SlideShare a Scribd company logo
1 of 1
Download to read offline
Effects	
  of	
  Foil	
  Thickness	
  and	
  Applied	
  Bonding	
  Pressure	
  on	
  the	
  Shear	
  Strength	
  of	
  	
  
Bonds	
  Formed	
  Using	
  Novel	
  Reac@ve	
  Thermite	
  Foils  
Evan	
  Krumheuer,	
  T.P.	
  Weihs	
  
Johns	
  Hopkins	
  University	
  Department	
  of	
  Materials	
  Science	
  and	
  	
  Engineering	
  
Mo@va@on	
  
Mechanically	
  processed	
  thermite	
  foils	
  produce	
  a	
  highly	
  
exothermic	
  reacDon.	
  When	
  a	
  metal	
  diluent	
  is	
  added	
  to	
  the	
  foils,	
  
the	
  heat	
  from	
  this	
  reacDon	
  is	
  sufficient	
  to	
  melt	
  the	
  diluent	
  and	
  
form	
  a	
  molten	
  braze.	
  
	
  
Poor	
  foil	
  quality	
  can	
  lead	
  to:	
  	
  
-­‐	
  Uneven	
  loading	
  pressure	
  
-­‐	
  Non-­‐uniform	
  heaDng	
  
-­‐	
  PreferenDal	
  foil	
  mass	
  ejecDon	
  
-­‐	
  Weakened	
  bond	
  strength	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Sample	
  Prepara@on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Design	
  Component	
  
	
  
Designed	
  an	
  experimental	
  method	
  for	
  comparing	
  bonds	
  of	
  either	
  
varied	
  thickness	
  or	
  applied	
  bonding	
  pressure	
  as	
  well	
  as	
  a	
  process	
  
for	
  bonding	
  large	
  (4-­‐8x	
  normal)	
  area	
  foils.	
  
Foil	
  Thickness	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Applied	
  Bonding	
  Pressure	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Conclusions	
  
	
  
	
  
	
  
	
  
Future	
  Work	
  
	
  
	
  
	
  
Acknowledgment	
  
This	
  work	
  was	
  supported	
  by	
  the	
  Vehicle	
  Technologies	
  Program	
  of	
  the	
  U.S.	
  Dept.	
  of	
  
Energy	
  (DOE-­‐VTP)	
  and	
  the	
  U.S.	
  Army,	
  No.	
  DE-­‐EE0006441.	
  I	
  would	
  like	
  to	
  acknowledge	
  
Alex	
  Kinsey	
  and	
  Kyle	
  Slusarski	
  for	
  their	
  guidance	
  and	
  assistance	
  with	
  this	
  project.	
  
Batch	
  Comparisons	
  
It	
  became	
  apparent	
  that	
  foils	
  originaDng	
  from	
  different	
  
tubes	
  showed	
  differences	
  in	
  reacDve	
  properDes.	
  
XRD	
  results	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
-­‐More	
  Cu2O	
  character	
  seen	
  in	
  tubes	
  2	
  and	
  3	
  signifies	
  	
  	
  	
  
incomplete	
  reacDon	
  or	
  oxide	
  rich	
  starDng	
  chemistry.	
  
Foils	
  were	
  polished	
  down	
  to	
  a	
  final	
  thickness	
  of	
  either	
  400	
  µm,	
  700	
  
µm,	
  1000	
  µm,	
  or	
  1350	
  µm	
  ±	
  45	
  µm.	
  
	
  
Redox	
  foil	
  between	
  steel	
  substrates	
  in	
  bonding	
  	
  
apparatus	
  before	
  (Lee)	
  and	
  aeer	
  (Right)	
  igniDon,	
  with	
  
mass	
  ejecDon	
  shown	
  in	
  right	
  figure.	
  
-­‐Increasing	
  thickness	
  
leads	
  to	
  increased	
  
bond	
  strength.	
  
-­‐Possible	
  plateau	
  of	
  
strength	
  except	
  for	
  
outlier.	
  
	
  
	
  
	
  
	
  
1. Ball	
  Mill	
  Powders	
  
2. Add	
  30wt%Cu	
  diluent,	
  pack	
  powders	
  into	
  tubes	
  
3. Radially	
  reduce	
  tubes	
  through	
  swaging	
  
4. Cut	
  tubes	
  
5. Roll	
  tubes	
  
6. Strip	
  tubes	
  to	
  obtain	
  flat	
  foil	
  
Begin	
  with	
  Al,	
  Cu2O,	
  and	
  Cu	
  powders…	
  	
  
Foils	
  (1000	
  µm	
  thick)	
  were	
  tested	
  with	
  varied	
  applied	
  bonding	
  pressure.	
  
