SlideShare a Scribd company logo
1 of 185
Download to read offline
Introduction
Artificial left
reducing the wellbore pressure. This reduction will bring
back the essential difference between the reservoir and
wellbore pressure so oil can be extracted and lifted up to
the surface.
Artificial left method
gas lifting
Pumps
sucker rod pumps
(SRP)
progressive cavity
pumps (PCP)
hydraulic pumps (HP)
electrical submersible
pump (ESP)
- Artificial lift can be divided into two types,
based on lifting mechanism:
Electrical Submersible Pumping
• Second most commonly used method
worldwide (+100,000 wells)
• Used massively in Russia and in
significant number of wells in US.
• Responsible for the highest amount of
total fluids produced (oil and water) by any
artificial lift method and an ideal method
for high water cut wells.
• Problems with sand production, high gas
liquid ratio and high bottom hole
temperatures.
electrical submersible pump (ESP)
ESP operated by AC source
ESP operated by PV or DC source
• REDA: Russian Electric Dynamo of Arutunoff estalished in
1930 in Bartlesville
• Became Schlumerger-REDA Production Systems in the late
1990s
History of ESPs
Artificial lift pumps Comparing
LSP = (enclosed) lineshaft pump
• Impeller position needs adjustment at initial start up.
• Requires an almost perfect vertical (max 4° tolerance)
pumping chamber.
LSP = (enclosed) lineshaft pump
ESP = electric submersible pump
• High immersion depth
• Long lifetime High
• Easier handling and shorter (installation/removal) time
• Ability to accommodate deviated
• high service temperatures (up to 250/300°C)
• Worldwide service facilities
• Less accessible motor, seal, thrust bearing
• Higher operation speed(higher wear)
Artificial lift pumps Comparing
Why ESP
Operation & Maintenance costs
45% less
compared to
Vertical Turbine Pumps (LSP)
7% better total Efficiency
with Submersible Pump sets compared
to Vertical turbine Pumps (LSP)
Type of deep wells submersible pump
1- turbine pump
2- submersible pump
- Each type have in base vertical centrifugal pump and
may be contain from one stage or more multi-stage for
give high required pressure.
- Characterizing this pump high volume rat
Different between turbine & submersible pumps
Submersible pump
Turbine pump
high
Lowe
Efficiency of motor
high
lowe
Losses of electric cable
lowe
high
Losses of fraction
Difficult access to motor
Easy access to motor
maintenance
High speed and corrosion
factor lowe
Lowe speed and corrosion
factor lowe
Speed of motor
Use for high deep
Use for low deep
Deep
We can use it in curvy well .
need straight well because a
shaft
Straight of well
High cast
lowe cast
cast
1- Deep-well turbine pump
- Use it pump for lift a water
from high well-deep .
- Is group of centrifugal pumps
connect to gather (stages) for
lift the water from stage to
stage .
- May be reaches deep full to
600 m ; but not preferably
increase a bout larger then 200
m ; because increase friction
shaft with bearings and
efficiency decrease .
2- Submersible turbine pump
- At this type the pump and motor connect at the
same production under the water .
- Efficiency of this type large because motor
connect direct with pump ; effective cooling and
friction low .
Advantages of submersible pump
- Low cast at well have small diameter and
high deep .
- Suitable for quiet places like gardens and
hospital because not give nose.
- Suitable for not straight deep-wells
- Suitable Operating for long time
because it has good cooling
Disadvantages of submersible pump
- Cost of motor is very high .
- High maintenance cast because it difficult to fixing motor .
- May be create problem if well contain grit and small stone in water.
Component of ESP
Component of ESP a
b
o
p
n
m
l
k
d
e
f
g
h
i
c
q
r
s
j
a
b
c
d
e
f
g
h
i
j
o
p
n
m
q
r
s
l
k
Component of ESP
Component of ESP
Component of ESP
video
Component of ESP
How do work submersible pumps ?
How do work submersible pumps ?
How do work submersible pumps ?
How do work submersible pumps ? video
design
ESP Design Considerations
Steps Based Design
STEP 1: Basic Data
Well Data: Casing size and weight, Tubing size, type and thread Perforated or open hole, Pump setting depth (measured
and vertical), Deviation survey
Production Data:, Wellhead tubing pressure, Present production rate, Production fluid level/Pump intake pressure,
Static fluid level/ Static Bottom hole pressure, Datum point, Bottom-hole temperature, Desired production rate, Gas-oil
ration, Water cut.
Well Fluid Conditions: Specific gravity of water, Oil API or specific gravity, Specific gravity of gas, Bubble-
point pressure of gas, Viscosity of oil, PVT data
Power Sources: Available primary voltage, Frequency, Power source capability
Possible Problems: Sand, Corrosion, Paraffin, Emulsion, Gas, Temperature
STEP 2: Well Production Capacity
- The Inflow Performance Relationship (IPR) or the
Productivity Index (PI) of the well depending on the
pressure regime should be integrated with the Vertical
Lift Performance (VLP) Curve to determine the
productive capacity of the well which would be used in
the ESP design.
STEP 3: Fluid Volumes Calculation
- The accurate calculation of fluid volumes and type at the pump
- intake is very important in pump design The presence and volume of free
gas at the pump intake must be taken into consideration
- Ideally, if the gas remains in solution, the pump behaves normally,
however as gas to liquid ratio increases beyond the critical value of
between 10-15%, the pump efficiency decreases and lower pump
produced.
STEP 3: Fluid Volumes Calculation
The free gas volume is calculate from the following equations/correlations
a. Solution Gas Oil Ratio (Dissolved Gas Oil Ratio)
b. Gas Volume Factor
c. Oil Formation Volume Factor, Bo
d. Total Volume of Fluids
video
Gas separator
STEP 4: Total Dynamic Head (TDH)
Pd
Hd
Ft
total dynamic head
STEP 5: Pump Type Selection-A
Notes on Pump Selection:
- Larger diameter pumps and motor are less expensive and they operate at higher efficiencies.
- Select the highest efficient pump that will fit in the casing
- If the well’s production capacity is not accurately known, choose a pump with a steep characteristic curve
- If desired volume falls at a point where two pumps have approximately the same efficiency, choose the
pump type which requires the greater number of stages
- If gas is present in the produced fluid, a gas separator may be required to achieve efficient operation
- These combinations must be carefully determined to operate the pump at the optimal production
rate, material strength and temperature limits based on the Company’s catalogue.
STEP 6: Optimum Size of Components
Engineering considerations for sizing pump’s components include
• Maximum Loading Limits
• Maximum Diameter of Unit
• Velocity of fluid passing a motor (this affects rate of pump cooling, a velocity of 1
ft/s is recommended, if not affective a motor jacket may be required to increase
the velocity).
. Optimum Selection of Pump
From the Performance Curve of the selected pump type, determine the number of stages required to produce
the anticipated capacity based on the calculated dynamic head (TDH). Note that the performance curves are
single stage pump characteristic curves, hence the total stages required is determined from.
.
. Optimum Selection of Moto
The optimum motor is selected by first determining the brake horsepower required per stage by the
pump. This value is also gotten from performance curve. Therefore, brake horsepower (BHP) required to
drive a pump is then calculated from
. Optimum Selection of Gas Separator
Refer to company catalogue for recommendations based on pump type and well
environment
Note: More power will be needed by the motor to drive an added gas separator, this must be added on
when selecting the motor, if a gas separator would be needed in the pump.
STEP 7: Electrical Cable
Electric cable to be used is selected based on the evaluation of the following parameters:
Cable Size
- Cable size is dependent on voltage drop, amperage and available space between casing and collars
- its is recommended that the voltage drop should be less than 30 volts/1000 ft or less than 15% of
motor nameplate voltage. -
This is based primarily on the fluid conditions and bottom-hole temperature
Cable Type
Another shapes of submersible pumps Types :
common submersible pumps
Another shapes of submersible pumps Types :
swage submersible pumps
Another shapes of submersible pumps Types :
swage submersible pumps
another shapes of submersible pumps Types :
swage submersible pumps
another shapes of submersible pumps Types :
swage submersible pumps
Through swage submersible pumps
another shapes of submersible pumps Types :
another shapes of submersible pumps Types :
Through swage submersible pumps
another shapes of submersible pumps Types :
V- pump submersible pumps
installations:
installations:
1- Measure the depth of well
installations:
2- Preparing the equipments and Requirements :
installations:
3- contacts wires
installations:
4- cable setting
installations:
5- contacts pipes
installations:
6- sticks cable , pipes, and wires
installations:
7- chose the length of pipes, wires, and cable
installations:
8-setting up the cover of well
installations:
9- install the pump into water source : If water source is from deep well
installations:
9- install the pump into water source :
If water source is from deep well
Torque Arrestor
installations:
9- install the pump into water source : If water source is from pool or surfaces source
installations:
10- power supply setting up :
installations:
10- power supply setting up : If the system is solar pump system
installations:
Classifications systems :
•
AC Pump system

AC current

Standard capacity 2-more Hp

High Voltage system hence the
losses.

Motor to controller distance
needs to be maintained to
avoid spike voltage

Longer Life and modular
Classifications systems :
Classifications systems :
DC PUMP SYSTEM

