SlideShare a Scribd company logo
1 of 6
Download to read offline
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 81
STUDY OF PROPERTY & STRUCTURAL VARIANTS OF MULBERRY
AND TASAR SILK FILAMENTS
Subrata Das R. Chattopadhyay, M.L. Gulrajani and Kushal Sen
Department of Textile technology, Department of Textile Technology
Kumaraguru College of Technology Indian Institute of Technology,
Coimbatore, India; Delhi, India
Abstract
The tensile behaviour of fully degummed filaments of two commercial varieties of silk
produced in India, namely mulberry (Bombyx mori) and tasar (Antheraea mylitta), has
been investigated in dry and wet state. The tensile properties were correlated with the
structures and morphologies of these two varieties of silk. The tenacity and elongation at
break of these silks were not significantly different in dry and wet state; however, a slight
reduction in initial modulus was noticed in wet state. The stress-strain behaviour of
mulberry silk filament was different from that of tasar in that it demonstrated a
characteristic yield point, lower modulus and elongation at break twice as high as that of
mulberry. The characteristic stress-strain behaviour of theses two varieties of silk was
correlated with density, birefringence, orientation index, sonic modulus and amino-acid
composition. Poor orientation and less order in tasar are related to the higher percent of
bulky groups present in fibroin.
Key words:
mulberry silk, tasar silk, silk filaments, tensile properties, structural properties
Introduction
In spite of a large number of man-made fibres overwhelming the textile arena, silk indeed still
commands a considerable respect, as its emotional and prestigious aura is still incomparable.
Although in use for centuries, it is one of the least researched fibres. Today China and India are the
major production centres. In the Indian subcontinent, silk is receiving renewed and focussed
attention, from the point of view of production, processing and properties. The present study is an
attempt to understand the two important commercial varieties produced in India, namely mulberry
(Bombyx mori) and tasar (Antheraea mylitta), in respect of their structure and property.
Earlier research [1,2] has shown that these two fibres exhibit distinctly different tensile behaviours.
These studies have shown that among the fibres, mulberry is weakened considerably in wet state,
while the stress-strain behaviour of both is largely modified upon wetting. In an aqueous medium,
inter-molecular hydrogen bonds would break, and in turn lead to a certain drop in tenacity and/or
modulus; but such a large reduction in tensile properties tends to show that fabrics/garments cannot
be home laundered or machine-washed without damage or distortion. However, the reality is far
different from this; silks can be machine washed at 40-60ºCprovided one uses appropriate washing
procedures, such as the use of neutral detergents.
Are these fibres weakened to such an extent in wet state? Is the residual sericin in any way
responsible for this behaviour? These were some of the questions which motivated the present study.
It was considered of interest to study the tensile behaviour of fully degummed fibres in dry and wet
state, and to investigate the structure and morphology of these two commercial varieties of silk.
Experimental investigation
Materials
(a) Yarns
Commercial mulberry (multivoltine) and thigh-reeled tasar yarns were collected from the Central Silk
Technological Research Institute, Bangalore and the Raw Material Bank, Chaibasa, Bihar, India.
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 82
(b) Filaments
Raw silk filaments were obtained after reeling mulberry and tasar silk cocoons.
The mulberry cocoons were taken in a wire mesh cage and cooked in the first pan at 65±5ºC for one
minute, then in the second pan at boiling point for about one and half minutes, and finally at 65±5ºC
for one minute. The cooked cocoons were hand-brushed at boiling in order to obtain the true end of
the filament. Due to the hard and compact nature of the tasar cocoons, these were cooked with 10%
ethylenediamine at 80ºC for 50 min. The cocoons were individually deflossed by hand. The mulberry
and tasar cocoons were then reeled on a wrap reel, and continuous filaments were collected in the
form of hanks. These were then degummed with 25% Marseilles soap (on the weight of the material)
at boil for 90 min. at a liquor ration of 50:1. The degummed hanks were washed, dried and
conditioned at tropical atmospheric of 27±2ºC and 65±2% RH (according to ISO139-1973IE, s.2.3.1)
for 48 hours. The filaments thus obtained were evaluated for their mechanical and structural
properties.
Evaluation
Tensile properties
The tensile properties were measured on an Instron 4301 Universal Tensile Tester (interfaced with an
IBM PC) at tropical atmospheric of 27±2ºc and 65±2% RH, at a gauge length of 5 cm and strain rate
of 1 cm/min. In order to study the mechanical behaviour in wet state, the samples were soaked in
distilled water for 30 min., and then tested for mechanical properties.
Structural properties
The density was measured using a Davenport Density Gradient Column. The column was prepared