Pressures	
  studied	
  were	
  15	
  lbf,	
  45	
  lbf,	
  90	
  lbf,	
  and	
  450	
  lbf.	
  
	
  
-­‐1350	
  µm	
  thick	
  foils	
  wet	
  the	
  steel	
  surfaces	
  tested	
  beker	
  than	
  any	
  
of	
  the	
  thinner	
  foils	
  tested.	
  	
  
	
  
-­‐Higher	
  applied	
  bonding	
  pressure	
  leads	
  to	
  stronger	
  bonds.	
  
	
  
-­‐Evidence	
  of	
  either	
  incomplete	
  reacDon	
  or	
  oxide	
  rich	
  starDng	
  
materials	
  in	
  Tubes	
  2	
  and	
  3.	
  
-­‐Perform	
  more	
  tests	
  to	
  study	
  the	
  effect	
  of	
  reacDon	
  area	
  on	
  the	
  
shear	
  strength	
  of	
  these	
  bonds.	
  
	
  
-­‐Perform	
  more	
  analysis	
  on	
  tube	
  to	
  tube	
  conDnuity.	
  
	
  
-­‐EDS	
  of	
  broken	
  bond	
  surfaces	
  to	
  understand	
  interface	
  chemistry.	
  
-­‐Increasing	
  pressure	
  leads	
  to	
  
increased	
  bond	
  strength.	
  
	
  
Cross	
  secDonal	
  opDcal	
  microscope	
  images	
  of	
  bonds	
  formed	
  with	
  foils	
  either	
  
1350	
  µm	
  (above)	
  or	
  1000	
  µm	
  	
  (below)	
  thick.	
  
-­‐1350	
  µm	
  foil	
  shows	
  
superior	
  welng	
  of	
  
the	
  steel	
  compared	
  
to	
  1000	
  µm	
  foil.	
  	
  
-­‐450	
  lbf	
  samples	
  exhibit	
  
highest	
  %	
  pressure	
  drop	
  and	
  
lowest	
  mass	
  ejecDon.	
  
400 600 800 1000 1200 1400
0
50
100
150
200
250
300
350
400
450
400 µm
700 µm
1000 µm
1350 µm
MaxLoad(N)
Foil Thickness (µm)
Unreacted	
  redox	
  foil	
  2”	
  by	
  ¼”	
  
0 100 200 300 400 500
50
100
150
200
250
300
350 15 lbf
45 lbf
90 lbf
450 lbf
LoadHeld(N)
Applied Bonding Pressure ( (lbf)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0
20
40
60
80
100
15 lbf
45 lbf
90 lbf
450 lbf
%PressureDrop
Mass Change Per Area (mg / mm
2
)
	
  -­‐Variability	
  of	
  values	
  observed	
  
due	
  to	
  heterogeneity	
  in	
  foil	
  
microstructure.	
  	
  
30 32 34 36 38 40 42 44 46 48 50
2T
Tube 1
Tube 2
Tube 3
Cu2O	
  Peak	
  at	
  ~36°	
  and	
  
masked	
  by	
  shoulder	
  at	
  ~42°	
  
Cu	
  
Cu2O	
  
Al	
  

More Related Content

What's hot

Superhard nano composite coating
Superhard nano composite coatingSuperhard nano composite coating
Superhard nano composite coating
Pintu Kumar
 
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy CompositeStudy and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
paperpublications3
 
2012 11-15-high-value-manufacturing-sirris-magnien
2012 11-15-high-value-manufacturing-sirris-magnien2012 11-15-high-value-manufacturing-sirris-magnien
2012 11-15-high-value-manufacturing-sirris-magnien
Sirris
 

What's hot (18)

Compressive and Split Tensile Strength of Chopped Basalt Fiber Concrete
Compressive and Split Tensile Strength of Chopped Basalt Fiber ConcreteCompressive and Split Tensile Strength of Chopped Basalt Fiber Concrete
Compressive and Split Tensile Strength of Chopped Basalt Fiber Concrete
 
hair fibre reinforced concrete vs plain cement concrete
hair fibre reinforced concrete vs plain cement concretehair fibre reinforced concrete vs plain cement concrete
hair fibre reinforced concrete vs plain cement concrete
 
SANDWICH DESIGN MODEL FOR ALUMINUM AND KENAF-POLYESTER COMPOSITE
SANDWICH DESIGN MODEL FOR ALUMINUM AND KENAF-POLYESTER COMPOSITESANDWICH DESIGN MODEL FOR ALUMINUM AND KENAF-POLYESTER COMPOSITE
SANDWICH DESIGN MODEL FOR ALUMINUM AND KENAF-POLYESTER COMPOSITE
 