-DC current

-Standard capacity 1-3Hp

-External protection required
•
-Lower operating voltage
•
-Ease in installation,
Simple Operation.
•
Very efficient for low
-
budgeted project and
portable solution.
Solar pump system : explain later
DC current
Ac current with using inferter
Less power
Easy to install
-Reliable long life expectancy (20+
years)
-Low maintenance, simple repair if
related to solar array
-Clean
-No fuel needed
-Modular system can be closely
matched to needs,
power easily adaptable to changing
demands
Classifications systems :
Why solar pump system ?
Advantages:
Easy to install
-Reliable long life expectancy (20+ years)
-Low maintenance, simple repair if related to
solar array
-Clean
-No fuel needed
-Modular system can be closely matched to
needs,
power easily adaptable to changing demands
disadvantages:
Solar energy can vary seasonally
-Higher initial cost
-Lower output in cloudy weather
Comparison Diesel vs. Solar pumping
•Solar panels have no moving parts; most have a warranty of at least 20 years.
•No fuel deliveries, and very little maintenance.
•Most solar pumps operate without the use of storage batteries.
•Water tank  simple, economical means of storage
CONCLUSION:
Solar pumps offer a
clean
and simple
alternative to fuel-burning engines
.
Classification of Solar Pumps system :-
Thermocycle conversion Photocell Conversion
Thermocycle conversion
thermodynamic cycles are used to convert solar energy
into mechanical energy to power the solar pump.
Solar energy is absorbed by a solar collector,
or by a solar concentrating collector, that runs in a
cycle converting the heat energy absorbed
into shaft power that drives a mechanical pump.
Thermocycle conversion
Solar Pumps system : Photocell Conversion
Ashref
‫وانواعها‬ ‫الشمسية‬ ‫الطاقة‬ ‫أنظمة‬ ‫أنواع‬
‫المستقل‬ ‫النظام‬
(
‫األحادي‬
) ‫الهجين‬ ‫النظام‬
‫المستقل‬ ‫النظام‬
(
‫األحادي‬
) ‫يستعمل‬ ‫ال‬ ‫المستقل‬ ‫النظام‬ ‫فإن‬ ‫الصورة‬ ‫في‬ ‫تشاهدون‬ ‫كما‬
‫االلواح‬ ‫من‬ ‫المولدة‬ ‫الطاقة‬ ‫إال‬
‫هذا‬ ‫يستعمل‬ ‫الكهرباء‬ ‫توليد‬ ‫اجل‬ ‫من‬ ‫و‬ ‫غير‬ ‫ال‬ ‫الشمسية‬
‫التالية‬ ‫العناصر‬ ‫االحادي‬ ‫النظام‬
:
1
)
‫الشمسية‬ ‫االلواح‬
:
‫الطاقة‬ ‫يحول‬ ‫الذي‬ ‫العنصر‬ ‫هي‬ ‫و‬
‫مستمرة‬ ‫كهربائية‬ ‫طاقة‬ ‫إلى‬ ‫الشمسية‬
2
)
‫الشحن‬ ‫منظم‬
:
‫يقوم‬ ‫العنصر‬ ‫فهذا‬ ‫اسمه‬ ‫يوضح‬ ‫كما‬
‫البطاريات‬ ‫شحن‬ ‫بتنظيم‬
)
3
)
‫البطاريات‬
:
‫الكهربائية‬ ‫الطاقة‬ ‫لتخزين‬ ‫وسيلة‬ ‫هي‬
‫االستعمال‬ ‫عن‬ ‫الزائدة‬
)
4
)
‫دائرة‬
‫كهربائية‬
‫النظام‬ ‫مكونات‬ ‫لحماية‬
5
)
‫انفرتر‬
6
)
‫المتردد‬ ‫التيار‬ ‫طريق‬ ‫عن‬ ‫تعمل‬ ‫أجهزة‬
) .
7
)
‫المستمر‬ ‫التيار‬ ‫طريق‬ ‫عن‬ ‫تعمل‬ ‫أجهزة‬
.
)
‫لتخزين‬ ‫البطاريات‬ ‫تستعمل‬ ‫ال‬ ‫أحادية‬ ‫أخرى‬ ‫أنظمة‬ ‫هناك‬
‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫مثل‬ ‫الطاقة‬
.
‫الهجين‬ ‫النظام‬
‫أنواعها‬ ‫و‬ ‫الشمسية‬ ‫الخاليا‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬
‫الشمسي‬ ‫اللوح‬
:
‫بطريقة‬ ‫البعض‬ ‫ببعضها‬ ‫المتصلة‬ ‫الشمسية‬ ‫الخاليا‬ ‫من‬ ‫مجموعة‬ ‫هو‬
(
‫الصورة‬ ‫توضح‬ ‫كما‬ ‫بالتوازي‬ ‫او‬ ‫تسلسلية‬
‫التالية‬
.
‫بالتسلسل‬ ‫أو‬ ‫بالتوازي‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫من‬ ‫مجوعة‬ ‫تركيب‬ ‫يمكن‬
‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫انواع‬
‫تختلف‬ ‫الشمسية‬ ‫الخلية‬ ‫او‬ ‫الشمسي‬ ‫اللوح‬ ‫خصائص‬ ‫فإن‬ ‫أسفله‬ ‫الجدول‬ ‫في‬ ‫تالحظون‬ ‫كما‬
. nr % ‫اللوح‬ ‫كفاءة‬ ‫هي‬ ‫الخاصيات‬ ‫هذه‬ ‫من‬ ‫خاصية‬ ‫أهم‬ ‫و‬ ‫نوعيتها‬ ‫حسب‬
‫شهيرة‬ ‫أنواع‬ ‫ثالث‬ ‫إلى‬ ‫السوق‬ ‫في‬ ‫تواجدها‬ ‫حسب‬ ‫الشمسية‬ ‫االلواح‬ ‫نقسم‬ ‫أن‬ ‫يمكن‬ ‫و‬
:
‫أنواعها‬ ‫و‬ ‫الشمسية‬ ‫الخاليا‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬
‫الكفاءة‬ ‫ناحية‬ ‫من‬ ‫االلواح‬ ‫افضل‬ ‫يعتبر‬ ‫و‬
: . Mono-cristallin -‫نوع‬ ‫الشمسي‬ ‫اللوح‬
‫ثمنا‬ ‫أقل‬ ‫أنه‬ ‫إال‬Mono-cristallin ‫اللوح‬ ‫من‬ ‫كفاءة‬ ‫أقل‬
: poly-cristallin -‫نوع‬ ‫الشمسي‬ ‫اللوح‬
‫أن‬ ‫إال‬ ‫التركيب‬ ‫في‬ ‫سهولة‬ ‫و‬ ‫بمرونة‬ ‫يتميز‬
‫كفائته‬
‫ضعيفة‬
: thin film -‫نوع‬ ‫الشمسي‬ ‫اللوح‬
‫الشمسية‬ ‫الطاقة‬ ‫من‬ ‫الكهرباء‬ ‫توليد‬
‫انواعه‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫شحن‬ ‫منظم‬
‫وظيفته‬ ‫ماهي‬ ‫و‬PWM ‫و‬MPPT
CHARGE CONTROLLER ‫الشحن‬ ‫منظم‬ ‫وظيفة‬
.
‫الشحن‬ ‫منظم‬ ‫انواع‬
(PULSE WIDE MODULATION ) PWM ‫الشحن‬ ‫منظم‬
MAXIMUM POWER POINT TRACKING MPPT ‫شحن‬ ‫منظم‬
‫انفرتر‬
‫الشمسية‬ ‫الطاقة‬
‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬
:
‫المياه‬ ‫مضخات‬ ‫أنواع‬ ‫نعرض‬ ‫أن‬ ‫قبل‬ ‫و‬ ‫أوال‬
,
‫من‬ ‫تتكون‬ ‫المضخات‬ ‫أن‬ ‫نعرف‬ ‫أن‬ ‫يجب‬
‫جزئين‬
‫أساسين‬
:
‫المضخة‬ ‫و‬ ‫المحرك‬
.
‫المحرك‬ ‫يستهلكه‬ ‫الذي‬ ‫الكهرباء‬ ‫نوع‬ ‫حسب‬ ‫المياه‬ ‫مضخات‬ ‫أنواع‬
:
DC -‫المستمر‬ ‫بالتيار‬ ‫تعمل‬ ‫التي‬ ‫المياه‬ ‫مضخات‬ ‫محركات‬
‫المتوسطة‬ ‫و‬ ‫الصغيرة‬ ‫القدرة‬ ‫ذات‬ ‫المضخات‬ ‫مع‬ ‫خاصة‬ ‫المحركات‬ ‫هذه‬ ‫نجد‬
.
‫و‬
‫نستحق‬ ‫ال‬ ‫فإننا‬ ‫المضخات‬ ‫من‬ ‫النوع‬ ‫هذه‬ ‫باستعمال‬
‫انفرتر‬
‫إل‬ ‫المستمر‬ ‫التيار‬ ‫ليحول‬
‫ى‬
‫نوع‬ ‫من‬ ‫شحن‬ ‫منظم‬ ‫وانما‬ ‫تيار‬MPPT.
: AC -‫المتردد‬ ‫بالتيار‬ ‫تعمل‬ ‫التي‬ ‫المياه‬ ‫مضخات‬ ‫محركات‬
‫المستمر‬ ‫التيار‬ ‫مضخات‬ ‫من‬ ‫انتشارا‬ ‫أكثر‬ ‫المضخات‬ ‫من‬ ‫النوع‬ ‫هذا‬
.
‫مضخات‬ ‫منها‬ ‫نجد‬ ‫أن‬ ‫يمكن‬ ‫و‬
‫الطور‬ ‫أحادي‬ ‫المتردد‬ ‫بالتيار‬ ‫تعمل‬
(
‫واحد‬ ‫فاز‬
)
‫الطور‬ ‫ثالثي‬ ‫بالتيار‬ ‫تعمل‬ ‫أخرى‬ ‫مضخات‬ ‫و‬
3
‫فاز‬
‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬
:
‫نفسها‬ ‫المضخة‬ ‫نوع‬ ‫حسب‬ ‫المياه‬ ‫مضخات‬ ‫أنواع‬
(
‫المضخة‬ ‫محرك‬ ‫وليس‬
:)
‫المضخ‬ ‫عمل‬ ‫آلية‬ ‫حسب‬ ‫رئيسين‬ ‫قسمين‬ ‫إلى‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫نقسم‬ ‫يمكن‬ ‫كثيرا‬ ‫نتعمق‬ ‫أن‬ ‫بدون‬
‫ة‬
:
:(Centrifugal) -‫المركزي‬ ‫الطرد‬ ‫مضخات‬
:(Positive displacement) -‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬
‫كما‬ ‫إزاحتها‬ ‫و‬ ‫المياه‬ ‫لضخ‬ ‫معاكس‬ ‫باتجاه‬ ‫يدوران‬ ‫التعبير‬ ‫صح‬ ‫إن‬ ‫مروحتين‬ ‫أو‬ ‫فصين‬ ‫تستعمل‬ ‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬
‫التالية‬ ‫الصورة‬ ‫توضخ‬
:
‫عملها‬ ‫موقع‬ ‫حسب‬ ‫ذلك‬ ‫و‬ ‫المضخات‬ ‫من‬ ‫نوعين‬ ‫إلى‬ ‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬ ‫و‬ ‫المركزي‬ ‫الطرد‬ ‫مضخات‬ ‫من‬ ‫كل‬ ‫تنقسم‬
:
-
‫السطحية‬ ‫المضخات‬
‫البئر‬ ‫في‬ ‫تنزل‬ ‫ال‬ ‫اي‬ ‫األرض‬ ‫سطح‬ ‫على‬ ‫توضع‬
.
‫العميقة‬ ‫اآلبار‬ ‫مع‬ ‫تستعمل‬ ‫ال‬ ‫و‬
‫و‬ ‫أمتار‬ ‫عشرة‬ ‫عمقها‬ ‫يتجاوز‬ ‫ال‬ ‫التي‬ ‫اآلبار‬ ‫في‬ ‫تستعمل‬ ‫لكنها‬
‫أمتار‬ ‫ثالثة‬ ‫عن‬ ‫فيها‬ ‫يقل‬ ‫ال‬ ‫المياه‬ ‫منسوب‬
.
‫سبعة‬ ‫عن‬ ‫يزيد‬ ‫ارتفاع‬ ‫من‬ ‫المياه‬ ‫سحب‬ ‫يمكنها‬ ‫ال‬ ‫أخرى‬ ‫بطريقة‬ ‫أي‬
‫أمتار‬
(
‫تحديدا‬
7.6
‫متر‬
.)
-
‫الغاطسة‬ ‫المضخات‬
‫و‬ ‫الصاروخي‬ ‫بشكلها‬ ‫تتميز‬ ‫مضخات‬ ‫هي‬ ‫سابقا‬ ‫علمنا‬ ‫كما‬
‫وسط‬ ‫تعمل‬ ‫و‬ ‫البئر‬ ‫داخل‬ ‫إنزالها‬ ‫يمكن‬ ‫بحيث‬ ‫الضعيف‬ ‫قطرها‬
‫تلفها‬ ‫في‬ ‫يتسبب‬ ‫ماء‬ ‫بدون‬ ‫عملها‬ ‫و‬ ‫الماء‬
.
‫الغاطسة‬ ‫المضخات‬
Solar pump system Componentsa
‫لنظام‬ ‫الرئيسية‬ ‫المكونات‬ ‫فإن‬ ‫إذن‬
‫كاآلتي‬ ‫هي‬ ‫الشمسية‬ ‫الطاقة‬ ‫مضخات‬
–
‫الشمسية‬ ‫األلواح‬
-
‫المياه‬ ‫مضخة‬
-
‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫في‬ ‫المتحكم‬
‫الشمسية‬ DC
AC – -
‫ان‬
‫فرتر‬
‫الشمسية‬ ‫الطاقة‬
- ‫االنابيب‬ ‫شبكة‬ ‫مع‬ ‫تجميع‬ ‫خزان‬
Ameen
‫الالزمة‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫قدرة‬ ‫حساب‬
‫سنقوم‬ ‫الشمسية‬ ‫الطاقة‬ ‫نظام‬ ‫في‬ ‫المناسبة‬ ‫المضخة‬ ‫قدرة‬ ‫بحساب‬ ‫القيام‬ ‫أجل‬ ‫من‬
‫كاآلتي‬ ‫هي‬ ‫و‬ ‫بسيطة‬ ‫مراحل‬ ‫بثالثة‬
:
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
2
-
‫حساب‬
‫الديناميكي‬ ‫الضغط‬ ‫ارتفاع‬
TDH
3
-
‫المناسبة‬ ‫الشمسية‬ ‫الطاقة‬ ‫مضخة‬ ‫اختيار‬
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
‫أن‬ ‫يجب‬ ‫نحتاجه‬ ‫الذي‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫أجل‬ ‫من‬
‫الواحد‬ ‫اليوم‬ ‫في‬ ‫نحتاجها‬ ‫التي‬ ‫المياه‬ ‫كمية‬ ‫أوال‬ ‫نعرف‬
.
‫يمكن‬ ‫بذلك‬ ‫القيام‬ ‫أجل‬ ‫من‬ ‫و‬
‫اإلستعانة‬
‫التالي‬ ‫بالجدول‬
‫حجم‬ ‫حول‬
‫إستهالك‬
‫االستهالك‬ ‫من‬ ‫مختلفة‬ ‫ألنواع‬ ‫المياه‬
‫غيرها‬ ‫و‬ ‫الحيوانات‬ ‫مثل‬
.
‫االستعمال‬
‫بالل‬ ‫اليومي‬ ‫االستهالك‬
‫تر‬
‫البقرة‬
70
‫العجل‬
25
‫الخيل‬
55
‫الحمار‬
35
‫الماعز‬ ‫او‬ ‫الخروف‬
4
‫الدجاج‬
0.5
‫الحجم‬ ‫متوسطة‬ ‫الشجرة‬
50
‫للشخص‬ ‫المنزلي‬ ‫االستعمال‬
200
‫تقريبية‬ ‫األرقام‬ ‫هذه‬ ‫طبعا‬
.
‫فاإلستهالك‬
‫يختلف‬ ‫للماء‬ ‫المنزلي‬
‫آلخر‬ ‫شخص‬ ‫من‬ ‫و‬ ‫آلخر‬ ‫بلد‬ ‫من‬
,
‫النباتات‬ ‫استهالك‬ ‫يختلف‬ ‫و‬
‫آلخر‬ ‫نوع‬ ‫من‬ ‫للماء‬
.
*
-
‫اليومي‬ ‫االستهالك‬ ‫حساب‬
**
-
‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬
:
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
‫المهم‬
,
‫حجم‬ ‫بتحديد‬ ‫نقوم‬ ‫أن‬ ‫بعد‬
‫اإلستهالك‬
‫الو‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫بتحديد‬ ‫نقوم‬ ‫للماء‬ ‫اليومي‬
‫احد‬
.
‫كامل‬ ‫اليوم‬ ‫خالل‬ ‫سقوطه‬ ‫زاوية‬ ‫و‬ ‫االشعاع‬ ‫كمية‬ ‫من‬ ‫علم‬ ‫على‬ ‫نكون‬ ‫ان‬ ‫يجب‬ ‫الساعات‬ ‫عدد‬ ‫تحديد‬ ‫قبل‬ ‫طبعا‬
.
‫بالصورة‬ ‫موضح‬ ‫هو‬ ‫كما‬ ‫االشعاع‬ ‫كمية‬ ‫متوسط‬ ‫يكون‬ ‫اليمن‬ ‫بالدنا‬ ‫في‬ ‫مثال‬
‫لسقوطه‬ ‫زاوية‬ ‫هناك‬ ‫كذلك‬ ‫الشمسي‬ ‫االشعاع‬ ‫كمية‬ ‫متوسط‬ ‫توزيع‬ ‫سابقا‬ ‫راينا‬ ‫كما‬
**
-
‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬
:
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
‫الفصول‬ ‫باختالف‬ ‫وكذلك‬ ‫المنطقة‬ ‫باختالف‬ ‫تختلف‬ ‫الزاوية‬ ‫هذه‬
‫بذلك‬ ‫خاصة‬ ‫وجداول‬ ‫برامج‬ ‫هناك‬ ‫يوجد‬ ‫الزاوية‬ ‫هذه‬ ‫الختيار‬ ‫طبعا‬
**
-
‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬
:
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
winter
summer
1000
900
800
700
600
500
400
300
200
100
**
-
‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬
‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬
:
1
-
‫المياه‬ ‫تدفق‬ ‫حساب‬
‫المناسب‬
1
-
‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬
‫الساعات‬ ‫وعدد‬ ‫اليومي‬ ‫االستهالك‬ ‫حساب‬ ‫يتم‬ ‫ان‬ ‫بعد‬ ‫اذن‬
‫الفعاله‬
‫تد‬ ‫حساب‬ ‫االن‬ ‫يمكن‬ ‫الواحد‬ ‫اليوم‬ ‫في‬
‫المياه‬ ‫فق‬
‫التالية‬ ‫العالقة‬ ‫خالل‬ ‫من‬ ‫المناسب‬
‫المناسب‬ ‫المياه‬ ‫تدفق‬
=
‫اليومية‬ ‫االستهالك‬ ‫كمية‬
‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬
‫لتر‬
/
‫ساعه‬
2
-
‫حساب‬
‫الديناميكي‬ ‫الضغط‬ ‫ارتفاع‬
TDH
TDH=Pumping Level + Vertical Rise + Friction Loss
Suction debth
pipe
Friction Loss
3
-
‫المناسبة‬ ‫الشمسية‬ ‫الطاقة‬ ‫مضخة‬ ‫اختيار‬
:
*
‫المحول‬ ‫حساب‬
(
‫االنفرتر‬
)
‫المطلوبة‬ ‫الشمسية‬ ‫االلواح‬ ‫وعدد‬
:
‫القدرة‬ ‫حساب‬ ‫أوال‬
‫الالزمه‬
‫الكهربائي‬ ‫المضخة‬ ‫لمحرك‬
‫القدرة‬
‫الالزمه‬
‫المضخة‬ ‫لمحرك‬
=
‫المضخة‬ ‫قدرة‬
‫المضخة‬ ‫كفاءة‬
‫المحول‬ ‫قدرة‬ ‫حساب‬ ‫ثانيا‬
(
‫االنفرتر‬
)
‫المحول‬ ‫قدرة‬
=
‫القدرة‬
‫الالزمه‬
‫الكهربائي‬ ‫المضخة‬ ‫لمحرك‬
‫المحول‬ ‫كفاءة‬
‫المطلوبة‬ ‫الشمسية‬ ‫االلواح‬ ‫قدرة‬ ‫حساب‬ ‫ثالثا‬
‫الشمسية‬ ‫االلواح‬ ‫قدرة‬
=
1.25 *
‫المحول‬ ‫قدرة‬
‫المطلوب‬ ‫االلواح‬ ‫عدد‬ ‫حساب‬ ‫رابعا‬
‫االلواح‬ ‫عدد‬
=
‫الشمسية‬ ‫االلواح‬ ‫قدرة‬
‫واحد‬ ‫لوح‬ ‫قدرة‬
‫واخييييرا‬
‫االمن‬ ‫توفر‬ ‫الضرورة‬ ‫من‬
*
‫مثال‬
‫المشروع‬ ‫من‬ ‫الغرض‬
:
-
‫توف‬ ‫وأيضا‬ ‫االدمي‬ ‫ولالستخدام‬ ‫للشرب‬ ‫المياه‬ ‫توفير‬
‫ير‬
‫الشرب‬ ‫مياه‬
‫أنواعها‬ ‫بمختلف‬ ‫للمواشي‬
,
‫بئ‬ ‫من‬ ‫المياه‬ ‫ضخ‬ ‫خالل‬ ‫من‬
‫ر‬
"
‫عارف‬
"
‫المنطقة‬ ‫في‬ ‫الموجود‬
,
‫طاقة‬ ‫منظومة‬ ‫باستخدام‬ ‫وذلك‬
‫شمسية‬
‫عامة‬ ‫معلومات‬
*
‫البئر‬ ‫عمق‬
:
25
‫متر‬
*
‫البئر‬ ‫عن‬ ‫القرية‬ ‫ارتفاع‬
:
200
‫متر‬
*
‫البئر‬ ‫الى‬ ‫القرية‬ ‫من‬ ‫االفقية‬ ‫المسافة‬
:
300
*
‫للمياه‬ ‫اليومي‬ ‫االحتياج‬ ‫متوسط‬
:
50
‫الى‬
40
‫متر‬
3
*
‫النهار‬ ‫في‬ ‫للشمس‬ ‫الذروة‬ ‫ساعات‬ ‫معدل‬
:
6
‫ساعات‬
*
‫مثال‬
‫اختيار‬
‫االنفرتر‬
*
‫مثال‬
*
‫مثال‬
1000
*
‫مثال‬
submersibles pump Companies serving Yemen
Grindex Pumps
based in Sundbyberg, SWEDEN
Well Pumps S.A.
based in Fleurus, BELGIUM
DeTech Pumps Co. Ltd.
based in Nanjing, CHINA
Submersibles pump Companies serving U.S.A
Wolf Pumps - Zoeller Company
based in Abernathy, TEXAS (USA)
Maxisu Submersible Pump & Motor
based in Sanliurfa, TURKEY
3 WPs
Applications in intermittent operation:
Small waterworks.
Irrigation.
Tank applications.
features:
pump entirely made out of stainless steel and fits in 3”.
Constant pressure with two set pressures possible.
Capacity from 2 to 40m³/h and a maximum head of 140m.
The maximum fluid temperature is 30°C
®
Dimensions and Weights 3”WPS® 2 and 3”WPS®-CP
4 WPS
applications:
Heating pumps (only for 4’’WPS).
Dewatering, mining, hot springs .
Industrial applications.
features:
Pump entirely made out of stainless steel and fits in 4
or larger drilled wells.
Capacity from 8 to 70 m³/h and a maximum head of 160m.
