SlideShare a Scribd company logo
1 of 15
Download to read offline
TUTORIAL 7
MTH3201 LINEAR ALGEBRA
1(a)
              3/7   βˆ’6/7   2/7
        𝐴 𝑇 = 2/7    3/7   6/7
              6/7    2/7   βˆ’3/7

       3/7 2/7 6/7 3/7 βˆ’6/7 2/7    1            0 0
   𝑇
 𝐴𝐴 = βˆ’6/7 3/7 2/7 2/7 3/7   6/7 = 0            1 0 = 𝐼
       2/7 6/7 βˆ’3/7 6/7 2/7 βˆ’3/7   0            0 1

  𝐴𝐴 𝑇 = 𝐼
  𝐴𝐴 𝑇 = π΄π΄βˆ’1
  ∴ 𝐴 𝑇 = π΄βˆ’1
  Since 𝐴 𝑇 = π΄βˆ’1 , 𝐴 is an orthogonal matrix
1(b)



π‘…π‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ π‘œπ‘“ 𝐴:           π‘Ÿ1 = 3/7 2/7 6/7
                          π‘Ÿ2 = βˆ’6/7 3/7 2/7
                          π‘Ÿ3 = 2/7 6/7 βˆ’3/7
 π‘Ÿ1 , π‘Ÿ2 = 3/7 βˆ’6/7 + (2/7)(3/7) + 6/7 2/7 = 0
  π‘Ÿ1 , π‘Ÿ3 = 3/7 2/7 + (2/7)(6/7) + 6/7 βˆ’3/7 = 0
π‘Ÿ2 , π‘Ÿ3 = βˆ’6/7 2/7 + (3/7)(6/7) + 2/7 βˆ’3/7 = 0
  π‘Ÿ1 = π‘Ÿ1 , π‘Ÿ1 1/2 =        3/7 2 + 2/7 2 + 6/7 2 = 1
 π‘Ÿ2 = π‘Ÿ2 , π‘Ÿ2 1/2 =         βˆ’6/7 2 + 3/7 2 + 2/7 2 = 1
 π‘Ÿ3 = π‘Ÿ3 , π‘Ÿ3   1/2   =     2/7   2   + 6/7   2   + βˆ’3/7   2   =1
  ∴ r1 , r2 , r3 is an orthonormal set. Hence, it is an orthogonal matrix
1(c)


                          3/7
  πΆπ‘œπ‘™π‘’π‘šπ‘› π‘ π‘π‘Žπ‘π‘’ π‘œπ‘“ 𝐴:𝑐1 = βˆ’6/7      ,
                          2/7
      2/7         6/7
𝑐2 = 3/7 , 𝑐3 = 2/7
      6/7        βˆ’3/7

 𝑐1 , 𝑐2 = 3/7 2/7 + (βˆ’6/7)(3/7) + 2/7 6/7 = 0
 𝑐1 , 𝑐3 = 3/7 6/7 + (βˆ’6/7)(2/7) + 2/7 βˆ’3/7 = 0
  𝑐2 , 𝑐3 = 2/7 6/7 + (3/7)(2/7) + 6/7 βˆ’3/7 = 0

   𝑐1 = π‘Ÿ1 , π‘Ÿ1 1/2 = 1
  𝑐2 = π‘Ÿ2 , π‘Ÿ2 1/2 = 1
  𝑐3 = π‘Ÿ3 , π‘Ÿ3   1/2   =1
∴ c1 , c2 , c3 is an orthonormal set. Hence, it is an orthogonal matrix
2. Inverse of matrix A
     𝐴 𝐼         𝐼 π΄βˆ’1
      3/7     2/7 6/7 1       0   0          𝑖 7𝑅1 , 7𝑅2 , 7𝑅3
     βˆ’6/7     3/7 2/7 0       1   0          𝑖𝑖 𝑅1 βˆ’ 𝑅2 , 2𝑅1 + 𝑅2 , 𝑅2 + 3𝑅3
      2/7     6/7 βˆ’3/7 0      0   1               𝑅2
                                             𝑖𝑖𝑖     , 3𝑅2 βˆ’ 𝑅3
                                                  7
                                                  𝑅3
                                             𝑖𝑣
                                                 49
                                              𝑣 𝑅2 βˆ’ 2𝑅3
                                              𝑣𝑖 𝑅1 + 4𝑅2 βˆ’ 9𝑅3
    1      0 0 3/7 βˆ’6/7 2/7
    0      1 0 2/7 3/7  6/7
    0      0 1 6/7 2/7 βˆ’3/7

