SlideShare a Scribd company logo
1 of 8
DevinRowe
MET 532
Shape Memory Alloys
Introduction
Materialscapable of returningtoa predeterminedformafterbeingdeformedduringuse waslong
thoughtto be science fictionuntil 1932 whenthe Shape MemoryEffect (SME) was firstobservedina
gold-cadmium. Since thenmanytypesof materialshave beenengineeredtoexhibit SMEsuch as
polymers,ceramics,gelsandof course metallicalloys. Shape MemoryAlloys(SMAs)are the most
covetedshape memorymaterialsforobviousreasonsof astheyhave all the traitsof metalsand can
essential “fix”itself afterextensivedeformationduringuse. Andsothe remainderof thisreportwill be
devotedtoSMAsand theiruses
The Basics of SMAs
To be consideredaSMA two unique propertiesmustbe observedinthe metal. Firstisof course the
SME, the metal mustbe able to returnto a presetshape afterexposure toaparticularenvironmental
stimuli inthiscase a thermal-cycle. Howeveritisworthnotingthatthe thermal-cycleisn’tnecessarily a
part of the definitionas othershape memorymaterial returntotheiroriginalshape afterexposerto
certainchemicals, pHchanges andmagneticfields ,it’sjustthata temperature change isthe primary
thingthat causes SMAs to returnto theirshapes. Secondthe alloymustshow traitsof superplasticity,
whichisthe abilityof a material toexhibit large recoverablestrains(uptoaround 15%), while deformed
withinatemperature range thatis characteristicof a specificalloy.
How they work
So howdoesshape memoryworkinSMA’s? Well ingeneral itiscausedbya cycle of phase
transformations. All SMAshave anaustenite andmartensitephase thatare stable atdifferent
temperatures. However,theseare notthe same austenite and martensitephasesthatwe are familiar
withinIron-carbonalloyswhere austenite wasanFCCstructure and martensite wasaBCT structure
broughton by retainedcarbon. Inthe case of SMAs the austenite isstrongerthanthe martensite phase
and the austenite issome sortof cubicstructure while the martensite canvaryfromtetragonal,
orthorhombicand monoclinicstructure. Lookbelow toFigure 1for an illustrationof the how SMAs
work.
Figure 1. A macroscopic illustration of SMAs deformation and recovery process. Figure was takenfrom page 4 of Shape
MemoryPolymers and Textiles.
Once the SMA isinits shape, the austenite iscooled belowthe transformationtemperature where it
transformsto a thermoelasticmartensite whosestructure hasmanyvariants,typicallyshearedplatelets.
Because the martensiticstructure isself-accommodating,there isnodeformation tothe overall shape
of the componentwhenaustenite changesto martensite.The martensite deformsbyatwinning
mechanismthattransforms the differentvariantstothe variantthatcan accommodate the maximum
elongationinthe directionof the appliedforce.The interfacesbetweenplateletsinthe martensite
phase slipveryreadilyandthe material isdeformedat relativelylow appliedstresses.Howeverthe
austenite phase hasonlyone possible orientation,thuswhenheated,all the possible deformed
structuresof the martensite phase mustreverttothisone orientationof the austenitememoryphase
and the material recoversitsoriginal shape. Howeverthisisnotalwaysa single steptransformation,
dependingonthe thermal and/ormechanicalhistoryof the alloy,the transformationcanbe 2 or
multiple step.
Manufacturing and Processing
The manufacturingprocesscan varydependingwhatelementsare prevalentinthe SMA,butas a
general rule SMAsare producedinmannersverysimilartothe methodscommonto theirbase metal
but withhigherrestrictionsplacedonthe range of alloyingcompositionasthisisa keypart of what
determines the base transformationtemperature of thatalloy. SomostSMA are producedintraditional
mannerslike EAF,butSMAs thatare highin Ti are made in mannerssuchas VacuumArc or Vacuum
InductionmeltingprocessesasTi isveryeasilyoxidized.
As forprocessingthe same general hotandcoldworkingcan be employedasthose usedformost
metals. Howeveritisimportanttonote that the transformation temperatures of SMAsare altered
duringthese processingsteps. Coldworkingisknowntoraise the transformationtemperature of SMAs,
althoughitisn’tfullyunderstoodwhy itisbelievedthatvacanciesanddislocationsinthe lattice are
mechanismsthatcan stabilize martensite. Followingthis idea,one wouldthinkthatannealingwould
bringthe transformationtemperaturesdownbutinrealityitactuallyhelpstofix thematthe higher
