 
1.2 
3.6 Soil Chemical Analysis 3.6.1 Test Procedure: Soil Ph (pH (APHA 4500 H+) Measurement was carried out in 1:1 soil to water suspension by means of a Win Lab pH meter (WinLab 192363, Germany), which was calibrated in the laboratory. Calibration was checked by measuring standard buffer solutions. 3.7 Test Procedure: Soil Resistivity Electrical Conductivity was carried out based on APHA-2540-C standards. Measurement was carried out in 1:1 soil to water suspension by means of a Win Lab conductivity meter (WinLab 200363, Germany), which was calibrated in the laboratory. Calibration was checked by measuring standard Conductivity reference solutions. Soil resistivity being reciprocal of conductivity was however computed using 퐸푅 =1 퐸퐶 (3.1)
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 10 | P a g e 
Where ER = Electrical resistivity EC = Electrical conductivity 3.8 Burial of Samples The coupons were totally buried inside plastic containers containing the respective soils gotten from different states in a laboratory and closely monitored A total of 4 steel coupons were buried and allowed to corrode naturally for a period of seven days(168 hours). 
Fig. 3.2 Soil samples in containers ready for coupon burial 
Fig. 3.3a Burial of coupon in Delta and Rivers State soils 
Fig. 3.4b Coupon burial into Bayelsa and Abia state soil samples 3.9 Retrieval of Coupons Coupon retrieval was carried out periodically every seven days. As such, in order to get a time-function data of metal loss, every single sample was assumed uniform in terms of strength, thickness and corrosion resistance. 
Abia 
Bayelsa 
Rivers 
Delta
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 11 | P a g e 
Fig. 3.5 Retrieval of one of the coupons from soil 3.9.1 Weight loss measurement To remove accumulated impurities and corrosion products from the coupons, two cleaning techniques were employed, which included mechanical cleaning and chemical cleaning (refer to Figure 3.6). 
Fig. 3.6 Washing the coupons The mechanical cleaning was carried out to remove the soil particles on the surface of samples using a soft brush. After washing, all the coupons were neutralized by 5% sodium carbonate and again washed with water. After neutralization, the coupons were soaked in Acetone for 5 minutes and then allowed to dry properly in sun. The weight of the sample prior (W1) and after being exposed to soil environment (W2) were recorded using an electronic weighing scale to determine the corrosion rate. Yahaya and others (2011) asserted that the difference in weight of the sample is most often used as a measure of corrosion or the basis for calculation of the corrosion rate. 푊=푊1− 푊2 (3.2) where, W = weight loss 푊1=푖푛푖푡푖푎푙 푤푒푖푔푕푡 푊2=푓푖푛푎푙 푤푒푖푔푕푡 푎푓푡푒푟 푒푥푝표푠푢푟푒 푡표 푠표푖푙 푤푖푡푕 푡푖푚푒 3.9.2 Corrosion Rate Determination The surface area of each coupon was calculated using the following equation: 푆푢푟푓푎푐푒 퐴푟푒푎 퐴 =2× 퐿×퐵 + 퐵×푇 + (퐿×푇) ……… (3.3) where, L = Length of the coupon. B = Width of the coupon. T = Thickness of the coupon. D = Diameter of hole in coupon The weight loss of the coupons which were used to compute the corrosion rates of the coupons was measured using the KERRO BLG 2000 electronic scale having a precision of upto 0.01gm. Hence the corrosion rate was computed using the formula: 퐶표푟푟표푠푖표푛 푟푎푡푒 푚푚푝푦 = 87.6 ×푊푒푖푔푕푡 푙표푠푠 퐴푟푒푎 ×푡푖푚푒 ×퐷푒푛푠푖푡푦 (3.4) Where: W = weight loss in milligrams A= area of coupon in 푐푚2 T = time of exposure of coupon in hours 휌=푚푒푡푎푙 푑푒푛푠푖푡푦 푖푛 푔푐푚3 
Coupon
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 12 | P a g e 
IV. RESULT AND DISCUSSION 
4.1 Weight loss of samples In order to see the influence of soils from different locations on the coupons buried, the initial weight of the coupons were recorded and with time the weight differences were checked. The weight loss plotted as shown in Figure 4.1. 
Fig. 4.1: Weight loss against time. 4.2 Corrosion Growth rate Corrosion growth rate has always been a function of time. Upon inspection based experimental data recorded, it seemed evident that the corrosion rate of coupons increased with time after the initial stage. 
Fig. 4.3 Graph of corrosion rate against time 4.3 Analysis of Variance (ANOVA) The experimental results were analyzed with analysis of variance (ANOVA), which is used for identifying the factors significantly affecting the corrosion rates of the coupons. The results of the ANOVA with the soil resistivity and pH are shown in Tables 4.1 and 4.2 respectively. This analysis was carried out for significance level of 훼=0.05 i.e. for a confidence level of 95%. The sources with a P-value less than 0.05 are considered to have a statistically significant contribution to corrosion behaviour of the coupons 4.3.1 Analysis of Variance for Resistivity 
-2000 
-1000 
0 
1000 
2000 
3000 
0 
500 
1000 
1500 
2000 
2500 
Weight loss [mg] 
Time(Hrs) 
Weight Loss of coupons with time 
WLA[mg] 
WLB[mg] 
WLD[mg] 
WLR[mg] 
-0.8 
-0.6 
-0.4 
-0.2 
0 
0.2 
0 
500 
1000 
1500 
2000 
2500 
Corrosion Rate{mpy) 
Time(Hrs) 
Graph of Corrosion Rate against Time 
CR(A) 
CR(B) 
CR(D) 
CR(R)
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 13 | P a g e 
Table 4.1: Analysis of Variance (ANOVA) for Resistivity. 
Anova: Single Factor 
SUMMARY 
Groups 
Count 
Sum 
Average 
Variance 
-0.018 
27 
1.811045 
0.067076 
0.005244 
6114.375508 
27 
161801 
5992.63 
69296.16 
ANOVA 
Source of Variation 
SS 
df 
MS 
F 
P-value 
F crit 
Between Groups 
484795868 
1 
4.85E+08 
13992 
6.667E-65 
4.026631 
Within Groups 
1801700.25 
52 
34648.08 
Total 
486597568 
53 
Table 4.2: Regression analysis. 
SUMMARY OUTPUT 
Regression Statistics 
Multiple R 
0.843429448 
R Square 
0.711373235 
Adjusted R Square 
0.700272205 
Standard Error 
0.039887668 
Observations 
28 
ANOVA 
Df 
SS 
MS 
F 
Significance F 
Regression 
1 
0.101956 
0.101956 
64.08174 
1.74787E-08 
Residual 
26 
0.041367 
0.001591 
Total 
27 
0.143322 
The following are deductions are made from the ANOVA and Regression table 1. The Model F-value of 64.082 implies the model is significant. There is only a 0.000000174% chance that a “Model F-Value” this large could occur as a result of resistivity. F (64.08) > Sig. F (1.748×108)< 0.05=훼 2. 퐹 64.082 > 퐹푐푟푖푡 4.027 as such null hypothesis is rejected. Since 푃−푣푎푙푢푒=6.667×10−65< 0.05=훼 hence it is significantly a good fit. In terms of resistivity as a parameter which affects corrosion rate. 3. The output R-square value (0.7114) indicates the accuracy of the model and the coefficient of determination (Adj) R-square (0.7003) for the model is close which indicates compatibility/correlation of experimental data. 4.3.2 Analysis of Variance (ANOVA) for pH Table 4.3: Regression Analysis result for pH. 
