SlideShare a Scribd company logo
1 of 8
Download to read offline
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2027 | Page
Nazirov Sh. A.
Tashkent University of Information Technologies, Tashkent, Uzbekistan
Abstract: The work deals with the construction of multi-dimensional quadrature formulas based on the method of repeated
application of the quadrature formulas of rectangles and trapezoids, to calculate the multiple integrals’ values. We’ve
proved the correctness of the quadrature formulas.
Keywords: multi-dimensional integrals, cubature formulas, re-use method.
I. INTRODUCNION
The paper is devoted to developing the multiple cubature formulas for the values of n-fold integrals calculation by
means of methods of repeated application of, quadrature formulas of trapezoid and rectangles.
According to mathematical analysis multiple integrals can be calculated by recalculating single integrals.
The essence of this approach is the following. Let the domain of integration is limited to single-valued continuous curves [1]
))()(()(),( xxxyxy  
and two vertical lines bxax  , (Fig.1).
Placing the known rules in the double integral

)(
),(
D
dxdyyxfI (1)
limits of integration, we obtain
 
)(
)(
)(
.),(),(
D
x
x
b
a
dyyxfdxdxdyyxf


Let

)(
)(
.),()(
x
x
dyyxfxF


(2)
Then
.)(),(
)(
 
D
b
a
dxxFdxdyyxf (3)
Fig.1
Applying to a single integral in the right-hand side of (3), one of the quadrature formulas, we have
 

)( 1
),(),(

n
i
ii xFAdxdyyxf (4)
where - ),...,2,1(],[ nibaxi  and iA are some constant coefficients. In turn, the value
y
x0 а b
)(xy 
)(xy 

The Method of Repeated Application of a Quadrature Formula of
Trapezoids and Rectangles to Determine the Values of Multiple Integrals
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2028 | Page

)(
)(
),()(
i
i
x
x
ii dyyxfxF


can also be found on some quadrature formulas
,),()(
1


im
j
jiiji yxfBxF
where ijB iy - appropriate constants.
From (4) we obtain
  

)( 1 1
),,(),(
D
n
i
m
j
jiiji
i
yxfBAdxdyyxf (5)
where iA and ijB iy - are known constants.
Geometrically, this method is equivalent to the calculation of the volume I, given by the integral (2) by means of
cross-sections.
For cubature formulas of the type (3), the general comments, relating to the computation of simple integrals, are
valid with appropriate modifications.
In three dimensions (3) has the form
   

n
i
m
j
kji
t
k
kijiji
D
i i
zyxfCBAdxdydzzyxf
1 1 1
,
)(
),,(),,( .
Now these results are generalized to compute the values of multiple integrals
),,...,,(......
...),,(...
21
)()3()2(
1 1 1
)1(
2121
)(
21321321
1
1
2
2
1 iiik
k
n
k
k
iiiiiiiii
n
i
n
i
n
i
i
kk
D
xxxfAAAA
dxdxdxxxxf
 

  


Where
)(
...
)2()1(
21211
,...,, k
iiiiii k
AAA - are known constants.
This approach can be applied to calculate the approximate value of multiple integrals using appropriate quadrature
formulas. In this case, we apply the quadrature formula of trapezoid.
II. ALGORITHM DISCRIPTION
Theorem 1. Let the function
),...,,( 21 nxxxfy 
Is continuous in a bounded domain D. Then the formula for the approximate values of the n-fold integral calculating
  nn
D
n dxdxdxxxfJ ,...,),...,(... 211
)(
, (6) based on the trapezoidal
rule has the form
   

   








1
0
1
0
1
0
1
0
,...,,
1
0 0
1
01 1 2
2211
1
1
2
2
3
3
......
n
n n
nn
n
p i i i
ipipip
n
p
n
p
n
pi
in fhJ
Here D is n-dimensional domain of integration of the form
niAxa iii ,1,  ; (7)
2
ii
i
aA
h


and it is believed that each interval (5), is respectively, divided into nnnn ,...,, 21 parts.
Proof. Approximate formula for calculating the values of the one-dimensional integral in this case is
   

1
0
101
2
)()(
2
)(
1
0
i
i
x
x
x
x
f
h
xfxf
h
dxxfJ , (8)
where,
n
ab
hx

 , n - the number of the interval divisions into n parts. In (4) n = 1 .
Now we define the approximate calculation formula for double integrals

)(
2 ),(
D
dxdyyxfJ (9)
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2029 | Page
where D is the two-dimensional area of integration.
It is generally believed that the region of integration in this case is within the rectangle, that is,
bxa  , dyc  .
Then we rewrite the integral (7) in the form

d
c
b
a
dyyxfdxJ ),(2 . (10)
Using the trapezoidal rule to calculate the inner integral, we obtain






 
b
a
b
a
y
dxyxfdxyxf
h
J ),(),(
2
2 . (11)
Now to each integral we use the trapezoid formulas and the result is
   
  ,),(
4
),(),(),(),(
4
),(),(
2
),(),(
22
1
0
1
0
11100100
111001002
 









i j
ji
yxyx
xxy
yxf
hh
yxfyxfyxfyxf
hh
yxfyxf
h
yxfyxf
hh
J
(12)
where
m
cd
hy

 .
Similarly, for the approximate calculation of the values of the triple integral we obtain the following formula:


,),,(
8
),,(),(),(),,(),,(),,(
),,(),,(),,(
8
),,(
1
0
1
0
1
0
111011011101001110
0101000003


  


i j k
kji
zyx
zyx
A
a
B
b
C
c
zyxf
hhh
zyxfzyxfzyxfzyxfzyxfzyxf
zyxfzyxfzyxf
hhh
dxdydzzyxfJ
(13)
where
p
cC
hz

 .
The four-dimensional integral is defined with 16 members:

 ;),,,(
16
),,,(),,,(
),,,(),,,(),,,(),,,(),,,(
),,,(),,,(),,,(),,,(),,,(
),,,(),,,(),,,(
16
),,,(
1
0
1
0
1
0
1
0
11111011
00111101010110010001
11100110101000101100
0100100000004


   




i j k l
lkji
uzyx
uzyx
A
a
B
b
C
c
D
d
uzyxf
hhhh
uzyxfuzyxf
uzyxfuzyxfuzyxfuzyxfuzyxf
uzyxfuzyxfuzyxfuzyxfuzyxf
uzyxfuzyxfuzyxf
hhhh
dxdydzduuzyxfJ
(14)
Here
t
dD
hu

 .
Considering (8.10), we present formulas for the approximate calculation of the n-fold integral on the trapezoidal:
        

