SlideShare a Scribd company logo
1 of 17
Moody Chart
• Figure 8.11 – Moody chart for pipe friction
factor (Stanton diagram - The plot of the airflow
friction coefficient against the Reynolds number)
• Four zone of pipe flows:
(i) Laminar flow
(ii) Critical zone
(iii) Transition flow
(iv) Complete turbulence (fully rough pipe flow)
Moody Chart
• Thomas Edward Stanton (1865–1931)
• The value of f independent of Reynolds
number and relative roughness,
• Moody chart
D
e
Categories of most single pipe flow problems
are:-
Type Find Given Remark
Head loss
problem
hf D, Q or V, L, e, v
The simplest, can be solved
directly.
Discharge
problem
Q or V D, hf, L, e, v
Quite difficult, direct solution is not
possible, require trial & error
method, assume the initial f.
Sizing
problem
D Q, hf, L, e, v
Quite difficult, direct solution is not
possible, require trial & error
method, assume the initial f.
Type 1 Problem
Exercises (pg 284)
• 8.13.2 Oil (s = 0.94) with viscosity 0.0096
N.s/m2 flows in a 90 mm diameter welded
steel pipe (see Table 8.1) at 7.2 L/s. What
is the friction head loss per meter pipe?
• Solution
 
 
sm
D
Q
A
Q
V /13177.1
1090
102.744
23
3
2







    40001097.9
0096.0
090.013177.1100094.0
Re 3




VD
The flow is turbulent!
From Table 8.1: for welded steel pipe, e = 0.046 mm
000511.0
90
046.0

D
e
From Moody chart, f  0.032
 
 
mm
gD
fV
L
hf
/02321.0
090.062.19
13177.1032.0
2
22

Type 2 Problem
• Example 8.4
Sebatang paip yang bergarispusat dan
panjang masing-masingnya 100 mm dan
120 m mengalirkan minyak pada jumlah
turus 5 m. Tentukan kadaralir minyak
melalui paip besi tuangan itu. Ambil
v = 1 x 10-5 m2/s.
• Solution
D = 100 mm = 0.1 m
L = 120 m
hf = 5 m
v = 1 x 10-5 m2/s
From Table 8.1, for cast iron pipe, e = 0.25
mm
0025.0
100
25.0

D
e
Assume the flow is turbulent.
gD
fLV
hf
2
2
   
  ff
V
28592.0
120
1.062.195

  V
V
v
VD
000,10
101
1.0
Re 5


 
Use trial and error
Try f V (m/s) Re Obtained f Remark
0.025 1.80831 1.81 x 104 0.0305 Try again
0.0305 1.63717 1.64 x 104 0.0301 Try again
0.0301 1.64801 1.65 x 104 0.0301 Converged!
    smAVQ /01294.064801.1
4
1.0 3
2


Therefore,
This f is obtain from your trial value
This f is obtain from moody graph
Type 3 Problem
• Example 8.5
Tentukan garispusat paip besi galvani
yang diperlukan untuk mengalirkan air
sejauh 180 m pada kadaralir 85 L/s
dengan kehilangan 9 m. Ambil
v = 1.14 mm2/s.
Solution
L = 180 m
hf = 9 m
Q = 85 L/s = 0.085 m3/s
v = 1.14 mm2/s = 1.14 x 10-6 m2/s
From Table 8.1, for galvanized iron pipe, e = 0.15 mm
DD
e 00015.0

Assume the flow is turbulent.
 