SUMMARY OUTPUT 
pH 
Regression Statistics 
Multiple R 
0.58241252 
R Square 
0.339204344 
Adjusted R Square 
0.313789126 
Standard Error 
0.060353705 
Observations 
28 
P 
R
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 14 | P a g e 
ANOVA 
Df 
SS 
MS 
F 
Significance F 
Regression 
1 
0.048615577 
0.0486156 
13.34651 
0.001146843 
Residual 
26 
0.094706813 
0.0036426 
Total 
27 
0.14332239 
Table 4.4: Analysis of Variance (ANOVA) for pH. 
Anova: Single Factor 
for pH 
SUMMARY 
Groups 
Count 
Sum 
Average 
Variance 
-0.018 
27 
1.811045 
0.067076 
0.005244 
5.54 
27 
161.23 
5.971481 
0.018505 
ANOVA 
Source of Variation 
SS 
df 
MS 
F 
P-value 
F crit 
Between Groups 
470.6371 
1 
470.6371 
39633.64 
1.24E-76 
4.026631 
Within Groups 
0.617484 
52 
0.011875 
Total 
471.2546 
53 
The following are deductions are made from the ANOVA and Regression table 
1. The Model F-value of 13.347 implies the model is significant. There is only a 0.00001147% chance of getting a correlation of (푅2=0.3392) for pH as a parameter only. 
2. Since 푃−푣푎푙푢푒=0.0011468<0.05=훼 as such null hypothesis is rejected. Hence it is significantly a good fit. In terms of pH as a parameter which affects corrosion rate. 
3. The output R-square value (0.3392) indicates the accuracy of the model and the coefficient of determination (Adj) R-square (0.3138) for the model is quite close although low. 
4.3.3 Regression Equation and Analysis of Variance (ANOVA) for experimental data Table 4.5: Regression Analysis Result of Experiment. 
Regression Statistics 
Multiple R 
0.90162 
R Square 
0.81292 
Adjusted R Square 
0.79796 
Standard Error 
0.03274 
Observations 
28 
ANOVA 
Df 
SS 
MS 
F 
Significance F 
Regression 
2 
0.11651 
0.0582 
54.319 
7.945E-10 
Residual 
25 
0.02681 
0.00107 
Total 
27 
0.14332 
Coefficients 
Standard Error 
t Stat 
P-value 
Lower 95% 
Upper 95% 
Lower 95.0% 
Intercept 
0.356389 
0.33931 
1.0503 
0.30361 
-0.34243 
1.05521 
-0.34243 
RES 
-0.000205 
2.5786E-05 
-7.957 
2.59E- 08 
-0.000258 
-0.00015 
-0.000258 
PH 
0.157498 
0.04275 
3.684 
0.0011 
0.0694482 
0.245547 
0.0694482
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 15 | P a g e 
Table 4.6: Anova And Regression Analysis To Check For Correlation Between Resistivity and Corrosion Rate. 
Anova: Single Factor 
SUMMARY 
Groups 
Count 
Sum 
Average 
Variance 
CR 
28 
1.793045 
0.064037 
0.005308 
R 
28 
167915.4 
5996.978 
67258.99 
ANOVA 
Source of Variation 
SS 
df 
MS 
F 
P-value 
F crit 
Between Groups 
5.03E+08 
1 
5.03E+08 
14971.43 
1.08E-67 
4.019541 
Within Groups 
1815993 
54 
33629.5 
Total 
5.05E+08 
55 
SUMMARY OUTPUT 
Regression Statistics 
Multiple R 
0.843429 
R Square 
0.711373 
Adjusted R Square 
0.700272 
Standard Error 
0.039888 
Observations 
28 
ANOVA 
Df 
SS 
MS 
F 
Significance F 
Regression 
1 
0.101956 
0.101956 
64.08174 
1.75E-08 
Residual 
26 
0.041367 
0.001591 
Total 
27 
0.143322 
Coefficients 
Standard Error 
t Stat 
P-value 
Lower 95% 
Upper 95% 
Intercept 
1.484995 
0.177666 
8.358334 
7.7E-09 
1.119797 
1.850193 
RESISTIVITY 
-0.00024 
2.96E-05 
-8.00511 
1.75E-08 
-0.0003 
-0.00018 
The relationship between the two properties studied (pH and Resistivity) and corrosion rate was modelled by multiple linear regression (Table 4.5). The final regression model in terms of coded parameters for corrosion rate: 퐶푅푚표푑푒푙=0.3564−0.00021푅퐸푆+0.1574푃퐻 (푅=0.9016) (4.1) where RES = soil resistivity PH = soil pH The following deductions were made; 
1. 푅2=0.8129;푕푒푛푐푒 81.29% of the variation in the corrosion rate is explained by the regression model formulated above, which shows a significantly good fit. While Adjusted 푅2=79.80%. This shows how correlated the relationships are. 
2. The Standard Error (푆퐸=0.0327)which shows the deviation of experimental from predicted seemed very low, showing how good the model is. 
3. The 푃−푣푎푙푢푒 푓표푟 푅퐸푆 2.59×10−8 푎푛푑 푓표푟 푝퐻 0.00111 <0.05 shows again that there is a relationship between both parameters as against corrosion rate. 
4. From the regression model above, the pH coefficient is greater than that of the resistivity, which means that soil pH has a greater influence on the rate of corrosion reaction for coupons buried underground. 
4.3.4 Goodness of Fit for corrosion rate as influenced by both parameters To test whether the discrepancies between the experimental and predicted values of corrosion rate, we use the statistic for test of goodness of fit using the equation below: 휒2= (퐸푖− 푃푖)2 퐸푖 푘푖 =1 (4.2) Table 4.6 showed that 휒2=1.0972 for corrosion rate for 27 degrees of freedom whereas degrees of freedom used is given by: 푟표푤푠−1 × 푐표푙−1 = 28−1 × 2−1 =27
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 16 | P a g e 
Therefore the analysis of data does suggest perception is correct with 95 % confidence level. Otherwise, there is reason to believe that the program does give correct output as shown in Table 4.7. Table 4.7: Statistic for Test of Goodness of fit. 
Statistic for Test of Goodness of Fit 
Observation 
Experimental CR 
Predicted CR 
(퐸푥푝−푃푟푒)2 푃푟푒 
1 
-0.018 
-0.02558006 
-0.00225 
2 
-0.014 
0.007567643 
0.061467 
3 
0.073 
0.029167382 
0.065871 
4 
0.086 
0.07501557 
0.001608 
5 
0.141 
0.09462737 
0.022725 
6 
0.133211 
0.143206435 
0.000698 
7 
0.157336 
0.187353985 
0.00481 
8 
0.1294 
0.031160648 
0.309717 
9 
0 
0.040792761 
0.040793 
10 
0.0731 
0.051729332 
0.008829 
11 
0.0549 
0.07141824 
0.00382 
12 
0.1016 
0.09475486 
0.000494 
13 
0.107794 
0.104513599 
0.000103 
14 
0.110874 
0.116796196 
0.0003 
15 
-0.142 
-0.11231227 
-0.00785 
16 
-0.044 
-0.03519792 
-0.0022 
17 
0.0148 
0.014253608 
2.09E-05 
18 
0.0526 
0.023737458 
0.035094 
19 
0.0709 
0.07973124 
0.000978 
20 
0.1086 
0.110817272 
4.44E-05 
21 
0.1298 
0.131064449 
1.22E-05 
22 
-0.0541 
0.010422001 
0.399452 
23 
-0.0226 
0.007502196 
0.120784 
24 
0.07518 
0.042970274 
0.024144 
25 
0.1015 
0.117529349 
0.002186 
26 
0.1218 
0.106078952 
0.00233 
27 
0.10902 
0.119713709 
0.000955 
28 
0.13533 
0.154210713 
0.002312 
1.097253 
To verify the goodness of the predicted model, the observed experimental values and their predictive values of the corrosion rate is given in the Table 4.6. Table 4.6 also shows the prediction error of the corrosion rate. It has been seen that the maximum and minimum error for corrosion rate is 6.191 and -3.152, which is satisfactory. Graphical comparison of actual and predicted values of surface roughness and material removal rate is shown in Figure 4.4. Table 4.8: Comparison between Experimental and predicted values of Corrosion rate. 