6 WPS
applications:
General water supply
Waterworks and fountains
Irrigation
features:
Pump entirely made out of stainless steel and fits in 6”
or larger drilled wells.
6”WPS® pump have capacity up to 60 m³/h
and a maximum head of 190m
8 WPS
applications:
Pressure boosting
Dewatering, mining and other industrial applications
features:
The 8”WPS® pump have a capacity up to 120 m³/h and
a maximum head of 230m.
The rotation is counter clockwise when looking into the discharge.
The 8”WPS® pumps can run continuously in vertical or horizontal
position.
Overall diameter of the pump is 189 mm and thus fits into 8” or
larger drilled wells.
10 WPS
applications:
General water supply
Waterworks and fountains
features:
The 10”WPS® pump have a capacity up to 280 m³/h and a
maximum head of 450m.
The 10”WPS® pumps can run continuously in vertical or horizontal
position.
Overall diameter of the pump is maximum 247 mm and thus
fits into 10” or larger drilled wells.
Grindex Drainge pump
Choose a drainage pump when you need to pump large quantities of
dirty water; head 15-200 meter, flow 6-350 liter/second with abrasive
particles in size up to 12 mm.
Grindex bravo pump
Our Bravo pump are specially designed for pumping slurry and fluids
with high content of higly abrasive solids in sizes up to 50 mm at
maximum 17-45 meter head and 28-130 liters/second.
Application cleaning of settling ponds, sewage
Design software
Some design and simulation software
- COMPASS solar pump system planner.
- AutographPC Software.
- IHS SubPUMP software.
- Pump scanner, Android APP
- Solar pumping, Android APP
Click on either Submersible or Surface
depending on the kind of scheme
Presentation Screen when opening COMPASS:
Pv and surface accessories calculations
Select your location by introducing
Country and City OR GPS point
the best performing angles for
solar panel installation
Motor cable length
Lost due to panels being covered with dust.
dirt lost=10%. Otherwise leave it at 5%.
Water temperature leave it at 25C
If you don’t know Total Dynamic Head of your system, tick on Pipe
Length and fill the information to the best of your knowledge (see next
slide)
State daily needs of water in terms of m3.
(the maximum amount of water that can be
pumped without drying the borehole).
If want to ensure the Required Daily Output of water is supplied even
during months with least Sun (i.e. winter or rainy seasons) choose the
option ‘Sizing for month with least output’. Otherwise choose
‘Average month’.
In case Total Dynamic Head is not known, tick on Pipe length and fill
the 3 boxes to the best of your knowledge.
Vertical height from the dynamic
water level to the highest point
of delivery (not to be mistaken
with static water level).
Length of pipe from pump outlet to pump
to inlet of tank.
To fill Pipe Type, click on ‘+’, then
choose from the displayed ‘Pipe type
Menu’ the closest definition to your
pipe. In case of doubt, choose the
worst case scenario (‘steel, slightly
rusty and incrusted’ with Pipe
roughness of 0.400).
Click ‘Calculate’ and see whther your water needs are covered.
Daily water pumped in
an average day during
the year
62m3/day during December, which is the month with least output for our
location. As it is higher than the Daily Required Output introduced (60m3/day), it
means this system will provide all the water needed all the year round.
This is an example of m3 pumped
per hour in an average day. Pump
will start running at 9:00h and will
pump 8.1m3/h through 15:00h for
6.8m3/h
Daily water pumped in m3 during April
Add/ remove solar panels and see how water output change
By clicking report, system
characteristics will be shown
(pump, number of panels, etc)
By clicking the arrows up/down, number of solar panels can be
increased/ decreased and water output will change accordingly
By Clicking Report, all data of proposed system will be shown
5 pages showing different
system data and drawings
Add/remove accessories
(water level sensors, water
meters etc) and produce
report in .pdf if needed
MAINTENANCE
AND
troubleshooting
MAINTENANCE
Preventive
Maintenance
(PM)
Predictive
Maintenance
(Condition
Monitoring)
Maintenance
Improvement
(MI)
Corrective
Maintenance
(CM)
- EMERGENCY
- REPAIR
Preventive Maintenance (PM)
Statistical life
◦ Extends the life of your
Pumps.
◦ Sustains the efficiency of
your pumps.
◦ Identifies potential
problems before the point
of catastrophic failure.
◦ Protects your investment.
Condition Monitoring
- Monitoring of ESPs using
downhole sensor data provides
an opportunity to diagnose ESP
performance from a hydraulic
standpoint
- Downhole sensor data provides
an immediate direct accurate
measurement of ESP
performance
ESP operating parameters
- pump intake pressure (Pi) :- should be used to prevent pump-off or to prevent the well
from being drawn down below a given pressure (bubble point or a minimum bottomhole flowing pressure).
- discharge pressure (Pd) :- respond to changes in specific gravity of the produced fluid
(watercut or gas), prevent a pump being deadheaded or operated in a low flow scenario.
- intake temperature (Ti) :- acts as a back-up to motor temperature.
- motor temperature (Tm) :- can be motor winding temperature or motor oil temperature.
- Pump Pressure Differential (dP)
ESP operating parameters
can be used to ensure that
the ESP is run within range.
for example:-
the efficiency range of the pump in relation to the
operating point.
Minimum head of 1957
ft.
Maximum head of 3774
ft.
vibration (Vib)
is an indirect measurement of ESP performance , can indicate any change in
normal operating conditions such as:
• change in frequency (pump speed) and operation around resonant frequencies;
• change in wellhead pressure (by surface choke closure);
• onset or increase in solids (sand/scale) production and tracking pump wear;
• start of gas locking;
• change of pump/motor temperatures caused by severe upthrust/downthrust
operation.
ESP operating parameters
Failure point monitoring
Motor winding resistance
•Indicator of possible motor
winding problems
•All readings should be the
same
Megger readings
 Less than 100 ohms
unserviceable- repair required.
 500 ohms
moisture present/ insulation
degraded- repair should be
Scheduled.
 1000 ohms
serviceable, but showing
signs of degraded insulation.
 2K ohms
new condition.
Flygt FLS Leak Detector
Its used for sensing the presence of
water in the oil and/or stator
housing
- In the 1500 Ohms range, switch contacts
are Open, normal or safe condition
resistance.
- in the 300 Ohms range , switch contacts are
Closed , The leak or fail condition resistance
reading.
ESP
Troubleshooting
WHATS
HAPPEN!!!
Troubleshooting
classification
Electrical Mechanical
Troubleshooting
classification Mechanical
Bearings failure
• Evidence of rubbing or
• wear
• Inadequate lubrication
• Improper handling
• Excessive hours
• Vibration
• High RPM
this causes an uplifting
or upthrusting on the
impeller/shaft assembly.
broken or twisted shaft
• Failed check valves or a
lack of check valves
causes back spinning
Failed check valves or a
lack of check valves
causes back spinning.
• back spinning severely
strains the motor
assembly, resulting in
shaft damage.
Seals failure
Two types of Failure - physical
damage or separated faces.
◦ Impeller worn and unbalanced
◦ Cavitation or suction recirculation
Cavitation
Cavitation
Dry-Running Protection
•Helps extend pump life by preventing pump damage due to lack of water in
well.
Heavy fine-Sand Problem:
- With sand pumping, the service life
of the pump is reduced drastically.
- Too high a clearance result in
high vibrations which reduce
the discharge and overload
the motor.
Sand problem solution
Big body in large ESP problem :
Troubleshooting
classification Electrical
Troubleshooting
Submersible
pump won't start
Submersible
pump will not
stop running
Submersible
pump works
but delivery little
or no water
Troubleshooting:
Submersible pump won't start
Problem Check Correct
Power is not supplied to the
submersible pump
Place a voltmeter across power
lines coming into the submersible
pump to check the power supply
for the overload protection box.
The power company should be
consulted if there is no power to
the box.
There is no overload protection
Examine the circuit breaker and
the fuses to the submersible pump
to ensure that they are operating
correctly.
Replace blown fuses and reset the
breaker if it has been tripped.
Pressure switch on submersible
pump is damaged
With the submersible pump
pressure switch in a closed
position, check the voltage across
the switch. If the voltage drop is at
the same level as the line voltage,
the switch is obviously not making
contact.
The contact points should be
cleaned and/or the pressure switch
replaced for the submersible
pump.
Troubleshooting:
Submersible pump will not stop running
Problem Check Correct
Pressure switch on the submersible
pump is defective
Pressure switch points may have
adhered to each other causing the
switch to remain in a closed position.
Clean the points on the pressure
switch. If this does not work, the
switch on the submersible pump
needs to be replaced.
Drop line has a leak
Raise the pipe on the submersible
pump and check for leaks.
The damaged section of the drop pipe
should be replaced.
Level of water in well is too low
Restrain the output flow of the
submersible pump, then wait for the
well to recover. Re-start the pump.
Keep the valve at the restricted setting
if this has remedied the problem. If
not, the submersible pump must be
lowered further down in the well.
Submersible pump parts are damaged
The impeller, casing, and other parts
of the submersible pump may be worn
due to abrasives in the water. Lower
the pressure switch setting. If the
pump shuts off, damaged parts are
the probable cause..
Replace worn parts on the
submersible pump.
Troubleshooting:
Submersible pump works but delivery little or no water
Problem Check Correct
Submersible pump may be air-locked
Start and stop pump repeatedly. If
submersible pump begins working, air lock
was the problem.
If the trouble isn’t corrected by performing
this test, move on to the next possible
problem.
Water level too low in submersible pump
Well production could be too low. Limit flow
of pump output, then wait for well to
recover and re-start.
If partial limitation of flow corrects the
problem leave the valve at the restricted
setting.
Discharge line check valve installed
backwards on submersible pump
Make sure arrow that indicates direction of
flow on check valve is pointed in the right
direction.
If check valve is not pointed in the right
direction, then reverse the valve.
Blocked pump intake screen
Examine intake screen on the submersible
pump and check for mud or sand blockage.
Clean screen and make sure submersible
pump is reinstalled many feet above the
well bottom.
Worn pump parts
Reduce setting on pressure switch to see if
the submersible pump shuts off. If it does,
check for worn parts
Pull submersible pump and replace the
worn components.
Motor Fault’s
Fault Possible Cause
Locked pump
Motor/pump misaligned.
Sand bound pump.
Open circuit
Loose connections.
Defective motor or cable.
Short circuit Defective motor or cable.
Overheat
High ambient temperature.
Direct sunlight .
No water flow through the unit.
Motor underload
Overpumped or dry well.
Worn pump.
Broken motor shaft.
Blocked pump screen.
What's Couse
 Running pump far right of best efficiency point BEP (runout, overloaded motor)
 Blockage or clog
 Impeller clearance too tight
 Running pump far left of best efficiency point BEP (deadhead)
 Closed discharge valve
 Partially closed check valve
Low Amps:
High Amps:
Motor Fault’s
submersible pumps.pdf
submersible pumps.pdf
submersible pumps.pdf