1
0
1
0
1
0
1
0
21
1
32121
1 2 3
22
1
1
2
2
3
3
),...,,(...
2
1
...),...,,(...
i i i i
niii
n
i
in
A
a
A
a
A
a
A
a
nnn
n
n
n
n
xxxfhdxdxdxdxxxxfJ (15)
Then for the formulas (6) and (8) - (11) we derive the general trapezoid formula. For this purpose, one-dimensional integral
for integral intervals [a, b] is divided by n equal parts: xinn ihxxxxxx  0110 ],,[],...,,[ .
The two-dimensional integral of the ],[],[ dcba  region of integration is divided, respectively, by n and m parts:
],[],...,,[];,[],...,,[ 110110 mmnn yyyyxxxx 
.
,
0
0
yj
xi
jhyy
ihxx


(16)
In the same way ,the three-, four-, etc. n-dimensional integration region is divided by the corresponding parts.
In this approach, the formula (6) takes the form
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2030 | Page
.
2
)(
2
)(
2
)(
2
)(
1
0
0
1
1
1
0
1
1
0
11
















n
i
i
n
n
i
ii
n
i
ii
n
i
ii
b
a
f
ff
ff
h
ff
h
yy
h
dxxfJ
(17)
The general trapezoid formula for double integrals calculating has the form
 
.
4
4
1
0
1
0
1
0
1
0
1
0
1
0
1,1,11,,2
1 2
21




  








n
i
m
j i i
ijii
yx
n
i
m
j
jijijiji
yx
f
hh
ffff
hh
J
(18)
The following is a general formula for the trapezoidal three-and four-fold integrals calculating


,
8
8
),,(
1
0
1
0
1
0
1
0
1
0
1
0
,,
1,1,1,1,1,1,11,,1,,11,1,
1
0
1
0
1
0
,1,1,,,,3
1 2 3
321
  





   












n
i
m
j
p
k i i i
ikijii
zyx
kjikjikjikjikjikji
n
i
m
j
p
k
kjikjikji
A
a
zyx
B
b
C
c
f
hhh
ffffff
fff
hhh
dxdydzzyxfJ
(19)


.
16
16
),,,(
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
,,,
1,1,1,1,1,1,11,,1,1,,1,11,1,,1,1,,1
,,,1,,,11,1,1,,1,1,1,,1,,,1,1,1,,
,1,,1,,,,,,4
1 2 3 4
4321








    








n
i
m
j
p
k
t
l i i i i
ilikijii
uzyx
lkjilkjilkjilkjilkjilkji
lkjilkjilkjilkjilkjilkjilkji
lkjilkjilkji
A
a
uzyx
B
b
C
c
D
d
f
hhhh
ffffff
fffffff
fff
hhhh
dudxdydzuzyxfJ
(20)
Based on the above formula, the approximate calculation of n-fold integral, using the formula (D), takes the form
.......)(
2
1 1
0
1
0
1
0
1
0
1
0
1
0
1
0
,...,,
1 1
2
2
3
3 1 2
2211   







   



i n
n n
nn
n
p
n
p
n
p
n
p i i i
ipipip
n
i
iinn faAJ (21)
Thus the theorem is completely proved.
Theorem 2. Approximation formulas for determining the values of the double integral, obtained by the repeated use
of the trapezoid quadrature formula is calculated as follows:
  

n
i
m
j
ijij
D
yx
f
hh
dxdyyxf
1 1)(
4
),(  , (22)
where





















12...221
24...442
...........................
24...442
24...442
12...421*
ij . (23)
Proof. Let’s use the formula (12). Revealing this amount and similar terms, we obtain the following formula:
 

nnnnnnn
nnnnnnn
nn
nn
yx
n
i
m
j
jijiijij
yx
fffff
fffff
fffff
fffff
hh
ffff
hh
,1,3,2,1,
,11,13,12,11,1
,21,2232221
,111131211
1
0
1
0
1,1,11
2...2
.44...444
..............................................................
44...442
2...22
4
4














(24)
The (17) can form the matrix elements - ij in the form (16) and the result (15), indicating the proof of the theorem.
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2031 | Page
Theorem 3. Approximate formula for calculating the value of triple integrals, obtained by the repeated use of the
trapezoid quadrature formula, is calculated as follows:
   

n
i
m
j
S
k
ijkijk
zyx
D
f
hhh
dxdydzzyxf
1 1 1)(
8
),,(  , (25)
where
.1,2,
244...442
248...884
..............................
248...884
244...442
,;1,
12...2221
24...4442
..............................
24...4442
24...4442
12...2221








































ni
ni
ijk
ijk


(26)
Proof. Let’s use (13). Revealing this amount and similar terms, we obtain
.4...222
2...4...4442
..............................................................................................................................
24...4442
2...222
24...4442
48...8884
............................................................................................................
48...8884
24...4442
..................................................................................................
24...4442
48...8884
...............................................................................................
48...8884
24...4442
2...222
24...4442
.......................................................................................
24...4442
2...222
,,1,,4,,3,,2,,1,,
,1,1,1,4,1,3,1,2,1,1,1,
,2,1,2,4,2,3,2,2,2,1,2,
,1,1,1,4,1,3,1,2,1,1,1,
,,11,,1,,1,,12,,11,,
,1,11,1,14,1,13,1,12,1,11,1,1
,2,11,2,14,2,13,2,12,2,11,2,1
,1,11,1,14,1,13,1,12,1,11,1,1
,11,21,11,24,11,23,11,22,11,21,11,2
,10,21,10,24,10,23,10,22,10,21,10,2
,2,21,2,24,2,23,2,22,2,21,2,2
,1,21,1,24,1,23,1,22,1,21,1,2
,,11,,14,,13,,12,,11,,1
,1,11,1,14,1,13,1,12,1,11,1,1
,2,11,1,14,2,13,2,12,2,11,2,1
,1,11,1,14,1,13,1,12,1,11,1,1
11111
nnnnnnnnnnnnnn
nnnnnnnnnnnnnn
nnnnnnnn
nnnnnnnn
nnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnn
nnnnnnnn
nnnnnnnn
nn
nn
nn
nn
nnnnnnnn
nnnnnnnn
nn
nn
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
ffffff
nnnn

































(27)
From (19) we form the ijk elements, resulting in the relation (18), which shows the proof of the theorem.
Theorem 4. Approximation formulas for the values determining of the quadruple integrals, obtained by the repeated use of
the trapezoid quadrature formula, is calculated as follows:
 