COMPARISM BETWEEN EXPERIMENTAL AND PREDICTED VALUES OF CORROSION RATE 
Observation 
Predicted CR 
Residuals 
Experimental CR 
ERROR 
1 
-0.0256 
0.0076 
-0.018 
0.2963
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 17 | P a g e 
2 
0.0076 
-0.0216 
-0.014 
2.85 
3 
0.0292 
0.0438 
0.073 
-1.5028 
4 
0.075 
0.011 
0.086 
-0.1464 
5 
0.0946 
0.0464 
0.141 
-0.4901 
6 
0.1432 
-0.01 
0.1332 
0.0698 
7 
0.1874 
-0.03 
0.1573 
0.1602 
8 
0.0312 
0.0982 
0.1294 
-3.1527 
9 
0.0408 
-0.0408 
0 
1 
10 
0.0517 
0.0214 
0.0731 
-0.4131 
11 
0.0714 
-0.0165 
0.0549 
0.2313 
12 
0.0948 
0.0068 
0.1016 
-0.0722 
13 
0.1045 
0.0033 
0.1078 
-0.0314 
14 
0.1168 
-0.0059 
0.1109 
0.0507 
15 
-0.1123 
-0.0297 
-0.142 
-0.2643 
16 
-0.0352 
-0.0088 
-0.044 
-0.2501 
17 
0.0143 
0.0005 
0.0148 
-0.0383 
18 
0.0237 
0.0289 
0.0526 
-1.2159 
19 
0.0797 
-0.0088 
0.0709 
0.1108 
20 
0.1108 
-0.0022 
0.1086 
0.02 
21 
0.1311 
-0.0013 
0.1298 
0.0096 
22 
0.0104 
-0.0645 
-0.054 
6.1909 
23 
0.0075 
-0.0301 
-0.023 
4.0125 
24 
0.043 
0.0322 
0.0752 
-0.7496 
25 
0.1175 
-0.016 
0.1015 
0.1364 
26 
0.1061 
0.0157 
0.1218 
-0.1482 
27 
0.1197 
-0.0107 
0.109 
0.0893 
28 
0.1542 
-0.0189 
0.1353 
0.1224 
Fig. 4.4: Comparison between Actual and Predicted Values of Surface Roughness. 
V. DISCUSSION OF FINDING AND CONCLUSION 
The aim of the study was to determine a relationship between soil pH and soil resistivity upon corrosion growth rate of carbon steel and develop prediction model for corrosion growth rate using multiple regression analysis. Based on the results of these experimental investigations, the following conclusions can be drawn: 
 Soil resistivity was found to have greater influence than soil pH towards the acceleration of corrosion reaction in most soil samples examined, if not all, due to distinct pattern of relationship between variations of averaged corrosion rates and soil properties. 
 Using Analysis of Variance (ANOVA) the individual factor effects are found out and concluded that the effect of resistivity is one parameter with more effect when compared to pH. 
-0.2 
-0.15 
-0.1 
-0.05 
0 
0.05 
0.1 
0.15 
0.2 
0.25 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
Corrosion rate[MPY] 
Corrosion rate Experiment 
Predicted CR 
Experimental CR
Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel 
International organization of Scientific Research 18 | P a g e 
 The Multiple Regression Analysis method is used to develop the corrosion rate prediction models using the predictors such as soil pH and resistivity for different soil samples. A multiple regression model is developed to suit all the soil types from different locations. These models show good agreement with experimental results. 
REFERENCES [1] J. E. Mbamalu, and F. O. Edeko, Issues and Challenges of Aging Pipeline Coating Infrastructure in Nigeria's Oil and Gas Industry. University of Benin. CORROSION conference, New Orleans, La. 2004. [2] S. Syed, Atmospheric Corrosion of Materials. Emirates Journal for Engineering Research, 11 (1), 2006, 1-24. [3] H. M. Dayal, B.K. Gupta, K.C. Tewari, K. M. Chandrashekhar, and S.K. Gupta, Underground Corrosion by Microorganisms Part-I: Analytical Studies of Some Indian Soils. Defence Materials Science Journal, 38(2), 1988, 209-216. [4] S. Y. Li, Y. G. Kim, K. S. Jeon, Y. T. Kho, and T. Kang, MicrobiologicallyInfluenced Corrosion Of Carbon Steel Exposed To Anaerobic Soil. Journal of Science and Engineering, 57(9), 2001, 815-828. [5] K. Hirofumi, U. Hajme, M. Kazuhiko, H. Katsutoshi, and T. Yasunori, Microbiologically Influenced Corrosion of Carbon Steel in Model Soil. Conference paper NACE-03558, Corrosion, Sandiego, California. 2003. [6] A. Rim-rukeh, and J. K. Awatefe, Investigation of Soil Corrosivity in the Corrosion of Low Carbon Steel Pipe in Soil Environment. Journal of Applied Sciences Research 2(8), 2006, 466-469. [7] M.. Maslehuddin, M. Al-Zahrani, M. Ibrahim, M. H. Al-Methel, and S. H. Al-Idi, Effect of Chloride Concentration in Soil on the Corrosion Behaviour of Reinforcing Steels. Journal of Construction and Building Materials. 21, 2007, 1825-1832 [8] L. Sjögren, G. Camitz, J. Peultier, S. Jacques, V. Baudu, F. Barrau, B. Chareyre, A. Bergquist, A. Pourbaix, and P. Carpentiers, Corrosion resistance of stainless steel in soil. Industeel, ArcelorMittal Group. 2007. [9] C. L. Cho, Mechanical Properties of Steel in Aqueous corrosion. Faculty of Mechanical Engineering, masters thesis, Universiti Malaysia Pahang. 2010. [10] H. Fang, B. Brown, and S. Nesic, Effects of Sodium Chloride Concentration on Mild Steel Corrosion in Slightly Sour Environments. NACE International 015001-1. ISSN 00 11-9312. 2010. [11] F. B. S. Farah, Effect of pH value to corrosion rate of pipeline steel exposed to soil condition, University Teknologi Malaysia. 2011. [12] N. M. Noor, Y. Nordin, K.S. Lim, S. R. Othman, A.R.A. Safuan, and M.H. Norhamimi, Relationship between Soil Properties and Corrosion of Carbon Steel. Journal of Applied Sciences Research, 8(3), 2012, 1739-1747. 
[13] V. Cunha Lins, M. L. M. Ferreira, and P. A. Saliba, Corrosion Resistance of API X52 Carbon Steel in Soil Environment. Journal of Materials Research and Technology. 2012 
[14] J. Bhattarai, Study on the Corrosive Nature of Soil towards the Buried-Structures. Scientific World, 11(11), 2013. [15] Y. Wan, L. Ding, X. Wang, Y. Li, H. Sun, and Q. Wang, Corrosion Behaviours of Q235 Steel in Indoor Soil. International Journal of Electrochemical Science, 8, 2013, 12531 – 12542. [16] A. A. Zenati, A. Benmoussat, and O. Benali, Corrosion study of C-Mn steel type API 5L X60 in simulated soil solution environment and inhibitive effect. Journal of Material Environmental Science 5(2), 2013, 520-529. [17] K. S. Okiongbo, and G. Ogobiri, Predicting Soil Corrosivity along a Pipeline Route in the Niger Delta Basin Using Geoelectrical Method: Implications for Corrosion Control. Journal of Engineering. 5, 2013, 237-244 
[18] American Standard of Material and Testing, ASTM G162-99 Standard practice for conduction and evaluating laboratory corrosions tests in soils. US: West Conshohocken. http://amaec.kicet.re.kr/cd_astm/PAGES/G162.htm. 2000. 
[19] N. Yahaya, K. S. Lim, N. M. Noor, S. R. Othman, and A. Abdullah, Effects of Clay and Moisture Content on Soil-Corrosion Dynamic. Malaysian Journal of Civil Engineering, 23(1), 2011, 24-32.

