Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ericsson Technology Review: 5G New Radio RAN and transport choices that minimize TCO

220 views

Published on

Shorter site-to-site distances and higher bit rates are key trends in 5G. In light of this, the cost of using traditional leased lines as transport to every radio/antenna site in the RAN is expected to rise significantly. To cope with the large increase in required bit rate per site and achieve a cost-efficient rollout of 5G New Radio (NR), mobile operators must have a good understanding of the different RAN architecture and transport network alternatives that are available to them.

This Ericsson Technology Review article presents all the available options and explains why automation and tight integration between the RAN and the transport network will be critical to achieving cost-efficient deployments. In particular, it highlights the cost-saving benefits of using self-built transport based on dark fiber when deploying 5G NR in densely populated areas.

Published in: Technology
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... Download Full EPUB Ebook here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... Download Full doc Ebook here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... Download PDF EBOOK here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... Download EPUB Ebook here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... Download doc Ebook here { https://tinyurl.com/yx5uzys3 } ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

Ericsson Technology Review: 5G New Radio RAN and transport choices that minimize TCO

  1. 1. CU DU gNB Antenna/ hub site CU DU RBU Macro site Street siteHLS-RBU HLS-gNB Backhaul Fronthaul CPRI/eCPRI Fronthaul CPRI/eCPRI Backhaul S1/NG Backhaul F1Backhaul S1/NG Backhaul S1/NG Core network Centralized RAN Distributed RAN Distributed RAN + Virtualized RAN (HLS) Centralized RAN + Virtualized RAN (HLS) Small/ street site CU DU Central office site DU Central office site DU Small/ street site CU Data center DU HLS-gNB Antenna/ hub site DU HLS-RBU Small/ street site Backhaul F1 ERICSSON TECHNOLOGY 5GNEWRADIO RAN&TRANSPORT OPTIONS C H A R T I N G T H E F U T U R E O F I N N O V A T I O N | # 1 0 ∙ 2 0 1 9
  2. 2. ✱ 5G NR RAN & TRANSPORT OPTIONS 5G NR RAN & TRANSPORT OPTIONS ✱ 2 NOVEMBER 7, 2019 ✱ ERICSSON TECHNOLOGY REVIEWERICSSON TECHNOLOGY REVIEW ✱ NOVEMBER 7, 2019 3 By deploying self-built transport in the RAN area instead of using leased lines, mobile network operators gain access to the full range of 5G New Radio RAN architecture options and minimize their total cost of ownership (TCO). ANN-CHRISTINE ERIKSSON, MATS FORSMAN, HENRIK RONKAINEN, PER WILLARS, CHRISTER ÖSTBERG The 5G evolution is well underway – leading mobile network operators (MNOs) in several regions of the world have already launched the first commercial 5G NR networks, and large-scale deployments are expected in the years ahead. The use of self-built transport in denser areas with a suitable RAN architecture will play a key role in ensuring cost-efficiency. ■Acost-efficient5GNRdeploymentrequires MNOstotakeseveralfactorsintoconsideration. Mostobviously,theyneedtomakesurethatthe5G NRdeploymentcomplementstheirexisting4GLTE networkandmakesuseofbothcurrent4GLTEand new5GNRspectrumassets.Beyondthat,itisvital toconsiderthevariousRANarchitectureoptions availableandthewaysinwhichthetransport networkneedstoevolvetosupportthem,alongwith thelargeincreaseinuserdataratespersite. Whileurbanareaswithhighuserdensitywillbe thefirstpriorityfor5GNRdeployments,suburban andruralareaswillnotbefarbehind.Thesethree areatypeshavedifferentpreconditionssuchas availabletransportsolutions,inter-sitedistance (ISD),trafficdemandandspectrumneedsthatmust betakenintoconsiderationatanearlystageinthe deploymentprocess. Predicted5Gtraffic 