temperature broughtonby coldworking. (See Figure 2below.) Thermalcyclingisthe onlymethodaside
fromjust recastingthatisknownto reduce the transformationtemperaturesof SMAsbutjustlike how
coldworkingraisesthe temperature,itisstill notfullyunderstoodwhatthermal cyclingdoestolowerit.
Figure 2. Transformation temperatures with 10%CW followed by annealing at different temperatures. Figure was takenfrom
Shape MemoryAlloys:Processing, CharacterizationandApplications.
Thisraisesanotherquestion, howdoSMAsknow whatshape to remember? Well toputitsimplythe
SMAs undergoa heattreatingprocesscalled“training”. Totrainthe austenite,the metal mustbe
cooledtothe martensite phase first. The metal isthenbentandfastenedintoshape. Thistime when
the martensite isheatedtoaustenite,thiscauses internalstrainsinitslattice thatnormallywouldn’t
developbecauseshiftingduringthe recoveryof the shape wouldpreventthembutnow developsince
the austenite canno longercorrectitself. Bytime the entire SMA hasreachedthermal equilibriumwith
the annealingtemperature of the furnace,these internal strains have beenremovedfromthe lattice so
the processis finishedwitharapidcoolingandreversiontomartensite. The temperatureforthis
processiscarefullyselectedbasedonthe SMAscomposition. Asone wouldexpectthe SMEisn’t
perfect,the SMA will graduallybegintolose itsshape memorywithrepeatedthermal-cyclingassome
recrystallizationbeginstake effect,butrepeatingthe initial annealingprocesswillrestore the initial
shape memoryof the SMA.
One-way vs Two-way
All SMAsdisplaythe abilitytorememberashape uponheatingintothe austenite range whichisknown
as the One-WayShape MemoryEffect(OWSME),but some SMAs can alsorememberanothershape
uponcoolingto martensite whichisknownasTwo-WayShape MemoryEffect(TWSME).(See Figure 3
belowfora macroscopicviewof the twodeferentshape memories).
Figure 3. Macroscopically Mechanism of One vs Two Way Shape Memory Effect: One Way, (a) Martensite,(b)Loaded and
Deformedinmartensite phase T≤ Mf, (c) Heatedabove T G As (austenite),(d) Cooling to martensite T≤ Mf. TwoWay, (a)
Martensite state, (b)Several deformation withan irreversible amount, (c) Heated, (d)Cooled
Unlike OWSME andsuperplasticitywhichare naturallyoccurringpropertiesinSMAs,aTWSME must be
“trained”intothe material ina similarmannertohow the metal was givenitsinitial shapeforOWSM.
In OWSMthe austenite wasthe only phase thatrememberedashape,inTWSMthe martensite now
remembersashape as well. Toaccomplishthisplasticstrains are inducedduringthissecondarytraining
that generate internal stressesand material asymmetrieswhichproduce preferential formationof
specificmartensitevariants.Asaresult,the material returnstoabiasedmartensite state when
temperaturesare cooledfromAustenitefinishedtemperature (Af) toMartensite finishtemperature (Mf)
rather thantwinnedmartensiteconfiguration.
There are three knownwaystoinduce a TWSME ina SMA andtheyinclude shape memorytraining,
pseudoelastictraining,andthermal cyclingtrainingunderaconstantstress.Shape memorytraining
involvesrepeatedcyclesof deformationof the alloybyastress-inducedmartensitictransformationand
recoveryof the deformationbyareverse transformationinducedbyheatingundernostress.
Pseudoelastictrainingissimplyamechanical cyclingprocessinpseudoelasticitythroughthe stress-
inducedmartensitictransformationandthe reverse transformationthatproceedsagainstthe external
stress.Thermal cyclingtraininginvolvessubjectingthe alloytorepeatedthermaltransformationcycles
underthe influence of anexternal biasstress.Amongthesethree trainingproceduresconstant-stress
thermal cyclinghasappearedtobe the mosteffectivemethodinintroducingTWSME.
Types of SMAs
There are several differenttypesof SMAs. Asmentionedbeforethe firstSMA discoveredwasagold-
cadmiumalloyin1932, but as one wouldexpectthismetal isfartoosoft andexpensive forcommercial
use. Otheralloysbasedonironand zincwhere discoveredbutonlyCopper-basedandNickle-based
SMAs have beencommerciallyexploitedtoanysignificantextentasthese twodisplaythe greatest
potential torecoverfromstrains.
Copper-based and Nickel-based SMAs
Copper-basedshape memoryalloysexhibithigheractuationtemperatures(approximatelyinthe range -
200 to +200°C) thanNiTi alloysandare sometimesthe onlychoice forhightemperature applications,