More Related Content

What's hot

EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTION
EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTIONEXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTION
EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTIONAbdulRazakBH
 
Study on the Effect of pH on Clay
Study on the Effect of pH on ClayStudy on the Effect of pH on Clay
Study on the Effect of pH on ClayIRJET Journal
 
IRJET-Partial Replacement of Cement with Different Additives in Concrete
IRJET-Partial Replacement of Cement with Different Additives in ConcreteIRJET-Partial Replacement of Cement with Different Additives in Concrete
IRJET-Partial Replacement of Cement with Different Additives in ConcreteIRJET Journal
 
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...IJERA Editor
 
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...AJSERJournal
 
Acid resistance and corrosion protection potential of concrete prepared with a
Acid resistance and corrosion protection potential of concrete prepared with aAcid resistance and corrosion protection potential of concrete prepared with a
Acid resistance and corrosion protection potential of concrete prepared with aTalalSalem5
 
Effect of nano-silica on the chemical durability and mechanical performance ...
 Effect of nano-silica on the chemical durability and mechanical performance ... Effect of nano-silica on the chemical durability and mechanical performance ...
Effect of nano-silica on the chemical durability and mechanical performance ...Ghassan Alhamdany
 
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET Journal
 
Effects of Carbonation on the Properties of Concrete
Effects of Carbonation on the Properties of ConcreteEffects of Carbonation on the Properties of Concrete
Effects of Carbonation on the Properties of ConcreteScientific Review SR
 
The suitability of domestic roof harvested rainwater as source of irrigation ...
The suitability of domestic roof harvested rainwater as source of irrigation ...The suitability of domestic roof harvested rainwater as source of irrigation ...
The suitability of domestic roof harvested rainwater as source of irrigation ...CTA
 
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...theijes
 
A Review On Development Of Flyash Based High Strength Geopolymer Concrete
A Review On Development Of Flyash Based High Strength Geopolymer ConcreteA Review On Development Of Flyash Based High Strength Geopolymer Concrete
A Review On Development Of Flyash Based High Strength Geopolymer Concretecedmmantc5411
 
Effect of Iron on Some Geotechnical Properties of Clays
Effect of Iron on Some Geotechnical Properties of ClaysEffect of Iron on Some Geotechnical Properties of Clays
Effect of Iron on Some Geotechnical Properties of ClaysIRJET Journal
 
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...Premier Publishers
 

What's hot (20)

EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTION
EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTIONEXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTION
EXPERIMENTAL INVESTIGATION ON USAGE OF GREY WATER IN CONCRETE PRODUCTION
 
Study on the Effect of pH on Clay
Study on the Effect of pH on ClayStudy on the Effect of pH on Clay
Study on the Effect of pH on Clay
 
Model20and20Field20degradation.pdf
Model20and20Field20degradation.pdfModel20and20Field20degradation.pdf
Model20and20Field20degradation.pdf
 
IRJET-Partial Replacement of Cement with Different Additives in Concrete
IRJET-Partial Replacement of Cement with Different Additives in ConcreteIRJET-Partial Replacement of Cement with Different Additives in Concrete
IRJET-Partial Replacement of Cement with Different Additives in Concrete
 
C013112225
C013112225C013112225
C013112225
 
20320140503040
2032014050304020320140503040
20320140503040
 
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...
The Influence of Calcined Clay Pozzolan, Low-Cao Steel Slag and Granite Dust ...
 
H044053842
H044053842H044053842
H044053842
 
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...
Comparative Study of Impact of Aluminium and Titanium Oxides Nanoparticles on...
 
Acid resistance and corrosion protection potential of concrete prepared with a
Acid resistance and corrosion protection potential of concrete prepared with aAcid resistance and corrosion protection potential of concrete prepared with a
Acid resistance and corrosion protection potential of concrete prepared with a
 
Effect of nano-silica on the chemical durability and mechanical performance ...
 Effect of nano-silica on the chemical durability and mechanical performance ... Effect of nano-silica on the chemical durability and mechanical performance ...
Effect of nano-silica on the chemical durability and mechanical performance ...
 
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
 
K013128090
K013128090K013128090
K013128090
 
Effects of Carbonation on the Properties of Concrete
Effects of Carbonation on the Properties of ConcreteEffects of Carbonation on the Properties of Concrete
Effects of Carbonation on the Properties of Concrete
 
The suitability of domestic roof harvested rainwater as source of irrigation ...
The suitability of domestic roof harvested rainwater as source of irrigation ...The suitability of domestic roof harvested rainwater as source of irrigation ...
The suitability of domestic roof harvested rainwater as source of irrigation ...
 
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
Studies on Corrosion Characteristics of Carbon Steel Exposed to Na2CO3, Na2SO...
 
A Review On Development Of Flyash Based High Strength Geopolymer Concrete
A Review On Development Of Flyash Based High Strength Geopolymer ConcreteA Review On Development Of Flyash Based High Strength Geopolymer Concrete
A Review On Development Of Flyash Based High Strength Geopolymer Concrete
 
Hl3513071310
Hl3513071310Hl3513071310
Hl3513071310
 
Effect of Iron on Some Geotechnical Properties of Clays
Effect of Iron on Some Geotechnical Properties of ClaysEffect of Iron on Some Geotechnical Properties of Clays
Effect of Iron on Some Geotechnical Properties of Clays
 
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...
Variation of Heavy Metal Concentration in Soil and Plant with Distance Away f...
 

Similar to B041030718

Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe Waste
Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe WasteAssessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe Waste
Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe WasteIRJET Journal
 
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...Geotechnical evaluation of some soils from part of southwestern nigeria, usab...
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...Alexander Decker
 
Effects of steel mill scale on the strength characteristics of expansive clay...
Effects of steel mill scale on the strength characteristics of expansive clay...Effects of steel mill scale on the strength characteristics of expansive clay...
Effects of steel mill scale on the strength characteristics of expansive clay...Alexander Decker
 
Soil Stabilization Study by using Steel Slag
Soil Stabilization Study by using Steel SlagSoil Stabilization Study by using Steel Slag
Soil Stabilization Study by using Steel Slagijtsrd
 
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...Innspub Net
 
sustainability-12-09879.pdf
sustainability-12-09879.pdfsustainability-12-09879.pdf
sustainability-12-09879.pdfssuserc5d864
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...ijtsrd
 
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...IJERA Editor
 
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...inventionjournals
 
Enhancing the Mechanical Properties of Lateritic Brick for Better Performance
Enhancing the Mechanical Properties of Lateritic Brick for Better PerformanceEnhancing the Mechanical Properties of Lateritic Brick for Better Performance
Enhancing the Mechanical Properties of Lateritic Brick for Better PerformanceIJERA Editor
 
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...ijtsrd
 
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38Journal For Research
 

Similar to B041030718 (20)

F05214252
F05214252F05214252
F05214252
 
Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe Waste
Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe WasteAssessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe Waste
Assessment of Heavy Metal Toxicity in Ground Water and Reuse of Lathe Waste
 
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...Geotechnical evaluation of some soils from part of southwestern nigeria, usab...
Geotechnical evaluation of some soils from part of southwestern nigeria, usab...
 
K0356778
K0356778K0356778
K0356778
 
Effects of steel mill scale on the strength characteristics of expansive clay...
Effects of steel mill scale on the strength characteristics of expansive clay...Effects of steel mill scale on the strength characteristics of expansive clay...
Effects of steel mill scale on the strength characteristics of expansive clay...
 
Soil Stabilization Study by using Steel Slag
Soil Stabilization Study by using Steel SlagSoil Stabilization Study by using Steel Slag
Soil Stabilization Study by using Steel Slag
 
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...
Evaluation of some heavy metals in roadside soil along Samaru-Giwa road, Zari...
 
sustainability-12-09879.pdf
sustainability-12-09879.pdfsustainability-12-09879.pdf
sustainability-12-09879.pdf
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Literature review
Literature reviewLiterature review
Literature review
 
D0411315
D0411315D0411315
D0411315
 
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...
Thermodynamic and Electrochemical Aspects of Green Corrosion Inhibitors in Ac...
 
ODEDIRAN SEMINAR.pptx
ODEDIRAN SEMINAR.pptxODEDIRAN SEMINAR.pptx
ODEDIRAN SEMINAR.pptx
 
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...
In -Vitro: Evaluation of Corrosion Behavior of Orthodontic Stainless Steel Br...
 