5Gisprojectedtoreach40percentpopulation coverageand1.9billionsubscriptionsby2024[1], correspondingto20percentofallmobile subscriptions.Thosefiguresindicatethatitwillbe thefastestglobalrolloutsofar.Thetotalmobiledata trafficgeneratedbysmartphonesiscurrentlyabout 90percentandisestimatedtoreach95percentby theendof2024.Withthecontinuedgrowthof smartphoneusage,totalworldwidemobiledata trafficispredictedtoreachabout130exabytesper month–fourtimeshigherthanthecorresponding figurefor2019–and35percentofthistrafficwillbe carriedby5GNRnetworks. Thegrowingdatademandsformobilebroadband cangenerallybemetwithlimitedsitedensification [2].Therearebenefitstodeploying5GNRmid- bands(3-6GHz)atexisting4Gsites,resultingina significantperformanceboostandmaximalreuseof siteinfrastructureinvestments.Bymeansofmassive MIMO(multiple-input,multiple-output) techniques,suchasbeamformingandmulti-user MIMO,higherdownlinkcapacitycanbeachieved alongwithimproveddownlinkdatarates–both outdoorsandindoors. Deepindoorcoverageismaintainedthrough interworkingwithLTEand/orNRonlowbands usingdualconnectivityorcarrieraggregation. Furtherspeedandcapacityincreasescanbe attainedbydeploying5GNRathighbands (26-40GHz),alsoknownasmmWave.Ifadditional spectrumdoesnotsatisfythetrafficdemand (dueto,forexample,theintroductionoffixed wirelessaccess)densificationwithsolutions suchasstreetsitesmayberequired. Increasinguserdataratesperantennasite Theintroductionofnewspectrumfor5GNRwill increasethecarrierbandwidthsfromthe5MHz, 10MHzand20MHzusedforLTEto50MHzand 100MHzforthemidbands(3-6GHz)and 400/800MHzforthehighbands(24-40GHz), allowingforgigabit-per-seconddataratesperuser equipment(UE).Inurbanareas,thetotalamount ofspectrumwillgrowfromafewtensorhundreds ofmegahertztoseveralhundredorthousand megahertzperantennasite. Simultaneously,trafficdemandspersubscriber willincreaseexponentially.Allinall,thisimpliesthat thebitratedemandsinthebackhaulandfronthaul transportnetworkwillincreasesignificantly(per antennasite,forexample).Thebitratedemandwill bemultiplegigabitspersecond,comparedwiththe fewhundredmegabitspersecondincurrentmobile networks. Thespectrumincreaseperantennasitewillbe lessinsuburbanareas,whileinruralareasrefarming ofcurrentspectrumorspectrumsharingbetween LTEandNRwillbemorecommon.RANtransport networkswillneedtoevolvetoaddresstheincrease inaccumulateduserdatarates,particularlyinurban areas,andinmanysuburbanonesaswell. Transportnetworkoptions EvolvingthetransportnetworkinthelocalRAN areaisanimportantfirststepwhendeploying5G ontopofLTE. Inmostcases,themobilebackhaultransportfor DistributedRAN(DRAN)–thearchitecture traditionallyusedtobuildmobilenetworks–has beenarentedpacket-forwardingservice,Ethernet orIPbased,typicallycalledaleasedlineand providedbytraditionalfixednetworkoperators. Anotheroptioniswhitefiber,anopticalwavelength serviceofferedbymanytraditionalfixednetwork operators. Insteadofleasingatransportservice,some mobileoperatorsdeployself-builttransport solutionsusingmicrowavelinks,whichusually enablesshortinstallationleadtime.Integrated AccessandBackhaul(IAB)isanotheroptionfor self-builttransportin5G.WithIAB,themobile spectrumisalsousedforbackhaul,whichis especiallyrelevantforhigh-frequencybandswhere thebandwidthmaybehundredsofmegahertz. Alternatively,itispossibleforamobileoperatorto deployaself-builttransportsolutionontopof physicalfiber(knownasdarkfiber)thatisavailable forrentfromfixednetworkoperators,ormore recentlyfrompurefibernetworkoperatorsand municipalnetworks.Themobileoperatorthen buildsandownsthetransportequipmentina RANarea,definedasthelocalurbanareainacity andthesuburbanareasclosetocities. Urbanareastendtohavemultiplefibernetwork operatorsthatdeployfibertoeverystreet,which meansthatdarkfiberisreadilyavailableforrent. Whiledarkfiberislesscommoninsuburbanareas, CHOICES THAT MINIMIZE TCO 5GNewRadio RAN&transport TRAFFICDEMANDSPER SUBSCRIBERWILLINCREASE EXPONENTIALLY