1
0
1
0
1
0
1
0)(
16
),,,(
n
i
m
j
l
k
s
l
ijklijkl
uzyx
D
f
hhhh
dxdydzduuzyxf  , (28)
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2032 | Page






















nn
nn
nn
nn
n
n
n
n
nn
nn
A
A
A
A
A
A
A
A
AAAA
AAAA
,1
1,
1,1
2,
2,1
1,
1,1
21,22221
11,11211
...
...
.......
...
...
,

















1
2
.
2
1
2...2
4...4
2
4
2
4
1
2
........
4...4442
2...2221
11 nnnn AAA
,
1,1,
14...
48...
4
8
4
8
2
4
........
48...884
24...442
,1, 
















 njAA jjn
,
1,...,3,2
,1,...,3,2
,
4
8
8
16
...
...
8
16
4
8
.......
816...168
48...84
,1,2,
2
4
4
8
...
...
4
8
2
4
.......
48...84
24...42
1




































nj
ni
AniAA ijini
Proof. Disclose the amount (14) and obtain the following relations:
nnnnnnn
nnnnnnnn
nn
nn
nn
ffffff
ffffff
ffffff
ffffff
ffffff
,1111,11411311211111
,1,111,1,114,1,113,1,112,1,111,1,11
,1131,1131134113311321131
,1121,1121124112311221121
,11111111114111311121111
2...222
24...4442
.....................................................................................
24...4442
24...4442
2...222










......................................................................................................
24...4442
48...8884
..........................................................................................
48...8884
48...8884
24...4442
,121,12412312212112
,1121,1124,1123,1122,1121,112
,1231,1231234123312321231
,1221,1221224122312221221
,1211,1211214121312121211
nnnnnnnn
nnnnnnnn
nn
nn
nn
ffffff
ffffff
ffffff
ffffff
ffffff










nnnnnnnnnn
nnnnnnnnnn
nnnnnn
nnnnnn
ffff
ffff
ffff
ffff
,1112111
,111,1,12,111,1,1
2,112,11221211
,11,11121111
2...2
24...42
...........................................................
24...42
2...2








nnnnnnn
nnnnnnn
nn
nn
fffff
fffff
fffff
fffff
,211,21321221121
,1211,1213,1212,1211,121
,2121,212212321222121
,2111,211211321122111
24...442
48...884
.........................................................................
48...884
24...44








International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2033 | Page
............................................................................................
48...884
816...16168
.........................................................................
816...16168
816...16168
48...884
,221,22322222122
,1221,1223,1222,1221,122
,2231,223223322322231
,2221,222222322222221
,2211,221221322122211
nnnnnnn
nnnnnnn
nn
nn
nn
fffff
fffff
fffff
fffff
fffff










......................................................................................................
816...16168
48...884
,2,,11,2,,123,122,121,1
,1,,11,1,,113,112,111,1
nnnnnnnnnnnn
nnnnnnnnnnnn
fffff
fffff




nnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnn
nnnnnnnnnnnn
nnnnnnnnnnnn
fffff
fffff
fffff
fffff
,,1,1,,1,3,,1,2,,1,1,,1,
,1,1,1,1,1,3,1,1,2,1,1,1,1,1,
,2,1,1,2,1,23,1,22,1,21,1,
,1,1,1,1,1,13,1,12,1,11,1,
24...442
48...884
..............................................................................................
48...884
24...442








nnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnn
fffff
fffff
,,,11,,,13,,,12,,,11,,,1
,1,,11,1,,13,1,,12,1,,11,1,,1
88...884
816...16168




nnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnn
nnnnnnnnnnnn
nnnnnnnnnnnn
fffff
fffff
fffff
fffff
,1321
,1,1,1,3,12,11,1
,21,2232221
11,1131211
2...22
44...442
............................................................................
44...442
2...22








From these relations the formula (20) is formed, which fully demonstrates the proof of the theorem.
Now, we calculate the values of integrals by repeated application of quadrature formulas, based on the formula of
rectangles.
The rectangle formula to calculate the values of the integrals is quite simple. In fact, here i is taken as
],[ 1 ii xx  midpoints. For a uniform grid ),1,( nihhi  we obtained formulas of the form
 



n
i
i
b
a
f
n
ab
dxxfJ
1
2/11 )( , (29)
where bxax
h
xff nii  ,),
2
( 02/1 .
Double integral in this case is calculated by the formula
   
,
,,
),(),(
1 2
1 22
1 1
2/1,2/1
21
1 1
2/12/1
211
2/1
2
2

 

 

 












 


n
i
n
j
ji
n
i
n
j
ji
A
a
n
j
j
B
b
A
a
A
a
B
b
f
n
bB
n
aA
yxf
n
bB
n
aA
dxyxf
n
bB
dyyxfdxdxdyyxfJ
(30)
where ;,,
2
212/1,2/1
yx
y
j
x
iji
h
bB
n
h
aA
n
h
y
n
h
xff










xh - Step on the OX axis, yh y - a step on the OY axis.
In the same way we define cubature formulas for calculating the values of the three-and four-fold integrals
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645
www.ijmer.com 2034 | Page
   



1 2 3
1 1 1
2/1,2/1,2/1
321
3 ),,(
n
i
n
j
n
k
kji
A
a
B
b
C
c
f
n
cC
n
bB
n
aA
dxdydzzyxfJ , (31)
Where







2
,
2
,
2
2/1,2/1,2/1
z
k
y
j
x
ikji
h
z
h
y
h
xff ,
    



1 2 3 4
1 1 1 1
2/1,2/1,2/1,2/1
4321
4 ),,,(
n
i
n
j
n
k
n
l
lkji
A
a
B
b
C
c
D
d
f
n
dD
n
cC
n
bB
n
aA
dxdydzduuzyxfJ ; (32)
Here







2
,
2
,
2
,
2
2/1,2/1,2/1,2/1
u
l
z
k
y
j
x
ilkji
h
u
h
z
h
y
h
xff .
On the basis of approximate formulas for calculating the values of one-, two-, three-and four-fold integrals,
respectively, expressed by (21) - (24), the formula for calculating the values of n-fold integrals is given .
Theorem 5. Let the ),...,,( 21 nxxxfy  function is defined and continuous in a n-dimensional bounded n integration
domain. Then the cubature formula, obtained by repeated application of the rectangles’ formula, has the form
     




1
1
2
2
21
1 1 1
2/1,...,2/1,2/1
1
2121 ......),...,,(...
n
i
n
i
n
i
iii
n
i i
ii
nn
D
n
n
n
f
n
aA
dxdxdxxxxf , (33)
where niAax iii ,1],,[  ,