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...
Analysis of Cr and Cu in Soils around Selected Automobile Workshops of Kaduna...
 
20120140505004
2012014050500420120140505004
20120140505004
 
A411010107
A411010107A411010107
A411010107
 
Enhancing the Mechanical Properties of Lateritic Brick for Better Performance
Enhancing the Mechanical Properties of Lateritic Brick for Better PerformanceEnhancing the Mechanical Properties of Lateritic Brick for Better Performance
Enhancing the Mechanical Properties of Lateritic Brick for Better Performance
 
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...
Evalution of Properties and Feasibility of Non Metallic Geopolymer Coating fo...
 
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38
EXPERIMENTAL STUDY OF CHEMICAL ETCHING ON EN8 & EN38
 

More from IOSR-JEN

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Recently uploaded

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 

Recently uploaded (20)

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 

B041030718

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 10 (October. 2014), ||V3|| PP 07-18 International organization of Scientific Research 7 | P a g e Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel under the Influence of Soil pH and Resistivity *I. S. Anyanwu 1, O. Eseonu2, H. U. Nwosu 3 1(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) 2(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) 3(Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria.) Abstract: - Experiments were conducted to investigated the correlation of soil properties towards metal loss of API 5L X42 carbon steel coupons, with emphasis on soil pH and resistivity. A total of four pieces of X42 coupons were placed in four soil samples gotten from four different states within the Niger Delta region for 2352 hours, to study the influence of soil properties towards metal loss via weight loss method. The soil coupons were buried in the soil samples placed in a plastic container, allowed to corrode naturally and then retrieved every 168 hours. Results showed that both parameters had an influence on buried steel but soil resistivity value had a dominating influence compared to soil pH. It was also observed from the ANOVA that, soil resistivity had a major contribution to corrosion reaction in soil. A mathematical model is also developed using multiple regression analysis. The result indicated that the model developed was suitable for prediction of corrosion growth rate with soil pH and resistivity as the two independent variables. Since the coefficient of determination 푅2=0.8129 was significantly high, the predicted and measured values also were fairly close to each other. Keywords: Underground Corrosion, Soil, carbon Steel, pH, mils per year (MPY) I. INTRODUCTION This study is the outgrowth of continuing interest throughout the oil industry, especially in the oil rich part of Nigeria in a bid to reducing the incidence of oil spillages caused by corrosion. This involves identifying the key processes and environmental conditions which mostly influences the equipment deterioration rate. Once identified, a strategy is established to routinely monitor these key processes and environmental parameters and maintain them within prescribed limits to control corrosion or material deterioration to acceptable levels (Mbamalu & Edeko, 2004). The word corrosion is derived from the Latin corrosus which means eaten away or consumed by degrees; an unpleasant word for an unpleasant process (Syed, 2006). As such, when corrosion is being discussed, it is important to think of a combination of a material and an environment. The corrosion behaviour of a material cannot be described unless the environment in which the material is to be exposed is appropriately identified. Similarly, the corrosivity or aggressiveness of an environment cannot be described unless the material that is to be exposed to that environment is also identified. Summarily therefore, the corrosion behaviour of the material depends on the environment to which it is subjected, and the corrosivity of an environment depends on the material exposed to that environment. Soil which is the electrolyte is a complex environmental material which has made the study of corrosion in carbon steel vague. However, understanding the physicochemical compostion of soil is a key to unravelling how a soil can influence corrosion reaction. It has become expedient that operators should examine every particular site to explain the corrosion mechanisms models resulting from the steel interaction with the soil environment which depends on several factors such as soil type, moisture content, soil resistivity soil pH, oxidation – reduction potential and microbial load. II. LITERATURE SURVEY Some investigators have carried out extensive experiments as regards the corrosion rate of steel and its interactions with soil parameters. It has been reported that soil resistivity is by far the best criterion for estimating the corrosivity of a given soil in the laboratory, where the vital parameter of moisture can be controlled (Dayal and others, 1988). In their work, they studied a number of Indian soils so as to identify a link between the different soil properties and its corrosivity to the underground metallic structures. Microbiologically influenced corrosion (MIC) of carbon steel exposed to anaerobic soil and in model soil has been investigated respectively by Li and others (2001) and Hirfumi and others (2003). Rim-rukeh and Awatefe (2006) studied the corrosion of a 10 inch crude oil pipeline by analyzing the physic- chemical characteristics of the soil environment. The study of soil concentrations, pH, temperature and other
  • 2. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 8 | P a g e important soil parameters showed it to be clay soil environment. The corrosivity of the soil samples were evaluated using AWWA C-105 numerical scale. A total sum index of 21 recorded implied that the soil tested was extremely corrosive for low carbon steel. Maslehuddin and others (2007) studied the just effect of chloride concentration in soil on the corrosion behaviour of reinforcing steels. Also Sjögren and others (2007) in their work aimed at clarifying the resistance against external corrosion of stainless steel pipes in soil. The core of the project was actually done in-situ and the specimens buried in soil both in Sweden and in France. Study on the mechanical properties of steel in aqueous corrosion showed that losses in mechanical properties for specimens exposed to sea water were higher than those exposed to fresh water for every properties tested (Cho, 2010). Fang and others (2010) conducted a research to investigate the effect of a high salt concentration on corrosion from low partial pressures of hydrogen sulfide (H2S). The main objective was to study if the high concentration of chloride could initiate localized attack in this type of H2S system. Their experimental results revealed that a high salt concentration significantly slowed down the reaction rate in H2S corrosion. The effect of pH value to corrosion growth rate on API 5L X70 low carbon steel exposed to soil condition was studied by Farah (2011). Noor and others (2012) investigated the relationship between soil properties and corrosion of carbon steel. The test focussed on three types of major soil engineering properties towards metal loss of X70 carbon steel coupons. The three properties soil properties were moisture content, clay content and plasticity index. It was found that the soil moisture content had a more observable influence towards corrosion more than clay content and plasticity index. Cunha Lins and others (2012) conducted a similar experiment with the aim of evaluating the corrosion resistance of the API 5L X52 steel in soil from the Serra do Ouro Branco and Minas Gerais in