More Related Content

What's hot

Electric submersible pump(esp)
Electric submersible pump(esp)Electric submersible pump(esp)
Electric submersible pump(esp)Win Nyunt Aung
 
140717 artificial lift
140717 artificial lift140717 artificial lift
140717 artificial liftAli Okasha
 
Introduction - Artificial lift
Introduction - Artificial liftIntroduction - Artificial lift
Introduction - Artificial liftAndi Anriansyah
 
Gas Lift Optimization and Troubleshooting
Gas Lift Optimization and Troubleshooting Gas Lift Optimization and Troubleshooting
Gas Lift Optimization and Troubleshooting Bailey LeRoux
 
Sucker Rod Pump (SRP)
Sucker Rod Pump (SRP)Sucker Rod Pump (SRP)
Sucker Rod Pump (SRP)Rakesh Kumar
 
Well Test Design and Analysis
Well Test Design and Analysis Well Test Design and Analysis
Well Test Design and Analysis petroEDGE
 
Managing Downhole Failures in a Rod Pumped Well
Managing Downhole Failures in a Rod Pumped Well Managing Downhole Failures in a Rod Pumped Well
Managing Downhole Failures in a Rod Pumped Well Ramez Abdalla, M.Sc
 
3_Artificial_lift_systems.ppt
3_Artificial_lift_systems.ppt3_Artificial_lift_systems.ppt
3_Artificial_lift_systems.pptathifaputricaesar
 
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...Nicodeme Feuwo
 
Well completion 1 wleg
Well completion 1 wlegWell completion 1 wleg
Well completion 1 wlegElsayed Amer
 
A Study Of Production Optimization Of An Oil Copy
A Study Of Production Optimization Of An Oil   CopyA Study Of Production Optimization Of An Oil   Copy
A Study Of Production Optimization Of An Oil Copyaadrish
 
WELL HEAD pcp overview1234
WELL HEAD  pcp overview1234WELL HEAD  pcp overview1234
WELL HEAD pcp overview1234Afsal Ameen c
 
Q922+re2+l08 v1
Q922+re2+l08 v1Q922+re2+l08 v1
Q922+re2+l08 v1AFATous
 
Production optimization using gas lift technique
Production optimization using gas lift techniqueProduction optimization using gas lift technique
Production optimization using gas lift techniqueJarjis Mohammed
 

What's hot (20)

Electric submersible pump(esp)
Electric submersible pump(esp)Electric submersible pump(esp)
Electric submersible pump(esp)
 
140717 artificial lift
140717 artificial lift140717 artificial lift
140717 artificial lift
 
Introduction - Artificial lift
Introduction - Artificial liftIntroduction - Artificial lift
Introduction - Artificial lift
 
Gas Lift Optimization and Troubleshooting
Gas Lift Optimization and Troubleshooting Gas Lift Optimization and Troubleshooting
Gas Lift Optimization and Troubleshooting
 
Sucker Rod Pump (SRP)
Sucker Rod Pump (SRP)Sucker Rod Pump (SRP)
Sucker Rod Pump (SRP)
 
Well Test Design and Analysis
Well Test Design and Analysis Well Test Design and Analysis
Well Test Design and Analysis
 
Artificial Lift Methods
Artificial Lift MethodsArtificial Lift Methods
Artificial Lift Methods
 
Managing Downhole Failures in a Rod Pumped Well
Managing Downhole Failures in a Rod Pumped Well Managing Downhole Failures in a Rod Pumped Well
Managing Downhole Failures in a Rod Pumped Well
 
3_Artificial_lift_systems.ppt
3_Artificial_lift_systems.ppt3_Artificial_lift_systems.ppt
3_Artificial_lift_systems.ppt
 
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...
Gas Lift Design: Comparative Study of Continuous and Intermittent Gas Lift (C...
 
Well completion 1 wleg
Well completion 1 wlegWell completion 1 wleg
Well completion 1 wleg
 
04 gas lift_equipment
04 gas lift_equipment04 gas lift_equipment
04 gas lift_equipment
 
A Study Of Production Optimization Of An Oil Copy
A Study Of Production Optimization Of An Oil   CopyA Study Of Production Optimization Of An Oil   Copy
A Study Of Production Optimization Of An Oil Copy
 
Gas lift design
Gas lift designGas lift design
Gas lift design
 
Submersible pump 1
Submersible pump 1Submersible pump 1
Submersible pump 1
 
WELL HEAD pcp overview1234
WELL HEAD  pcp overview1234WELL HEAD  pcp overview1234
WELL HEAD pcp overview1234
 
Q922+re2+l08 v1
Q922+re2+l08 v1Q922+re2+l08 v1
Q922+re2+l08 v1
 
Well test analysis
Well test analysisWell test analysis
Well test analysis
 
Packers GFK
Packers GFKPackers GFK
Packers GFK
 
Production optimization using gas lift technique
Production optimization using gas lift techniqueProduction optimization using gas lift technique
Production optimization using gas lift technique
 

Similar to submersible pumps.pdf

Artificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfArtificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfIsmailKatun1
 
API Pumps design, application and selection
API Pumps design, application and selectionAPI Pumps design, application and selection
API Pumps design, application and selectionAlireza Bagherian
 
Basic Cenreifuga Pump Fundamental Knowledge
Basic Cenreifuga Pump Fundamental KnowledgeBasic Cenreifuga Pump Fundamental Knowledge
Basic Cenreifuga Pump Fundamental KnowledgeAngga896790
 
Pumps for Process Industries
Pumps for Process IndustriesPumps for Process Industries
Pumps for Process IndustriesRanjeet Kumar
 
Dyna pump spe paper saul tovar oxy permain
Dyna pump spe paper saul tovar oxy permainDyna pump spe paper saul tovar oxy permain
Dyna pump spe paper saul tovar oxy permainMohamed Ghareeb
 
Electrical_Submersible_Pump (final).ppt
Electrical_Submersible_Pump (final).pptElectrical_Submersible_Pump (final).ppt
Electrical_Submersible_Pump (final).pptAnkit732751
 
compressors_pumps course
compressors_pumps course compressors_pumps course
compressors_pumps course Ahmed Emad
 