222
10823.0085.044
DDD
Q
V 

D
D
Dv
VD 52746.94934
1014.1
10823.0
Re 62








 
52
2
2
22
2
16
22 Dg
fLQ
gDA
fLQ
gD
fLV
hf


  
 
f
f
hg
fLQ
D
f
01193958.0
962.19
085.018016
2
16
2
2
2
2
5


51
41248.0 fD 
Start by assuming a mid range value of f
Try f D (m) e/D Re Obtained f Remark
0.030 0.20456 0.00073 4.641 x 105 0.0188 Try again
0.0188 0.18631 0.00081 5.096 x 105 0.0195 Try again
0.0195 0.18767 0.00080 5.058 x 105 0.0195 Converged!
This f is obtain from your trial value
This f is obtain from moody graph
Therefore, accept
D = 0.18767 m
= 187.67427 mm

More Related Content

What's hot

Darcy weisbach formula
Darcy weisbach formulaDarcy weisbach formula
Darcy weisbach formulaHarkat Bouaddi
 
S3 Reynolds Number Presentation
S3 Reynolds Number PresentationS3 Reynolds Number Presentation
S3 Reynolds Number Presentationno suhaila
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsMohsin Siddique
 
Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Andi Firdaus
 
S3 Minor Losses Presentation
S3 Minor Losses PresentationS3 Minor Losses Presentation
S3 Minor Losses Presentationno suhaila
 
Unit6 energy loss in pipelines
Unit6   energy loss in pipelinesUnit6   energy loss in pipelines
Unit6 energy loss in pipelinesMalaysia
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.shivam gautam
 
S3 Minor Losses Assignment
S3 Minor Losses AssignmentS3 Minor Losses Assignment
S3 Minor Losses Assignmentno suhaila
 
Unit4 fluid dynamics
Unit4   fluid dynamicsUnit4   fluid dynamics
Unit4 fluid dynamicsMalaysia
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe networkManoj Mota
 

What's hot (20)

Thesis Report
Thesis ReportThesis Report
Thesis Report
 
Darcy weisbach formula
Darcy weisbach formulaDarcy weisbach formula
Darcy weisbach formula
 
S3 Reynolds Number Presentation
S3 Reynolds Number PresentationS3 Reynolds Number Presentation
S3 Reynolds Number Presentation
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
 
1 resistance
1 resistance1 resistance
1 resistance
 
Hardycross method
Hardycross methodHardycross method
Hardycross method
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flows
 
Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling
 
008
008008
008
 
S3 Minor Losses Presentation
S3 Minor Losses PresentationS3 Minor Losses Presentation
S3 Minor Losses Presentation
 
Unit6 energy loss in pipelines
Unit6   energy loss in pipelinesUnit6   energy loss in pipelines
Unit6 energy loss in pipelines
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.
 
Flow through pipes ppt
Flow through pipes pptFlow through pipes ppt
Flow through pipes ppt
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
S3 Minor Losses Assignment
S3 Minor Losses AssignmentS3 Minor Losses Assignment
S3 Minor Losses Assignment
 
Unit4 fluid dynamics
Unit4   fluid dynamicsUnit4   fluid dynamics
Unit4 fluid dynamics
 
Pipe sizing
Pipe sizingPipe sizing
Pipe sizing
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe network
 
Experiment 4 friction factor
Experiment 4 friction factorExperiment 4 friction factor
Experiment 4 friction factor
 
Head losses
Head lossesHead losses
Head losses
 

Viewers also liked (20)

Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
 
Fm 6
Fm 6Fm 6
Fm 6
 
Flow in pipe (vertical)
Flow in pipe (vertical)Flow in pipe (vertical)
Flow in pipe (vertical)
 
Engin22 1
Engin22 1Engin22 1
Engin22 1
 
Flow through circular tube
Flow through circular tubeFlow through circular tube
Flow through circular tube
 
Fm 3
Fm 3Fm 3
Fm 3
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Fluid mechanics
Fluid mechanics Fluid mechanics
Fluid mechanics
 
Characteristics of boundary layer flow
Characteristics of boundary layer flowCharacteristics of boundary layer flow
Characteristics of boundary layer flow
 
DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)DIMENSIONAL ANALYSIS (Lecture notes 08)
DIMENSIONAL ANALYSIS (Lecture notes 08)
 
Boundary layer equation
Boundary layer equationBoundary layer equation
Boundary layer equation
 