(i.e.>100°C) buttheirlack of strengthand oxidationresistance oftenmakesNickelbasedSMAsthe
metal of choice.
Applications
SMAs are oftenemployedinthe medical fieldasstintsastheyare capable of bendingwiththe body
withminimal discomforttothe patient. Buttheyhave alsofoundtheirwayintodentistry and
optometry. IndentistrySMAsSME are usedto dowork,in braceswhenthe wiresare originallysetthey
are inthe deformedmartensitestate butuponheatingtothe ambienttemperatureof yourmouththey
cross the Af temperature andare nowtryingto returnto itsoriginal setshape pullingyourteethasthey
do. SMAs inoptometryare usedinthe constructionof framesfor glasses. Ordinarymetal or plasticeye
glassesframeswouldbeenof breakafteraccidentsthatoccur duringeverydaylifebutSMAswould
allowthe framestobendthenreturnto normal immediatelyafterwardswiththe use of athermal cycle.
How theydidthisissimple,theyengineerthe allowsAs temperaturebelownormal roomtemperatures.
What thisdoesiswhena loadis applied anddeformationoccursthe austenite changestoastress
inducedmartensite,whenthe loadisreleasedthe martensiteimmediatelychangesbacktoaustenite
and regainsitsshape. SMAsare alsousedinwide veritiesof othermiscellaneousapplications such
mechanical dampeners,andstructural supportsbutinmostrecentyearsSMAs are beingsoughtforuses
inhightemperature applications.
High Temperature Shape Memory Alloys (HTSMA)
HTSMAs have become a growinginterestinaerospace,automotive,processcontrol andenergy
industries inrecentyears. Asthe usesfora shape changingalloysare essentiallyinfinite the most
applicationdesiredisinactuators,asSMA basedactuators are far lighterandmore efficientthanother
traditional actuatingunits. ButSMAsare limitedbytheirrespectivetransformationtemperatures
makingthemreallyonlyeffective atlowertemperaturesusuallyinthe range of ±100o
C formost NiTi
SMAs and ±200o
C for Copper-basedSMAs. Unfortunatelymaydesiredapplicationswouldneedworkat
much highertemperaturesforexample inaerospace actuatorswouldneedtooperate between200-
1000o
C and inautomotive actuatorsinandaround the engine needtoworkataround 100-300o
C. But
inrecentyearsresearchhas beenperformedtoincrease the transformationtemperatureforthese
alloyswithafocus onalloyingadditionstoNiTi andCuAl SMAs.
Nickel basedSMAsare by far the mostimportantSMA showingthe greateststrengthtoductilityratioof
all the SMAs alongwithgoodcorrosion resistance. AccordingtoresearchersatNASA the additionof Pt
or Pd to NiTi have beenknowntopushthe upperlimitsof transformationtemperature to1050o
C, which
at face value soundspromising,butlaterstatedthe datacollectedforthose particular systemswere
understressfree conditionsandtofindoutif theycouldperformasactuators subsequenttestsmustbe
performed. Asthere report stated,“..the mere exhibitionof shape memoryatelevatedtemperaturesis
not sufficientwhenconsideringthesematerialsforactuatorapplications.”,whichisverytrue as
actuator isexpectedtobe able to dowork soevenif the material doeshave shape memory,if itcan’t
exertenoughforce ontoanobjectwhile changingshape itisuselessasan actuator. Furtherliterature
researchand experimentationinthe same documentreportedthatPt/Pdadditionstoof about15-30
at% at the expense of Ni showpromisingworkpotential withamaximumof about10.5J/cm3
. However
otherfactors needtobe take intoconsiderationwiththe additionof otheralloyelementsthe yield
strengthsof the austenite phase andthe twinnedmartensitechange asshowninFigure 4 below.
Figure 4. Effect of Pd content on the yield strength of martensite and austenite. Figure was takenfrom Challenges and
Progress in the Development of High-Temperature Shape MemoryAlloys Based onNiTiXCompositions for High-Force Actuator
Applications.
Figure 4 showsthe yieldingbehaviorof 50o
C above the Af and below the Mf,as you can see once the
additionof Pdhitsabout37% the yieldstrengthof bothphasesare aboutequal and the entire planon
usingthe HTSMAs hingesonthe martensite yieldingbutnotthe austenite. Thispossibledilemmaaside
anotherproblemmaybecome important, the heavyadditionof PdandPt to these alloysmaymake
themtoo expensivetobe practical but whenbalancedagainstall the weighttheywouldbe savingby
replacingbulkypneumaticand hydraulicactuatorsonspace shuttlesandotherdevice where weightis
keyit mayevenout. Thisthe reasonthat CopperbasedSMAsare of interest.
