SlideShare a Scribd company logo
1 of 8
Ethan Vanderbyl
Dr. Chen
Physics237
Date: 3/20/21
Title:TransientBehaviorinRCcircuits
Date: 2/28/14
Lab Partners: ChristinaHouck,AnthonyMen9dez
Purpose:Identifythe nature andcharacteristicsof a chargingand dischargingCapacitor.
Procedure:
Initiallywe setupthe circuitwithalligatorclips,one resistor,andone capacitor.Eachwere
placedinparallel.Aftersettingupeachindividual circuitwe chargedthe capacitorwithourpower
source for 30 seconds.Thenwe abruptlymeasuredthe Voltage vs.Time of the Capacitorinthe Data
Studio.We usedthissame processforfour differentcircuits,andthenwe graphedthe data.Each trial
deducedintotwographsone linearandthe otherexponential.Thesegraphsdescribe the characteristics
of eachcapacitor setup ina differentcircuit.Finallywe plottedachargingcapacitorinpart C, and we
graphedthe data withthe workshop.
ChargingCapacitor DischargingCapacitor
R
VO C
R
C
Data:
y = 8.4047e-0.015x
0
1
2
3
4
5
6
7
8
9
10
0 20 40 60 80 100 120 140 160
Votage(V)
Time (s)
Graph 2: Circuit 1 Run #2 Volatge vs. Time
y = 8.5046e-0.013x
0
2
4
6
8
10
0 50 100 150 200
Voltatge(V)
Time (s)
Graph 1: Circuit 1 Run # 1 Voltage vs.
Time
Results:
Graph Manufactured
Capacitance (ΞΌFarads)
Graph Capacitance
(ΞΌ Farads)
% difference
1 22000 24,150 9.77%
2 22000 21,000 4.5%
Calculations:
1. I = π‘‰π‘’βˆ’π‘‘/𝑅𝐢
y = 8.4705e-0.029x
0
1
2
3
4
5
6
7
8
9
0 10 20 30 40 50 60 70 80 90
Voltage(V)
TIme (s)
Graph 3: Circuit 2, Run #1 Voltage vs. time
y = 8.3245e-0.007x
0
1
2
3
4
5
6
7
8
9
0 50 100 150 200 250 300 350
AxisTitle
Axis Title
Graph 4: CIrcuit 3, Run #1 Voltage vs.
Time
2. Time constant = π‘šβˆ’1
3. C= time constant/R
4. %error=(Caccepted – Ccalculated )/Caccepted x 100
Sample Calculations:
1. I = 1𝑉𝑒
(βˆ’
170
(3300βˆ—22000)
)
= 1A
2. 78.402
3. 𝐢 =
78.402
3.26π‘˜π‘œβ„Žπ‘šπ‘ 
= .02415
4. %π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ =
22000βˆ’24150
22000
βˆ— 100 = 9.77%
Questions(Analysis):
1.
2. 𝑖 =
π‘‘π‘ž
𝑑𝑑
𝑉𝑐 = π‘‰π‘’βˆ’π‘‘/𝑅𝐢 π‘ž = πΆπ‘‰π‘’βˆ’π‘‘/𝑅𝐢 = πΌπ‘’βˆ’π‘‘/𝑅𝐢
Graph 5: Voltage vs.Time
y = -0.0127x + 2.1406
-0.5
0
0.5
1
1.5
2
2.5
0 50 100 150 200
Voltage
Time (s)
Graph 1: Circuit 1 Run # 1 Voltage vs.
Time
y = -0.0146x + 2.1288
-0.5
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100 120 140 160
Voltaage(V)
Time (s)
Graph 2: Ciruit 1 Run #2 Voltage vs.
Time
3.
4.
Value Voltage (V) Time (s)
VO 8.655 0
Ο„ 3.185 76.28
VO to .5V 1.593 131.24
.5VO to .25VO 0.796 186.2
.25VO to .125VO 0.398 241.16
y = -0.0068x + 2.1192
0
0.5
1
1.5
2
2.5
0 50 100 150 200 250 300 350
Voltage(V)
Time (s)
Graph 4: Circuit 3, Run #1 Voltage vs.
Time (Parallel)
y = -0.0285x + 2.1366
-0.5
0
0.5
1
1.5
2
2.5
0 20 40 60 80 100
Voltage(V)
Time (s)
Graph 3: Circuit 2 Run #1 Voltage vs.
TIme (Series)
5.
Graph Slope (m) Time Constant(s)
1 -.0127 78.7402
2 -.0146 68.4932
3 -.0285 35.0877
4 -.0068 147.059
6.
Graph Time Constant(s) Capacitance (C)
1 78.7402 .02415
2 68.4932 .0210
3 35.0877 .0108
4 147.059 .0451
7.
Graph Manufactured
Capacitance (ΞΌFarads)
Graph Capacitance
(ΞΌ Farads)
% difference
1 22000 24,150 9.77%
2 22000 21,000 4.5%
8.
Graph CalculatedValues(ΞΌFarads) ExpectedValues(ΞΌFarads)
3 10800 11000
4 45100 11000
Conclusion:
The principle thatwasprovedinthislabis the fact that a charging dischargingcapacitoris
describedby π‘ž = π‘‰πΆπ‘’βˆ’π‘‘/𝑅𝐢.The graphsin thislabdescribe the capacitorswithrespecttovoltage vs.
time.Fromthe graphs we were able todefine how differentcircuitsetupseffectthe efficiencyof the
capacitor,whicheffectthe capacitorscharacteristicswithrespect tovelocityandtime.The slope relates
to the time constant,whichwe usedtofindthe Capacitance.We accomplishedthe purpose of thislab
because ourpercenterrorsof the Capacitance are verylow.Our percenterrorsbetweenourcalculated
value andthe exceptedvalue were9.8% and 4.5%.
Thisexperimentcouldhave beenimprovedif ourerrorswere eliminated.Some of these errors
includedthe time we chargedanddischargedthe capacitor.If were able tomake these readingsmore
precise ourpercenterrorswouldhave beenless.We alsoencounterederrorsbecauseof the constant
resistance inanimperfectcircuit.These errorscouldhave beenavoidedbyusingamechanical device to
take the time measurementsandthe circuitcouldhave beenmade betterbyusingbettermetalsas
conductors.Overall the errorsthatoccurred were minimal andtherefore we achievedgoodpercent
errors.