using carbon tetrachloride ( Density 1.6 g/cc) and n-heptane (density 0.7 g/cc). An average of 10
readings was reported. All the measurements were made at 25ºC.
The birefringence was measured by the compensator method. A single filament was placed on a
glass slide and covered with an immersion oil between them. Birefringence was evaluated using a
polarised microscope with a compensator, and calculated using the following expression :
∆n =6.18 x (a+b) / d x 1000, where, d=the filament diameter in microns, (a+b)=phase difference (nm)
The wide angle X-ray diffractograms of the finely powered samples were obtained on a Philips X-ray
diffractometer (Model PM 203 A) between 2θ values ranging from 10º to 35º at a scan rate of 3º/min
using CuKα radiation (λ = 1.54A). The voltage and current of the X-ray source were 40 KV and 30 mA
respectively.
To study the orientation index, a parallel bundle of filaments of reasonable thickness was fixed on an
aluminium frame with an appropriate slit. This was placed perpendicular to the path of X-ray beam.
The orientation index was obtained from the azimuthal scans at 2θ = 20.6º for mulberry and 20.3º for
tasar using the method described elsewhere [3].
The sonic modulus was measured on a PPM-5R Dynamic Modulus Tester with a sound pulse of
longitudinal waves at a frequency of 5 KHz. The scanning speed was 6.4 cm/min. The total length
scan was 10.2 cm in each cycle. An average of 15 scans was reported.
The amino acid composition of the degummed silk filaments of Bombyx mori and Antheraea mylitta
were analysed using the Waters Pico Tag system. The hydrolysis of the silk filaments was carried out
at 110ºC using 4M methanesulphonic acid containing 0.2% (w/v) tryptamine (Sigma P/N M4141) for
24h; the analysis was carried out as per the Waters Pico Tag Method [4].
Results and discussion
Effect of wetting on mechanical properties
The mechanical properties of fully degummed mulberry and tasar, in both dry and wet state, are
presented in Table 1.
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 83
It is very interesting to note that for both these filaments, the tenacity and elongation at break are not
significantly different in dry or wet state. This is in contradiction with the observations of earlier work
[1,2]. However, a slight reduction in modulus may be noted. A glance at the typical tensile behaviour
reveals that the stress-strain curve of these two varieties is distinctly different, in that tasar shows a
clear yield point and very high elongation compared to the mulberry filament (Figure1a & Figure1b).
This has also been observed by earlier workers. However, wetting does not seem to significantly
change the tenacity and extension at break. However, a slight reduction in yield stress is perceptible
in both the wetting cases , more so in the case of tasar. This behaviour in wet state does not fall into
line with the observations of earlier researchers. For the sake of clarity, it is worth reproducing the
previous results from literature. Figure 2a, Figure 2b and Fig 3a, Figure 3b as adapted from literature
[1,2] tend to show that wetting considerably modifies both the fibres. However, it is not very clear as
to the extent of residual sericin present in yarns used in these studies.
Mulberry Tasar
Figure 1. Stress-strain behaviour of fully degummed silk filaments (Fibroin) in dry and wet conditions
Mulberry Tasar
Figure 2. Stress-strain behaviour of silk yarns in dry and wet conditions (adapted [1])
To investigate this, it was decided to test the commercially available yarns of both these varieties. It is
interesting to note (Figure 4a & Figure 4b) that the tensile behaviour of the yarns is vastly modified
upon wetting. This is due to the fact that both these yarns had residual sericin (mulberry 20.70% and
tasar 5.48%). On wetting, the sericin weakens (as expected), and allows interfilament slippage, which
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 84
in turn leads to a drastic reduction in mechanical properties. The change in tensile behaviours may
thus be related to the presence of sericin. On the other hand semi-crystalline fibroin, the main fibre,
does not undergo drastic modification upon wetting. A slight reduction in the yield stress of fully
degummed single filaments (Figure 1a and Figure 1b) may be due to the breakdown of some inter-
molecular hydrogen bonds, limiting the initial resistance to tensile deformation. Thereafter, further
deformation leads to molecular readjustment under tensile loads, and the fibre in wet state almost
behaves similar to the one in dry. This is clearly indicated from the tenacity and breaking extension
values (Table 1).
Mulberry Tasar
Figure 3. Load-elongation curves of silk yarns in dry and wet conditions (adapted [2])
Mulberry Tasar
Figure 4. Stress-strain behaviour of commercial silk yarns in dry and wet conditions
Structure-Property Correlation
As pointed out earlier, the stress-strain behaviour of mulberry silk filament is different from that of
tasar, in that tasar (a) demonstrates a characteristic yield point (Figure 1b), (b) has a significantly
lower modulus (Table 1) and (c) shows elongation at break about twice as high as that of mulberry
(Table 1). However, the tenacity of mulberry filaments is higher, but only marginally so. These