    ∴ A is an orthogonal matrix from question 1
                      𝐴 𝑇 = π΄βˆ’1
3(a) Transition matrix B to Bβ€²
         1 2            2 3
  𝑀𝐡 =        , 𝑀 𝐡′ =
         3 2            1 βˆ’4
    𝑀 𝐡′ 𝑀 𝐡        𝐼 𝑃
   2 3 1 2           𝑖 𝑅1 ↔ 𝑅2          𝑖𝑖 2𝑅1 βˆ’ 𝑅2                     1 0 13/11       14/11
  1   βˆ’4 3   2               βˆ’π‘…2                                        0 1 βˆ’5/11       βˆ’2/11
                      𝑖𝑖𝑖               𝑖𝑣        𝑅1 + 4𝑅2
                             11                                                 13/11   14/11
                                                    ∴ Transition matrix , P =
                                                                                βˆ’5/11   βˆ’2/11
3(b) Transition matrix Bβ€² to B
   𝑀 𝐡 𝑀 𝐡′      𝐼 𝑄                              βˆ’π‘…2
                  𝑖         𝑅2 βˆ’ 3𝑅1         𝑖𝑖
 1    2 2 3                                        4                    1 0 βˆ’1/2 βˆ’7/2
 3    2 1 βˆ’4                𝑖𝑖𝑖   𝑅1 βˆ’ 2𝑅2                              0 1 5/4 13/4

                                  βˆ’1/2 βˆ’7/2
∴ Transition matrix , Q =
                                  5/4 13/4
βˆ’1         From 3(a)
3(c) Find 𝑀   𝐡′   𝑖𝑓 𝑀           𝐡   =
                                        3                  𝑀 𝐡′ 𝑀 𝐡         𝐼 𝑃

using equation      𝑣             = 𝑃 𝑣                                     13/11   14/11
                            𝐡′            𝐡       Transition matrix , P =
                                                                            βˆ’5/11   βˆ’2/11
                    𝑀        𝐡′   = 𝑃 𝑀       𝐡
                           13/11 14/11 βˆ’1
                        𝑀    𝐡′ =
                           βˆ’5/11 βˆ’2/11 3
                           29/11
                    𝑀 𝐡′ =
                           βˆ’1/11
4(a) Transition matrix B to Bβ€²
            1    βˆ’1 βˆ’1                 3 0   1
       𝑀𝐡 = 2    βˆ’1 1      , 𝑀 𝐡′   = 7 4    0       𝑀 𝐡′ 𝑀 𝐡        𝐼 𝑃
            1     1  7                βˆ’2 1   0
3     0   1 1 βˆ’1     βˆ’1             ERO       1 0 0 βˆ’2/15        βˆ’1/3      βˆ’9/5
7     4   0 2 βˆ’1      1                       0 1 0 11/15        1/3       17/5
βˆ’2    1   0 1 1       7                       0 0 1 7/5           0        22/5