2
,...,
2
,
2
21
2/1,...,2/1,2/1 2121
n
iiiiii
h
x
h
x
h
xff nn
.
Proof. The proof is given by induction.
From (21) - (24) we see that (25) holds for 4;3;2;1n . We assume that (25) is valid for kn  :
     




1
1
2
2
21
1 1 1
2/1,...,2/1,2/1
1
2121 ......),...,,(...
k
i
k
i
k
i
iii
k
i i
ii
kk
D
k
k
k
f
k
aA
dxdxdxxxxf .
Now we show fairness at 1 kn :
....
2
,
2
,...,
2
,
2
...
,
2
,...,
2
,
2
...
...),,...,,(...
1
1
2
2
1
1
121
21
1
1
2
2
1
1
1
1
2
2
21
1 1 1 1
2/1,2/1,...,2/1,2/1
1
1
1
1
21
1 1 1 111
11
1 1 1
11
21
1
121121
)(
  
  
 
 
   





   

  





























n
i
n
i
n
i
n
i
iiii
k
i i
ii
k
k
k
iii
n
i
n
i
n
i
n
i
k
i i
ii
k
kk
n
i
n
i
n
i
kk
k
iii
A
a
k
i i
ii
kkkk
D
k
k
k
k
kk
k
k
k
k
k
k
k
k
f
n
aA
h
x
h
x
h
x
h
xf
n
aA
n
aA
dxx
h
x
h
x
h
xf
n
aA
dxdxdxdxxxxxf
The obtained result proofs the theory completely.
III. CONCLUSIONS
Thus we have constructed the multi-dimensional cubature formulas to approximate the value of multiple integrals
by repeated application of the quadrature formula of trapezoids and rectangles to determine the values of multiple integrals,
which are easy to implement on a computer.
REFERENCES
[1]. Demidovich B.L, Maron I.A. “Foundations of Computational Mathematics”. - Moscow: Nauka, 1960. - 664 p.
[2]. Rvachev V.L. “Theory of R-functions and some of its applications”. - Naukova. Dumka, 1982. - 552 p.
[3]. Rvachev V.L. “An analytical description of some geometric objects”. Dokl. Kiev, 1963. - 153, № 4. 765-767pp.
[4]. Nazirov S.A. “Constructive definition of algorithmic tools for solving three-dimensional problems of mathematical physics in the
areas of complex configuration” / Iss. Comput. and glue. Mathematics. Tashkent .Scientific works set. IMIT Uzbek Academy of
Sciences, 2009. - No. 121. - 15-44pp.
[5]. Kabulov V.K., Faizullaev A., Nazirov S.A. “Al-Khorazmiy algorithm, algorithmization”. - Tashkent: FAN, 2006. -664 p.
[6]. Gmurman V.E. “Guide to solving problems in the theory of probability and mathematical statistics”. Manual. book for students of
technical colleges. - 3rd ed., Rev. and add. - M.: Higher. School, 1979.
[7]. Ermakov S.M. “Monte Carlo methods and related issues”. - Moscow: Nauka, 1971.
[8]. Sevastyanov B.A. “The course in the theory of probability and mathematical statistics”. - Moscow: Nauka, 1982.
[9]. Mathematics. Great Encyclopedic Dictionary/ Ch. Ed. V. Prokhorov. - Moscow: Great Russian Encyclopedia, 1999.
[10]. Gmurman E. “Probability theory and mathematical statistics.” Textbook for technical colleges. 5th ed., revised. and add. - M.,
Higher. School, 1977.

More Related Content

What's hot

Student_Garden_geostatistics_course
Student_Garden_geostatistics_courseStudent_Garden_geostatistics_course
Student_Garden_geostatistics_course
Pedro Correia
 
2period review (1)
2period review (1)2period review (1)
2period review (1)
Maria
 

What's hot (15)

0580_s04_qp_4
0580_s04_qp_40580_s04_qp_4
0580_s04_qp_4
 
Even Harmonious Labeling of the Graph H (2n, 2t+1)
Even Harmonious Labeling of the Graph H (2n, 2t+1)Even Harmonious Labeling of the Graph H (2n, 2t+1)
Even Harmonious Labeling of the Graph H (2n, 2t+1)
 
ppt_tech
ppt_techppt_tech
ppt_tech
 
Histogram Equalization
Histogram EqualizationHistogram Equalization
Histogram Equalization
 
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
 
50120130406004 2-3
50120130406004 2-350120130406004 2-3
50120130406004 2-3
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
The best sextic approximation of hyperbola with order twelve
The best sextic approximation of hyperbola with order twelveThe best sextic approximation of hyperbola with order twelve
The best sextic approximation of hyperbola with order twelve
 
Student_Garden_geostatistics_course
Student_Garden_geostatistics_courseStudent_Garden_geostatistics_course
Student_Garden_geostatistics_course
 
Maths test
Maths testMaths test
Maths test
 
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier TransformRadix-3 Algorithm for Realization of Discrete Fourier Transform
Radix-3 Algorithm for Realization of Discrete Fourier Transform
 
2period review (1)
2period review (1)2period review (1)
2period review (1)
 
0580 s12 qp_41
0580 s12 qp_410580 s12 qp_41
0580 s12 qp_41
 
basic structured-grid-generation
basic structured-grid-generationbasic structured-grid-generation
basic structured-grid-generation
 
Final exam g8 2015
Final exam g8 2015Final exam g8 2015
Final exam g8 2015
 

Viewers also liked

Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
IJMER
 
Ao318992
Ao318992Ao318992
Ao318992
IJMER
 
Study the Situation of Housing Social Quantitative and Qualitative Indicators...
Study the Situation of Housing Social Quantitative and Qualitative Indicators...Study the Situation of Housing Social Quantitative and Qualitative Indicators...
Study the Situation of Housing Social Quantitative and Qualitative Indicators...
IJMER
 
Bh32793797
Bh32793797Bh32793797
Bh32793797
IJMER
 
B04011 03 1318
B04011 03 1318B04011 03 1318
B04011 03 1318
IJMER
 
Bf31183188
Bf31183188Bf31183188
Bf31183188
IJMER
 
Ijmer 46069196
Ijmer 46069196Ijmer 46069196
Ijmer 46069196
IJMER
 
Ds31568573
Ds31568573Ds31568573
Ds31568573
IJMER
 
Dj31514517
Dj31514517Dj31514517
Dj31514517
IJMER
 
Ax2641084110
Ax2641084110Ax2641084110
Ax2641084110
IJMER
 
Cv31424430
Cv31424430Cv31424430
Cv31424430
IJMER
 

Viewers also liked (20)

Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...Isolation and Identification High-Biological Activity Bacteria in  Yogurt Qua...
Isolation and Identification High-Biological Activity Bacteria in Yogurt Qua...
 