differences in mechanical properties must correlate with the structural features of these filaments.
True comparisons become difficult because the amino acid composition and sequencing of fibroin in
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 85
both these varieties are different. However, lower modulus and higher extension in tasar do indicate
poor orientation and crystalline order.
Table 1. Mechanical properties of mulberry and tasar silk in dry and wet condition
Mulberry Tasar
Properties
Dry Wet Dry Wet
Tenacity, cN/dtex 1.9 ± 0.2 1.8±0.3 1.6±0.3 1.7±0.3
Elongation at Break, % 13.5±3.7 13.3±4.8 29.9±5.9 27.7±6.6
Initial Modulus, cN/dtex 49.5±16.8 42.5±18.6 34.3±5.3 24.5±4.6
Figure 5 depicts the wide-angle X-ray diffractograms of these varieties. Mulberry shows a distinct
peak at 2θ = 20.6º, while tasar shows two distinct peaks at 20.3º and 17.1º respectively. It has been
shown by earlier research that the unit cell dimensions of Bombyx mori L and Antheraea mylitta D
differ, which causes this characteristic difference [5]. Though Tsukada et al [6] have calculated the
degree of crystallinity by drawing base lines using methods suggested by Herman & Weidinger [7]
and Sakurada et al [8], in the absence of any well-established procedure to produce standard
amorphous samples, particularly of tasar, it may be more appropriate to rely on density values.
However, Izuka [9] reports that A. mylitta D has a crystallinity of 39.5% compared to that of Bombyx
mori L of 41.1%.
Figure 5. Wide angle X-ray diffractograms of degummed silk fibroins
a) Mulberry b) Tasar
The higher density of mulberry, compared to tasar (Table 2), suggests a relatively poor degree of
order of tasar. This may be responsible for the lower modulus and typical yield behaviour of tasar
yarn.
Table 2. Structural properties of mulberry and tasar silk
Type of silk
Density
g/cm
3
Birefringence
n
Orientation index
%
Sonic modulus
cN/dtex
Mulberry 1.3525 0.0539 85 112.2
Tasar 1.3033 0.0165 61 73.7
The breaking extension is more closely related to the overall orientation of the ordered and disordered
regions. It may be noted (Table 2) that the birefringence, index of orientation and sonic modulus
values for mulberry filament are significantly higher than those of tasar. This clearly indicates that
AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX
http://www.autexrj.org/No2-2005/0123.pdf 86
tasar is more disordered at molecular and morphological levels, leading to an overall lack of order.
During tensile stress, the unoriented entangled chains open, leading to higher extension.
Table 3. Amino acid composition of mulberry and tasar silk fibroin (% moles of amino acid)
Amino acid Mulberry Tasar
Glycine 43.08 30.04
Alanine 27.61 37.09
Serine 9.62 9.94
Tyrosine 4.58 4.93
Aspartic & glutamic Acid 2.69 5.28
Arginine, histidine & tryptophan 2.55 8.05
Others 9.87 4.67
The lack of orientation and order may be related to the inability of molecular chains to pack together
closely during fibre development. In the present case, the composition and sequencing of the amino
acids in fibroin can affect the close packing of chains. Table 3 gives the amino acid composition of
these two varieties of silk. It may be noted that tasar has a higher percentage of alanine and amino
acids with large residues. Lucas at al [1] also showed that the ratio of number of amino acids with
bulky side groups to the number with short side chains in tasar is almost twice that of mulberry silk.
Upon stretching, the molecular segments in the amorphous regions will flow more easily if they
contain more bulky side groups. This is what is clearly reflected in the stress-strain behaviour of tasar
silk, which has an elongation at break almost twice as high as that of mulberry.
Conclusions
Though a slight decrease in modulus of both the silks results in wet condition, there is virtually no
change in ultimate tenacity and elongation, suggesting that they can be safely wet-processed and
laundered. However, if sericin is present, the tensile behaviour of the yarn is largely modified in wet
conditions. The characteristic stress-strain behaviour of tasar is due mainly to less order and poor
orientation, which in turn may be related to the higher percent of bulky groups present in its fibroin.
References
1. F. Lucas, J.T.B. Shaw and S.G. Smith : Jl of the Textile Institute, 1955, 46, T440-452.
2. T.N. Sonwalkar, S. Roy, B.V. Vasumathi and G. Hariraj : Indian Jl of Sericulture, 1989, 28,
162.
3. A.E. Alexander : X-ray Diffraction Methods in Polymer Science, Wiley Interscience, New York,
1969.
4. Steven A. Cohen, Michael Meys and Thomas L. Tarvin : The Pico Tag method, A manual of
Advanced Techniques for Amino acid analysis, Millipore Corporation, Bedford, USA, 1989,
p.2-4.
5. J.O. Warwicker : Trans. Farady Soc., 52, 556 (1956).
6. M. Tsukada G. Freddi, M. Nagura, H. Ishikawa and N. Kasai : Japanese Jl. Appl. Polym.
Sci.,46,1951 (1992).
7. P. Hermans and H.A. Weidinger : Jl. Applied Physics, 19, 491 (1948).
8. I. Sakurada, K. Nukushina and N. Mori : (Japanese) Kobunshi Kagaku, 12, 302 (1955).
9. E. Iizuka : Chemical Processing of Silk, Ed. by M.L. Gularajani, I.I.T., New Delhi, 1993, p.43,
37.
∇∆