More Related Content

What's hot

Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)guest049562
Β 
I konnect 9
I konnect 9I konnect 9
I konnect 9Ramesh Meti
Β 
I konnect 5
I konnect 5I konnect 5
I konnect 5Ramesh Meti
Β 
I konnect 3
I konnect 3I konnect 3
I konnect 3Ramesh Meti
Β 
El.engg.theory notes 1 book
El.engg.theory notes 1 bookEl.engg.theory notes 1 book
El.engg.theory notes 1 bookRamesh Meti
Β 
I konnect 7
I konnect 7I konnect 7
I konnect 7Ramesh Meti
Β 
I konnect 2
I konnect 2I konnect 2
I konnect 2Ramesh Meti
Β 
I konnect 6
I konnect 6I konnect 6
I konnect 6Ramesh Meti
Β 
I konnect 4
I konnect 4I konnect 4
I konnect 4Ramesh Meti
Β 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewAUTHELECTRONIC
Β 
Network Solving
Network SolvingNetwork Solving
Network Solvingguest049562
Β 
Reverse Recovery Characteristic
Reverse Recovery CharacteristicReverse Recovery Characteristic
Reverse Recovery CharacteristicTsuyoshi Horigome
Β 
Electrical Qustions ans answers
Electrical Qustions ans answersElectrical Qustions ans answers
Electrical Qustions ans answersRamesh Meti
Β 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaAUTHELECTRONIC
Β 
Practica 5 irc
Practica 5 ircPractica 5 irc
Practica 5 ircERIKLOPEZ97
Β 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis pptkarikalan123
Β 