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
 
g∗S-closed sets in topological spaces
g∗S-closed sets in topological spacesg∗S-closed sets in topological spaces
g∗S-closed sets in topological spaces
 
Enhanced K-Mean Algorithm to Improve Decision Support System Under Uncertain ...
Enhanced K-Mean Algorithm to Improve Decision Support System Under Uncertain ...Enhanced K-Mean Algorithm to Improve Decision Support System Under Uncertain ...
Enhanced K-Mean Algorithm to Improve Decision Support System Under Uncertain ...
 
Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Ser...
Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Ser...Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Ser...
Lossy Transmission Lines Terminated by Parallel Connected RC-Loads and in Ser...
 
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural NetworksConversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
Conversion of Artificial Neural Networks (ANN) To Autonomous Neural Networks
 
Ao318992
Ao318992Ao318992
Ao318992
 
Study the Situation of Housing Social Quantitative and Qualitative Indicators...
Study the Situation of Housing Social Quantitative and Qualitative Indicators...Study the Situation of Housing Social Quantitative and Qualitative Indicators...
Study the Situation of Housing Social Quantitative and Qualitative Indicators...
 
Contra  * Continuous Functions in Topological Spaces
Contra   * Continuous Functions in Topological SpacesContra   * Continuous Functions in Topological Spaces
Contra  * Continuous Functions in Topological Spaces
 
Bh32793797
Bh32793797Bh32793797
Bh32793797
 
B04011 03 1318
B04011 03 1318B04011 03 1318
B04011 03 1318
 
A Novel Method for Blocking Misbehaving Users over Anonymizing Networks
A Novel Method for Blocking Misbehaving Users over Anonymizing NetworksA Novel Method for Blocking Misbehaving Users over Anonymizing Networks
A Novel Method for Blocking Misbehaving Users over Anonymizing Networks
 
Bf31183188
Bf31183188Bf31183188
Bf31183188
 
Ijmer 46069196
Ijmer 46069196Ijmer 46069196
Ijmer 46069196
 
AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode
AC-DC-AC-DC Converter Using Silicon Carbide Schottky DiodeAC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode
AC-DC-AC-DC Converter Using Silicon Carbide Schottky Diode
 
Ds31568573
Ds31568573Ds31568573
Ds31568573
 
Dj31514517
Dj31514517Dj31514517
Dj31514517
 
Fatigue Performance in Grinding and Turning: An Overview
Fatigue Performance in Grinding and Turning: An OverviewFatigue Performance in Grinding and Turning: An Overview
Fatigue Performance in Grinding and Turning: An Overview
 
Ax2641084110
Ax2641084110Ax2641084110
Ax2641084110
 
Cv31424430
Cv31424430Cv31424430
Cv31424430
 

Similar to The Method of Repeated Application of a Quadrature Formula of Trapezoids and Rectangles to Determine the Values of Multiple Integrals

Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
Alexander Decker
 
A novel numerical approach for odd higher order boundary value problems
A novel numerical approach for odd higher order boundary value problemsA novel numerical approach for odd higher order boundary value problems
A novel numerical approach for odd higher order boundary value problems
Alexander Decker
 

Similar to The Method of Repeated Application of a Quadrature Formula of Trapezoids and Rectangles to Determine the Values of Multiple Integrals (20)

On The Transcendental Equation
On The Transcendental EquationOn The Transcendental Equation
On The Transcendental Equation
 
I034051056
I034051056I034051056
I034051056
 
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
Integral Solutions of the Ternary Cubic Equation 3(x2+y2)-4xy+2(x+y+1)=972z3
 
The numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximationThe numerical solution of helmholtz equation via multivariate padé approximation
The numerical solution of helmholtz equation via multivariate padé approximation
 
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine TransformRadix-3 Algorithm for Realization of Type-II Discrete Sine Transform
Radix-3 Algorithm for Realization of Type-II Discrete Sine Transform
 
Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...Analytical solution of the relative orbital motion in unperturbed elliptic or...
Analytical solution of the relative orbital motion in unperturbed elliptic or...
 
Integral solutions of the ternary cubic equation
Integral solutions of the ternary cubic equation Integral solutions of the ternary cubic equation
Integral solutions of the ternary cubic equation
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
 
A hybrid bacterial foraging and modified particle swarm optimization for mode...
A hybrid bacterial foraging and modified particle swarm optimization for mode...A hybrid bacterial foraging and modified particle swarm optimization for mode...
A hybrid bacterial foraging and modified particle swarm optimization for mode...
 
78201917
7820191778201917
78201917
 
78201917
7820191778201917
78201917
 
Ao4201268273
Ao4201268273Ao4201268273
Ao4201268273
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
Estimating Population Mean in Sample Surveys
Estimating Population Mean in Sample SurveysEstimating Population Mean in Sample Surveys
Estimating Population Mean in Sample Surveys
 
A novel numerical approach for odd higher order boundary value problems
A novel numerical approach for odd higher order boundary value problemsA novel numerical approach for odd higher order boundary value problems
A novel numerical approach for odd higher order boundary value problems
 

More from IJMER

Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
IJMER
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
IJMER
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
IJMER
 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
 

Recently uploaded

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 

Recently uploaded (20)

"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 

The Method of Repeated Application of a Quadrature Formula of Trapezoids and Rectangles to Determine the Values of Multiple Integrals