Pumps
PumpsPumps
Pumps
 
Boundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum ThicknessBoundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum Thickness
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
 
pipe line calculation
pipe line calculationpipe line calculation
pipe line calculation
 
10. fm dimensional analysis adam
10. fm dimensional analysis adam10. fm dimensional analysis adam
10. fm dimensional analysis adam
 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
 
8. fm 9 flow in pipes major loses co 3 copy
8. fm 9 flow in pipes  major loses co 3   copy8. fm 9 flow in pipes  major loses co 3   copy
8. fm 9 flow in pipes major loses co 3 copy
 
Fluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentumFluid MechanicsVortex flow and impulse momentum
Fluid MechanicsVortex flow and impulse momentum
 

Similar to Chap 4.4, 4.5

010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .happycocoman
 
L21 MOS OCT 2020.pptx .
L21 MOS OCT 2020.pptx                           .L21 MOS OCT 2020.pptx                           .
L21 MOS OCT 2020.pptx .happycocoman
 
Pipeline design for water supply
Pipeline design for water supplyPipeline design for water supply
Pipeline design for water supplyTej Binod Pandey
 
Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.yeisyynojos
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1jntuworld
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationskulkarni Academy
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationskulkarni Academy
 
Coiled tubing calculations.pdf
Coiled tubing calculations.pdfCoiled tubing calculations.pdf
Coiled tubing calculations.pdfJesusCubillas1
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptRyanAnderson41811
 
حلول مسائل قنوات مفتوحه 100 ص
حلول مسائل قنوات مفتوحه 100 صحلول مسائل قنوات مفتوحه 100 ص
حلول مسائل قنوات مفتوحه 100 صshaymaa17
 
RESISTENCIA DE MATERIALES
RESISTENCIA DE MATERIALES RESISTENCIA DE MATERIALES
RESISTENCIA DE MATERIALES Robin Pinto
 
Four probe Method.pptx
Four probe Method.pptxFour probe Method.pptx
Four probe Method.pptxJatinMahato1
 

Similar to Chap 4.4, 4.5 (20)

010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .
 
L21 MOS OCT 2020.pptx .
L21 MOS OCT 2020.pptx                           .L21 MOS OCT 2020.pptx                           .
L21 MOS OCT 2020.pptx .
 
Laminar turbulent
Laminar turbulentLaminar turbulent
Laminar turbulent
 
Pipeline design for water supply
Pipeline design for water supplyPipeline design for water supply
Pipeline design for water supply
 
Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.Ejercicio 1. Ecuación Darcy W.
Ejercicio 1. Ecuación Darcy W.
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
 
Quishpe mireya practica6
Quishpe mireya practica6Quishpe mireya practica6
Quishpe mireya practica6
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanations
 
Gate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanationsGate 2017 me 1 solutions with explanations
Gate 2017 me 1 solutions with explanations
 
Coiled tubing calculations.pdf
Coiled tubing calculations.pdfCoiled tubing calculations.pdf
Coiled tubing calculations.pdf
 
FINAL
FINALFINAL
FINAL
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
 
Ans1
Ans1Ans1
Ans1
 
2 compression
2  compression2  compression
2 compression
 
حلول مسائل قنوات مفتوحه 100 ص
حلول مسائل قنوات مفتوحه 100 صحلول مسائل قنوات مفتوحه 100 ص
حلول مسائل قنوات مفتوحه 100 ص
 
Tce presentation
Tce presentation Tce presentation
Tce presentation
 
RESISTENCIA DE MATERIALES
RESISTENCIA DE MATERIALES RESISTENCIA DE MATERIALES
RESISTENCIA DE MATERIALES
 
Four probe Method.pptx
Four probe Method.pptxFour probe Method.pptx
Four probe Method.pptx
 
design of chock coil
 design of chock coil design of chock coil
design of chock coil
 