  3. 3. ✱ 5G NR RAN & TRANSPORT OPTIONS 5G NR RAN & TRANSPORT OPTIONS ✱ 4 NOVEMBER 7, 2019 ✱ ERICSSON TECHNOLOGY REVIEWERICSSON TECHNOLOGY REVIEW ✱ NOVEMBER 7, 2019 5 infrastructureinvestments.Thebackhaul–thatis, thetransportbetweentheRANandthecore network(CN)–usesanS1/NGinterface[3]. DRANiswellsuitedforuseinallareas(urban, suburbanandrural)andcanusealargevarietyof transportsolutions.DRANreuseslegacy infrastructureinvestments,suchasexistingsites andoperationsandmaintenancestructure,andis ofparticularvalueinareaswherethepopulation densityislowandtheusersarescattered. Theutilizationofstatisticalvariationsintraffic forthedimensioningofself-builtpackettransport intheRANareatransportnetworkisanother benefitofDRAN. Wheredensificationisneededforcoverageor capacity,DRANstreetsitesfitwelltogetherwiththe existingDRANmacrosites.SpecificDRANunits tailoredforstreetsites,denotedasRBUinFigure1, havebenefitssuchasintegratedbasebandfunctions, simpleinstallationandreducedstreetsitespace. CentralizedRAN CentralizedRAN(CRAN)ischaracterizedby centralizedbasebandformultiplepiecesofradio equipment.WithaCRANdeployment,the basebandunitslocatedinacentralsiteandtheradio equipmentlocatedattheantennasitesare interconnectedwithatransportnetwork denominatedfronthaul,eitherCommonPublic RadioInterface(CPRI)orevolvedCPRI(eCPRI)[4]. InareaswithsmallISDsandaccesstodarkfiber (urbanandinsomecasesdensesuburbanareas), centralizingandpoolingthebasebandunitstoan aggregationsitecanbeagoodoption.Theuseof CRANcanleadtoreducedcostsforsitespaceand energyconsumptionattheantennasites,aswellas easierinstallation,operationandmaintenance. CRANprovidesefficientcoordination(via interbandcarrieraggregationandCoMP– coordinatedmultipoint–forexample)between physicallyseparatedantennasites.Italsoenables dimensioningofabasebandpooltohandlemoreand largerantennasitesduetostatisticalvariationsof trafficpersite,whichalsomakesbasebandresource expansioneasierwhentrafficgrowsintheCRAN area.Resilienceandenergyefficiencyareother benefits,asthebasebandpoolservesmanyantenna sites.Thestatisticalvariationoftrafficpersitemay alsobeutilizedinRANareatransportnetwork dimensioning. InenvironmentswhereCRANisdeployed,adark fibertransportsolutionisrequiredforthefronthaul. Theconnectedradiositesalsoneedtobewithinthe latencylimitrequiredbythebasebandunits.Theuse ofdarkfiberisagoodfitwiththenewwideNR frequencybandsandtheexpansionofthefronthaul duetotheuseofadvancedantennasystems[5]. WhendeployingCRAN,itismostbeneficialto connectsitesinthesameareatothesamebaseband pool.Incaseswhereitisdifficulttodeployadark fibertransportsolution,eitheraDRANorahigh- layersplitvirtualizedRAN(HLS-VRAN) architecturemaybedeployedforthosesites, coexistingwithotherCRAN-connectednodes. Toachievethebenefitsofstatisticalmultiplexing oftrafficto/fromtheradioequipmentinthe transportnetworkandinthebasebandpool,itis necessarytouseanEthernet-basedfronthaulsuch aseCPRI[4].Theradioequipmentattheantenna sitesmayeitherhavesupportforeCPRIorinclude aconverterfromCPRItoeCPRI.Itisalsopossible tomixeCPRIandCPRIradioequipment,usingan opticalfronthaultransportsolution,butwithout transportmultiplexinggains. CRANrequiressuitablesites(suchascentral officesites)tocolocatethebasebandunits.Thesize anddensityofthesecentralofficesitesdependson eachsituation,butatypicalcasecouldbecentral officesiteswithanISDoflessthan1kmuptoafew kilometersinanarea. Higher-layersplitappliedasavirtualizedRAN deployment ForbothDRANandCRAN,itispossibletoadda VRANbyimplementinganHLSwherethegNB itsavailabilityissteadilyincreasing.Inruralareas, thereisoftenonlyonefiberoperator,andfiberis onlydeployedtospecificsitessuchasbusinesses andschools.Inthesecases,darkfiberisusuallynot providedasaservice. Ontopofdarkfiber,mobileoperatorscandeploy anoptical(passiveoractive)orapacket-forwarding solution.Thepassiveopticalsolutionusescolored smallform-factorpluggabletransceivers(SFPs)in