Super hard materials
Super hard materialsSuper hard materials
Super hard materials
 
Superhard nano composite coating
Superhard nano composite coatingSuperhard nano composite coating
Superhard nano composite coating
 
Composite material
Composite materialComposite material
Composite material
 
K0354071077
K0354071077K0354071077
K0354071077
 
Metal rubber
Metal rubberMetal rubber
Metal rubber
 
Severe Plastic Deformation
Severe Plastic Deformation Severe Plastic Deformation
Severe Plastic Deformation
 
Nano composite and nano grain
Nano composite and nano grainNano composite and nano grain
Nano composite and nano grain
 
Effect of fibers on Hybrid Matrix Composites
Effect of fibers on Hybrid Matrix CompositesEffect of fibers on Hybrid Matrix Composites
Effect of fibers on Hybrid Matrix Composites
 
Strength and behaviour of sifcon with different types of fibers
Strength and behaviour of sifcon with different types of fibersStrength and behaviour of sifcon with different types of fibers
Strength and behaviour of sifcon with different types of fibers
 
Annular nanolayer film extrusion may 2016 2 27-2017
Annular nanolayer film extrusion may 2016 2 27-2017Annular nanolayer film extrusion may 2016 2 27-2017
Annular nanolayer film extrusion may 2016 2 27-2017
 
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy CompositeStudy and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
Study and Analysis on Mechanical and Wear Behavior of SiC Filled Epoxy Composite
 
MATERIALS TECHNOLOGY
MATERIALS TECHNOLOGYMATERIALS TECHNOLOGY
MATERIALS TECHNOLOGY
 
2012 11-15-high-value-manufacturing-sirris-magnien
2012 11-15-high-value-manufacturing-sirris-magnien2012 11-15-high-value-manufacturing-sirris-magnien
2012 11-15-high-value-manufacturing-sirris-magnien
 
Hybrid natural fiber reinforced polyester composites
Hybrid natural fiber reinforced polyester compositesHybrid natural fiber reinforced polyester composites
Hybrid natural fiber reinforced polyester composites
 
Performance of Polypropylene Fibre Reinforced Concrete
Performance of Polypropylene Fibre Reinforced ConcretePerformance of Polypropylene Fibre Reinforced Concrete
Performance of Polypropylene Fibre Reinforced Concrete
 

Viewers also liked

Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their PointsShear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
guest963b41
 

Viewers also liked (6)

Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their PointsShear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
Shear Strength Of Rockfill, Interfaces And Rock Joints, And Their Points
 
Deformability modulus of jointed rocks, limitation of empirical methods, and ...
Deformability modulus of jointed rocks, limitation of empirical methods, and ...Deformability modulus of jointed rocks, limitation of empirical methods, and ...
Deformability modulus of jointed rocks, limitation of empirical methods, and ...
 
1.rock mechanics.introduction
1.rock mechanics.introduction1.rock mechanics.introduction
1.rock mechanics.introduction
 
Slope assignmentt
Slope assignmenttSlope assignmentt
Slope assignmentt
 
SHEAR STRENGTH THEORY
SHEAR STRENGTH THEORYSHEAR STRENGTH THEORY
SHEAR STRENGTH THEORY
 
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
 

Similar to KrumheuerLast_Effects of Parameters on Bonding

New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docx
curwenmichaela
 
Use of Laser Generated Shocks to Improve Metals & Alloys
Use of Laser Generated Shocks to Improve Metals & AlloysUse of Laser Generated Shocks to Improve Metals & Alloys
Use of Laser Generated Shocks to Improve Metals & Alloys
LSP Technologies
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docx
ransayo
 
Laser Shock Peening - LSP Technologies
Laser Shock Peening - LSP TechnologiesLaser Shock Peening - LSP Technologies
Laser Shock Peening - LSP Technologies
LSP Technologies
 
An experimental investigation on flexural behaviour of fibre reinforced robo ...
An experimental investigation on flexural behaviour of fibre reinforced robo ...An experimental investigation on flexural behaviour of fibre reinforced robo ...
An experimental investigation on flexural behaviour of fibre reinforced robo ...
eSAT Journals
 
Experimental study of effect of fiber orientation on
Experimental study of effect of fiber orientation onExperimental study of effect of fiber orientation on
Experimental study of effect of fiber orientation on
eSAT Publishing House
 
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
LidaN16
 
Ductile Adhesively Bonded Timber Joints
Ductile Adhesively Bonded Timber JointsDuctile Adhesively Bonded Timber Joints
Ductile Adhesively Bonded Timber Joints
till.vallee
 

Similar to KrumheuerLast_Effects of Parameters on Bonding (20)

Correlation between the Interface Width and the Adhesion Strength of Copper F...
Correlation between the Interface Width and the Adhesion Strength of Copper F...Correlation between the Interface Width and the Adhesion Strength of Copper F...
Correlation between the Interface Width and the Adhesion Strength of Copper F...
 