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2027 | Page Nazirov Sh. A. Tashkent University of Information Technologies, Tashkent, Uzbekistan Abstract: The work deals with the construction of multi-dimensional quadrature formulas based on the method of repeated application of the quadrature formulas of rectangles and trapezoids, to calculate the multiple integrals’ values. We’ve proved the correctness of the quadrature formulas. Keywords: multi-dimensional integrals, cubature formulas, re-use method. I. INTRODUCNION The paper is devoted to developing the multiple cubature formulas for the values of n-fold integrals calculation by means of methods of repeated application of, quadrature formulas of trapezoid and rectangles. According to mathematical analysis multiple integrals can be calculated by recalculating single integrals. The essence of this approach is the following. Let the domain of integration is limited to single-valued continuous curves [1] ))()(()(),( xxxyxy   and two vertical lines bxax  , (Fig.1). Placing the known rules in the double integral  )( ),( D dxdyyxfI (1) limits of integration, we obtain   )( )( )( .),(),( D x x b a dyyxfdxdxdyyxf   Let  )( )( .),()( x x dyyxfxF   (2) Then .)(),( )(   D b a dxxFdxdyyxf (3) Fig.1 Applying to a single integral in the right-hand side of (3), one of the quadrature formulas, we have    )( 1 ),(),(  n i ii xFAdxdyyxf (4) where - ),...,2,1(],[ nibaxi  and iA are some constant coefficients. In turn, the value y x0 а b )(xy  )(xy   The Method of Repeated Application of a Quadrature Formula of Trapezoids and Rectangles to Determine the Values of Multiple Integrals
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2028 | Page  )( )( ),()( i i x x ii dyyxfxF   can also be found on some quadrature formulas ,),()( 1   im j jiiji yxfBxF where ijB iy - appropriate constants. From (4) we obtain     )( 1 1 ),,(),( D n i m j jiiji i yxfBAdxdyyxf (5) where iA and ijB iy - are known constants. Geometrically, this method is equivalent to the calculation of the volume I, given by the integral (2) by means of cross-sections. For cubature formulas of the type (3), the general comments, relating to the computation of simple integrals, are valid with appropriate modifications. In three dimensions (3) has the form      n i m j kji t k kijiji D i i zyxfCBAdxdydzzyxf 1 1 1 , )( ),,(),,( . Now these results are generalized to compute the values of multiple integrals ),,...,,(...... ...),,(... 21 )()3()2( 1 1 1 )1( 2121 )( 21321321 1 1 2 2 1 iiik k n k k iiiiiiiii n i n i n i i kk D xxxfAAAA dxdxdxxxxf         Where )( ... )2()1( 21211 ,...,, k iiiiii k AAA - are known constants. This approach can be applied to calculate the approximate value of multiple integrals using appropriate quadrature formulas. In this case, we apply the quadrature formula of trapezoid. II. ALGORITHM DISCRIPTION Theorem 1. Let the function ),...,,( 21 nxxxfy  Is continuous in a bounded domain D. Then the formula for the approximate values of the n-fold integral calculating   nn D n dxdxdxxxfJ ,...,),...,(... 211 )( , (6) based on the trapezoidal rule has the form                  1 0 1 0 1 0 1 0 ,...,, 1 0 0 1 01 1 2 2211 1 1 2 2 3 3 ...... n n n nn n p i i i ipipip n p n p n pi in fhJ Here D is n-dimensional domain of integration of the form niAxa iii ,1,  ; (7) 2 ii i aA h   and it is believed that each interval (5), is respectively, divided into nnnn ,...,, 21 parts. Proof. Approximate formula for calculating the values of the one-dimensional integral in this case is      1 0 101 2 )()( 2 )( 1 0 i i x x x x f h xfxf h dxxfJ , (8) where, n ab hx   , n - the number of the interval divisions into n parts. In (4) n = 1 . Now we define the approximate calculation formula for double integrals  )( 2 ),( D dxdyyxfJ (9)
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2029 | Page where D is the two-dimensional area of integration. It is generally believed that the region of integration in this case is within the rectangle, that is, bxa  , dyc  . Then we rewrite the integral (7) in the form  d c b a dyyxfdxJ ),(2 . (10) Using the trapezoidal rule to calculate the inner integral, we obtain         b a b a y dxyxfdxyxf h J ),(),( 2 2 . (11) Now to each integral we use the trapezoid formulas and the result is       ,),( 4 ),(),(),(),( 4 ),(),( 2 ),(),( 22 1 0 1 0 11100100 111001002            i j ji yxyx xxy yxf hh yxfyxfyxfyxf hh yxfyxf h yxfyxf hh J (12) where m cd hy   . Similarly, for the approximate calculation of the values of the triple integral we obtain the following formula:   ,),,( 8 ),,(),(),(),,(),,(),,( ),,(),,(),,( 8 ),,( 1 0 1 0 1 0 111011011101001110 0101000003        i j k kji zyx zyx A a B b C c zyxf hhh zyxfzyxfzyxfzyxfzyxfzyxf zyxfzyxfzyxf hhh dxdydzzyxfJ (13) where p cC hz   . The four-dimensional integral is defined with 16 members:   ;),,,( 16 ),,,(),,,( ),,,(),,,(),,,(),,,(),,,( ),,,(),,,(),,,(),,,(),,,( ),,,(),,,(),,,( 16 ),,,( 1 0 1 0 1 0 1 0 11111011 00111101010110010001 11100110101000101100 0100100000004           i j k l lkji uzyx uzyx A a B b C c D d uzyxf hhhh uzyxfuzyxf uzyxfuzyxfuzyxfuzyxfuzyxf uzyxfuzyxfuzyxfuzyxfuzyxf uzyxfuzyxfuzyxf hhhh dxdydzduuzyxfJ (14) Here t dD hu   . Considering (8.10), we present formulas for the approximate calculation of the n-fold integral on the trapezoidal:           1 0 1 0 1 0 1 0 21 1 32121 1 2 3 22 1 1 2 2 3 3 ),...,,(... 2 1 ...),...,,(... i i i i niii n i in A a A a A a A a nnn n n n n xxxfhdxdxdxdxxxxfJ (15) Then for the formulas (6) and (8) - (11) we derive the general trapezoid formula. For this purpose, one-dimensional integral for integral intervals [a, b] is divided by n equal parts: xinn ihxxxxxx  0110 ],,[],...,,[ . The two-dimensional integral of the ],[],[ dcba  region of integration is divided, respectively, by n and m parts: ],[],...,,[];,[],...,,[ 110110 mmnn yyyyxxxx  . , 0 0 yj xi jhyy ihxx   (16) In the same way ,the three-, four-, etc. n-dimensional integration region is divided by the corresponding parts. In this approach, the formula (6) takes the form