                                                        ∴ Transition matrix , P
     4(b) Transition matrix Bβ€² to B
        𝑀 𝐡 𝑀 𝐡′      𝐼 𝑄
 1 βˆ’1       βˆ’1 3 0 1                ERO          1 0 0 11           11   βˆ’4
 2 βˆ’1        1 7 4 0                             0 1 0 23/2        29/2 βˆ’13/2
 1 1         7 βˆ’2 1 0                            0 0 1 βˆ’7/2        βˆ’7/2  3/2
                           11          11     βˆ’4
∴ Transition matrix , Q = 23/2        29/2   βˆ’13/2
                          βˆ’7/2        βˆ’7/2    3/2
From 4(a)
4(c) Find w   Bβ€²   first and then find w                       B
                                                                                𝑀 𝐡′ 𝑀 𝐡     𝐼 𝑃
 𝑀 𝐡′ 𝑀             𝐼 w             Bβ€²                                                        13/11   14/11
                                                                      Transition matrix , P =
 3 0      1 βˆ’2                                               1 0   0 βˆ’22/15                   βˆ’5/11   βˆ’2/11
                                ERO
 7 4      0 βˆ’6                                               0 1   0 16/15
βˆ’2 1      0 4                                                0 0   1 12/5

                                                                       w   Bβ€²
using equation      𝑣       𝐡       =    π‘ƒβˆ’1   𝑣   𝐡′

                        𝑀       𝐡   = π‘ƒβˆ’1 𝑀             𝐡′
                        𝑀= 𝑄 𝑀 𝐡′
                                𝐡
                            11    11  βˆ’4   βˆ’22/15
                     𝑀 𝐡 = 23/2 29/2 βˆ’13/2 16/15
                           βˆ’7/2 βˆ’7/2  3/2   12/5
                           βˆ’14
                     𝑀 𝐡 = βˆ’17
                            5
4(d) Find w    B   directly

     𝑀𝐡 𝑀                𝐼 w   B

1     βˆ’1      βˆ’1 βˆ’2       βˆ’2𝑅1 + 𝑅2   1   βˆ’1     βˆ’1 βˆ’2     𝑅1 + 𝑅2   1 0   2 βˆ’4
2     βˆ’1       1 βˆ’6                   0    1      3 βˆ’2               0 1   3 βˆ’2
                           βˆ’π‘…1 + 𝑅3                      βˆ’2𝑅2 + 𝑅3
1      1       7 4                    0    2      8 6                0 0   2 10

      𝑅3 /2        1 0         2 βˆ’4   𝑅1 βˆ’ 2𝑅2    1   0 0 βˆ’14
                   0 1         3 βˆ’2   𝑅2 βˆ’ 3𝑅3    0   1 0 βˆ’17
                   0 0         1 5                0   0 1 5

                        βˆ’14
              ∴   𝑀 𝐡 = βˆ’17
                         5
5(a) Transition matrix B to Bβ€²
         3 βˆ’4            2 1
 𝑀𝐡 =           , 𝑀 𝐡′ =
         1 2             0 3
    𝑀 𝐡′ 𝑀 𝐡       𝐼 𝑃
  2 1 3 βˆ’4
  0 3 1 2
           𝑖     𝑅1 /2
           𝑖𝑖    𝑅2 /3
                       𝑅2
           𝑖𝑖𝑖    𝑅1 βˆ’
                       2

   1   0 4/3 βˆ’7/3
   0   1 1/3 2/3
                            4/3 βˆ’7/3
∴ Transition matrix , P =
                            1/3 2/3
5(b) Find q   B   first and then find q         Bβ€²


     𝑀𝐡 π‘ž               𝐼 q       B

3     βˆ’4 βˆ’1           ERO                      1 0 7/5
1     2 4                                      0 1 13/10

                                                    q    B


    using equation       𝑣       𝐡′    = 𝑃 𝑣   𝐡

                             π‘ž    = 𝑃 π‘ž 𝐡
                                  𝐡′
                                    4/3 βˆ’7/3 7/5
                             π‘ž 𝐡′ =
                                    1/3 2/3 13/10
                                    βˆ’7/6
                             π‘ž 𝐡′ =
                                     4/3
5(c) Find q      Bβ€²   directly

 𝑀 𝐡′ π‘ž                 𝐼 q   Bβ€²

2 1 βˆ’1            𝑅1 /2
                                   1   1/2 βˆ’1/2
0 3 4             𝑅2 /3            0    1 4/3