What's hot (19)

Meter Shunt (Ammeter)
Meter Shunt (Ammeter)Meter Shunt (Ammeter)
Meter Shunt (Ammeter)
Β 
I konnect 9
I konnect 9I konnect 9
I konnect 9
Β 
I konnect 5
I konnect 5I konnect 5
I konnect 5
Β 
I konnect 3
I konnect 3I konnect 3
I konnect 3
Β 
El.engg.theory notes 1 book
El.engg.theory notes 1 bookEl.engg.theory notes 1 book
El.engg.theory notes 1 book
Β 
I konnect 7
I konnect 7I konnect 7
I konnect 7
Β 
I konnect 2
I konnect 2I konnect 2
I konnect 2
Β 
I konnect 6
I konnect 6I konnect 6
I konnect 6
Β 
I konnect 4
I konnect 4I konnect 4
I konnect 4
Β 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Β 
Salisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector KitsSalisbury 4556 Voltage Detector Kits
Salisbury 4556 Voltage Detector Kits
Β 
Network Solving
Network SolvingNetwork Solving
Network Solving
Β 
Reverse Recovery Characteristic
Reverse Recovery CharacteristicReverse Recovery Characteristic
Reverse Recovery Characteristic
Β 
Documento 39 (1)
Documento 39 (1)Documento 39 (1)
Documento 39 (1)
Β 
Electrical Qustions ans answers
Electrical Qustions ans answersElectrical Qustions ans answers
Electrical Qustions ans answers
Β 
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New ToshibaOriginal PNP Transistor 2SB688 B688 8A 120V New Toshiba
Original PNP Transistor 2SB688 B688 8A 120V New Toshiba
Β 
Practica 5 irc
Practica 5 ircPractica 5 irc
Practica 5 irc
Β 
Power system fault analysis ppt
Power system fault analysis pptPower system fault analysis ppt
Power system fault analysis ppt
Β 
Electrical Machines
Electrical MachinesElectrical Machines
Electrical Machines
Β 

Viewers also liked

Series circuits
Series circuitsSeries circuits
Series circuitsSammy Tunde
Β 
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassiekehali Haileselassie
Β 
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS) POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS) Mathankumar S
Β 
Experiment to verify ohm’s law
Experiment to verify ohm’s lawExperiment to verify ohm’s law
Experiment to verify ohm’s lawrollaamalia
Β 

Viewers also liked (6)

Okori
OkoriOkori
Okori
Β 
Series circuits
Series circuitsSeries circuits
Series circuits
Β 
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Β 
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS) POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
POWER SYSTEM SIMULATION - 2 LAB MANUAL (ELECTRICAL ENGINEERING - POWER SYSTEMS)
Β 
Lab report 2
Lab report 2Lab report 2
Lab report 2
Β 
Experiment to verify ohm’s law
Experiment to verify ohm’s lawExperiment to verify ohm’s law
Experiment to verify ohm’s law
Β 

Similar to RC Circuit Capacitance Analysis

Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docxSheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docxmaoanderton
Β 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsauthelectroniccom
Β 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsAUTHELECTRONIC
Β 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverterZunAib Ali
Β 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysisZulqarnainEngineerin
Β 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Sachin Mehta
Β 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxdebishakespeare
Β 
Ne 555
Ne 555Ne 555
Ne 555Mr Giap
Β 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptMICHELLETIMBOL
Β 
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage ControllersHarmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage ControllersEditor IJMTER
Β 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)Pradeep Godara
Β 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Zeeshan Ahmed
Β 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical EngineerErdi Karaçal
Β 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...authelectroniccom
Β 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 Newauthelectroniccom
Β 

Similar to RC Circuit Capacitance Analysis (20)

Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docxSheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Sheet1resistance of resistorTime Constant = 5.3s10v from power sup.docx
Β 
Labo circuito en rc
Labo circuito en rcLabo circuito en rc
Labo circuito en rc
Β 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Β 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Β 
Space vector pwm_inverter
Space vector pwm_inverterSpace vector pwm_inverter
Space vector pwm_inverter
Β 
ECE 468 Lab Project 1
ECE 468 Lab Project 1ECE 468 Lab Project 1
ECE 468 Lab Project 1
Β 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysis
Β 
Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies Design & Construction of Switched Mode Power Supplies
Design & Construction of Switched Mode Power Supplies
Β 
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docxreference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
reference notes455647_1_EE460-Project-131.pdfKing Fahd Un.docx
Β 
Ne 555
Ne 555Ne 555
Ne 555
Β 
Lecture 2
Lecture 2Lecture 2
Lecture 2
Β 
EE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.pptEE301 Lesson 06 Series Parallel Circuits.ppt
EE301 Lesson 06 Series Parallel Circuits.ppt
Β 
Ece320 notes-part1
Ece320 notes-part1Ece320 notes-part1
Ece320 notes-part1
Β 
Ece320 notes-part1 2
Ece320 notes-part1 2Ece320 notes-part1 2
Ece320 notes-part1 2
Β 
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage ControllersHarmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Harmonic Analysis of Output Voltage of Single phase AC Voltage Controllers
Β 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)
Β 
Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017Power Electronics Lab Manual Spring 2017
Power Electronics Lab Manual Spring 2017
Β 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical Engineer
Β 
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Original N-CHANNEL IGBT GB10NC60KD STGB10NC60KDT4 10A 600V TO-263 New STMicro...
Β 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Β 