Brazil. According to their result findings, a corrosion product layer of iron oxide/hydroxide was identified on the surface of steel. Bhattarai (2013) in his work focussed to investigate soil parameters such as moisture content, pH, resistivity, oxidation-reduction potential, chloride and sulphate contents on the corrosivity of buried-galvanized steels and cast iron pipelines in an attempt to specify the corrosive nature of soils in Panga-kirtipur- Tyanglaphant areas of Municipality. Corrosion behaviours of Q235 steel in indoor soil for 21 days and the soil parameter being moisture content has also been investigated by Wan and others (2013). In essence they stated that moisture had a noticeable influence on corrosion of steel. Zenati and others (2013) researched on the corrosion of C-Mn steel type API X60 in simulated soil solution environment and inhibitive effect. The main objective of their investigation was to study the susceptibility interactions of steel with the soil environment. Okiongbo and Ogobiri (2013), investigated soil corrosivity along a pipeline route in the Niger Delta Basin (along the Obrikom-Ebocha areas) using Geoelectrical method. The test was conducted to predict the corrosivity of the top three meters of the soil along a slumberger pipeline route using soil electrical resistivity as the parameter. Therefore, this research is carried out to investigate the relationship between soil pH and resistivity towards carbon steels and also develop a suitable model for the relationship. III. MATERIALS AND METHOD 3.1 Work piece Materials 3.2 Steel Sample API 5L X42 was the specimen chosen for this investigation. The API 5L X42 steel pipe segment used for this research work was obtained from Pipeline and Product Marketing Company (PPMC) Port Harcourt, Nigeria. 3.3 Soil Sample Four different states were chosen and soil collected from each state. All soil samples were taken from the depth of at least one (1) meter from the ground level. All of which were collected from four different sites along the Niger Delta region of Nigeria. The Niger Delta region is located at an elevation of 96 meters above sea level with latitude of 4o 49’ 60”N and within longitude of 6o 0’ 0” E. The soil samples were taken to the laboratory for analysis in an air tight polyvinyl bag less than 24 hours after collection from actual site. 3.4 Specimen preparation of steel sample The steel pipe segment was sectioned (cut) into coupons of 72푚푚×35푚푚×10푚푚 using a hacksaw. The cutting process was chosen so as not to alter the microstructure of the sample. To prevent inconsistent coating protection which may lead to bias result, the coatings of the samples were removed in a bid to allowing the coupons corrode under worst case scenario. As such, the samples were thoroughly cleaned before installation to avoid any contamination or any possible entities that could affect the corrosion process. The procedures of the preparation and cleaning process referred to ASTM G01- 03 (American Society for Testing and Material, 2003). A sample was subjected to chemical analysis using the metal analyzer. This was
  • 3. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 9 | P a g e done by exposing the well-polished surface of the sample to light emission from the spectrometer. The elements contained and their proportions in the sample were revealed on the digital processor attached to the spectrometer. The results as shown in table 3.1 below Table 3.1: Chemical composition of API 5L X42 carbon steel (wt %). C Mn P S Si 0.234 1.28 0.028 0.0215 0.4375 The close up view of coupon blank used for the investigation is shown below (Figure 3.1). Fig. 3.1 Coupon blank freshly cut. 3.5 Specimen preparation of soil sample The procedures followed in preparing the soil medium are referred to ASTM G162-99 (American Society for Testing and Material, 2010). Since the soil samples were collected from four different sites along the Niger Delta region of Nigeria, the soils were first packaged in polyvinyl bags and transferred from its actual site to a laboratory for determination of its chemical properties. The results are shown below Table 3.2: Chemical analysis of experimental soils. Parameters Abia State Bayelsa State Delta State Rivers State pH 5.6 5.65 5.71 5.64 Redox Potential [mV] 147.8 142.8 140.5 148.6 Temperature [oC] 29.30 28.90 29.20 28.80 Soil Resistivity [Ω.푐푚] 7013.77 6878.89 6973.50 6984.88 Chloride [mg/kg] 36.23 41.10 28.33 36.60 Sulphate [mg/kg] 11.10 12.45 9.87 13.99 Table 3.3 Mechanical and Physical analysis of experimental soil States % 푆푎푛푑 % 푆푖푙푡 % 퐶푙푎푦 % 푚표푖푠푡푢푟푒 % 푝표푟표푠푖푡푦 Permeability [cm/sec] Abia 61.5 23.9 14.6 10.26 68 1.7 Bayelsa 73.1 15.2 11.7 21.05 58 0.9 Delta 71.2 17.6 11.2 11.27 65 1.5 Rivers 58.8 21.3 19.9 10.41 70 1.2 3.6 Soil Chemical Analysis 3.6.1 Test Procedure: Soil Ph (pH (APHA 4500 H+) Measurement was carried out in 1:1 soil to water suspension by means of a Win Lab pH meter (WinLab 192363, Germany), which was calibrated in the laboratory. Calibration was checked by measuring standard buffer solutions. 3.7 Test Procedure: Soil Resistivity Electrical Conductivity was carried out based on APHA-2540-C standards. Measurement was carried out in 1:1 soil to water suspension by means of a Win Lab conductivity meter (WinLab 200363, Germany), which was calibrated in the laboratory. Calibration was checked by measuring standard Conductivity reference solutions. Soil resistivity being reciprocal of conductivity was however computed using 퐸푅 =1 퐸퐶 (3.1)
  • 4. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 10 | P a g e Where ER = Electrical resistivity EC = Electrical conductivity 3.8 Burial of Samples The coupons were totally buried inside plastic containers containing the respective soils gotten from different states in a laboratory and closely monitored A total of 4 steel coupons were buried and allowed to corrode naturally for a period of seven days(168 hours). Fig. 3.2 Soil samples in containers ready for coupon burial Fig. 3.3a Burial of coupon in Delta and Rivers State soils Fig. 3.4b Coupon burial into Bayelsa and Abia state soil samples 3.9 Retrieval of Coupons Coupon retrieval was carried out periodically every seven days. As such, in order to get a time-function data of metal loss, every single sample was assumed uniform in terms of strength, thickness and corrosion resistance. Abia Bayelsa Rivers Delta
  • 5. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 11 | P a g e Fig. 3.5 Retrieval of one of the coupons from soil 3.9.1 Weight loss measurement To remove accumulated impurities and corrosion products from the coupons, two cleaning techniques were employed, which included mechanical cleaning and chemical cleaning (refer to Figure 3.6). Fig. 3.6 Washing the coupons The mechanical cleaning was carried out to remove the soil particles on the surface of samples using a soft brush. After washing, all the coupons were neutralized by 5% sodium carbonate and again washed with water. After neutralization, the coupons were soaked in Acetone for 5 minutes and then allowed to dry properly in sun. The weight of the sample prior (W1) and after being exposed to soil environment (W2) were recorded using an electronic weighing scale to determine the corrosion rate. Yahaya and others (2011) asserted that the difference in weight of the sample is most often used as a measure of corrosion or the basis for calculation of the corrosion rate. 푊=푊1− 푊2 (3.2) where, W = weight loss 푊1=푖푛푖푡푖푎푙 푤푒푖푔푕푡 푊2=푓푖푛푎푙 푤푒푖푔푕푡 푎푓푡푒푟 푒푥푝표푠푢푟푒 푡표 푠표푖푙 푤푖푡푕 푡푖푚푒 3.9.2 Corrosion Rate Determination The surface area of each coupon was calculated using the following equation: 푆푢푟푓푎푐푒 퐴푟푒푎 퐴 =2× 퐿×퐵 + 퐵×푇 + (퐿×푇) ……… (3.3) where, L = Length of the coupon. B = Width of the coupon. T = Thickness of the coupon. D = Diameter of hole in coupon The weight loss of the coupons which were used to compute the corrosion rates of the coupons was measured using the KERRO BLG 2000 electronic scale having a precision of upto 0.01gm. Hence the corrosion rate was computed using the formula: 퐶표푟푟표푠푖표푛 푟푎푡푒 푚푚푝푦 = 87.6 ×푊푒푖푔푕푡 푙표푠푠 퐴푟푒푎 ×푡푖푚푒 ×퐷푒푛푠푖푡푦 (3.4) Where: W = weight loss in milligrams A= area of coupon in 푐푚2 T = time of exposure of coupon in hours 휌=푚푒푡푎푙 푑푒푛푠푖푡푦 푖푛 푔푐푚3 Coupon