theendpointsandopticalfiltersinbetweenforadd/ droptosubtendedsites/equipmentalongthefiber path.AnactiveopticalsystemusesgraySFPsinthe endpointsandactiveopticalswitchingequipmentto generatewavelengthsandperformopticalswitching onthesites/equipmentonthefiber.Thepacket- forwardingsolutioncanbeanEthernetorIP solutionwithpacket-forwardingcapabilities onallsites/equipmentalongthefiberpath. RANarchitectureoptions Figure1illustratesDRANalongwiththeother RANarchitectureoptionsavailableforusein5G NR.Theoptionthatismostappropriatefora particulardeploymentwilllargelydependonthe typeofdeploymentarea(urban,suburbanorrural) andtheavailabilityofdarkfiber. Inalloptions,outdoorsitedeploymentscanbe eithermacrosites(typicallymountedonrooftopsor antennamastscoveringalargerarea)orstreetsites (typicallymountedonpoles,wallsorstrands coveringsmallerareasorspots). TheflexibilityoflocatingRANfunctionalityin differentlocationsin5GNRRANarchitectureand theabilitytosupportmoreradiositesincreasesthe needfornetworkautomation,makingitnecessaryto simplifytheinstallation,deploymentandoperation ofboththeRANandtransportpieces.Forexample, theautomationcapabilitiesusedtosimplify installationintheRANmustalsobeintroducedinto transporttoimprovetheinteractionbetweenthetwo. DistributedRAN DRANwithunitaryeNodeBbasestationshasbeen thedominantarchitecturefor4GLTE.DRANwill alsobeacommonlyusedarchitecturein5GNR deployments,withthebenefitofreusingthelegacy Figure 1 RAN architecture deployment options CU DU gNB Antenna/ hub site CU DU RBU Macro site Street siteHLS-RBU HLS-gNB Backhaul Fronthaul CPRI/eCPRI Fronthaul CPRI/eCPRI Backhaul S1/NG Backhaul F1Backhaul S1/NG Backhaul S1/NG Core network Centralized RAN Distributed RAN Distributed RAN + Virtualized RAN (HLS) Centralized RAN + Virtualized RAN (HLS) Small/ street site CU DU Central office site DU Central office site DU Small/ street site CU Data center DU HLS-gNB Antenna/ hub site DU HLS-RBU Small/ street site Backhaul F1 THEUSEOFDARKFIBERIS AGOODFITWITHTHENEWWIDE NRFREQUENCYBANDS...
  4. 4. ✱ 5G NR RAN & TRANSPORT OPTIONS 5G NR RAN & TRANSPORT OPTIONS ✱ 6 NOVEMBER 7, 2019 ✱ ERICSSON TECHNOLOGY REVIEWERICSSON TECHNOLOGY REVIEW ✱ NOVEMBER 7, 2019 7 isdividedintoacentralunit(CU)anddistributed units(DUs).ThisisknownasHLS-VRAN. TheDUsandtheCUareseparatedbytheF1 interface,carriedonabackhaultransportnetwork. ThesearedenotedHLS-gNBformacroand HLS-RBUforstreetsitesinFigure1. Whenacloudinfrastructurealreadyexistsin thenetwork,theHLS-VRANdeploymentmaybe beneficialfromanoperationalandmanagement pointofview.ForaDRANdeployment,adding HLS-VRANcouldresultindualconnectivitygains ifitisexpectedthatitwillbecommonforUEstobe connectedtodifferentbasebandsites. Inareaswhereastreetsitedeploymentisneeded asacoverageorcapacitycomplementtothemacro sitedeployment,astreetHLS-VRANdeployment fitswellwithmacroHLS-VRAN.SpecificHLS- VRANunitstailoredforstreetsites,denotedas HLS-RBUinFigure1,havethesamebenefits astheRBU. 5GNewRadiototalcostofownership Amobileoperator’sTCOfor5GNRintroductionin aRANareaincludesbothcapitalexpenses(one- timecosts)andoperatingexpenses(recurringcosts). Typicalcapitalexpensesincluderadio/RANand transportequipment,siteconstruction,installation costsandsiteacquisition.Typicaloperating expensesincludecostsforaleasedline,darkfiber rental,spectrumforwirelesstransport,siterental, energyconsumption,operationandmaintenance costsandvendorsupport.SincetheRANareatype anddeploymentsolutionalternativesaffecttheTCO, itisusefultocomparetheTCOofthedeployment solutionalternativesindifferentRANareas. BasedonEricssoncustomerpriceinformation andinternalanalysis,Figure2presentstherelative operatorTCOcoveringallcapitalexpensesand operatingexpensesforanurbanlocalRANareaina high-costmarket.Differentregionsandcustomers havevariationsincoststructure.Localdeviations canbesignificant,leadingtoreduceddifferencesbut