More Related Content

What's hot

Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...
Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...
Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...IOSRJAC
 
OVERVIEW OF MAN-MADE FIBERS
OVERVIEW OF MAN-MADE FIBERSOVERVIEW OF MAN-MADE FIBERS
OVERVIEW OF MAN-MADE FIBERSInnocent Ociti
 
Gel spun polyethylene fibres
Gel spun polyethylene fibresGel spun polyethylene fibres
Gel spun polyethylene fibresArka Das
 
Enzyme biotechnology for sustainable textiles
Enzyme biotechnology for sustainable textilesEnzyme biotechnology for sustainable textiles
Enzyme biotechnology for sustainable textilesVijay Prakash
 
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01Amit Biswas
 
A study on the functional properties of silk and polyester lyocell mixed fabric
A study on the functional properties of silk and polyester lyocell mixed fabricA study on the functional properties of silk and polyester lyocell mixed fabric
A study on the functional properties of silk and polyester lyocell mixed fabricUniversidad Complutense de Madrid
 
Processing 100% polyester staple fibre on open end spinning
Processing 100% polyester staple fibre on open end spinningProcessing 100% polyester staple fibre on open end spinning
Processing 100% polyester staple fibre on open end spinningSatyakam Srivastava
 
Textile raw material 1
Textile raw material 1Textile raw material 1
Textile raw material 1sujanahamed
 
Eco frendily dyeing and finishing on silk fabric
Eco frendily dyeing and finishing on silk fabricEco frendily dyeing and finishing on silk fabric
Eco frendily dyeing and finishing on silk fabriceSAT Journals
 
process of manufacturing and dyeing cotton,cotton-polyester,polyester
process of manufacturing and dyeing cotton,cotton-polyester,polyesterprocess of manufacturing and dyeing cotton,cotton-polyester,polyester
process of manufacturing and dyeing cotton,cotton-polyester,polyesterparmeet kaur
 
Wet spinning of acrylic fiber
Wet spinning of acrylic fiberWet spinning of acrylic fiber
Wet spinning of acrylic fiberBerihunGashu
 
Man made fiber
Man made fiberMan made fiber
Man made fiberFuad Ahmed
 
Unit 4- Tixtile fibres
Unit 4- Tixtile fibresUnit 4- Tixtile fibres
Unit 4- Tixtile fibrespascchemistry
 
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...IRJET Journal
 

What's hot (19)

chemical spinning
 chemical spinning chemical spinning
chemical spinning
 
Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...
Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...
Effect of Chemical Treatment on the Morphology and Mechanical Properties of P...
 
OVERVIEW OF MAN-MADE FIBERS
OVERVIEW OF MAN-MADE FIBERSOVERVIEW OF MAN-MADE FIBERS
OVERVIEW OF MAN-MADE FIBERS
 
Gel spun polyethylene fibres
Gel spun polyethylene fibresGel spun polyethylene fibres
Gel spun polyethylene fibres
 
Enzyme biotechnology for sustainable textiles
Enzyme biotechnology for sustainable textilesEnzyme biotechnology for sustainable textiles
Enzyme biotechnology for sustainable textiles
 
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01
Flow chart of juteyarnmanufacturingprocess 140522095533-phpapp01
 
A study on the functional properties of silk and polyester lyocell mixed fabric
A study on the functional properties of silk and polyester lyocell mixed fabricA study on the functional properties of silk and polyester lyocell mixed fabric
A study on the functional properties of silk and polyester lyocell mixed fabric
 
Fundamentals of Textile & Man made fiber
Fundamentals of Textile & Man made fiberFundamentals of Textile & Man made fiber
Fundamentals of Textile & Man made fiber
 
Kes knitted
Kes knittedKes knitted
Kes knitted
 
Processing 100% polyester staple fibre on open end spinning
Processing 100% polyester staple fibre on open end spinningProcessing 100% polyester staple fibre on open end spinning
Processing 100% polyester staple fibre on open end spinning
 
Textile raw material 1
Textile raw material 1Textile raw material 1
Textile raw material 1
 
Eco frendily dyeing and finishing on silk fabric
Eco frendily dyeing and finishing on silk fabricEco frendily dyeing and finishing on silk fabric
Eco frendily dyeing and finishing on silk fabric
 
process of manufacturing and dyeing cotton,cotton-polyester,polyester
process of manufacturing and dyeing cotton,cotton-polyester,polyesterprocess of manufacturing and dyeing cotton,cotton-polyester,polyester
process of manufacturing and dyeing cotton,cotton-polyester,polyester
 
Drawing man made fiber
Drawing man made fiberDrawing man made fiber
Drawing man made fiber
 
Wet spinning of acrylic fiber
Wet spinning of acrylic fiberWet spinning of acrylic fiber
Wet spinning of acrylic fiber
 
Man made fiber
Man made fiberMan made fiber
Man made fiber
 
Textile fibre science
Textile fibre scienceTextile fibre science
Textile fibre science
 
Unit 4- Tixtile fibres
Unit 4- Tixtile fibresUnit 4- Tixtile fibres
Unit 4- Tixtile fibres
 
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...
IRJET- Reduction of Fibrillation of Lyocell Knitted Fabric with Defibrillator...
 

Viewers also liked

(PowerPoint)WerdleyBrief2
(PowerPoint)WerdleyBrief2(PowerPoint)WerdleyBrief2
(PowerPoint)WerdleyBrief2Lucas La Tour
 
Das-Ghosh- JAPS[19.05.2010]
Das-Ghosh- JAPS[19.05.2010]Das-Ghosh- JAPS[19.05.2010]
Das-Ghosh- JAPS[19.05.2010]Dr. Subrata Das
 
Art-Subrata Das-50-58-Final
Art-Subrata Das-50-58-FinalArt-Subrata Das-50-58-Final
Art-Subrata Das-50-58-FinalDr. Subrata Das
 
ZDHC – Brands & Retailers Perspectives
ZDHC – Brands & Retailers PerspectivesZDHC – Brands & Retailers Perspectives
ZDHC – Brands & Retailers PerspectivesDr. Subrata Das
 
Ee15 presentation edinburgh
Ee15 presentation edinburghEe15 presentation edinburgh
Ee15 presentation edinburghClaire3039
 
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]Dr. Subrata Das
 
UK Export Finance : Presentation for China event
UK Export Finance : Presentation for China eventUK Export Finance : Presentation for China event
UK Export Finance : Presentation for China eventClaire3039
 
Doing business in Germany
Doing business in GermanyDoing business in Germany
Doing business in GermanyClaire3039
 