βˆ’π‘…2
    + 𝑅1
 2               1 0 βˆ’7/6
                 0 1 4/3

                 βˆ’7/6
  ∴ π‘ž     𝐡′ =
                  4/3
Tutorial 7 mth 3201

More Related Content

What's hot

Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
Β 
Tutorial 0 mth 3201
Tutorial 0 mth 3201Tutorial 0 mth 3201
Tutorial 0 mth 3201Drradz Maths
Β 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxfroilandoblon1
Β 
Multilineal
MultilinealMultilineal
Multilinealmaricruzg
Β 
geometri analitik ruang
geometri analitik ruanggeometri analitik ruang
geometri analitik ruangria angriani
Β 
Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3feralia goretti situmorang
Β 
QUADRATIC EQUATIONS
QUADRATIC EQUATIONSQUADRATIC EQUATIONS
QUADRATIC EQUATIONShiratufail
Β 
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)Dyas Arientiyya
Β 
Ecuaciones trigonometricas
Ecuaciones trigonometricasEcuaciones trigonometricas
Ecuaciones trigonometricaskarenvergara20
Β 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEMuhammad Nur Chalim
Β 
Dimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf LengkapDimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf Lengkappetrus fendiyanto
Β 
1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas tmath260
Β 
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenPembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenSosuke Aizen
Β 
7.5 graphing square root and cube root functions
7.5 graphing square root and cube root functions7.5 graphing square root and cube root functions
7.5 graphing square root and cube root functionshisema01
Β 
Binomial theorem
Binomial theoremBinomial theorem
Binomial theoremindu psthakur
Β 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions xmath260
Β 

What's hot (20)

Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
Β 
Tutorial 0 mth 3201
Tutorial 0 mth 3201Tutorial 0 mth 3201
Tutorial 0 mth 3201
Β 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Β 
Multilineal
MultilinealMultilineal
Multilineal
Β 
geometri analitik ruang
geometri analitik ruanggeometri analitik ruang
geometri analitik ruang
Β 
Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3
Β 
QUADRATIC EQUATIONS
QUADRATIC EQUATIONSQUADRATIC EQUATIONS
QUADRATIC EQUATIONS
Β 
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
Β 
Ecuaciones trigonometricas
Ecuaciones trigonometricasEcuaciones trigonometricas
Ecuaciones trigonometricas
Β 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
Β 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Β 
Pag 48 53
Pag 48 53Pag 48 53
Pag 48 53
Β 
Dimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf LengkapDimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf Lengkap
Β 
Guia 5 calculo vectorial
Guia 5 calculo vectorialGuia 5 calculo vectorial
Guia 5 calculo vectorial
Β 
1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t1.7 sign charts of factorable formulas t
1.7 sign charts of factorable formulas t
Β 
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenPembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Β 
7.5 graphing square root and cube root functions
7.5 graphing square root and cube root functions7.5 graphing square root and cube root functions
7.5 graphing square root and cube root functions
Β 
Binomial theorem
Binomial theoremBinomial theorem
Binomial theorem
Β 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
Β 
E2 f6 bα»™ binh
E2 f6 bα»™ binhE2 f6 bα»™ binh
E2 f6 bα»™ binh
Β 

More from Drradz Maths

Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3Drradz Maths
Β 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplierDrradz Maths
Β 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti importantDrradz Maths
Β 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101Drradz Maths
Β 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7Drradz Maths
Β 
Echelon or not
Echelon or notEchelon or not
Echelon or notDrradz Maths
Β 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials QuestionDrradz Maths
Β 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 TutorialsDrradz Maths
Β 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6Drradz Maths
Β 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5Drradz Maths
Β 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)Drradz Maths
Β 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12Drradz Maths
Β 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8Drradz Maths
Β 