withthesamerelationintherelativecoststructures. Thelargestcostcomponentsaretransportrentcost, siterental,energyconsumptionandradio/RAN equipment.Thegraphindicatesthatusingself-built transportinthelocalRANareaisamuchmorecost- efficientapproachthanusingaleasedlinetoevery site,bothinDRANandCRANarchitectures.The costdifferenceisespeciallylargeinhigh-costmarkets. Thereasonforthisisthattheintroductionof5G NRsignificantlyincreasestheradiobandwidth comparedwithpreviousgenerations,whichresults inincreasedtransportbitratedemands.While typicaltransportbandwidthtoaradiositeranged from10sto100sofMbpsin2G-4G,itistypicallyup tomultiplegigabitspersecondin5G.Inthelower rangeofthebandwidthscale,thetraditionalleased linecosthasbeenmanageable.Butatsiteswherethe requiredtransportbitratereachesgigabits-per- secondrates,therelativecostfortheleasedline increasesdramatically,accountingforasmuchas 70-80percentoftheRANareaTCO. Thesecondlargestcostinthe“DRANwithleased linetoeverysite”example(andthelargestinthe othertwoexamples)issiterental.Somescenarios willrequiredensificationwithnewsites,whichcould beamixofbothmacrositesandsmallersitetypes (streetsites).However,networkdensificationislikely tofacechallengesduetothehighcostofsiterental andlimitedsiteavailability. Thereare,however,ongoingdiscussionsin severalregionsaboutregulatingthehighsiterental feeforantennasites,whichwouldsignificantly increasetheopportunitytodensifywithnewsites. Thecleartrendoftowercompaniestakingoverthe operationofphysicalsitesandofferingsitesharing mayalsodecreasesiterentcost. RANequipmentandenergyrankasthethirdand fourthlargestcostsinallthreeexamples.Thesecost componentsaredependentonthedeployedRAN architecture.Duetodifferentpricesindifferent marketsandareas,DRANismorecost-efficientin somecases,whileCRANisinothers.Thisexplains whythechoicemaydifferbetweenMNOs. Leasedlineversusdarkfiber Leasedlineisahighvaluetypeofserviceandthefee increaseswiththerequiredbitrate,makingitabig challengefor5GRAN,astheneededtransport bitratesaremuchhigherthaninprevious generations.Whitefiberhasbasicallythesamecost challengesasleasedlines,becauseitisaservicewith aServiceLevelAgreement. Figure 2 Relative operator TCO for 5G NR introduction in an urban local RAN area DRAN leased line to every site DRAN self-built transport in local RAN area Leased line cost Dark fiber rent Site rent RAN equipment Energy All other TCO costs CRAN self-built transport in local RAN area Terms and abbreviations CN – Core Network | CO – Central Office | CPRI – Common Public Radio Interface | CRAN – Centralized RAN | CU – Central Unit | DRAN – Distributed RAN | DU – Distributed Unit | eCPRI – Evolved CPRI | F1 – Interface CU – DU | gNB – GNodeB | HLS – Higher-Layer Split | IAB – Integrated Access and Backhaul | ISD – Inter-Site Distance | LoS – Line-of-Sight | MNO - Mobile Network Operator | NG – Interface gNB - CN | NR – New Radio | RBU – Radio Base Unit | S1–InterfaceeNB-CN| SFP – Small Form-factor Pluggable Transceiver | TCO – Total Cost of Ownership | UE – User Equipment | VRAN – Virtualized RAN USINGSELF-BUILT TRANSPORTINTHELOCAL RANAREAISAMUCHMORE COST-EFFICIENTAPPROACH
  5. 5. ✱ 5G NR RAN & TRANSPORT OPTIONS 5G NR RAN & TRANSPORT OPTIONS ✱ 8 NOVEMBER 7, 2019 ✱ ERICSSON TECHNOLOGY REVIEWERICSSON TECHNOLOGY REVIEW ✱ NOVEMBER 7, 2019 9 Darkfiberrentalalsohasaratherhighcost structure,butthetransportfeeisindependentof bitratesandinsteadbasedonthefiberdistance. DarkfibersolutionsthereforefitwellinRANareas withshortdistancesandarepreferablydeployed,so thatthesamefibercanbeshared,tosomeextent,by multiplesites.Figure3illustratesthedifference betweenatraditionalleased-lineapproachandself- builttransportbasedondarkfiber.Figure4shows whichofthesetwotransportsolutionsismostcost- efficientdependingondataratetositeandsitedistance. Aself-builttransportnetworkbasedondarkfiber maybedeployedwithdifferentfiberandradiosite