  • 6. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 12 | P a g e IV. RESULT AND DISCUSSION 4.1 Weight loss of samples In order to see the influence of soils from different locations on the coupons buried, the initial weight of the coupons were recorded and with time the weight differences were checked. The weight loss plotted as shown in Figure 4.1. Fig. 4.1: Weight loss against time. 4.2 Corrosion Growth rate Corrosion growth rate has always been a function of time. Upon inspection based experimental data recorded, it seemed evident that the corrosion rate of coupons increased with time after the initial stage. Fig. 4.3 Graph of corrosion rate against time 4.3 Analysis of Variance (ANOVA) The experimental results were analyzed with analysis of variance (ANOVA), which is used for identifying the factors significantly affecting the corrosion rates of the coupons. The results of the ANOVA with the soil resistivity and pH are shown in Tables 4.1 and 4.2 respectively. This analysis was carried out for significance level of 훼=0.05 i.e. for a confidence level of 95%. The sources with a P-value less than 0.05 are considered to have a statistically significant contribution to corrosion behaviour of the coupons 4.3.1 Analysis of Variance for Resistivity -2000 -1000 0 1000 2000 3000 0 500 1000 1500 2000 2500 Weight loss [mg] Time(Hrs) Weight Loss of coupons with time WLA[mg] WLB[mg] WLD[mg] WLR[mg] -0.8 -0.6 -0.4 -0.2 0 0.2 0 500 1000 1500 2000 2500 Corrosion Rate{mpy) Time(Hrs) Graph of Corrosion Rate against Time CR(A) CR(B) CR(D) CR(R)
  • 7. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 13 | P a g e Table 4.1: Analysis of Variance (ANOVA) for Resistivity. Anova: Single Factor SUMMARY Groups Count Sum Average Variance -0.018 27 1.811045 0.067076 0.005244 6114.375508 27 161801 5992.63 69296.16 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 484795868 1 4.85E+08 13992 6.667E-65 4.026631 Within Groups 1801700.25 52 34648.08 Total 486597568 53 Table 4.2: Regression analysis. SUMMARY OUTPUT Regression Statistics Multiple R 0.843429448 R Square 0.711373235 Adjusted R Square 0.700272205 Standard Error 0.039887668 Observations 28 ANOVA Df SS MS F Significance F Regression 1 0.101956 0.101956 64.08174 1.74787E-08 Residual 26 0.041367 0.001591 Total 27 0.143322 The following are deductions are made from the ANOVA and Regression table 1. The Model F-value of 64.082 implies the model is significant. There is only a 0.000000174% chance that a “Model F-Value” this large could occur as a result of resistivity. F (64.08) > Sig. F (1.748×108)< 0.05=훼 2. 퐹 64.082 > 퐹푐푟푖푡 4.027 as such null hypothesis is rejected. Since 푃−푣푎푙푢푒=6.667×10−65< 0.05=훼 hence it is significantly a good fit. In terms of resistivity as a parameter which affects corrosion rate. 3. The output R-square value (0.7114) indicates the accuracy of the model and the coefficient of determination (Adj) R-square (0.7003) for the model is close which indicates compatibility/correlation of experimental data. 4.3.2 Analysis of Variance (ANOVA) for pH Table 4.3: Regression Analysis result for pH. SUMMARY OUTPUT pH Regression Statistics Multiple R 0.58241252 R Square 0.339204344 Adjusted R Square 0.313789126 Standard Error 0.060353705 Observations 28 P R
  • 8. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 14 | P a g e ANOVA Df SS MS F Significance F Regression 1 0.048615577 0.0486156 13.34651 0.001146843 Residual 26 0.094706813 0.0036426 Total 27 0.14332239 Table 4.4: Analysis of Variance (ANOVA) for pH. Anova: Single Factor for pH SUMMARY Groups Count Sum Average Variance -0.018 27 1.811045 0.067076 0.005244 5.54 27 161.23 5.971481 0.018505 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 470.6371 1 470.6371 39633.64 1.24E-76 4.026631 Within Groups 0.617484 52 0.011875 Total 471.2546 53 The following are deductions are made from the ANOVA and Regression table 1. The Model F-value of 13.347 implies the model is significant. There is only a 0.00001147% chance of getting a correlation of (푅2=0.3392) for pH as a parameter only. 2. Since 푃−푣푎푙푢푒=0.0011468<0.05=훼 as such null hypothesis is rejected. Hence it is significantly a good fit. In terms of pH as a parameter which affects corrosion rate. 3. The output R-square value (0.3392) indicates the accuracy of the model and the coefficient of determination (Adj) R-square (0.3138) for the model is quite close although low. 4.3.3 Regression Equation and Analysis of Variance (ANOVA) for experimental data Table 4.5: Regression Analysis Result of Experiment. Regression Statistics Multiple R 0.90162 R Square 0.81292 Adjusted R Square 0.79796 Standard Error 0.03274 Observations 28 ANOVA Df SS MS F Significance F Regression 2 0.11651 0.0582 54.319 7.945E-10 Residual 25 0.02681 0.00107 Total 27 0.14332 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Intercept 0.356389 0.33931 1.0503 0.30361 -0.34243 1.05521 -0.34243 RES -0.000205 2.5786E-05 -7.957 2.59E- 08 -0.000258 -0.00015 -0.000258 PH 0.157498 0.04275 3.684 0.0011 0.0694482 0.245547 0.0694482
  • 9. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 15 | P a g e Table 4.6: Anova And Regression Analysis To Check For Correlation Between Resistivity and Corrosion Rate. Anova: Single Factor SUMMARY Groups Count Sum Average Variance CR 28 1.793045 0.064037 0.005308 R 28 167915.4 5996.978 67258.99 ANOVA Source of Variation SS df MS F P-value F crit Between Groups 5.03E+08 1 5.03E+08 14971.43 1.08E-67 4.019541 Within Groups 1815993 54 33629.5 Total 5.05E+08 55 SUMMARY OUTPUT Regression Statistics Multiple R 0.843429 R Square 0.711373 Adjusted R Square 0.700272 Standard Error 0.039888 Observations 28 ANOVA Df SS MS F Significance F Regression 1 0.101956 0.101956 64.08174 1.75E-08 Residual 26 0.041367 0.001591 Total 27 0.143322 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 1.484995 0.177666 8.358334 7.7E-09 1.119797 1.850193 RESISTIVITY -0.00024 2.96E-05 -8.00511 1.75E-08 -0.0003 -0.00018 The relationship between the two properties studied (pH and Resistivity) and corrosion rate was modelled by multiple linear regression (Table 4.5). The final regression model in terms of coded parameters for corrosion rate: 퐶푅푚표푑푒푙=0.3564−0.00021푅퐸푆+0.1574푃퐻 (푅=0.9016) (4.1) where RES = soil resistivity PH = soil pH The following deductions were made; 1. 푅2=0.8129;푕푒푛푐푒 81.29% of the variation in the corrosion rate is explained by the regression model formulated above, which shows a significantly good fit. While Adjusted 푅2=79.80%. This shows how correlated the relationships are. 2. The Standard Error (푆퐸=0.0327)which shows the deviation of experimental from predicted seemed very low, showing how good the model is. 3. The 푃−푣푎푙푢푒 푓표푟 푅퐸푆 2.59×10−8 푎푛푑 푓표푟 푝퐻 0.00111 <0.05 shows again that there is a relationship between both parameters as against corrosion rate. 4. From the regression model above, the pH coefficient is greater than that of the resistivity, which means that soil pH has a greater influence on the rate of corrosion reaction for coupons buried underground. 4.3.4 Goodness of Fit for corrosion rate as influenced by both parameters To test whether the discrepancies between the experimental and predicted values of corrosion rate, we use the statistic for test of goodness of fit using the equation below: 휒2= (퐸푖− 푃푖)2 퐸푖 푘푖 =1 (4.2) Table 4.6 showed that 휒2=1.0972 for corrosion rate for 27 degrees of freedom whereas degrees of freedom used is given by: 푟표푤푠−1 × 푐표푙−1 = 28−1 × 2−1 =27