RC Circuit Capacitance Analysis

  • 1. Ethan Vanderbyl Dr. Chen Physics237 Date: 3/20/21 Title:TransientBehaviorinRCcircuits Date: 2/28/14 Lab Partners: ChristinaHouck,AnthonyMen9dez Purpose:Identifythe nature andcharacteristicsof a chargingand dischargingCapacitor. Procedure: Initiallywe setupthe circuitwithalligatorclips,one resistor,andone capacitor.Eachwere placedinparallel.Aftersettingupeachindividual circuitwe chargedthe capacitorwithourpower source for 30 seconds.Thenwe abruptlymeasuredthe Voltage vs.Time of the Capacitorinthe Data Studio.We usedthissame processforfour differentcircuits,andthenwe graphedthe data.Each trial deducedintotwographsone linearandthe otherexponential.Thesegraphsdescribe the characteristics of eachcapacitor setup ina differentcircuit.Finallywe plottedachargingcapacitorinpart C, and we graphedthe data withthe workshop. ChargingCapacitor DischargingCapacitor R VO C R C
  • 2. Data: y = 8.4047e-0.015x 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140 160 Votage(V) Time (s) Graph 2: Circuit 1 Run #2 Volatge vs. Time y = 8.5046e-0.013x 0 2 4 6 8 10 0 50 100 150 200 Voltatge(V) Time (s) Graph 1: Circuit 1 Run # 1 Voltage vs. Time
  • 3. Results: Graph Manufactured Capacitance (ΞΌFarads) Graph Capacitance (ΞΌ Farads) % difference 1 22000 24,150 9.77% 2 22000 21,000 4.5% Calculations: 1. I = π‘‰π‘’βˆ’π‘‘/𝑅𝐢 y = 8.4705e-0.029x 0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 60 70 80 90 Voltage(V) TIme (s) Graph 3: Circuit 2, Run #1 Voltage vs. time y = 8.3245e-0.007x 0 1 2 3 4 5 6 7 8 9 0 50 100 150 200 250 300 350 AxisTitle Axis Title Graph 4: CIrcuit 3, Run #1 Voltage vs. Time
  • 4. 2. Time constant = π‘šβˆ’1 3. C= time constant/R 4. %error=(Caccepted – Ccalculated )/Caccepted x 100 Sample Calculations: 1. I = 1𝑉𝑒 (βˆ’ 170 (3300βˆ—22000) ) = 1A 2. 78.402 3. 𝐢 = 78.402 3.26π‘˜π‘œβ„Žπ‘šπ‘  = .02415 4. %π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ = 22000βˆ’24150 22000 βˆ— 100 = 9.77% Questions(Analysis): 1. 2. 𝑖 = π‘‘π‘ž 𝑑𝑑 𝑉𝑐 = π‘‰π‘’βˆ’π‘‘/𝑅𝐢 π‘ž = πΆπ‘‰π‘’βˆ’π‘‘/𝑅𝐢 = πΌπ‘’βˆ’π‘‘/𝑅𝐢 Graph 5: Voltage vs.Time
  • 5. y = -0.0127x + 2.1406 -0.5 0 0.5 1 1.5 2 2.5 0 50 100 150 200 Voltage Time (s) Graph 1: Circuit 1 Run # 1 Voltage vs. Time y = -0.0146x + 2.1288 -0.5 0 0.5 1 1.5 2 2.5 0 20 40 60 80 100 120 140 160 Voltaage(V) Time (s) Graph 2: Ciruit 1 Run #2 Voltage vs. Time 3.
  • 6. 4. Value Voltage (V) Time (s) VO 8.655 0 Ο„ 3.185 76.28 VO to .5V 1.593 131.24 .5VO to .25VO 0.796 186.2 .25VO to .125VO 0.398 241.16 y = -0.0068x + 2.1192 0 0.5 1 1.5 2 2.5 0 50 100 150 200 250 300 350 Voltage(V) Time (s) Graph 4: Circuit 3, Run #1 Voltage vs. Time (Parallel) y = -0.0285x + 2.1366 -0.5 0 0.5 1 1.5 2 2.5 0 20 40 60 80 100 Voltage(V) Time (s) Graph 3: Circuit 2 Run #1 Voltage vs. TIme (Series)
  • 7. 5. Graph Slope (m) Time Constant(s) 1 -.0127 78.7402 2 -.0146 68.4932 3 -.0285 35.0877 4 -.0068 147.059 6. Graph Time Constant(s) Capacitance (C) 1 78.7402 .02415 2 68.4932 .0210 3 35.0877 .0108 4 147.059 .0451 7. Graph Manufactured Capacitance (ΞΌFarads) Graph Capacitance (ΞΌ Farads) % difference 1 22000 24,150 9.77% 2 22000 21,000 4.5% 8. Graph CalculatedValues(ΞΌFarads) ExpectedValues(ΞΌFarads) 3 10800 11000 4 45100 11000 Conclusion: The principle thatwasprovedinthislabis the fact that a charging dischargingcapacitoris describedby π‘ž = π‘‰πΆπ‘’βˆ’π‘‘/𝑅𝐢.The graphsin thislabdescribe the capacitorswithrespecttovoltage vs. time.Fromthe graphs we were able todefine how differentcircuitsetupseffectthe efficiencyof the capacitor,whicheffectthe capacitorscharacteristicswithrespect tovelocityandtime.The slope relates to the time constant,whichwe usedtofindthe Capacitance.We accomplishedthe purpose of thislab because ourpercenterrorsof the Capacitance are verylow.Our percenterrorsbetweenourcalculated value andthe exceptedvalue were9.8% and 4.5%. Thisexperimentcouldhave beenimprovedif ourerrorswere eliminated.Some of these errors includedthe time we chargedanddischargedthe capacitor.If were able tomake these readingsmore precise ourpercenterrorswouldhave beenless.We alsoencounterederrorsbecauseof the constant resistance inanimperfectcircuit.These errorscouldhave beenavoidedbyusingamechanical device to
  • 8. take the time measurementsandthe circuitcouldhave beenmade betterbyusingbettermetalsas conductors.Overall the errorsthatoccurred were minimal andtherefore we achievedgoodpercent errors.