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  finalWeek 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 finalCharlton Inao
 
pump energy efficiency
pump energy efficiencypump energy efficiency
pump energy efficiencymayank r
 
4-electricalsubmersibleumps.pdfeeeeeeeee
4-electricalsubmersibleumps.pdfeeeeeeeee4-electricalsubmersibleumps.pdfeeeeeeeee
4-electricalsubmersibleumps.pdfeeeeeeeeeshakermahoud
 
Calculation Of Pump Head
Calculation Of Pump HeadCalculation Of Pump Head
Calculation Of Pump HeadHashim Khan
 
Selection of pump
Selection of pumpSelection of pump
Selection of pumpsofrani
 
World_Pumps_May_2012
World_Pumps_May_2012World_Pumps_May_2012
World_Pumps_May_2012Pavel Bilenko
 
Rceprocating pump
Rceprocating pumpRceprocating pump
Rceprocating pumpFahad jee
 
Pump installation and Maintenance.pdf
Pump installation and Maintenance.pdfPump installation and Maintenance.pdf
Pump installation and Maintenance.pdfhuzaifaali22
 
Pistonless pump ppt
Pistonless pump pptPistonless pump ppt
Pistonless pump pptStudent
 

Similar to submersible pumps.pdf (20)

Artificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfArtificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdf
 
API Pumps design, application and selection
API Pumps design, application and selectionAPI Pumps design, application and selection
API Pumps design, application and selection
 
Basic Cenreifuga Pump Fundamental Knowledge
Basic Cenreifuga Pump Fundamental KnowledgeBasic Cenreifuga Pump Fundamental Knowledge
Basic Cenreifuga Pump Fundamental Knowledge
 
Pumps for Process Industries
Pumps for Process IndustriesPumps for Process Industries
Pumps for Process Industries
 
Dyna pump spe paper saul tovar oxy permain
Dyna pump spe paper saul tovar oxy permainDyna pump spe paper saul tovar oxy permain
Dyna pump spe paper saul tovar oxy permain
 
Electrical_Submersible_Pump (final).ppt
Electrical_Submersible_Pump (final).pptElectrical_Submersible_Pump (final).ppt
Electrical_Submersible_Pump (final).ppt
 
HVAC Pumps and End Suction Pumps
HVAC Pumps and End Suction PumpsHVAC Pumps and End Suction Pumps
HVAC Pumps and End Suction Pumps
 
compressors_pumps course
compressors_pumps course compressors_pumps course
compressors_pumps course
 
Jet pump
Jet pumpJet pump
Jet pump
 
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  finalWeek 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16  final
Week 4 pe 3231 pump cyl mot tank accu sho abs rev oct 16 final
 
LOW NPSH & CASES OF VERTICAL BARREL (VS6) TYPE PUMP SELECTION
LOW NPSH & CASES OF VERTICAL BARREL (VS6) TYPE PUMP SELECTIONLOW NPSH & CASES OF VERTICAL BARREL (VS6) TYPE PUMP SELECTION
LOW NPSH & CASES OF VERTICAL BARREL (VS6) TYPE PUMP SELECTION
 
pump energy efficiency
pump energy efficiencypump energy efficiency
pump energy efficiency
 
4-electricalsubmersibleumps.pdfeeeeeeeee
4-electricalsubmersibleumps.pdfeeeeeeeee4-electricalsubmersibleumps.pdfeeeeeeeee
4-electricalsubmersibleumps.pdfeeeeeeeee
 
Calculation Of Pump Head
Calculation Of Pump HeadCalculation Of Pump Head
Calculation Of Pump Head
 
Selection of pump
Selection of pumpSelection of pump
Selection of pump
 
World_Pumps_May_2012
World_Pumps_May_2012World_Pumps_May_2012
World_Pumps_May_2012
 
Basics of hydraulices
Basics of hydraulicesBasics of hydraulices
Basics of hydraulices
 
Rceprocating pump
Rceprocating pumpRceprocating pump
Rceprocating pump
 
Pump installation and Maintenance.pdf
Pump installation and Maintenance.pdfPump installation and Maintenance.pdf
Pump installation and Maintenance.pdf
 
Pistonless pump ppt
Pistonless pump pptPistonless pump ppt
Pistonless pump ppt
 

More from HaroonMurshed

Designing-Drones.pptx.pdf
Designing-Drones.pptx.pdfDesigning-Drones.pptx.pdf
Designing-Drones.pptx.pdfHaroonMurshed
 
16x8 wood propeller.step.docx
16x8 wood propeller.step.docx16x8 wood propeller.step.docx
16x8 wood propeller.step.docxHaroonMurshed
 
المضخات التردديه.pdf
المضخات التردديه.pdfالمضخات التردديه.pdf
المضخات التردديه.pdfHaroonMurshed
 
هيدروليك.pdf
هيدروليك.pdfهيدروليك.pdf
هيدروليك.pdfHaroonMurshed
 
Lecture design 2ICE.pdf
Lecture design 2ICE.pdfLecture design 2ICE.pdf
Lecture design 2ICE.pdfHaroonMurshed
 
chapter 2 Maintenance.pptx
chapter 2 Maintenance.pptxchapter 2 Maintenance.pptx
chapter 2 Maintenance.pptxHaroonMurshed
 
Car Air condition cycle.ppt
Car Air condition cycle.pptCar Air condition cycle.ppt
Car Air condition cycle.pptHaroonMurshed
 

More from HaroonMurshed (13)

Designing-Drones.pptx.pdf
Designing-Drones.pptx.pdfDesigning-Drones.pptx.pdf
Designing-Drones.pptx.pdf
 
16x8 wood propeller.step.docx
16x8 wood propeller.step.docx16x8 wood propeller.step.docx
16x8 wood propeller.step.docx
 
المضخات التردديه.pdf
المضخات التردديه.pdfالمضخات التردديه.pdf
المضخات التردديه.pdf
 
هيدروليك.pdf
هيدروليك.pdfهيدروليك.pdf
هيدروليك.pdf
 
u.pdf Hydraulic
u.pdf Hydraulic u.pdf Hydraulic
u.pdf Hydraulic
 
Lecture design 2ICE.pdf
Lecture design 2ICE.pdfLecture design 2ICE.pdf
Lecture design 2ICE.pdf
 
chapter 2 Maintenance.pptx
chapter 2 Maintenance.pptxchapter 2 Maintenance.pptx
chapter 2 Maintenance.pptx
 
centerifugal.pptx
centerifugal.pptxcenterifugal.pptx
centerifugal.pptx
 
Car Air condition cycle.ppt
Car Air condition cycle.pptCar Air condition cycle.ppt
Car Air condition cycle.ppt
 
114532.pdf
114532.pdf114532.pdf
114532.pdf
 
6466.ppsx
6466.ppsx6466.ppsx
6466.ppsx
 
Dr. Hamoud 1.ppt
Dr. Hamoud 1.pptDr. Hamoud 1.ppt
Dr. Hamoud 1.ppt
 
عرض.pptx
عرض.pptxعرض.pptx
عرض.pptx
 

Recently uploaded

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 

Recently uploaded (20)