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
Β 
Formulas
FormulasFormulas
Formulas
Β 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
Β 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
Β 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
Β 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
Β 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
Β 
Figures
FiguresFigures
Figures
Β 
Formulas
FormulasFormulas
Formulas
Β 
Figures
FiguresFigures
Figures
Β 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
Β 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
Β 
Echelon or not
Echelon or notEchelon or not
Echelon or not
Β 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials Question
Β 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
Β 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6
Β 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5
Β 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)
Β 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
Β 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8
Β 

Tutorial 7 mth 3201

  • 1.
  • 3. 1(a) 3/7 βˆ’6/7 2/7 𝐴 𝑇 = 2/7 3/7 6/7 6/7 2/7 βˆ’3/7 3/7 2/7 6/7 3/7 βˆ’6/7 2/7 1 0 0 𝑇 𝐴𝐴 = βˆ’6/7 3/7 2/7 2/7 3/7 6/7 = 0 1 0 = 𝐼 2/7 6/7 βˆ’3/7 6/7 2/7 βˆ’3/7 0 0 1 𝐴𝐴 𝑇 = 𝐼 𝐴𝐴 𝑇 = π΄π΄βˆ’1 ∴ 𝐴 𝑇 = π΄βˆ’1 Since 𝐴 𝑇 = π΄βˆ’1 , 𝐴 is an orthogonal matrix
  • 4. 1(b) π‘…π‘œπ‘€ π‘ π‘π‘Žπ‘π‘’ π‘œπ‘“ 𝐴: π‘Ÿ1 = 3/7 2/7 6/7 π‘Ÿ2 = βˆ’6/7 3/7 2/7 π‘Ÿ3 = 2/7 6/7 βˆ’3/7 π‘Ÿ1 , π‘Ÿ2 = 3/7 βˆ’6/7 + (2/7)(3/7) + 6/7 2/7 = 0 π‘Ÿ1 , π‘Ÿ3 = 3/7 2/7 + (2/7)(6/7) + 6/7 βˆ’3/7 = 0 π‘Ÿ2 , π‘Ÿ3 = βˆ’6/7 2/7 + (3/7)(6/7) + 2/7 βˆ’3/7 = 0 π‘Ÿ1 = π‘Ÿ1 , π‘Ÿ1 1/2 = 3/7 2 + 2/7 2 + 6/7 2 = 1 π‘Ÿ2 = π‘Ÿ2 , π‘Ÿ2 1/2 = βˆ’6/7 2 + 3/7 2 + 2/7 2 = 1 π‘Ÿ3 = π‘Ÿ3 , π‘Ÿ3 1/2 = 2/7 2 + 6/7 2 + βˆ’3/7 2 =1 ∴ r1 , r2 , r3 is an orthonormal set. Hence, it is an orthogonal matrix