Epic developmental monitoring training version non cme version
Epic developmental monitoring training version non cme versionEpic developmental monitoring training version non cme version
Epic developmental monitoring training version non cme versionCHDI
 
Degree-BSc-PU-English Side.PDF
Degree-BSc-PU-English Side.PDFDegree-BSc-PU-English Side.PDF
Degree-BSc-PU-English Side.PDFMumtaz Khan
 

Viewers also liked (14)

Advanced AD Profile
Advanced AD ProfileAdvanced AD Profile
Advanced AD Profile
 
Effluent treatment
Effluent treatmentEffluent treatment
Effluent treatment
 
(PowerPoint)WerdleyBrief2
(PowerPoint)WerdleyBrief2(PowerPoint)WerdleyBrief2
(PowerPoint)WerdleyBrief2
 
PortFolio_Hemant
PortFolio_HemantPortFolio_Hemant
PortFolio_Hemant
 
Das-Ghosh- JAPS[19.05.2010]
Das-Ghosh- JAPS[19.05.2010]Das-Ghosh- JAPS[19.05.2010]
Das-Ghosh- JAPS[19.05.2010]
 
Art-Subrata Das-50-58-Final
Art-Subrata Das-50-58-FinalArt-Subrata Das-50-58-Final
Art-Subrata Das-50-58-Final
 
ZDHC – Brands & Retailers Perspectives
ZDHC – Brands & Retailers PerspectivesZDHC – Brands & Retailers Perspectives
ZDHC – Brands & Retailers Perspectives
 
Ee15 presentation edinburgh
Ee15 presentation edinburghEe15 presentation edinburgh
Ee15 presentation edinburgh
 
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]
19- 24 SOME PRACTICAL ASPECTS OF CARE LABEL RECOMMENDATION OF APPAREL[1]
 
Shaukat-CV.
Shaukat-CV.Shaukat-CV.
Shaukat-CV.
 
UK Export Finance : Presentation for China event
UK Export Finance : Presentation for China eventUK Export Finance : Presentation for China event
UK Export Finance : Presentation for China event
 
Doing business in Germany
Doing business in GermanyDoing business in Germany
Doing business in Germany
 
Epic developmental monitoring training version non cme version
Epic developmental monitoring training version non cme versionEpic developmental monitoring training version non cme version
Epic developmental monitoring training version non cme version
 
Degree-BSc-PU-English Side.PDF
Degree-BSc-PU-English Side.PDFDegree-BSc-PU-English Side.PDF
Degree-BSc-PU-English Side.PDF
 

Similar to AUTEX published paper

IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...
IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...
IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...IRJET Journal
 
Poster sasithorn nongnut
Poster sasithorn nongnutPoster sasithorn nongnut
Poster sasithorn nongnutmiroli
 
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...CrimsonpublishersTTEFT
 
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...CrimsonpublishersTTEFT
 
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersSynthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersIOSR Journals
 
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...iosrjce
 
My published research paper
My published research paperMy published research paper
My published research paperRajib Ghosh
 
Poster bayat tork mina
Poster bayat tork minaPoster bayat tork mina
Poster bayat tork minamiroli
 
Electrospn 7 heikkila-full
Electrospn 7 heikkila-fullElectrospn 7 heikkila-full
Electrospn 7 heikkila-fullmiroli
 
Evaluation of comfort and handle behavior
Evaluation of comfort and handle behaviorEvaluation of comfort and handle behavior
Evaluation of comfort and handle behaviorMinh Tuan Nguyen
 
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRIC
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRICA REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRIC
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRICIRJET Journal
 
IRJET- Effect of Environment on Mechanical Properties of Bagasse Fiber Re...
IRJET-  	  Effect of Environment on Mechanical Properties of Bagasse Fiber Re...IRJET-  	  Effect of Environment on Mechanical Properties of Bagasse Fiber Re...
IRJET- Effect of Environment on Mechanical Properties of Bagasse Fiber Re...IRJET Journal
 
Effect of naoh mercerisation on the cross linking of
Effect of naoh mercerisation on the cross linking ofEffect of naoh mercerisation on the cross linking of
Effect of naoh mercerisation on the cross linking ofeSAT Publishing House
 

Similar to AUTEX published paper (20)

IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...
IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...
IRJET- Experimental Investigation of Hygrothermal Aging on Mechanical Propert...
 
Poster sasithorn nongnut
Poster sasithorn nongnutPoster sasithorn nongnut
Poster sasithorn nongnut
 
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
 
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...Certain Physical Characterization into Composite Leaf Fibres of Agave America...
Certain Physical Characterization into Composite Leaf Fibres of Agave America...
 
Effects of acetylation and alkylation on the properties of wheat straw fiber
Effects of acetylation and alkylation on the properties of wheat straw fiberEffects of acetylation and alkylation on the properties of wheat straw fiber
Effects of acetylation and alkylation on the properties of wheat straw fiber
 
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir FibersSynthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
Synthesis and Characterization of Cellulose Nanofibers From Coconut Coir Fibers
 
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...
Water Absorption, Thickness Swelling and Rheological Properties of Agro Fiber...
 