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 

submersible pumps.pdf

  • 1.
  • 3. Artificial left reducing the wellbore pressure. This reduction will bring back the essential difference between the reservoir and wellbore pressure so oil can be extracted and lifted up to the surface.
  • 4. Artificial left method gas lifting Pumps sucker rod pumps (SRP) progressive cavity pumps (PCP) hydraulic pumps (HP) electrical submersible pump (ESP) - Artificial lift can be divided into two types, based on lifting mechanism:
  • 5. Electrical Submersible Pumping • Second most commonly used method worldwide (+100,000 wells) • Used massively in Russia and in significant number of wells in US. • Responsible for the highest amount of total fluids produced (oil and water) by any artificial lift method and an ideal method for high water cut wells. • Problems with sand production, high gas liquid ratio and high bottom hole temperatures.
  • 6. electrical submersible pump (ESP) ESP operated by AC source ESP operated by PV or DC source
  • 7. • REDA: Russian Electric Dynamo of Arutunoff estalished in 1930 in Bartlesville • Became Schlumerger-REDA Production Systems in the late 1990s History of ESPs
  • 8. Artificial lift pumps Comparing LSP = (enclosed) lineshaft pump • Impeller position needs adjustment at initial start up. • Requires an almost perfect vertical (max 4° tolerance) pumping chamber.
  • 9. LSP = (enclosed) lineshaft pump
  • 10. ESP = electric submersible pump • High immersion depth • Long lifetime High • Easier handling and shorter (installation/removal) time • Ability to accommodate deviated • high service temperatures (up to 250/300°C) • Worldwide service facilities • Less accessible motor, seal, thrust bearing • Higher operation speed(higher wear) Artificial lift pumps Comparing
  • 12. Operation & Maintenance costs 45% less compared to Vertical Turbine Pumps (LSP) 7% better total Efficiency with Submersible Pump sets compared to Vertical turbine Pumps (LSP)
  • 13. Type of deep wells submersible pump 1- turbine pump 2- submersible pump - Each type have in base vertical centrifugal pump and may be contain from one stage or more multi-stage for give high required pressure. - Characterizing this pump high volume rat
  • 14. Different between turbine & submersible pumps Submersible pump Turbine pump high Lowe Efficiency of motor high lowe Losses of electric cable lowe high Losses of fraction Difficult access to motor Easy access to motor maintenance High speed and corrosion factor lowe Lowe speed and corrosion factor lowe Speed of motor Use for high deep Use for low deep Deep We can use it in curvy well . need straight well because a shaft Straight of well High cast lowe cast cast
  • 15.
  • 16. 1- Deep-well turbine pump - Use it pump for lift a water from high well-deep . - Is group of centrifugal pumps connect to gather (stages) for lift the water from stage to stage . - May be reaches deep full to 600 m ; but not preferably increase a bout larger then 200 m ; because increase friction shaft with bearings and efficiency decrease .
  • 17. 2- Submersible turbine pump - At this type the pump and motor connect at the same production under the water . - Efficiency of this type large because motor connect direct with pump ; effective cooling and friction low .
  • 18. Advantages of submersible pump - Low cast at well have small diameter and high deep . - Suitable for quiet places like gardens and hospital because not give nose. - Suitable for not straight deep-wells
  • 19. - Suitable Operating for long time because it has good cooling
  • 20. Disadvantages of submersible pump - Cost of motor is very high . - High maintenance cast because it difficult to fixing motor . - May be create problem if well contain grit and small stone in water.
  • 22. Component of ESP a b o p n m l k d e f g h i c q r s j a b c d e f g h i j o p n m q r s l k
  • 27. How do work submersible pumps ?
  • 28. How do work submersible pumps ?
  • 29. How do work submersible pumps ?
  • 30. How do work submersible pumps ? video
  • 34. STEP 1: Basic Data Well Data: Casing size and weight, Tubing size, type and thread Perforated or open hole, Pump setting depth (measured and vertical), Deviation survey Production Data:, Wellhead tubing pressure, Present production rate, Production fluid level/Pump intake pressure, Static fluid level/ Static Bottom hole pressure, Datum point, Bottom-hole temperature, Desired production rate, Gas-oil ration, Water cut. Well Fluid Conditions: Specific gravity of water, Oil API or specific gravity, Specific gravity of gas, Bubble- point pressure of gas, Viscosity of oil, PVT data Power Sources: Available primary voltage, Frequency, Power source capability Possible Problems: Sand, Corrosion, Paraffin, Emulsion, Gas, Temperature
  • 35. STEP 2: Well Production Capacity - The Inflow Performance Relationship (IPR) or the Productivity Index (PI) of the well depending on the pressure regime should be integrated with the Vertical Lift Performance (VLP) Curve to determine the productive capacity of the well which would be used in the ESP design.
  • 36. STEP 3: Fluid Volumes Calculation - The accurate calculation of fluid volumes and type at the pump - intake is very important in pump design The presence and volume of free gas at the pump intake must be taken into consideration - Ideally, if the gas remains in solution, the pump behaves normally, however as gas to liquid ratio increases beyond the critical value of between 10-15%, the pump efficiency decreases and lower pump produced.
  • 37. STEP 3: Fluid Volumes Calculation The free gas volume is calculate from the following equations/correlations a. Solution Gas Oil Ratio (Dissolved Gas Oil Ratio)
  • 38. b. Gas Volume Factor
  • 39. c. Oil Formation Volume Factor, Bo
  • 40. d. Total Volume of Fluids
  • 41.
  • 42.
  • 44. STEP 4: Total Dynamic Head (TDH)
  • 45.
  • 47. STEP 5: Pump Type Selection-A Notes on Pump Selection: - Larger diameter pumps and motor are less expensive and they operate at higher efficiencies. - Select the highest efficient pump that will fit in the casing - If the well’s production capacity is not accurately known, choose a pump with a steep characteristic curve - If desired volume falls at a point where two pumps have approximately the same efficiency, choose the pump type which requires the greater number of stages - If gas is present in the produced fluid, a gas separator may be required to achieve efficient operation
  • 48.
  • 49.
  • 50.
  • 51.
  • 52. - These combinations must be carefully determined to operate the pump at the optimal production rate, material strength and temperature limits based on the Company’s catalogue. STEP 6: Optimum Size of Components Engineering considerations for sizing pump’s components include • Maximum Loading Limits • Maximum Diameter of Unit • Velocity of fluid passing a motor (this affects rate of pump cooling, a velocity of 1 ft/s is recommended, if not affective a motor jacket may be required to increase the velocity).
  • 53. . Optimum Selection of Pump From the Performance Curve of the selected pump type, determine the number of stages required to produce the anticipated capacity based on the calculated dynamic head (TDH). Note that the performance curves are single stage pump characteristic curves, hence the total stages required is determined from. .
  • 54. . Optimum Selection of Moto The optimum motor is selected by first determining the brake horsepower required per stage by the pump. This value is also gotten from performance curve. Therefore, brake horsepower (BHP) required to drive a pump is then calculated from . Optimum Selection of Gas Separator Refer to company catalogue for recommendations based on pump type and well environment Note: More power will be needed by the motor to drive an added gas separator, this must be added on when selecting the motor, if a gas separator would be needed in the pump.
  • 55. STEP 7: Electrical Cable Electric cable to be used is selected based on the evaluation of the following parameters: Cable Size - Cable size is dependent on voltage drop, amperage and available space between casing and collars - its is recommended that the voltage drop should be less than 30 volts/1000 ft or less than 15% of motor nameplate voltage. - This is based primarily on the fluid conditions and bottom-hole temperature Cable Type
  • 56.
  • 57.
  • 58.
  • 59.
  • 60. Another shapes of submersible pumps Types : common submersible pumps
  • 61. Another shapes of submersible pumps Types : swage submersible pumps
  • 62. Another shapes of submersible pumps Types : swage submersible pumps
  • 63. another shapes of submersible pumps Types : swage submersible pumps
  • 64. another shapes of submersible pumps Types : swage submersible pumps
  • 65. Through swage submersible pumps another shapes of submersible pumps Types :
  • 66. another shapes of submersible pumps Types : Through swage submersible pumps
  • 67. another shapes of submersible pumps Types : V- pump submersible pumps
  • 70. installations: 2- Preparing the equipments and Requirements :
  • 74. installations: 6- sticks cable , pipes, and wires
  • 75. installations: 7- chose the length of pipes, wires, and cable
  • 77. installations: 9- install the pump into water source : If water source is from deep well
  • 78. installations: 9- install the pump into water source : If water source is from deep well Torque Arrestor
  • 79. installations: 9- install the pump into water source : If water source is from pool or surfaces source
  • 81. installations: 10- power supply setting up : If the system is solar pump system
  • 84. • AC Pump system  AC current  Standard capacity 2-more Hp  High Voltage system hence the losses.  Motor to controller distance needs to be maintained to avoid spike voltage  Longer Life and modular Classifications systems :
  • 85. Classifications systems : DC PUMP SYSTEM  -DC current  -Standard capacity 1-3Hp  -External protection required • -Lower operating voltage • -Ease in installation, Simple Operation. • Very efficient for low - budgeted project and portable solution.
  • 86. Solar pump system : explain later DC current Ac current with using inferter Less power Easy to install -Reliable long life expectancy (20+ years) -Low maintenance, simple repair if related to solar array -Clean -No fuel needed -Modular system can be closely matched to needs, power easily adaptable to changing demands Classifications systems :
  • 87.
  • 88. Why solar pump system ? Advantages: Easy to install -Reliable long life expectancy (20+ years) -Low maintenance, simple repair if related to solar array -Clean -No fuel needed -Modular system can be closely matched to needs, power easily adaptable to changing demands disadvantages: Solar energy can vary seasonally -Higher initial cost -Lower output in cloudy weather
  • 89. Comparison Diesel vs. Solar pumping •Solar panels have no moving parts; most have a warranty of at least 20 years. •No fuel deliveries, and very little maintenance. •Most solar pumps operate without the use of storage batteries. •Water tank  simple, economical means of storage