  • 5. 1(c) 3/7 πΆπ‘œπ‘™π‘’π‘šπ‘› π‘ π‘π‘Žπ‘π‘’ π‘œπ‘“ 𝐴:𝑐1 = βˆ’6/7 , 2/7 2/7 6/7 𝑐2 = 3/7 , 𝑐3 = 2/7 6/7 βˆ’3/7 𝑐1 , 𝑐2 = 3/7 2/7 + (βˆ’6/7)(3/7) + 2/7 6/7 = 0 𝑐1 , 𝑐3 = 3/7 6/7 + (βˆ’6/7)(2/7) + 2/7 βˆ’3/7 = 0 𝑐2 , 𝑐3 = 2/7 6/7 + (3/7)(2/7) + 6/7 βˆ’3/7 = 0 𝑐1 = π‘Ÿ1 , π‘Ÿ1 1/2 = 1 𝑐2 = π‘Ÿ2 , π‘Ÿ2 1/2 = 1 𝑐3 = π‘Ÿ3 , π‘Ÿ3 1/2 =1 ∴ c1 , c2 , c3 is an orthonormal set. Hence, it is an orthogonal matrix
  • 6. 2. Inverse of matrix A 𝐴 𝐼 𝐼 π΄βˆ’1 3/7 2/7 6/7 1 0 0 𝑖 7𝑅1 , 7𝑅2 , 7𝑅3 βˆ’6/7 3/7 2/7 0 1 0 𝑖𝑖 𝑅1 βˆ’ 𝑅2 , 2𝑅1 + 𝑅2 , 𝑅2 + 3𝑅3 2/7 6/7 βˆ’3/7 0 0 1 𝑅2 𝑖𝑖𝑖 , 3𝑅2 βˆ’ 𝑅3 7 𝑅3 𝑖𝑣 49 𝑣 𝑅2 βˆ’ 2𝑅3 𝑣𝑖 𝑅1 + 4𝑅2 βˆ’ 9𝑅3 1 0 0 3/7 βˆ’6/7 2/7 0 1 0 2/7 3/7 6/7 0 0 1 6/7 2/7 βˆ’3/7 ∴ A is an orthogonal matrix from question 1 𝐴 𝑇 = π΄βˆ’1
  • 7. 3(a) Transition matrix B to Bβ€² 1 2 2 3 𝑀𝐡 = , 𝑀 𝐡′ = 3 2 1 βˆ’4 𝑀 𝐡′ 𝑀 𝐡 𝐼 𝑃 2 3 1 2 𝑖 𝑅1 ↔ 𝑅2 𝑖𝑖 2𝑅1 βˆ’ 𝑅2 1 0 13/11 14/11 1 βˆ’4 3 2 βˆ’π‘…2 0 1 βˆ’5/11 βˆ’2/11 𝑖𝑖𝑖 𝑖𝑣 𝑅1 + 4𝑅2 11 13/11 14/11 ∴ Transition matrix , P = βˆ’5/11 βˆ’2/11 3(b) Transition matrix Bβ€² to B 𝑀 𝐡 𝑀 𝐡′ 𝐼 𝑄 βˆ’π‘…2 𝑖 𝑅2 βˆ’ 3𝑅1 𝑖𝑖 1 2 2 3 4 1 0 βˆ’1/2 βˆ’7/2 3 2 1 βˆ’4 𝑖𝑖𝑖 𝑅1 βˆ’ 2𝑅2 0 1 5/4 13/4 βˆ’1/2 βˆ’7/2 ∴ Transition matrix , Q = 5/4 13/4
  • 8. βˆ’1 From 3(a) 3(c) Find 𝑀 𝐡′ 𝑖𝑓 𝑀 𝐡 = 3 𝑀 𝐡′ 𝑀 𝐡 𝐼 𝑃 using equation 𝑣 = 𝑃 𝑣 13/11 14/11 𝐡′ 𝐡 Transition matrix , P = βˆ’5/11 βˆ’2/11 𝑀 𝐡′ = 𝑃 𝑀 𝐡 13/11 14/11 βˆ’1 𝑀 𝐡′ = βˆ’5/11 βˆ’2/11 3 29/11 𝑀 𝐡′ = βˆ’1/11