My published research paper
My published research paperMy published research paper
My published research paper
 
My published research paper
My published research paperMy published research paper
My published research paper
 
Ijetr021132
Ijetr021132Ijetr021132
Ijetr021132
 
Poster bayat tork mina
Poster bayat tork minaPoster bayat tork mina
Poster bayat tork mina
 
20120140503007
2012014050300720120140503007
20120140503007
 
Ijmet 10 01_196
Ijmet 10 01_196Ijmet 10 01_196
Ijmet 10 01_196
 
Electrospn 7 heikkila-full
Electrospn 7 heikkila-fullElectrospn 7 heikkila-full
Electrospn 7 heikkila-full
 
Evaluation of comfort and handle behavior
Evaluation of comfort and handle behaviorEvaluation of comfort and handle behavior
Evaluation of comfort and handle behavior
 
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRIC
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRICA REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRIC
A REVIEW ON: COMPARATIVE ANALYSIS OF SILICONE FINISHES APPLIED ON KNITTED FABRIC
 
charging fabrics
charging fabricscharging fabrics
charging fabrics
 
Peer_Review
Peer_ReviewPeer_Review
Peer_Review
 
IRJET- Effect of Environment on Mechanical Properties of Bagasse Fiber Re...
IRJET-  	  Effect of Environment on Mechanical Properties of Bagasse Fiber Re...IRJET-  	  Effect of Environment on Mechanical Properties of Bagasse Fiber Re...
IRJET- Effect of Environment on Mechanical Properties of Bagasse Fiber Re...
 
Effect of naoh mercerisation on the cross linking of
Effect of naoh mercerisation on the cross linking ofEffect of naoh mercerisation on the cross linking of
Effect of naoh mercerisation on the cross linking of
 