  • 90.
  • 91. CONCLUSION: Solar pumps offer a clean and simple alternative to fuel-burning engines .
  • 92. Classification of Solar Pumps system :- Thermocycle conversion Photocell Conversion
  • 93. Thermocycle conversion thermodynamic cycles are used to convert solar energy into mechanical energy to power the solar pump. Solar energy is absorbed by a solar collector, or by a solar concentrating collector, that runs in a cycle converting the heat energy absorbed into shaft power that drives a mechanical pump.
  • 95. Solar Pumps system : Photocell Conversion Ashref
  • 96. ‫وانواعها‬ ‫الشمسية‬ ‫الطاقة‬ ‫أنظمة‬ ‫أنواع‬ ‫المستقل‬ ‫النظام‬ ( ‫األحادي‬ ) ‫الهجين‬ ‫النظام‬
  • 97. ‫المستقل‬ ‫النظام‬ ( ‫األحادي‬ ) ‫يستعمل‬ ‫ال‬ ‫المستقل‬ ‫النظام‬ ‫فإن‬ ‫الصورة‬ ‫في‬ ‫تشاهدون‬ ‫كما‬ ‫االلواح‬ ‫من‬ ‫المولدة‬ ‫الطاقة‬ ‫إال‬ ‫هذا‬ ‫يستعمل‬ ‫الكهرباء‬ ‫توليد‬ ‫اجل‬ ‫من‬ ‫و‬ ‫غير‬ ‫ال‬ ‫الشمسية‬ ‫التالية‬ ‫العناصر‬ ‫االحادي‬ ‫النظام‬ : 1 ) ‫الشمسية‬ ‫االلواح‬ : ‫الطاقة‬ ‫يحول‬ ‫الذي‬ ‫العنصر‬ ‫هي‬ ‫و‬ ‫مستمرة‬ ‫كهربائية‬ ‫طاقة‬ ‫إلى‬ ‫الشمسية‬ 2 ) ‫الشحن‬ ‫منظم‬ : ‫يقوم‬ ‫العنصر‬ ‫فهذا‬ ‫اسمه‬ ‫يوضح‬ ‫كما‬ ‫البطاريات‬ ‫شحن‬ ‫بتنظيم‬ ) 3 ) ‫البطاريات‬ : ‫الكهربائية‬ ‫الطاقة‬ ‫لتخزين‬ ‫وسيلة‬ ‫هي‬ ‫االستعمال‬ ‫عن‬ ‫الزائدة‬ ) 4 ) ‫دائرة‬ ‫كهربائية‬ ‫النظام‬ ‫مكونات‬ ‫لحماية‬ 5 ) ‫انفرتر‬ 6 ) ‫المتردد‬ ‫التيار‬ ‫طريق‬ ‫عن‬ ‫تعمل‬ ‫أجهزة‬ ) . 7 ) ‫المستمر‬ ‫التيار‬ ‫طريق‬ ‫عن‬ ‫تعمل‬ ‫أجهزة‬ . ) ‫لتخزين‬ ‫البطاريات‬ ‫تستعمل‬ ‫ال‬ ‫أحادية‬ ‫أخرى‬ ‫أنظمة‬ ‫هناك‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫مثل‬ ‫الطاقة‬ .
  • 99. ‫أنواعها‬ ‫و‬ ‫الشمسية‬ ‫الخاليا‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫الشمسي‬ ‫اللوح‬ : ‫بطريقة‬ ‫البعض‬ ‫ببعضها‬ ‫المتصلة‬ ‫الشمسية‬ ‫الخاليا‬ ‫من‬ ‫مجموعة‬ ‫هو‬ ( ‫الصورة‬ ‫توضح‬ ‫كما‬ ‫بالتوازي‬ ‫او‬ ‫تسلسلية‬ ‫التالية‬ . ‫بالتسلسل‬ ‫أو‬ ‫بالتوازي‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫من‬ ‫مجوعة‬ ‫تركيب‬ ‫يمكن‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫انواع‬ ‫تختلف‬ ‫الشمسية‬ ‫الخلية‬ ‫او‬ ‫الشمسي‬ ‫اللوح‬ ‫خصائص‬ ‫فإن‬ ‫أسفله‬ ‫الجدول‬ ‫في‬ ‫تالحظون‬ ‫كما‬ . nr % ‫اللوح‬ ‫كفاءة‬ ‫هي‬ ‫الخاصيات‬ ‫هذه‬ ‫من‬ ‫خاصية‬ ‫أهم‬ ‫و‬ ‫نوعيتها‬ ‫حسب‬
  • 100. ‫شهيرة‬ ‫أنواع‬ ‫ثالث‬ ‫إلى‬ ‫السوق‬ ‫في‬ ‫تواجدها‬ ‫حسب‬ ‫الشمسية‬ ‫االلواح‬ ‫نقسم‬ ‫أن‬ ‫يمكن‬ ‫و‬ : ‫أنواعها‬ ‫و‬ ‫الشمسية‬ ‫الخاليا‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫الواح‬ ‫الكفاءة‬ ‫ناحية‬ ‫من‬ ‫االلواح‬ ‫افضل‬ ‫يعتبر‬ ‫و‬ : . Mono-cristallin -‫نوع‬ ‫الشمسي‬ ‫اللوح‬ ‫ثمنا‬ ‫أقل‬ ‫أنه‬ ‫إال‬Mono-cristallin ‫اللوح‬ ‫من‬ ‫كفاءة‬ ‫أقل‬ : poly-cristallin -‫نوع‬ ‫الشمسي‬ ‫اللوح‬ ‫أن‬ ‫إال‬ ‫التركيب‬ ‫في‬ ‫سهولة‬ ‫و‬ ‫بمرونة‬ ‫يتميز‬ ‫كفائته‬ ‫ضعيفة‬ : thin film -‫نوع‬ ‫الشمسي‬ ‫اللوح‬
  • 101. ‫الشمسية‬ ‫الطاقة‬ ‫من‬ ‫الكهرباء‬ ‫توليد‬
  • 102. ‫انواعه‬ ‫و‬ ‫الشمسية‬ ‫الطاقة‬ ‫شحن‬ ‫منظم‬ ‫وظيفته‬ ‫ماهي‬ ‫و‬PWM ‫و‬MPPT CHARGE CONTROLLER ‫الشحن‬ ‫منظم‬ ‫وظيفة‬ .
  • 103. ‫الشحن‬ ‫منظم‬ ‫انواع‬ (PULSE WIDE MODULATION ) PWM ‫الشحن‬ ‫منظم‬ MAXIMUM POWER POINT TRACKING MPPT ‫شحن‬ ‫منظم‬
  • 105. ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ : ‫المياه‬ ‫مضخات‬ ‫أنواع‬ ‫نعرض‬ ‫أن‬ ‫قبل‬ ‫و‬ ‫أوال‬ , ‫من‬ ‫تتكون‬ ‫المضخات‬ ‫أن‬ ‫نعرف‬ ‫أن‬ ‫يجب‬ ‫جزئين‬ ‫أساسين‬ : ‫المضخة‬ ‫و‬ ‫المحرك‬ . ‫المحرك‬ ‫يستهلكه‬ ‫الذي‬ ‫الكهرباء‬ ‫نوع‬ ‫حسب‬ ‫المياه‬ ‫مضخات‬ ‫أنواع‬ : DC -‫المستمر‬ ‫بالتيار‬ ‫تعمل‬ ‫التي‬ ‫المياه‬ ‫مضخات‬ ‫محركات‬ ‫المتوسطة‬ ‫و‬ ‫الصغيرة‬ ‫القدرة‬ ‫ذات‬ ‫المضخات‬ ‫مع‬ ‫خاصة‬ ‫المحركات‬ ‫هذه‬ ‫نجد‬ . ‫و‬ ‫نستحق‬ ‫ال‬ ‫فإننا‬ ‫المضخات‬ ‫من‬ ‫النوع‬ ‫هذه‬ ‫باستعمال‬ ‫انفرتر‬ ‫إل‬ ‫المستمر‬ ‫التيار‬ ‫ليحول‬ ‫ى‬ ‫نوع‬ ‫من‬ ‫شحن‬ ‫منظم‬ ‫وانما‬ ‫تيار‬MPPT.
  • 106. : AC -‫المتردد‬ ‫بالتيار‬ ‫تعمل‬ ‫التي‬ ‫المياه‬ ‫مضخات‬ ‫محركات‬ ‫المستمر‬ ‫التيار‬ ‫مضخات‬ ‫من‬ ‫انتشارا‬ ‫أكثر‬ ‫المضخات‬ ‫من‬ ‫النوع‬ ‫هذا‬ . ‫مضخات‬ ‫منها‬ ‫نجد‬ ‫أن‬ ‫يمكن‬ ‫و‬ ‫الطور‬ ‫أحادي‬ ‫المتردد‬ ‫بالتيار‬ ‫تعمل‬ ( ‫واحد‬ ‫فاز‬ ) ‫الطور‬ ‫ثالثي‬ ‫بالتيار‬ ‫تعمل‬ ‫أخرى‬ ‫مضخات‬ ‫و‬ 3 ‫فاز‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ :
  • 107. ‫نفسها‬ ‫المضخة‬ ‫نوع‬ ‫حسب‬ ‫المياه‬ ‫مضخات‬ ‫أنواع‬ ( ‫المضخة‬ ‫محرك‬ ‫وليس‬ :) ‫المضخ‬ ‫عمل‬ ‫آلية‬ ‫حسب‬ ‫رئيسين‬ ‫قسمين‬ ‫إلى‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫نقسم‬ ‫يمكن‬ ‫كثيرا‬ ‫نتعمق‬ ‫أن‬ ‫بدون‬ ‫ة‬ : :(Centrifugal) -‫المركزي‬ ‫الطرد‬ ‫مضخات‬
  • 108. :(Positive displacement) -‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬ ‫كما‬ ‫إزاحتها‬ ‫و‬ ‫المياه‬ ‫لضخ‬ ‫معاكس‬ ‫باتجاه‬ ‫يدوران‬ ‫التعبير‬ ‫صح‬ ‫إن‬ ‫مروحتين‬ ‫أو‬ ‫فصين‬ ‫تستعمل‬ ‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬ ‫التالية‬ ‫الصورة‬ ‫توضخ‬ :
  • 109. ‫عملها‬ ‫موقع‬ ‫حسب‬ ‫ذلك‬ ‫و‬ ‫المضخات‬ ‫من‬ ‫نوعين‬ ‫إلى‬ ‫الفعالة‬ ‫اإلزاحة‬ ‫مضخات‬ ‫و‬ ‫المركزي‬ ‫الطرد‬ ‫مضخات‬ ‫من‬ ‫كل‬ ‫تنقسم‬ : - ‫السطحية‬ ‫المضخات‬ ‫البئر‬ ‫في‬ ‫تنزل‬ ‫ال‬ ‫اي‬ ‫األرض‬ ‫سطح‬ ‫على‬ ‫توضع‬ . ‫العميقة‬ ‫اآلبار‬ ‫مع‬ ‫تستعمل‬ ‫ال‬ ‫و‬ ‫و‬ ‫أمتار‬ ‫عشرة‬ ‫عمقها‬ ‫يتجاوز‬ ‫ال‬ ‫التي‬ ‫اآلبار‬ ‫في‬ ‫تستعمل‬ ‫لكنها‬ ‫أمتار‬ ‫ثالثة‬ ‫عن‬ ‫فيها‬ ‫يقل‬ ‫ال‬ ‫المياه‬ ‫منسوب‬ . ‫سبعة‬ ‫عن‬ ‫يزيد‬ ‫ارتفاع‬ ‫من‬ ‫المياه‬ ‫سحب‬ ‫يمكنها‬ ‫ال‬ ‫أخرى‬ ‫بطريقة‬ ‫أي‬ ‫أمتار‬ ( ‫تحديدا‬ 7.6 ‫متر‬ .)
  • 110. - ‫الغاطسة‬ ‫المضخات‬ ‫و‬ ‫الصاروخي‬ ‫بشكلها‬ ‫تتميز‬ ‫مضخات‬ ‫هي‬ ‫سابقا‬ ‫علمنا‬ ‫كما‬ ‫وسط‬ ‫تعمل‬ ‫و‬ ‫البئر‬ ‫داخل‬ ‫إنزالها‬ ‫يمكن‬ ‫بحيث‬ ‫الضعيف‬ ‫قطرها‬ ‫تلفها‬ ‫في‬ ‫يتسبب‬ ‫ماء‬ ‫بدون‬ ‫عملها‬ ‫و‬ ‫الماء‬ .
  • 112.
  • 113. Solar pump system Componentsa ‫لنظام‬ ‫الرئيسية‬ ‫المكونات‬ ‫فإن‬ ‫إذن‬ ‫كاآلتي‬ ‫هي‬ ‫الشمسية‬ ‫الطاقة‬ ‫مضخات‬ – ‫الشمسية‬ ‫األلواح‬ - ‫المياه‬ ‫مضخة‬ - ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫في‬ ‫المتحكم‬ ‫الشمسية‬ DC AC – - ‫ان‬ ‫فرتر‬ ‫الشمسية‬ ‫الطاقة‬ - ‫االنابيب‬ ‫شبكة‬ ‫مع‬ ‫تجميع‬ ‫خزان‬ Ameen
  • 114. ‫الالزمة‬ ‫الشمسية‬ ‫بالطاقة‬ ‫المياه‬ ‫مضخات‬ ‫قدرة‬ ‫حساب‬ ‫سنقوم‬ ‫الشمسية‬ ‫الطاقة‬ ‫نظام‬ ‫في‬ ‫المناسبة‬ ‫المضخة‬ ‫قدرة‬ ‫بحساب‬ ‫القيام‬ ‫أجل‬ ‫من‬ ‫كاآلتي‬ ‫هي‬ ‫و‬ ‫بسيطة‬ ‫مراحل‬ ‫بثالثة‬ : 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ 2 - ‫حساب‬ ‫الديناميكي‬ ‫الضغط‬ ‫ارتفاع‬ TDH 3 - ‫المناسبة‬ ‫الشمسية‬ ‫الطاقة‬ ‫مضخة‬ ‫اختيار‬
  • 115. 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫أن‬ ‫يجب‬ ‫نحتاجه‬ ‫الذي‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫أجل‬ ‫من‬ ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫نحتاجها‬ ‫التي‬ ‫المياه‬ ‫كمية‬ ‫أوال‬ ‫نعرف‬ . ‫يمكن‬ ‫بذلك‬ ‫القيام‬ ‫أجل‬ ‫من‬ ‫و‬ ‫اإلستعانة‬ ‫التالي‬ ‫بالجدول‬ ‫حجم‬ ‫حول‬ ‫إستهالك‬ ‫االستهالك‬ ‫من‬ ‫مختلفة‬ ‫ألنواع‬ ‫المياه‬ ‫غيرها‬ ‫و‬ ‫الحيوانات‬ ‫مثل‬ . ‫االستعمال‬ ‫بالل‬ ‫اليومي‬ ‫االستهالك‬ ‫تر‬ ‫البقرة‬ 70 ‫العجل‬ 25 ‫الخيل‬ 55 ‫الحمار‬ 35 ‫الماعز‬ ‫او‬ ‫الخروف‬ 4 ‫الدجاج‬ 0.5 ‫الحجم‬ ‫متوسطة‬ ‫الشجرة‬ 50 ‫للشخص‬ ‫المنزلي‬ ‫االستعمال‬ 200 ‫تقريبية‬ ‫األرقام‬ ‫هذه‬ ‫طبعا‬ . ‫فاإلستهالك‬ ‫يختلف‬ ‫للماء‬ ‫المنزلي‬ ‫آلخر‬ ‫شخص‬ ‫من‬ ‫و‬ ‫آلخر‬ ‫بلد‬ ‫من‬ , ‫النباتات‬ ‫استهالك‬ ‫يختلف‬ ‫و‬ ‫آلخر‬ ‫نوع‬ ‫من‬ ‫للماء‬ . * - ‫اليومي‬ ‫االستهالك‬ ‫حساب‬
  • 116. ** - ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬ : 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫المهم‬ , ‫حجم‬ ‫بتحديد‬ ‫نقوم‬ ‫أن‬ ‫بعد‬ ‫اإلستهالك‬ ‫الو‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫بتحديد‬ ‫نقوم‬ ‫للماء‬ ‫اليومي‬ ‫احد‬ . ‫كامل‬ ‫اليوم‬ ‫خالل‬ ‫سقوطه‬ ‫زاوية‬ ‫و‬ ‫االشعاع‬ ‫كمية‬ ‫من‬ ‫علم‬ ‫على‬ ‫نكون‬ ‫ان‬ ‫يجب‬ ‫الساعات‬ ‫عدد‬ ‫تحديد‬ ‫قبل‬ ‫طبعا‬ . ‫بالصورة‬ ‫موضح‬ ‫هو‬ ‫كما‬ ‫االشعاع‬ ‫كمية‬ ‫متوسط‬ ‫يكون‬ ‫اليمن‬ ‫بالدنا‬ ‫في‬ ‫مثال‬
  • 117. ‫لسقوطه‬ ‫زاوية‬ ‫هناك‬ ‫كذلك‬ ‫الشمسي‬ ‫االشعاع‬ ‫كمية‬ ‫متوسط‬ ‫توزيع‬ ‫سابقا‬ ‫راينا‬ ‫كما‬ ** - ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬ : 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫الفصول‬ ‫باختالف‬ ‫وكذلك‬ ‫المنطقة‬ ‫باختالف‬ ‫تختلف‬ ‫الزاوية‬ ‫هذه‬ ‫بذلك‬ ‫خاصة‬ ‫وجداول‬ ‫برامج‬ ‫هناك‬ ‫يوجد‬ ‫الزاوية‬ ‫هذه‬ ‫الختيار‬ ‫طبعا‬
  • 118. ** - ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬ : 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ winter summer 1000 900 800 700 600 500 400 300 200 100
  • 119. ** - ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫تحديد‬ ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫الشمس‬ : 1 - ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫المناسب‬
  • 120.
  • 121. 1 - ‫المناسب‬ ‫المياه‬ ‫تدفق‬ ‫حساب‬ ‫الساعات‬ ‫وعدد‬ ‫اليومي‬ ‫االستهالك‬ ‫حساب‬ ‫يتم‬ ‫ان‬ ‫بعد‬ ‫اذن‬ ‫الفعاله‬ ‫تد‬ ‫حساب‬ ‫االن‬ ‫يمكن‬ ‫الواحد‬ ‫اليوم‬ ‫في‬ ‫المياه‬ ‫فق‬ ‫التالية‬ ‫العالقة‬ ‫خالل‬ ‫من‬ ‫المناسب‬ ‫المناسب‬ ‫المياه‬ ‫تدفق‬ = ‫اليومية‬ ‫االستهالك‬ ‫كمية‬ ‫الشمس‬ ‫ظهور‬ ‫ساعات‬ ‫عدد‬ ‫لتر‬ / ‫ساعه‬
  • 125. * ‫المحول‬ ‫حساب‬ ( ‫االنفرتر‬ ) ‫المطلوبة‬ ‫الشمسية‬ ‫االلواح‬ ‫وعدد‬ : ‫القدرة‬ ‫حساب‬ ‫أوال‬ ‫الالزمه‬ ‫الكهربائي‬ ‫المضخة‬ ‫لمحرك‬ ‫القدرة‬ ‫الالزمه‬ ‫المضخة‬ ‫لمحرك‬ = ‫المضخة‬ ‫قدرة‬ ‫المضخة‬ ‫كفاءة‬ ‫المحول‬ ‫قدرة‬ ‫حساب‬ ‫ثانيا‬ ( ‫االنفرتر‬ ) ‫المحول‬ ‫قدرة‬ = ‫القدرة‬ ‫الالزمه‬ ‫الكهربائي‬ ‫المضخة‬ ‫لمحرك‬ ‫المحول‬ ‫كفاءة‬ ‫المطلوبة‬ ‫الشمسية‬ ‫االلواح‬ ‫قدرة‬ ‫حساب‬ ‫ثالثا‬ ‫الشمسية‬ ‫االلواح‬ ‫قدرة‬ = 1.25 * ‫المحول‬ ‫قدرة‬ ‫المطلوب‬ ‫االلواح‬ ‫عدد‬ ‫حساب‬ ‫رابعا‬ ‫االلواح‬ ‫عدد‬ = ‫الشمسية‬ ‫االلواح‬ ‫قدرة‬ ‫واحد‬ ‫لوح‬ ‫قدرة‬ ‫واخييييرا‬ ‫االمن‬ ‫توفر‬ ‫الضرورة‬ ‫من‬
  • 126. * ‫مثال‬ ‫المشروع‬ ‫من‬ ‫الغرض‬ : - ‫توف‬ ‫وأيضا‬ ‫االدمي‬ ‫ولالستخدام‬ ‫للشرب‬ ‫المياه‬ ‫توفير‬ ‫ير‬ ‫الشرب‬ ‫مياه‬ ‫أنواعها‬ ‫بمختلف‬ ‫للمواشي‬ , ‫بئ‬ ‫من‬ ‫المياه‬ ‫ضخ‬ ‫خالل‬ ‫من‬ ‫ر‬ " ‫عارف‬ " ‫المنطقة‬ ‫في‬ ‫الموجود‬ , ‫طاقة‬ ‫منظومة‬ ‫باستخدام‬ ‫وذلك‬ ‫شمسية‬ ‫عامة‬ ‫معلومات‬ * ‫البئر‬ ‫عمق‬ : 25 ‫متر‬ * ‫البئر‬ ‫عن‬ ‫القرية‬ ‫ارتفاع‬ : 200 ‫متر‬ * ‫البئر‬ ‫الى‬ ‫القرية‬ ‫من‬ ‫االفقية‬ ‫المسافة‬ : 300 * ‫للمياه‬ ‫اليومي‬ ‫االحتياج‬ ‫متوسط‬ : 50 ‫الى‬ 40 ‫متر‬ 3 * ‫النهار‬ ‫في‬ ‫للشمس‬ ‫الذروة‬ ‫ساعات‬ ‫معدل‬ : 6 ‫ساعات‬
  • 127.
  • 128.
  • 133.
  • 134. submersibles pump Companies serving Yemen Grindex Pumps based in Sundbyberg, SWEDEN Well Pumps S.A. based in Fleurus, BELGIUM DeTech Pumps Co. Ltd. based in Nanjing, CHINA
  • 135. Submersibles pump Companies serving U.S.A Wolf Pumps - Zoeller Company based in Abernathy, TEXAS (USA) Maxisu Submersible Pump & Motor based in Sanliurfa, TURKEY
  • 136. 3 WPs Applications in intermittent operation: Small waterworks. Irrigation. Tank applications. features: pump entirely made out of stainless steel and fits in 3”. Constant pressure with two set pressures possible. Capacity from 2 to 40m³/h and a maximum head of 140m. The maximum fluid temperature is 30°C ®
  • 137. Dimensions and Weights 3”WPS® 2 and 3”WPS®-CP
  • 138. 4 WPS applications: Heating pumps (only for 4’’WPS). Dewatering, mining, hot springs . Industrial applications. features: Pump entirely made out of stainless steel and fits in 4 or larger drilled wells. Capacity from 8 to 70 m³/h and a maximum head of 160m.
  • 139. 6 WPS applications: General water supply Waterworks and fountains Irrigation features: Pump entirely made out of stainless steel and fits in 6” or larger drilled wells. 6”WPS® pump have capacity up to 60 m³/h and a maximum head of 190m