structuressuchasstar,subtendorringtopology.The mostcost-efficienttopologyissubtending,where multiplesitessharefiber.Ifnetworkresiliencyis required,aringtopologyissuitableattheexpenseof greaterfiberlength.Apurestartopologygives maximumresiliencebuthasthegreatestfiberlength andisthereforethemostexpensivechoice. Figure4illustratesthetypicalfiberlengthpersite, wheretheshortestlengthsappearinurbanareas usingthesubtendingtopology,andthelongest distancesinsuburbanareasusingthestartopology. Figure4alsoshowsthetypicaluserdataratesfor5G. Darkfiberismorecost-efficientthanleasedlinesin denserareaswherethefiberlengthpersiteislow, andthedataratesarehigh.Ifthefiberlength becomeslonger,orthedataratesaresmaller,leased linesaremorecost-efficient. Forthedifferenttechnologyoptionsontopofdark fiber,thepassiveopticalsolutionisthemostcost- efficientself-builtopticalsolution.Thisassumesthat thenumberofsitesandequipmentsubtendedonthe fiberiswithinthescalingofwavelengthsinthe system. Thealternativeself-builtpacket-basedsolution hastheadvantagesofstatisticalmultiplexing throughoutthenetworkandcanbeanL2Ethernet switchedand/orL3IProutedsolution.Itassumes thatallradioequipmentsupportsapacket- forwardinginterface. Alternatively,whendarkfiberisnotavailableor toocostly,wirelesstransportsuchasIABor microwavelinksmaybeused.Theserequireline- of-sight(LoS)ornear-LoS. Conclusion Ouranalysisindicatesthatduetothelargeincrease inrequiredbitratepersitefor5GNR,theuseof traditionalleasedlinesastransporttoeveryradio/ antennasiteintheRANwillbeassociatedwitha highcostindenserareas.Self-builttransportinthe RANareaisasignificantlymorecost-efficient alternativeformobileoperators.Darkfiberis oneself-builttransportalternative;microwave linksisanother. Sincedarkfiberscaleswithdistanceratherthan bandwidth,andthetrendwith5Gistowardshorter site-to-sitedistancesandhigherbitrates,darkfiber willbesignificantlymorecost-efficientthanleased linesinmanyscenarios.Further,thelargenumber offiberprovidershasboostedavailabilityand competition,resultinginadecreaseinfiberrental costinmosturbanareas,aswellasinsomesuburban ones.BeyondtheRANareawherethelocaltrafficis aggregatedandself-builttransportisterminated, traditionalleasedlineservicestothemobilecore continuetobeareasonablesolution. DistributedRAN(DRAN),whichworkswell overbothfiberandwirelesstransportsolutions, willcontinuetobethedominantdeployment architectureinmostsituations.CentralizedRAN (CRAN)isaninterestingdeploymentarchitecture forregionsorhigh-trafficareaswheredarkfiber transportisavailable.CRANoffersoperational Figure 4 Relative costs for leased lines and dark fiber Dark fiber most cost-efficient Date rate to site (Gbps) 10 5 10 5 1 Typical fiber length per urban/suburban site Typical 5G user data rates Equal TCO Fiber length (km) Leased line most cost-efficient Figure 3 Traditional leased-line approach versus self-built transport in local RAN area Leased-line sites to CN Self-built to aggregation site, leased lines to CN Local RAN area A few hundred meters -> a few kilometers CN CN Agg/ CO
  6. 6. ✱ 5G NR RAN & TRANSPORT OPTIONS 5G NR RAN & TRANSPORT OPTIONS ✱ 10 NOVEMBER 7, 2019 ✱ ERICSSON TECHNOLOGY REVIEWERICSSON TECHNOLOGY REVIEW ✱ NOVEMBER 7, 2019 11 Ann-Christine Eriksson ◆ is a senior specialist in RAN and service layer interaction at Business Area Networks. She joined Ericsson in 1988 and has worked with research and development within RAN of the 2G, 3G, 4G and 5G mobile network generations. Her focus areas include QoS, radio resource handling and RAN architecture. In her current role, she focuses on evaluating different 5G RAN architecture deployment options with the goal of optimizing RAN efficiency, performance and cost. Eriksson holds an M.Sc. in physical engineering from KTH Royal Institute of Technology in Stockholm, Sweden. Mats Forsman ◆ joined Ericsson in 1999 to work with intelligent networks. Since