AUTEX published paper

  • 1. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 81 STUDY OF PROPERTY & STRUCTURAL VARIANTS OF MULBERRY AND TASAR SILK FILAMENTS Subrata Das R. Chattopadhyay, M.L. Gulrajani and Kushal Sen Department of Textile technology, Department of Textile Technology Kumaraguru College of Technology Indian Institute of Technology, Coimbatore, India; Delhi, India Abstract The tensile behaviour of fully degummed filaments of two commercial varieties of silk produced in India, namely mulberry (Bombyx mori) and tasar (Antheraea mylitta), has been investigated in dry and wet state. The tensile properties were correlated with the structures and morphologies of these two varieties of silk. The tenacity and elongation at break of these silks were not significantly different in dry and wet state; however, a slight reduction in initial modulus was noticed in wet state. The stress-strain behaviour of mulberry silk filament was different from that of tasar in that it demonstrated a characteristic yield point, lower modulus and elongation at break twice as high as that of mulberry. The characteristic stress-strain behaviour of theses two varieties of silk was correlated with density, birefringence, orientation index, sonic modulus and amino-acid composition. Poor orientation and less order in tasar are related to the higher percent of bulky groups present in fibroin. Key words: mulberry silk, tasar silk, silk filaments, tensile properties, structural properties Introduction In spite of a large number of man-made fibres overwhelming the textile arena, silk indeed still commands a considerable respect, as its emotional and prestigious aura is still incomparable. Although in use for centuries, it is one of the least researched fibres. Today China and India are the major production centres. In the Indian subcontinent, silk is receiving renewed and focussed attention, from the point of view of production, processing and properties. The present study is an attempt to understand the two important commercial varieties produced in India, namely mulberry (Bombyx mori) and tasar (Antheraea mylitta), in respect of their structure and property. Earlier research [1,2] has shown that these two fibres exhibit distinctly different tensile behaviours. These studies have shown that among the fibres, mulberry is weakened considerably in wet state, while the stress-strain behaviour of both is largely modified upon wetting. In an aqueous medium, inter-molecular hydrogen bonds would break, and in turn lead to a certain drop in tenacity and/or modulus; but such a large reduction in tensile properties tends to show that fabrics/garments cannot be home laundered or machine-washed without damage or distortion. However, the reality is far different from this; silks can be machine washed at 40-60ºCprovided one uses appropriate washing procedures, such as the use of neutral detergents. Are these fibres weakened to such an extent in wet state? Is the residual sericin in any way responsible for this behaviour? These were some of the questions which motivated the present study. It was considered of interest to study the tensile behaviour of fully degummed fibres in dry and wet state, and to investigate the structure and morphology of these two commercial varieties of silk. Experimental investigation Materials (a) Yarns Commercial mulberry (multivoltine) and thigh-reeled tasar yarns were collected from the Central Silk Technological Research Institute, Bangalore and the Raw Material Bank, Chaibasa, Bihar, India.
  • 2. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 82 (b) Filaments Raw silk filaments were obtained after reeling mulberry and tasar silk cocoons. The mulberry cocoons were taken in a wire mesh cage and cooked in the first pan at 65±5ºC for one minute, then in the second pan at boiling point for about one and half minutes, and finally at 65±5ºC for one minute. The cooked cocoons were hand-brushed at boiling in order to obtain the true end of the filament. Due to the hard and compact nature of the tasar cocoons, these were cooked with 10% ethylenediamine at 80ºC for 50 min. The cocoons were individually deflossed by hand. The mulberry and tasar cocoons were then reeled on a wrap reel, and continuous filaments were collected in the form of hanks. These were then degummed with 25% Marseilles soap (on the weight of the material) at boil for 90 min. at a liquor ration of 50:1. The degummed hanks were washed, dried and conditioned at tropical atmospheric of 27±2ºC and 65±2% RH (according to ISO139-1973IE, s.2.3.1) for 48 hours. The filaments thus obtained were evaluated for their mechanical and structural properties. Evaluation Tensile properties The tensile properties were measured on an Instron 4301 Universal Tensile Tester (interfaced with an IBM PC) at tropical atmospheric of 27±2ºc and 65±2% RH, at a gauge length of 5 cm and strain rate of 1 cm/min. In order to study the mechanical behaviour in wet state, the samples were soaked in distilled water for 30 min., and then tested for mechanical properties. Structural properties The density was measured using a Davenport Density Gradient Column. The column was prepared using carbon tetrachloride ( Density 1.6 g/cc) and n-heptane (density 0.7 g/cc). An average of 10 readings was reported. All the measurements were made at 25ºC. The birefringence was measured by the compensator method. A single filament was placed on a glass slide and covered with an immersion oil between them. Birefringence was evaluated using a polarised microscope with a compensator, and calculated using the following expression : ∆n =6.18 x (a+b) / d x 1000, where, d=the filament diameter in microns, (a+b)=phase difference (nm) The wide angle X-ray diffractograms of the finely powered samples were obtained on a Philips X-ray diffractometer (Model PM 203 A) between 2θ values ranging from 10º to 35º at a scan rate of 3º/min using CuKα radiation (λ = 1.54A). The voltage and current of the X-ray source were 40 KV and 30 mA respectively. To study the orientation index, a parallel bundle of filaments of reasonable thickness was fixed on an aluminium frame with an appropriate slit. This was placed perpendicular to the path of X-ray beam. The orientation index was obtained from the azimuthal scans at 2θ = 20.6º for mulberry and 20.3º for tasar using the method described elsewhere [3]. The sonic modulus was measured on a PPM-5R Dynamic Modulus Tester with a sound pulse of longitudinal waves at a frequency of 5 KHz. The scanning speed was 6.4 cm/min. The total length scan was 10.2 cm in each cycle. An average of 15 scans was reported. The amino acid composition of the degummed silk filaments of Bombyx mori and Antheraea mylitta were analysed using the Waters Pico Tag system. The hydrolysis of the silk filaments was carried out at 110ºC using 4M methanesulphonic acid containing 0.2% (w/v) tryptamine (Sigma P/N M4141) for 24h; the analysis was carried out as per the Waters Pico Tag Method [4]. Results and discussion Effect of wetting on mechanical properties The mechanical properties of fully degummed mulberry and tasar, in both dry and wet state, are presented in Table 1.