  • 140. 8 WPS applications: Pressure boosting Dewatering, mining and other industrial applications features: The 8”WPS® pump have a capacity up to 120 m³/h and a maximum head of 230m. The rotation is counter clockwise when looking into the discharge. The 8”WPS® pumps can run continuously in vertical or horizontal position. Overall diameter of the pump is 189 mm and thus fits into 8” or larger drilled wells.
  • 141. 10 WPS applications: General water supply Waterworks and fountains features: The 10”WPS® pump have a capacity up to 280 m³/h and a maximum head of 450m. The 10”WPS® pumps can run continuously in vertical or horizontal position. Overall diameter of the pump is maximum 247 mm and thus fits into 10” or larger drilled wells.
  • 142. Grindex Drainge pump Choose a drainage pump when you need to pump large quantities of dirty water; head 15-200 meter, flow 6-350 liter/second with abrasive particles in size up to 12 mm.
  • 143. Grindex bravo pump Our Bravo pump are specially designed for pumping slurry and fluids with high content of higly abrasive solids in sizes up to 50 mm at maximum 17-45 meter head and 28-130 liters/second. Application cleaning of settling ponds, sewage
  • 145. Some design and simulation software - COMPASS solar pump system planner. - AutographPC Software. - IHS SubPUMP software. - Pump scanner, Android APP - Solar pumping, Android APP
  • 146. Click on either Submersible or Surface depending on the kind of scheme Presentation Screen when opening COMPASS: Pv and surface accessories calculations
  • 147. Select your location by introducing Country and City OR GPS point the best performing angles for solar panel installation Motor cable length Lost due to panels being covered with dust. dirt lost=10%. Otherwise leave it at 5%. Water temperature leave it at 25C If you don’t know Total Dynamic Head of your system, tick on Pipe Length and fill the information to the best of your knowledge (see next slide) State daily needs of water in terms of m3. (the maximum amount of water that can be pumped without drying the borehole). If want to ensure the Required Daily Output of water is supplied even during months with least Sun (i.e. winter or rainy seasons) choose the option ‘Sizing for month with least output’. Otherwise choose ‘Average month’.
  • 148. In case Total Dynamic Head is not known, tick on Pipe length and fill the 3 boxes to the best of your knowledge. Vertical height from the dynamic water level to the highest point of delivery (not to be mistaken with static water level). Length of pipe from pump outlet to pump to inlet of tank. To fill Pipe Type, click on ‘+’, then choose from the displayed ‘Pipe type Menu’ the closest definition to your pipe. In case of doubt, choose the worst case scenario (‘steel, slightly rusty and incrusted’ with Pipe roughness of 0.400).
  • 149. Click ‘Calculate’ and see whther your water needs are covered. Daily water pumped in an average day during the year 62m3/day during December, which is the month with least output for our location. As it is higher than the Daily Required Output introduced (60m3/day), it means this system will provide all the water needed all the year round. This is an example of m3 pumped per hour in an average day. Pump will start running at 9:00h and will pump 8.1m3/h through 15:00h for 6.8m3/h Daily water pumped in m3 during April
  • 150. Add/ remove solar panels and see how water output change By clicking report, system characteristics will be shown (pump, number of panels, etc) By clicking the arrows up/down, number of solar panels can be increased/ decreased and water output will change accordingly
  • 151. By Clicking Report, all data of proposed system will be shown 5 pages showing different system data and drawings Add/remove accessories (water level sensors, water meters etc) and produce report in .pdf if needed
  • 154. Preventive Maintenance (PM) Statistical life ◦ Extends the life of your Pumps. ◦ Sustains the efficiency of your pumps. ◦ Identifies potential problems before the point of catastrophic failure. ◦ Protects your investment.
  • 155. Condition Monitoring - Monitoring of ESPs using downhole sensor data provides an opportunity to diagnose ESP performance from a hydraulic standpoint - Downhole sensor data provides an immediate direct accurate measurement of ESP performance
  • 156. ESP operating parameters - pump intake pressure (Pi) :- should be used to prevent pump-off or to prevent the well from being drawn down below a given pressure (bubble point or a minimum bottomhole flowing pressure). - discharge pressure (Pd) :- respond to changes in specific gravity of the produced fluid (watercut or gas), prevent a pump being deadheaded or operated in a low flow scenario. - intake temperature (Ti) :- acts as a back-up to motor temperature. - motor temperature (Tm) :- can be motor winding temperature or motor oil temperature.
  • 157. - Pump Pressure Differential (dP) ESP operating parameters can be used to ensure that the ESP is run within range. for example:- the efficiency range of the pump in relation to the operating point. Minimum head of 1957 ft. Maximum head of 3774 ft.
  • 158. vibration (Vib) is an indirect measurement of ESP performance , can indicate any change in normal operating conditions such as: • change in frequency (pump speed) and operation around resonant frequencies; • change in wellhead pressure (by surface choke closure); • onset or increase in solids (sand/scale) production and tracking pump wear; • start of gas locking; • change of pump/motor temperatures caused by severe upthrust/downthrust operation. ESP operating parameters
  • 159.
  • 161. Motor winding resistance •Indicator of possible motor winding problems •All readings should be the same
  • 162. Megger readings  Less than 100 ohms unserviceable- repair required.  500 ohms moisture present/ insulation degraded- repair should be Scheduled.  1000 ohms serviceable, but showing signs of degraded insulation.  2K ohms new condition.
  • 163. Flygt FLS Leak Detector Its used for sensing the presence of water in the oil and/or stator housing - In the 1500 Ohms range, switch contacts are Open, normal or safe condition resistance. - in the 300 Ohms range , switch contacts are Closed , The leak or fail condition resistance reading.
  • 167. Bearings failure • Evidence of rubbing or • wear • Inadequate lubrication • Improper handling • Excessive hours • Vibration • High RPM this causes an uplifting or upthrusting on the impeller/shaft assembly.
  • 168. broken or twisted shaft • Failed check valves or a lack of check valves causes back spinning Failed check valves or a lack of check valves causes back spinning. • back spinning severely strains the motor assembly, resulting in shaft damage.
  • 169. Seals failure Two types of Failure - physical damage or separated faces. ◦ Impeller worn and unbalanced ◦ Cavitation or suction recirculation
  • 172. Dry-Running Protection •Helps extend pump life by preventing pump damage due to lack of water in well.
  • 173. Heavy fine-Sand Problem: - With sand pumping, the service life of the pump is reduced drastically. - Too high a clearance result in high vibrations which reduce the discharge and overload the motor.
  • 175. Big body in large ESP problem :
  • 177. Troubleshooting Submersible pump won't start Submersible pump will not stop running Submersible pump works but delivery little or no water
  • 178. Troubleshooting: Submersible pump won't start Problem Check Correct Power is not supplied to the submersible pump Place a voltmeter across power lines coming into the submersible pump to check the power supply for the overload protection box. The power company should be consulted if there is no power to the box. There is no overload protection Examine the circuit breaker and the fuses to the submersible pump to ensure that they are operating correctly. Replace blown fuses and reset the breaker if it has been tripped. Pressure switch on submersible pump is damaged With the submersible pump pressure switch in a closed position, check the voltage across the switch. If the voltage drop is at the same level as the line voltage, the switch is obviously not making contact. The contact points should be cleaned and/or the pressure switch replaced for the submersible pump.
  • 179. Troubleshooting: Submersible pump will not stop running Problem Check Correct Pressure switch on the submersible pump is defective Pressure switch points may have adhered to each other causing the switch to remain in a closed position. Clean the points on the pressure switch. If this does not work, the switch on the submersible pump needs to be replaced. Drop line has a leak Raise the pipe on the submersible pump and check for leaks. The damaged section of the drop pipe should be replaced. Level of water in well is too low Restrain the output flow of the submersible pump, then wait for the well to recover. Re-start the pump. Keep the valve at the restricted setting if this has remedied the problem. If not, the submersible pump must be lowered further down in the well. Submersible pump parts are damaged The impeller, casing, and other parts of the submersible pump may be worn due to abrasives in the water. Lower the pressure switch setting. If the pump shuts off, damaged parts are the probable cause.. Replace worn parts on the submersible pump.
  • 180. Troubleshooting: Submersible pump works but delivery little or no water Problem Check Correct Submersible pump may be air-locked Start and stop pump repeatedly. If submersible pump begins working, air lock was the problem. If the trouble isn’t corrected by performing this test, move on to the next possible problem. Water level too low in submersible pump Well production could be too low. Limit flow of pump output, then wait for well to recover and re-start. If partial limitation of flow corrects the problem leave the valve at the restricted setting. Discharge line check valve installed backwards on submersible pump Make sure arrow that indicates direction of flow on check valve is pointed in the right direction. If check valve is not pointed in the right direction, then reverse the valve. Blocked pump intake screen Examine intake screen on the submersible pump and check for mud or sand blockage. Clean screen and make sure submersible pump is reinstalled many feet above the well bottom. Worn pump parts Reduce setting on pressure switch to see if the submersible pump shuts off. If it does, check for worn parts Pull submersible pump and replace the worn components.
  • 181. Motor Fault’s Fault Possible Cause Locked pump Motor/pump misaligned. Sand bound pump. Open circuit Loose connections. Defective motor or cable. Short circuit Defective motor or cable. Overheat High ambient temperature. Direct sunlight . No water flow through the unit. Motor underload Overpumped or dry well. Worn pump. Broken motor shaft. Blocked pump screen.
  • 182. What's Couse  Running pump far right of best efficiency point BEP (runout, overloaded motor)  Blockage or clog  Impeller clearance too tight  Running pump far left of best efficiency point BEP (deadhead)  Closed discharge valve  Partially closed check valve Low Amps: High Amps: Motor Fault’s