  • 9. 4(a) Transition matrix B to Bβ€² 1 βˆ’1 βˆ’1 3 0 1 𝑀𝐡 = 2 βˆ’1 1 , 𝑀 𝐡′ = 7 4 0 𝑀 𝐡′ 𝑀 𝐡 𝐼 𝑃 1 1 7 βˆ’2 1 0 3 0 1 1 βˆ’1 βˆ’1 ERO 1 0 0 βˆ’2/15 βˆ’1/3 βˆ’9/5 7 4 0 2 βˆ’1 1 0 1 0 11/15 1/3 17/5 βˆ’2 1 0 1 1 7 0 0 1 7/5 0 22/5 ∴ Transition matrix , P 4(b) Transition matrix Bβ€² to B 𝑀 𝐡 𝑀 𝐡′ 𝐼 𝑄 1 βˆ’1 βˆ’1 3 0 1 ERO 1 0 0 11 11 βˆ’4 2 βˆ’1 1 7 4 0 0 1 0 23/2 29/2 βˆ’13/2 1 1 7 βˆ’2 1 0 0 0 1 βˆ’7/2 βˆ’7/2 3/2 11 11 βˆ’4 ∴ Transition matrix , Q = 23/2 29/2 βˆ’13/2 βˆ’7/2 βˆ’7/2 3/2
  • 10. From 4(a) 4(c) Find w Bβ€² first and then find w B 𝑀 𝐡′ 𝑀 𝐡 𝐼 𝑃 𝑀 𝐡′ 𝑀 𝐼 w Bβ€² 13/11 14/11 Transition matrix , P = 3 0 1 βˆ’2 1 0 0 βˆ’22/15 βˆ’5/11 βˆ’2/11 ERO 7 4 0 βˆ’6 0 1 0 16/15 βˆ’2 1 0 4 0 0 1 12/5 w Bβ€² using equation 𝑣 𝐡 = π‘ƒβˆ’1 𝑣 𝐡′ 𝑀 𝐡 = π‘ƒβˆ’1 𝑀 𝐡′ 𝑀= 𝑄 𝑀 𝐡′ 𝐡 11 11 βˆ’4 βˆ’22/15 𝑀 𝐡 = 23/2 29/2 βˆ’13/2 16/15 βˆ’7/2 βˆ’7/2 3/2 12/5 βˆ’14 𝑀 𝐡 = βˆ’17 5
  • 11. 4(d) Find w B directly 𝑀𝐡 𝑀 𝐼 w B 1 βˆ’1 βˆ’1 βˆ’2 βˆ’2𝑅1 + 𝑅2 1 βˆ’1 βˆ’1 βˆ’2 𝑅1 + 𝑅2 1 0 2 βˆ’4 2 βˆ’1 1 βˆ’6 0 1 3 βˆ’2 0 1 3 βˆ’2 βˆ’π‘…1 + 𝑅3 βˆ’2𝑅2 + 𝑅3 1 1 7 4 0 2 8 6 0 0 2 10 𝑅3 /2 1 0 2 βˆ’4 𝑅1 βˆ’ 2𝑅2 1 0 0 βˆ’14 0 1 3 βˆ’2 𝑅2 βˆ’ 3𝑅3 0 1 0 βˆ’17 0 0 1 5 0 0 1 5 βˆ’14 ∴ 𝑀 𝐡 = βˆ’17 5
  • 12. 5(a) Transition matrix B to Bβ€² 3 βˆ’4 2 1 𝑀𝐡 = , 𝑀 𝐡′ = 1 2 0 3 𝑀 𝐡′ 𝑀 𝐡 𝐼 𝑃 2 1 3 βˆ’4 0 3 1 2 𝑖 𝑅1 /2 𝑖𝑖 𝑅2 /3 𝑅2 𝑖𝑖𝑖 𝑅1 βˆ’ 2 1 0 4/3 βˆ’7/3 0 1 1/3 2/3 4/3 βˆ’7/3 ∴ Transition matrix , P = 1/3 2/3
  • 13. 5(b) Find q B first and then find q Bβ€² 𝑀𝐡 π‘ž 𝐼 q B 3 βˆ’4 βˆ’1 ERO 1 0 7/5 1 2 4 0 1 13/10 q B using equation 𝑣 𝐡′ = 𝑃 𝑣 𝐡 π‘ž = 𝑃 π‘ž 𝐡 𝐡′ 4/3 βˆ’7/3 7/5 π‘ž 𝐡′ = 1/3 2/3 13/10 βˆ’7/6 π‘ž 𝐡′ = 4/3
  • 14. 5(c) Find q Bβ€² directly 𝑀 𝐡′ π‘ž 𝐼 q Bβ€² 2 1 βˆ’1 𝑅1 /2 1 1/2 βˆ’1/2 0 3 4 𝑅2 /3 0 1 4/3 βˆ’π‘…2 + 𝑅1 2 1 0 βˆ’7/6 0 1 4/3 βˆ’7/6 ∴ π‘ž 𝐡′ = 4/3