then he has worked within the areas of IP, broadband and optical networks. Today, his focus is on new concepts for transport within mobile networks at Business Area Networks; one such concept area is 5G RAN transport and automation. Forsman holds an M.Sc. in mathematics and natural science from Umeå University, Sweden. Henrik Ronkainen ◆ joined Ericsson in 1989 to work with software development in telecom control systems but soon followed the journey of mobile systems evolution as a software and system architect for the 2G and 3G RAN systems. With the introduction of HSDPA, he worked as a system architect for 3G and 4G UE modems but rejoined Business Area Networks in late 2014, focusing on analysis and solutions for the architecture, deployment and functionality targeted for the 5G RAN. Ronkainen holds a B.Sc. in electrical engineering from the Faculty of Engineering at Lund University, Sweden. Per Willars ◆ is an expert in network architecture and radio network functionality at Business Area Networks. He joined Ericsson in 1991 and has worked intensively with RAN issues ever since. This includes leading the definition of 3G RAN, before and within the 3GPP, and more lately indoor solutions. He has also worked with service layer research and explored new business models. In his current role, he analyzes the requirements for 5G RAN (architecture and functionality) with the aim of simplifying 5G. Willars holds an M.Sc. in electrical engineering from KTH Royal Institute of Technology. Christer Östberg ◆ is an expert in the physical layer of radio access at Business Area Networks. He joined Ericsson in 1997 with a 10-year background in developing 2G prototypes and playing an instrumental role during the preassessment of 3G. At Ericsson, Östberg began with algorithm development and continued as a system architect, responsible for modem parts of 3G and 4G UE platforms. He joined Business Area Networks in 2014, focusing on analysis and solutions for the architecture, deployment and functionality targeted for the 5G RAN. Östberg holds an M.Sc. in electrical engineering from the Faculty of Engineering at Lund University. theauthors benefitsbypoolingallbasebandtoacentralsite, whichresultsinpotentialcostsavingsinsiterental andenergy,andmaximizestheopportunityfor inter-sitecoordinationfeatures.Incaseswherea networkhasanexistingcloudinfrastructure,the operatormaybenefitfromaddingahigh-layersplit virtualizedRANdeploymenttoaDRANorCRAN architecture. Becausetheflexibilityofthe5GNRarchitecture enablesmuchgreaterdistributionofequipmentand sitesthaneverbefore,itisnecessarytosimplifythe installation,deploymentandoperationofboththe RANanditstransport.Ahighdegreeofautomation andtightintegrationbetweenthetwowillbecritical toachievingcost-efficientdeployments. Further reading ❭❭ Learn more about building 5G networks at: https://www.ericsson.com/en/5g/5g-networks References 1. Ericsson Mobility Report, June 2019, available at: https://www.ericsson.com/en/mobility-report/reports/ june-2019 2. Ericsson Technology Review, The advantages of combining 5G NR with LTE, November 5, 2018, Kronestedt, F, et al., available at: https://www.ericsson.com/en/ericsson-technology-review/archive/2018/ the-advantages-of-combining-5g-nr-with-lte 3. 3GPP, TS Group RAN; NR; Overall Description; Stage 2, available at: https://portal.3gpp.org/ desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3191 4. CPRI Common Public Radio Interface, available at: http://cpri.info/index.html 5. Ericsson white paper, Advanced antenna systems for 5G networks, available at: https://www.ericsson. com/en/white-papers/advanced-antenna-systems-for-5g-networks ...AUTOMATIONANDTIGHT INTEGRATIONWILLBECRITICAL TOACHIEVINGCOST-EFFICIENT DEPLOYMENTS
  7. 7. ISSN 0014-0171 284 23-3334 | Uen © Ericsson AB 2019 Ericsson SE-164 83 Stockholm, Sweden Phone: +46 10 719 0000

×