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2030 | Page . 2 )( 2 )( 2 )( 2 )( 1 0 0 1 1 1 0 1 1 0 11                 n i i n n i ii n i ii n i ii b a f ff ff h ff h yy h dxxfJ (17) The general trapezoid formula for double integrals calculating has the form   . 4 4 1 0 1 0 1 0 1 0 1 0 1 0 1,1,11,,2 1 2 21                n i m j i i ijii yx n i m j jijijiji yx f hh ffff hh J (18) The following is a general formula for the trapezoidal three-and four-fold integrals calculating   , 8 8 ),,( 1 0 1 0 1 0 1 0 1 0 1 0 ,, 1,1,1,1,1,1,11,,1,,11,1, 1 0 1 0 1 0 ,1,1,,,,3 1 2 3 321                         n i m j p k i i i ikijii zyx kjikjikjikjikjikji n i m j p k kjikjikji A a zyx B b C c f hhh ffffff fff hhh dxdydzzyxfJ (19)   . 16 16 ),,,( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ,,, 1,1,1,1,1,1,11,,1,1,,1,11,1,,1,1,,1 ,,,1,,,11,1,1,,1,1,1,,1,,,1,1,1,, ,1,,1,,,,,,4 1 2 3 4 4321                      n i m j p k t l i i i i ilikijii uzyx lkjilkjilkjilkjilkjilkji lkjilkjilkjilkjilkjilkjilkji lkjilkjilkji A a uzyx B b C c D d f hhhh ffffff fffffff fff hhhh dudxdydzuzyxfJ (20) Based on the above formula, the approximate calculation of n-fold integral, using the formula (D), takes the form .......)( 2 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ,...,, 1 1 2 2 3 3 1 2 2211                  i n n n nn n p n p n p n p i i i ipipip n i iinn faAJ (21) Thus the theorem is completely proved. Theorem 2. Approximation formulas for determining the values of the double integral, obtained by the repeated use of the trapezoid quadrature formula is calculated as follows:     n i m j ijij D yx f hh dxdyyxf 1 1)( 4 ),(  , (22) where                      12...221 24...442 ........................... 24...442 24...442 12...421* ij . (23) Proof. Let’s use the formula (12). Revealing this amount and similar terms, we obtain the following formula:    nnnnnnn nnnnnnn nn nn yx n i m j jijiijij yx fffff fffff fffff fffff hh ffff hh ,1,3,2,1, ,11,13,12,11,1 ,21,2232221 ,111131211 1 0 1 0 1,1,11 2...2 .44...444 .............................................................. 44...442 2...22 4 4               (24) The (17) can form the matrix elements - ij in the form (16) and the result (15), indicating the proof of the theorem.
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2031 | Page Theorem 3. Approximate formula for calculating the value of triple integrals, obtained by the repeated use of the trapezoid quadrature formula, is calculated as follows:      n i m j S k ijkijk zyx D f hhh dxdydzzyxf 1 1 1)( 8 ),,(  , (25) where .1,2, 244...442 248...884 .............................. 248...884 244...442 ,;1, 12...2221 24...4442 .............................. 24...4442 24...4442 12...2221                                         ni ni ijk ijk   (26) Proof. Let’s use (13). Revealing this amount and similar terms, we obtain .4...222 2...4...4442 .............................................................................................................................. 24...4442 2...222 24...4442 48...8884 ............................................................................................................ 48...8884 24...4442 .................................................................................................. 24...4442 48...8884 ............................................................................................... 48...8884 24...4442 2...222 24...4442 ....................................................................................... 24...4442 2...222 ,,1,,4,,3,,2,,1,, ,1,1,1,4,1,3,1,2,1,1,1, ,2,1,2,4,2,3,2,2,2,1,2, ,1,1,1,4,1,3,1,2,1,1,1, ,,11,,1,,1,,12,,11,, ,1,11,1,14,1,13,1,12,1,11,1,1 ,2,11,2,14,2,13,2,12,2,11,2,1 ,1,11,1,14,1,13,1,12,1,11,1,1 ,11,21,11,24,11,23,11,22,11,21,11,2 ,10,21,10,24,10,23,10,22,10,21,10,2 ,2,21,2,24,2,23,2,22,2,21,2,2 ,1,21,1,24,1,23,1,22,1,21,1,2 ,,11,,14,,13,,12,,11,,1 ,1,11,1,14,1,13,1,12,1,11,1,1 ,2,11,1,14,2,13,2,12,2,11,2,1 ,1,11,1,14,1,13,1,12,1,11,1,1 11111 nnnnnnnnnnnnnn nnnnnnnnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnnnnnnnnnnn nnnnnnnnnnnnnn nnnnnnnn nnnnnnnn nn nn nn nn nnnnnnnn nnnnnnnn nn nn ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff ffffff nnnn                                  (27) From (19) we form the ijk elements, resulting in the relation (18), which shows the proof of the theorem. Theorem 4. Approximation formulas for the values determining of the quadruple integrals, obtained by the repeated use of the trapezoid quadrature formula, is calculated as follows:            1 0 1 0 1 0 1 0)( 16 ),,,( n i m j l k s l ijklijkl uzyx D f hhhh dxdydzduuzyxf  , (28)
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2032 | Page                       nn nn nn nn n n n n nn nn A A A A A A A A AAAA AAAA ,1 1, 1,1 2, 2,1 1, 1,1 21,22221 11,11211 ... ... ....... ... ... ,                  1 2 . 2 1 2...2 4...4 2 4 2 4 1 2 ........ 4...4442 2...2221 11 nnnn AAA , 1,1, 14... 48... 4 8 4 8 2 4 ........ 48...884 24...442 ,1,                   njAA jjn , 1,...,3,2 ,1,...,3,2 , 4 8 8 16 ... ... 8 16 4 8 ....... 816...168 48...84 ,1,2, 2 4 4 8 ... ... 4 8 2 4 ....... 48...84 24...42 1                                     nj ni AniAA ijini Proof. Disclose the amount (14) and obtain the following relations: nnnnnnn nnnnnnnn nn nn nn ffffff ffffff ffffff ffffff ffffff ,1111,11411311211111 ,1,111,1,114,1,113,1,112,1,111,1,11 ,1131,1131134113311321131 ,1121,1121124112311221121 ,11111111114111311121111 2...222 24...4442 ..................................................................................... 24...4442 24...4442 2...222           ...................................................................................................... 24...4442 48...8884 .......................................................................................... 48...8884 48...8884 24...4442 ,121,12412312212112 ,1121,1124,1123,1122,1121,112 ,1231,1231234123312321231 ,1221,1221224122312221221 ,1211,1211214121312121211 nnnnnnnn nnnnnnnn nn nn nn ffffff ffffff ffffff ffffff ffffff           nnnnnnnnnn nnnnnnnnnn nnnnnn nnnnnn ffff ffff ffff ffff ,1112111 ,111,1,12,111,1,1 2,112,11221211 ,11,11121111 2...2 24...42 ........................................................... 24...42 2...2         nnnnnnn nnnnnnn nn nn fffff fffff fffff fffff ,211,21321221121 ,1211,1213,1212,1211,121 ,2121,212212321222121 ,2111,211211321122111 24...442 48...884 ......................................................................... 48...884 24...44        