Chap 4.4, 4.5

  • 1.
  • 2. Moody Chart • Figure 8.11 – Moody chart for pipe friction factor (Stanton diagram - The plot of the airflow friction coefficient against the Reynolds number) • Four zone of pipe flows: (i) Laminar flow (ii) Critical zone (iii) Transition flow (iv) Complete turbulence (fully rough pipe flow)
  • 3. Moody Chart • Thomas Edward Stanton (1865–1931) • The value of f independent of Reynolds number and relative roughness, • Moody chart D e
  • 4.
  • 5. Categories of most single pipe flow problems are:- Type Find Given Remark Head loss problem hf D, Q or V, L, e, v The simplest, can be solved directly. Discharge problem Q or V D, hf, L, e, v Quite difficult, direct solution is not possible, require trial & error method, assume the initial f. Sizing problem D Q, hf, L, e, v Quite difficult, direct solution is not possible, require trial & error method, assume the initial f.
  • 6. Type 1 Problem Exercises (pg 284) • 8.13.2 Oil (s = 0.94) with viscosity 0.0096 N.s/m2 flows in a 90 mm diameter welded steel pipe (see Table 8.1) at 7.2 L/s. What is the friction head loss per meter pipe?
  • 7. • Solution     sm D Q A Q V /13177.1 1090 102.744 23 3 2            40001097.9 0096.0 090.013177.1100094.0 Re 3     VD The flow is turbulent! From Table 8.1: for welded steel pipe, e = 0.046 mm
  • 8. 000511.0 90 046.0  D e From Moody chart, f  0.032     mm gD fV L hf /02321.0 090.062.19 13177.1032.0 2 22 
  • 9. Type 2 Problem • Example 8.4 Sebatang paip yang bergarispusat dan panjang masing-masingnya 100 mm dan 120 m mengalirkan minyak pada jumlah turus 5 m. Tentukan kadaralir minyak melalui paip besi tuangan itu. Ambil v = 1 x 10-5 m2/s.
  • 10. • Solution D = 100 mm = 0.1 m L = 120 m hf = 5 m v = 1 x 10-5 m2/s From Table 8.1, for cast iron pipe, e = 0.25 mm
  • 11. 0025.0 100 25.0  D e Assume the flow is turbulent. gD fLV hf 2 2       ff V 28592.0 120 1.062.195    V V v VD 000,10 101 1.0 Re 5    
  • 12. Use trial and error Try f V (m/s) Re Obtained f Remark 0.025 1.80831 1.81 x 104 0.0305 Try again 0.0305 1.63717 1.64 x 104 0.0301 Try again 0.0301 1.64801 1.65 x 104 0.0301 Converged!     smAVQ /01294.064801.1 4 1.0 3 2   Therefore, This f is obtain from your trial value This f is obtain from moody graph
  • 13. Type 3 Problem • Example 8.5 Tentukan garispusat paip besi galvani yang diperlukan untuk mengalirkan air sejauh 180 m pada kadaralir 85 L/s dengan kehilangan 9 m. Ambil v = 1.14 mm2/s.
  • 14. Solution L = 180 m hf = 9 m Q = 85 L/s = 0.085 m3/s v = 1.14 mm2/s = 1.14 x 10-6 m2/s From Table 8.1, for galvanized iron pipe, e = 0.15 mm DD e 00015.0  Assume the flow is turbulent.
  • 15.   222 10823.0085.044 DDD Q V   D D Dv VD 52746.94934 1014.1 10823.0 Re 62           52 2 2 22 2 16 22 Dg fLQ gDA fLQ gD fLV hf  
  • 16.      f f hg fLQ D f 01193958.0 962.19 085.018016 2 16 2 2 2 2 5   51 41248.0 fD  Start by assuming a mid range value of f Try f D (m) e/D Re Obtained f Remark 0.030 0.20456 0.00073 4.641 x 105 0.0188 Try again 0.0188 0.18631 0.00081 5.096 x 105 0.0195 Try again 0.0195 0.18767 0.00080 5.058 x 105 0.0195 Converged! This f is obtain from your trial value This f is obtain from moody graph
  • 17. Therefore, accept D = 0.18767 m = 187.67427 mm