CopperbasedSMAsare an attractive alternative tonickel basedonesastheymuchcheaper and display
a betterSME thaniron basedSME, howevertheirtransformationtemperatureisonlyataround120o
C
for themto be of any use in HighTemperature applicationsthe upperlimitswill needtobe pushedabit.
Like withNiTi alloy additionstoestablishedCuAlsystemshave shownthatthe transformation
temperaturescanbe raised. Itis fairlywell knownthatCu-Al-Ni canmeethightemperature
transformationneedsbutbecause of theirlackof ductilityinpolycrystalline form,onlysingle crystals
wouldworkmakingitcostlyagain. OtherCu-Al-Xsystemshave beenfoundthatshow higher
transformationtemperaturessuchas Cu–Al–Agalloys whichshowedamartensitictransformation
temperature higherthan300o
C. Cu–Al–Fe alloyscanbe consideredtofunctionabove 200°Cwith
relativelygoodSME.Cu–Al–Nballoyswere alsostudied asCu–Al-basedHTMSAs,exhibitingthe
combinedpropertiesof highmartensitictransformationtemperature(around300°C),12.7% tensile
strainand 90% shape memoryratio. Buta recentarticle from SmartMaterialsand Structures
mentionedresearchintoanewCu–Al-basedHTMSA,aCu-Al-Tasystem. Preliminaryresultsprove tobe
promisingasthe alloyshowsa transformationtemperature ashighas450o
C witha 100% recoverywith
up to 2.5% strainon the material.Furtherresearchneedstobe done intothe work capabilitiesof this
alloysoit isn’tcertainyetwhetherthiswill be the metal we have beenwaitingforinSMAs.
OtherHTSMAs such as Ni–Ti–Zr/Hf,Ni–Al,Ni–Mn,Zr–,Ru–Ta/Nballoys have beendevelopedbutstill
face some keyissue. Forinstance,Ni–Al alloysare consideredtobe unstable;Ni–Ti–ZrandNi–Mn-
basedalloysare toobrittle foractual production. Sountil new material ishasbeenbroughtintofocus
Ni-Ti-Pt/PdandCu-Al-Taalloysare ourbestbetforHTSMAs.
References
Asteris,PanagiotisG.,andVagelisPlevris. Handbookof Research on SeismicAssessmentand
Rehabilitation of Historic Structures.Print.
AZoM.com."Nickel - TitaniumShape MemoryAlloys - Manufacture andFabrication."Nickel - Titanium
Shape MemoryAlloys - Manufacture andFabrication.AZoM.com, 11 June 2013. Web.03 Mar. 2016.
<http://www.azom.com/article.aspx?ArticleID=1364>.
Barnes,Clive."Shape MemoryandSuperelasticAlloys."Www.copper.org.CopperDevelopment
AssociationInc.,July1999. Web.04 Mar. 2016.
<http://www.copper.org/publications/newsletters/innovations/1999/07/shape.html>.
C P Wang, Y Su, S Y Yang, Z Shi and X J Liu. A New Type of Cu–Al–Ta ShapeMemory Alloy with High
MartensiticTransformation Temperature.Rep.2nded.Vol.23.IOP,2014. Print.SmartMaterialsand
Structures.
Hu, Jinlian. ShapeMemory Polymersand Textiles.Cambridge:WoodheadinAssociationwithTextile
Institute,2007. Print.
Lui Yinong. Two-way ShapeMemory EffectDeveloped by MartensiteDeformation in NiTi.1st ed.Vol.47.
1998. Print.ActaMaterialia.
MaterialsForming and Machining Research and Development.WoodheadPub,2016. Print.
Manuel,Braz FernandesFrancisco.ShapeMemory Alloys:Processing,Characterization and Applications.
Rijeka,Croatia:InTech,2013. Web.04 Mar. 2016.
<http://cdn.intechopen.com/pdfs-wm/44020.pdf>
Narayan,RogerJ.. (2012). ASMHandbook,Volume23- Materialsfor Medical Devices.ASM
International.Online versionavailableat: http://app.knovel.com/hotlink/toc/id:kpASMHVM11/asm-
handbook-volume-23/asm-handbook-volume-23
Rios,Orlando. Advanced High-temperatureShape-memory Alloy Developmentand Thermomechanical
Characterization of Platinumand PalladiumModified NitiBased SMAs.Thesis.UNIVERSITYOFFLORIDA,
2006. Print.
SantoPadula,GlenBigelow,RonaldNoebe,Darrell Gaydosh,andAnitaGarg. Challengesand Progressin
the Developmentof High-TemperatureShapeMemory AlloysBased on NiTiXCompositionsforHigh-
Force ActuatorApplications.Tech.Cleveland,OH:NASA GlennResearchCenter.Print.
Smith,RalphC. SmartMaterial Systems:ModelDevelopment.Philadelphia:SocietyforIndustrial and
AppliedMathematics,2005. Print.
Titanium:PhysicalMetallurgy,Processing,and Applications.MaterialsPark:AsmInternational,2015.
Print.
Wikipedia.WikimediaFoundation,24Jan.2016. Web.01 Feb.2016.
Worden,K.,W. A. Bullough,andJ.Haywood. SmartTechnologies.RiverEdge,NJ:WorldScientific,2003.
Print.
Zanaboni,Eleonora. OneWay and Two Way–ShapeMemory Effect:Thermo–Mechanical
Characterization of Ni–Ti Wires. Diss.UniversitaDegli Studi Di Pavia,2007/2008. Print.Dissertation