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2033 | Page ............................................................................................ 48...884 816...16168 ......................................................................... 816...16168 816...16168 48...884 ,221,22322222122 ,1221,1223,1222,1221,122 ,2231,223223322322231 ,2221,222222322222221 ,2211,221221322122211 nnnnnnn nnnnnnn nn nn nn fffff fffff fffff fffff fffff           ...................................................................................................... 816...16168 48...884 ,2,,11,2,,123,122,121,1 ,1,,11,1,,113,112,111,1 nnnnnnnnnnnn nnnnnnnnnnnn fffff fffff     nnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn fffff fffff fffff fffff ,,1,1,,1,3,,1,2,,1,1,,1, ,1,1,1,1,1,3,1,1,2,1,1,1,1,1, ,2,1,1,2,1,23,1,22,1,21,1, ,1,1,1,1,1,13,1,12,1,11,1, 24...442 48...884 .............................................................................................. 48...884 24...442         nnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnn fffff fffff ,,,11,,,13,,,12,,,11,,,1 ,1,,11,1,,13,1,,12,1,,11,1,,1 88...884 816...16168     nnnnnnnnnnnnnnnnn nnnnnnnnnnnnnnnnn nnnnnnnnnnnn nnnnnnnnnnnn fffff fffff fffff fffff ,1321 ,1,1,1,3,12,11,1 ,21,2232221 11,1131211 2...22 44...442 ............................................................................ 44...442 2...22         From these relations the formula (20) is formed, which fully demonstrates the proof of the theorem. Now, we calculate the values of integrals by repeated application of quadrature formulas, based on the formula of rectangles. The rectangle formula to calculate the values of the integrals is quite simple. In fact, here i is taken as ],[ 1 ii xx  midpoints. For a uniform grid ),1,( nihhi  we obtained formulas of the form      n i i b a f n ab dxxfJ 1 2/11 )( , (29) where bxax h xff nii  ,), 2 ( 02/1 . Double integral in this case is calculated by the formula     , ,, ),(),( 1 2 1 22 1 1 2/1,2/1 21 1 1 2/12/1 211 2/1 2 2                          n i n j ji n i n j ji A a n j j B b A a A a B b f n bB n aA yxf n bB n aA dxyxf n bB dyyxfdxdxdyyxfJ (30) where ;,, 2 212/1,2/1 yx y j x iji h bB n h aA n h y n h xff           xh - Step on the OX axis, yh y - a step on the OY axis. In the same way we define cubature formulas for calculating the values of the three-and four-fold integrals
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2027-2034 ISSN: 2249-6645 www.ijmer.com 2034 | Page        1 2 3 1 1 1 2/1,2/1,2/1 321 3 ),,( n i n j n k kji A a B b C c f n cC n bB n aA dxdydzzyxfJ , (31) Where        2 , 2 , 2 2/1,2/1,2/1 z k y j x ikji h z h y h xff ,         1 2 3 4 1 1 1 1 2/1,2/1,2/1,2/1 4321 4 ),,,( n i n j n k n l lkji A a B b C c D d f n dD n cC n bB n aA dxdydzduuzyxfJ ; (32) Here        2 , 2 , 2 , 2 2/1,2/1,2/1,2/1 u l z k y j x ilkji h u h z h y h xff . On the basis of approximate formulas for calculating the values of one-, two-, three-and four-fold integrals, respectively, expressed by (21) - (24), the formula for calculating the values of n-fold integrals is given . Theorem 5. Let the ),...,,( 21 nxxxfy  function is defined and continuous in a n-dimensional bounded n integration domain. Then the cubature formula, obtained by repeated application of the rectangles’ formula, has the form           1 1 2 2 21 1 1 1 2/1,...,2/1,2/1 1 2121 ......),...,,(... n i n i n i iii n i i ii nn D n n n f n aA dxdxdxxxxf , (33) where niAax iii ,1],,[  ,        2 ,..., 2 , 2 21 2/1,...,2/1,2/1 2121 n iiiiii h x h x h xff nn . Proof. The proof is given by induction. From (21) - (24) we see that (25) holds for 4;3;2;1n . We assume that (25) is valid for kn  :           1 1 2 2 21 1 1 1 2/1,...,2/1,2/1 1 2121 ......),...,,(... k i k i k i iii k i i ii kk D k k k f k aA dxdxdxxxxf . Now we show fairness at 1 kn : .... 2 , 2 ,..., 2 , 2 ... , 2 ,..., 2 , 2 ... ...),,...,,(... 1 1 2 2 1 1 121 21 1 1 2 2 1 1 1 1 2 2 21 1 1 1 1 2/1,2/1,...,2/1,2/1 1 1 1 1 21 1 1 1 111 11 1 1 1 11 21 1 121121 )(                                                         n i n i n i n i iiii k i i ii k k k iii n i n i n i n i k i i ii k kk n i n i n i kk k iii A a k i i ii kkkk D k k k k kk k k k k k k k k f n aA h x h x h x h xf n aA n aA dxx h x h x h xf n aA dxdxdxdxxxxxf The obtained result proofs the theory completely. III. CONCLUSIONS Thus we have constructed the multi-dimensional cubature formulas to approximate the value of multiple integrals by repeated application of the quadrature formula of trapezoids and rectangles to determine the values of multiple integrals, which are easy to implement on a computer. REFERENCES [1]. Demidovich B.L, Maron I.A. “Foundations of Computational Mathematics”. - Moscow: Nauka, 1960. - 664 p. [2]. Rvachev V.L. “Theory of R-functions and some of its applications”. - Naukova. Dumka, 1982. - 552 p. [3]. Rvachev V.L. “An analytical description of some geometric objects”. Dokl. Kiev, 1963. - 153, № 4. 765-767pp. [4]. Nazirov S.A. “Constructive definition of algorithmic tools for solving three-dimensional problems of mathematical physics in the areas of complex configuration” / Iss. Comput. and glue. Mathematics. Tashkent .Scientific works set. IMIT Uzbek Academy of Sciences, 2009. - No. 121. - 15-44pp. [5]. Kabulov V.K., Faizullaev A., Nazirov S.A. “Al-Khorazmiy algorithm, algorithmization”. - Tashkent: FAN, 2006. -664 p. [6]. Gmurman V.E. “Guide to solving problems in the theory of probability and mathematical statistics”. Manual. book for students of technical colleges. - 3rd ed., Rev. and add. - M.: Higher. School, 1979. [7]. Ermakov S.M. “Monte Carlo methods and related issues”. - Moscow: Nauka, 1971. [8]. Sevastyanov B.A. “The course in the theory of probability and mathematical statistics”. - Moscow: Nauka, 1982. [9]. Mathematics. Great Encyclopedic Dictionary/ Ch. Ed. V. Prokhorov. - Moscow: Great Russian Encyclopedia, 1999. [10]. Gmurman E. “Probability theory and mathematical statistics.” Textbook for technical colleges. 5th ed., revised. and add. - M., Higher. School, 1977.