  • 10. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 16 | P a g e Therefore the analysis of data does suggest perception is correct with 95 % confidence level. Otherwise, there is reason to believe that the program does give correct output as shown in Table 4.7. Table 4.7: Statistic for Test of Goodness of fit. Statistic for Test of Goodness of Fit Observation Experimental CR Predicted CR (퐸푥푝−푃푟푒)2 푃푟푒 1 -0.018 -0.02558006 -0.00225 2 -0.014 0.007567643 0.061467 3 0.073 0.029167382 0.065871 4 0.086 0.07501557 0.001608 5 0.141 0.09462737 0.022725 6 0.133211 0.143206435 0.000698 7 0.157336 0.187353985 0.00481 8 0.1294 0.031160648 0.309717 9 0 0.040792761 0.040793 10 0.0731 0.051729332 0.008829 11 0.0549 0.07141824 0.00382 12 0.1016 0.09475486 0.000494 13 0.107794 0.104513599 0.000103 14 0.110874 0.116796196 0.0003 15 -0.142 -0.11231227 -0.00785 16 -0.044 -0.03519792 -0.0022 17 0.0148 0.014253608 2.09E-05 18 0.0526 0.023737458 0.035094 19 0.0709 0.07973124 0.000978 20 0.1086 0.110817272 4.44E-05 21 0.1298 0.131064449 1.22E-05 22 -0.0541 0.010422001 0.399452 23 -0.0226 0.007502196 0.120784 24 0.07518 0.042970274 0.024144 25 0.1015 0.117529349 0.002186 26 0.1218 0.106078952 0.00233 27 0.10902 0.119713709 0.000955 28 0.13533 0.154210713 0.002312 1.097253 To verify the goodness of the predicted model, the observed experimental values and their predictive values of the corrosion rate is given in the Table 4.6. Table 4.6 also shows the prediction error of the corrosion rate. It has been seen that the maximum and minimum error for corrosion rate is 6.191 and -3.152, which is satisfactory. Graphical comparison of actual and predicted values of surface roughness and material removal rate is shown in Figure 4.4. Table 4.8: Comparison between Experimental and predicted values of Corrosion rate. COMPARISM BETWEEN EXPERIMENTAL AND PREDICTED VALUES OF CORROSION RATE Observation Predicted CR Residuals Experimental CR ERROR 1 -0.0256 0.0076 -0.018 0.2963
  • 11. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 17 | P a g e 2 0.0076 -0.0216 -0.014 2.85 3 0.0292 0.0438 0.073 -1.5028 4 0.075 0.011 0.086 -0.1464 5 0.0946 0.0464 0.141 -0.4901 6 0.1432 -0.01 0.1332 0.0698 7 0.1874 -0.03 0.1573 0.1602 8 0.0312 0.0982 0.1294 -3.1527 9 0.0408 -0.0408 0 1 10 0.0517 0.0214 0.0731 -0.4131 11 0.0714 -0.0165 0.0549 0.2313 12 0.0948 0.0068 0.1016 -0.0722 13 0.1045 0.0033 0.1078 -0.0314 14 0.1168 -0.0059 0.1109 0.0507 15 -0.1123 -0.0297 -0.142 -0.2643 16 -0.0352 -0.0088 -0.044 -0.2501 17 0.0143 0.0005 0.0148 -0.0383 18 0.0237 0.0289 0.0526 -1.2159 19 0.0797 -0.0088 0.0709 0.1108 20 0.1108 -0.0022 0.1086 0.02 21 0.1311 -0.0013 0.1298 0.0096 22 0.0104 -0.0645 -0.054 6.1909 23 0.0075 -0.0301 -0.023 4.0125 24 0.043 0.0322 0.0752 -0.7496 25 0.1175 -0.016 0.1015 0.1364 26 0.1061 0.0157 0.1218 -0.1482 27 0.1197 -0.0107 0.109 0.0893 28 0.1542 -0.0189 0.1353 0.1224 Fig. 4.4: Comparison between Actual and Predicted Values of Surface Roughness. V. DISCUSSION OF FINDING AND CONCLUSION The aim of the study was to determine a relationship between soil pH and soil resistivity upon corrosion growth rate of carbon steel and develop prediction model for corrosion growth rate using multiple regression analysis. Based on the results of these experimental investigations, the following conclusions can be drawn:  Soil resistivity was found to have greater influence than soil pH towards the acceleration of corrosion reaction in most soil samples examined, if not all, due to distinct pattern of relationship between variations of averaged corrosion rates and soil properties.  Using Analysis of Variance (ANOVA) the individual factor effects are found out and concluded that the effect of resistivity is one parameter with more effect when compared to pH. -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 Corrosion rate[MPY] Corrosion rate Experiment Predicted CR Experimental CR
  • 12. Experimental Investigations and Mathematical Modelling of Corrosion Growth Rate on Carbon Steel International organization of Scientific Research 18 | P a g e  The Multiple Regression Analysis method is used to develop the corrosion rate prediction models using the predictors such as soil pH and resistivity for different soil samples. A multiple regression model is developed to suit all the soil types from different locations. These models show good agreement with experimental results. REFERENCES [1] J. E. Mbamalu, and F. O. Edeko, Issues and Challenges of Aging Pipeline Coating Infrastructure in Nigeria's Oil and Gas Industry. University of Benin. CORROSION conference, New Orleans, La. 2004. [2] S. Syed, Atmospheric Corrosion of Materials. Emirates Journal for Engineering Research, 11 (1), 2006, 1-24. [3] H. M. Dayal, B.K. Gupta, K.C. Tewari, K. M. Chandrashekhar, and S.K. Gupta, Underground Corrosion by Microorganisms Part-I: Analytical Studies of Some Indian Soils. Defence Materials Science Journal, 38(2), 1988, 209-216. [4] S. Y. Li, Y. G. Kim, K. S. Jeon, Y. T. Kho, and T. Kang, MicrobiologicallyInfluenced Corrosion Of Carbon Steel Exposed To Anaerobic Soil. Journal of Science and Engineering, 57(9), 2001, 815-828. [5] K. Hirofumi, U. Hajme, M. Kazuhiko, H. Katsutoshi, and T. Yasunori, Microbiologically Influenced Corrosion of Carbon Steel in Model Soil. Conference paper NACE-03558, Corrosion, Sandiego, California. 2003. [6] A. Rim-rukeh, and J. K. Awatefe, Investigation of Soil Corrosivity in the Corrosion of Low Carbon Steel Pipe in Soil Environment. Journal of Applied Sciences Research 2(8), 2006, 466-469. [7] M.. Maslehuddin, M. Al-Zahrani, M. Ibrahim, M. H. Al-Methel, and S. H. Al-Idi, Effect of Chloride Concentration in Soil on the Corrosion Behaviour of Reinforcing Steels. Journal of Construction and Building Materials. 21, 2007, 1825-1832 [8] L. Sjögren, G. Camitz, J. Peultier, S. Jacques, V. Baudu, F. Barrau, B. Chareyre, A. Bergquist, A. Pourbaix, and P. Carpentiers, Corrosion resistance of stainless steel in soil. Industeel, ArcelorMittal Group. 2007. [9] C. L. Cho, Mechanical Properties of Steel in Aqueous corrosion. Faculty of Mechanical Engineering, masters thesis, Universiti Malaysia Pahang. 2010. [10] H. Fang, B. Brown, and S. Nesic, Effects of Sodium Chloride Concentration on Mild Steel Corrosion in Slightly Sour Environments. NACE International 015001-1. ISSN 00 11-9312. 2010. [11] F. B. S. Farah, Effect of pH value to corrosion rate of pipeline steel exposed to soil condition, University Teknologi Malaysia. 2011. [12] N. M. Noor, Y. Nordin, K.S. Lim, S. R. Othman, A.R.A. Safuan, and M.H. Norhamimi, Relationship between Soil Properties and Corrosion of Carbon Steel. Journal of Applied Sciences Research, 8(3), 2012, 1739-1747. [13] V. Cunha Lins, M. L. M. Ferreira, and P. A. Saliba, Corrosion Resistance of API X52 Carbon Steel in Soil Environment. Journal of Materials Research and Technology. 2012 [14] J. Bhattarai, Study on the Corrosive Nature of Soil towards the Buried-Structures. Scientific World, 11(11), 2013. [15] Y. Wan, L. Ding, X. Wang, Y. Li, H. Sun, and Q. Wang, Corrosion Behaviours of Q235 Steel in Indoor Soil. International Journal of Electrochemical Science, 8, 2013, 12531 – 12542. [16] A. A. Zenati, A. Benmoussat, and O. Benali, Corrosion study of C-Mn steel type API 5L X60 in simulated soil solution environment and inhibitive effect. Journal of Material Environmental Science 5(2), 2013, 520-529. [17] K. S. Okiongbo, and G. Ogobiri, Predicting Soil Corrosivity along a Pipeline Route in the Niger Delta Basin Using Geoelectrical Method: Implications for Corrosion Control. Journal of Engineering. 5, 2013, 237-244 [18] American Standard of Material and Testing, ASTM G162-99 Standard practice for conduction and evaluating laboratory corrosions tests in soils. US: West Conshohocken. http://amaec.kicet.re.kr/cd_astm/PAGES/G162.htm. 2000. [19] N. Yahaya, K. S. Lim, N. M. Noor, S. R. Othman, and A. Abdullah, Effects of Clay and Moisture Content on Soil-Corrosion Dynamic. Malaysian Journal of Civil Engineering, 23(1), 2011, 24-32.