  • 3. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 83 It is very interesting to note that for both these filaments, the tenacity and elongation at break are not significantly different in dry or wet state. This is in contradiction with the observations of earlier work [1,2]. However, a slight reduction in modulus may be noted. A glance at the typical tensile behaviour reveals that the stress-strain curve of these two varieties is distinctly different, in that tasar shows a clear yield point and very high elongation compared to the mulberry filament (Figure1a & Figure1b). This has also been observed by earlier workers. However, wetting does not seem to significantly change the tenacity and extension at break. However, a slight reduction in yield stress is perceptible in both the wetting cases , more so in the case of tasar. This behaviour in wet state does not fall into line with the observations of earlier researchers. For the sake of clarity, it is worth reproducing the previous results from literature. Figure 2a, Figure 2b and Fig 3a, Figure 3b as adapted from literature [1,2] tend to show that wetting considerably modifies both the fibres. However, it is not very clear as to the extent of residual sericin present in yarns used in these studies. Mulberry Tasar Figure 1. Stress-strain behaviour of fully degummed silk filaments (Fibroin) in dry and wet conditions Mulberry Tasar Figure 2. Stress-strain behaviour of silk yarns in dry and wet conditions (adapted [1]) To investigate this, it was decided to test the commercially available yarns of both these varieties. It is interesting to note (Figure 4a & Figure 4b) that the tensile behaviour of the yarns is vastly modified upon wetting. This is due to the fact that both these yarns had residual sericin (mulberry 20.70% and tasar 5.48%). On wetting, the sericin weakens (as expected), and allows interfilament slippage, which
  • 4. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 84 in turn leads to a drastic reduction in mechanical properties. The change in tensile behaviours may thus be related to the presence of sericin. On the other hand semi-crystalline fibroin, the main fibre, does not undergo drastic modification upon wetting. A slight reduction in the yield stress of fully degummed single filaments (Figure 1a and Figure 1b) may be due to the breakdown of some inter- molecular hydrogen bonds, limiting the initial resistance to tensile deformation. Thereafter, further deformation leads to molecular readjustment under tensile loads, and the fibre in wet state almost behaves similar to the one in dry. This is clearly indicated from the tenacity and breaking extension values (Table 1). Mulberry Tasar Figure 3. Load-elongation curves of silk yarns in dry and wet conditions (adapted [2]) Mulberry Tasar Figure 4. Stress-strain behaviour of commercial silk yarns in dry and wet conditions Structure-Property Correlation As pointed out earlier, the stress-strain behaviour of mulberry silk filament is different from that of tasar, in that tasar (a) demonstrates a characteristic yield point (Figure 1b), (b) has a significantly lower modulus (Table 1) and (c) shows elongation at break about twice as high as that of mulberry (Table 1). However, the tenacity of mulberry filaments is higher, but only marginally so. These differences in mechanical properties must correlate with the structural features of these filaments. True comparisons become difficult because the amino acid composition and sequencing of fibroin in
  • 5. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 85 both these varieties are different. However, lower modulus and higher extension in tasar do indicate poor orientation and crystalline order. Table 1. Mechanical properties of mulberry and tasar silk in dry and wet condition Mulberry Tasar Properties Dry Wet Dry Wet Tenacity, cN/dtex 1.9 ± 0.2 1.8±0.3 1.6±0.3 1.7±0.3 Elongation at Break, % 13.5±3.7 13.3±4.8 29.9±5.9 27.7±6.6 Initial Modulus, cN/dtex 49.5±16.8 42.5±18.6 34.3±5.3 24.5±4.6 Figure 5 depicts the wide-angle X-ray diffractograms of these varieties. Mulberry shows a distinct peak at 2θ = 20.6º, while tasar shows two distinct peaks at 20.3º and 17.1º respectively. It has been shown by earlier research that the unit cell dimensions of Bombyx mori L and Antheraea mylitta D differ, which causes this characteristic difference [5]. Though Tsukada et al [6] have calculated the degree of crystallinity by drawing base lines using methods suggested by Herman & Weidinger [7] and Sakurada et al [8], in the absence of any well-established procedure to produce standard amorphous samples, particularly of tasar, it may be more appropriate to rely on density values. However, Izuka [9] reports that A. mylitta D has a crystallinity of 39.5% compared to that of Bombyx mori L of 41.1%. Figure 5. Wide angle X-ray diffractograms of degummed silk fibroins a) Mulberry b) Tasar The higher density of mulberry, compared to tasar (Table 2), suggests a relatively poor degree of order of tasar. This may be responsible for the lower modulus and typical yield behaviour of tasar yarn. Table 2. Structural properties of mulberry and tasar silk Type of silk Density g/cm 3 Birefringence n Orientation index % Sonic modulus cN/dtex Mulberry 1.3525 0.0539 85 112.2 Tasar 1.3033 0.0165 61 73.7 The breaking extension is more closely related to the overall orientation of the ordered and disordered regions. It may be noted (Table 2) that the birefringence, index of orientation and sonic modulus values for mulberry filament are significantly higher than those of tasar. This clearly indicates that
  • 6. AUTEX Research Journal, Vol. 5, No2, June 2005 © AUTEX http://www.autexrj.org/No2-2005/0123.pdf 86 tasar is more disordered at molecular and morphological levels, leading to an overall lack of order. During tensile stress, the unoriented entangled chains open, leading to higher extension. Table 3. Amino acid composition of mulberry and tasar silk fibroin (% moles of amino acid) Amino acid Mulberry Tasar Glycine 43.08 30.04 Alanine 27.61 37.09 Serine 9.62 9.94 Tyrosine 4.58 4.93 Aspartic & glutamic Acid 2.69 5.28 Arginine, histidine & tryptophan 2.55 8.05 Others 9.87 4.67 The lack of orientation and order may be related to the inability of molecular chains to pack together closely during fibre development. In the present case, the composition and sequencing of the amino acids in fibroin can affect the close packing of chains. Table 3 gives the amino acid composition of these two varieties of silk. It may be noted that tasar has a higher percentage of alanine and amino acids with large residues. Lucas at al [1] also showed that the ratio of number of amino acids with bulky side groups to the number with short side chains in tasar is almost twice that of mulberry silk. Upon stretching, the molecular segments in the amorphous regions will flow more easily if they contain more bulky side groups. This is what is clearly reflected in the stress-strain behaviour of tasar silk, which has an elongation at break almost twice as high as that of mulberry. Conclusions Though a slight decrease in modulus of both the silks results in wet condition, there is virtually no change in ultimate tenacity and elongation, suggesting that they can be safely wet-processed and laundered. However, if sericin is present, the tensile behaviour of the yarn is largely modified in wet conditions. The characteristic stress-strain behaviour of tasar is due mainly to less order and poor orientation, which in turn may be related to the higher percent of bulky groups present in its fibroin. References 1. F. Lucas, J.T.B. Shaw and S.G. Smith : Jl of the Textile Institute, 1955, 46, T440-452. 2. T.N. Sonwalkar, S. Roy, B.V. Vasumathi and G. Hariraj : Indian Jl of Sericulture, 1989, 28, 162. 3. A.E. Alexander : X-ray Diffraction Methods in Polymer Science, Wiley Interscience, New York, 1969. 4. Steven A. Cohen, Michael Meys and Thomas L. Tarvin : The Pico Tag method, A manual of Advanced Techniques for Amino acid analysis, Millipore Corporation, Bedford, USA, 1989, p.2-4. 5. J.O. Warwicker : Trans. Farady Soc., 52, 556 (1956). 6. M. Tsukada G. Freddi, M. Nagura, H. Ishikawa and N. Kasai : Japanese Jl. Appl. Polym. Sci.,46,1951 (1992). 7. P. Hermans and H.A. Weidinger : Jl. Applied Physics, 19, 491 (1948). 8. I. Sakurada, K. Nukushina and N. Mori : (Japanese) Kobunshi Kagaku, 12, 302 (1955). 9. E. Iizuka : Chemical Processing of Silk, Ed. by M.L. Gularajani, I.I.T., New Delhi, 1993, p.43, 37. ∇∆