New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docx
 
Use of Laser Generated Shocks to Improve Metals & Alloys
Use of Laser Generated Shocks to Improve Metals & AlloysUse of Laser Generated Shocks to Improve Metals & Alloys
Use of Laser Generated Shocks to Improve Metals & Alloys
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docx
 
Laser Shock Peening - LSP Technologies
Laser Shock Peening - LSP TechnologiesLaser Shock Peening - LSP Technologies
Laser Shock Peening - LSP Technologies
 
An experimental investigation on flexural behaviour of fibre reinforced robo ...
An experimental investigation on flexural behaviour of fibre reinforced robo ...An experimental investigation on flexural behaviour of fibre reinforced robo ...
An experimental investigation on flexural behaviour of fibre reinforced robo ...
 
ultrasonic.pdf
ultrasonic.pdfultrasonic.pdf
ultrasonic.pdf
 
Vikas thesis ppt
Vikas thesis ppt   Vikas thesis ppt
Vikas thesis ppt
 
Electrical Properties of Thermally Evaporated In40 Se60 Thin Films
Electrical Properties of Thermally Evaporated In40 Se60 Thin FilmsElectrical Properties of Thermally Evaporated In40 Se60 Thin Films
Electrical Properties of Thermally Evaporated In40 Se60 Thin Films
 
Experimental Study of Strength Parameters of Hybrid Fibre Reinforced C...
Experimental Study of  Strength  Parameters  of   Hybrid  Fibre  Reinforced C...Experimental Study of  Strength  Parameters  of   Hybrid  Fibre  Reinforced C...
Experimental Study of Strength Parameters of Hybrid Fibre Reinforced C...
 
An Experimental Analysis to Determine Ultimate Tensile Strength of Jute Reinf...
An Experimental Analysis to Determine Ultimate Tensile Strength of Jute Reinf...An Experimental Analysis to Determine Ultimate Tensile Strength of Jute Reinf...
An Experimental Analysis to Determine Ultimate Tensile Strength of Jute Reinf...
 
Research Paper on Nacre
Research Paper on NacreResearch Paper on Nacre
Research Paper on Nacre
 
Experimental study of effect of fiber orientation on
Experimental study of effect of fiber orientation onExperimental study of effect of fiber orientation on
Experimental study of effect of fiber orientation on
 
Steel versus uhmwpe fiber in sternum closure
Steel versus uhmwpe fiber in sternum closureSteel versus uhmwpe fiber in sternum closure
Steel versus uhmwpe fiber in sternum closure
 
Energy Release Rate for Fiber Reinforced Polymer Composite
Energy Release Rate for Fiber Reinforced Polymer CompositeEnergy Release Rate for Fiber Reinforced Polymer Composite
Energy Release Rate for Fiber Reinforced Polymer Composite
 
Desouza2003
Desouza2003Desouza2003
Desouza2003
 
Experimental Evaluation of effect of filler on tensile behaviour of E-glass/e...
Experimental Evaluation of effect of filler on tensile behaviour of E-glass/e...Experimental Evaluation of effect of filler on tensile behaviour of E-glass/e...
Experimental Evaluation of effect of filler on tensile behaviour of E-glass/e...
 
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
Effects of Carbon Nanotubes on the Compressive and Flexural Strength and Micr...
 
Ductile Adhesively Bonded Timber Joints
Ductile Adhesively Bonded Timber JointsDuctile Adhesively Bonded Timber Joints
Ductile Adhesively Bonded Timber Joints
 
Study Of High Strength Fibre Reinforced Concrete Beams With Fibre Reinforced ...
Study Of High Strength Fibre Reinforced Concrete Beams With Fibre Reinforced ...Study Of High Strength Fibre Reinforced Concrete Beams With Fibre Reinforced ...
Study Of High Strength Fibre Reinforced Concrete Beams With Fibre Reinforced ...
 

KrumheuerLast_Effects of Parameters on Bonding

  • 1. Effects  of  Foil  Thickness  and  Applied  Bonding  Pressure  on  the  Shear  Strength  of     Bonds  Formed  Using  Novel  Reac@ve  Thermite  Foils   Evan  Krumheuer,  T.P.  Weihs   Johns  Hopkins  University  Department  of  Materials  Science  and    Engineering   Mo@va@on   Mechanically  processed  thermite  foils  produce  a  highly   exothermic  reacDon.  When  a  metal  diluent  is  added  to  the  foils,   the  heat  from  this  reacDon  is  sufficient  to  melt  the  diluent  and   form  a  molten  braze.     Poor  foil  quality  can  lead  to:     -­‐  Uneven  loading  pressure   -­‐  Non-­‐uniform  heaDng   -­‐  PreferenDal  foil  mass  ejecDon   -­‐  Weakened  bond  strength                         Sample  Prepara@on                                               Design  Component     Designed  an  experimental  method  for  comparing  bonds  of  either   varied  thickness  or  applied  bonding  pressure  as  well  as  a  process   for  bonding  large  (4-­‐8x  normal)  area  foils.   Foil  Thickness                                 Applied  Bonding  Pressure                                   Conclusions           Future  Work         Acknowledgment   This  work  was  supported  by  the  Vehicle  Technologies  Program  of  the  U.S.  Dept.  of   Energy  (DOE-­‐VTP)  and  the  U.S.  Army,  No.  DE-­‐EE0006441.  I  would  like  to  acknowledge   Alex  Kinsey  and  Kyle  Slusarski  for  their  guidance  and  assistance  with  this  project.   Batch  Comparisons   It  became  apparent  that  foils  originaDng  from  different   tubes  showed  differences  in  reacDve  properDes.   XRD  results                 -­‐More  Cu2O  character  seen  in  tubes  2  and  3  signifies         incomplete  reacDon  or  oxide  rich  starDng  chemistry.   Foils  were  polished  down  to  a  final  thickness  of  either  400  µm,  700   µm,  1000  µm,  or  1350  µm  ±  45  µm.     Redox  foil  between  steel  substrates  in  bonding     apparatus  before  (Lee)  and  aeer  (Right)  igniDon,  with   mass  ejecDon  shown  in  right  figure.   -­‐Increasing  thickness   leads  to  increased   bond  strength.   -­‐Possible  plateau  of   strength  except  for   outlier.           1. Ball  Mill  Powders   2. Add  30wt%Cu  diluent,  pack  powders  into  tubes   3. Radially  reduce  tubes  through  swaging   4. Cut  tubes   5. Roll  tubes   6. Strip  tubes  to  obtain  flat  foil   Begin  with  Al,  Cu2O,  and  Cu  powders…     Foils  (1000  µm  thick)  were  tested  with  varied  applied  bonding  pressure.   Pressures  studied  were  15  lbf,  45  lbf,  90  lbf,  and  450  lbf.     -­‐1350  µm  thick  foils  wet  the  steel  surfaces  tested  beker  than  any   of  the  thinner  foils  tested.       -­‐Higher  applied  bonding  pressure  leads  to  stronger  bonds.     -­‐Evidence  of  either  incomplete  reacDon  or  oxide  rich  starDng   materials  in  Tubes  2  and  3.   -­‐Perform  more  tests  to  study  the  effect  of  reacDon  area  on  the   shear  strength  of  these  bonds.     -­‐Perform  more  analysis  on  tube  to  tube  conDnuity.     -­‐EDS  of  broken  bond  surfaces  to  understand  interface  chemistry.   -­‐Increasing  pressure  leads  to   increased  bond  strength.     Cross  secDonal  opDcal  microscope  images  of  bonds  formed  with  foils  either   1350  µm  (above)  or  1000  µm    (below)  thick.   -­‐1350  µm  foil  shows   superior  welng  of   the  steel  compared   to  1000  µm  foil.     -­‐450  lbf  samples  exhibit   highest  %  pressure  drop  and   lowest  mass  ejecDon.   400 600 800 1000 1200 1400 0 50 100 150 200 250 300 350 400 450 400 µm 700 µm 1000 µm 1350 µm MaxLoad(N) Foil Thickness (µm) Unreacted  redox  foil  2”  by  ¼”   0 100 200 300 400 500 50 100 150 200 250 300 350 15 lbf 45 lbf 90 lbf 450 lbf LoadHeld(N) Applied Bonding Pressure ( (lbf) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 20 40 60 80 100 15 lbf 45 lbf 90 lbf 450 lbf %PressureDrop Mass Change Per Area (mg / mm 2 )  -­‐Variability  of  values  observed   due  to  heterogeneity  in  foil   microstructure.     30 32 34 36 38 40 42 44 46 48 50 2T Tube 1 Tube 2 Tube 3 Cu2O  Peak  at  ~36°  and   masked  by  shoulder  at  ~42°   Cu   Cu2O   Al