More Related Content

Viewers also liked

final presentation design
final presentation designfinal presentation design
final presentation designDevin Rowe
 
Careers @ ByeByeCity.com
Careers @ ByeByeCity.comCareers @ ByeByeCity.com
Careers @ ByeByeCity.comByeByeCity
 
kevins most recent cv 2016 1 1
kevins most recent cv 2016 1 1kevins most recent cv 2016 1 1
kevins most recent cv 2016 1 1kevin Stuart
 
inploi - Pitching to Press: Startup Style
inploi - Pitching to Press: Startup Styleinploi - Pitching to Press: Startup Style
inploi - Pitching to Press: Startup StyleVictoria Bushnell
 
Austin Hodge Thesis Final Draft
Austin Hodge Thesis Final DraftAustin Hodge Thesis Final Draft
Austin Hodge Thesis Final DraftAustin Hodge
 
Final Design Report Steelmaking
Final Design Report SteelmakingFinal Design Report Steelmaking
Final Design Report SteelmakingDevin Rowe
 
C.S. Lewis Teaching & Activity Guides
C.S. Lewis Teaching & Activity GuidesC.S. Lewis Teaching & Activity Guides
C.S. Lewis Teaching & Activity GuidesHomeschool Literature
 
Atul Kaushal_CV 2016
Atul Kaushal_CV 2016Atul Kaushal_CV 2016
Atul Kaushal_CV 2016Atul Kaushal
 
TRENDS, trends en nog eens trends 2015
TRENDS, trends en nog eens trends 2015TRENDS, trends en nog eens trends 2015
TRENDS, trends en nog eens trends 2015Martijn P. Tummers
 
Outline India Storyboard 2016
Outline India Storyboard 2016Outline India Storyboard 2016
Outline India Storyboard 2016Outline India
 

Viewers also liked (16)

final presentation design
final presentation designfinal presentation design
final presentation design
 
PRESENTATION
PRESENTATIONPRESENTATION
PRESENTATION
 
Careers @ ByeByeCity.com
Careers @ ByeByeCity.comCareers @ ByeByeCity.com
Careers @ ByeByeCity.com
 
kevins most recent cv 2016 1 1
kevins most recent cv 2016 1 1kevins most recent cv 2016 1 1
kevins most recent cv 2016 1 1
 
I3ppw
I3ppwI3ppw
I3ppw
 
Slide share
Slide shareSlide share
Slide share
 
Final report
Final reportFinal report
Final report
 
inploi - Pitching to Press: Startup Style
inploi - Pitching to Press: Startup Styleinploi - Pitching to Press: Startup Style
inploi - Pitching to Press: Startup Style
 
Informatica
Informatica Informatica
Informatica
 
Austin Hodge Thesis Final Draft
Austin Hodge Thesis Final DraftAustin Hodge Thesis Final Draft
Austin Hodge Thesis Final Draft
 
Example 3, Warner Brothers 2016
Example 3, Warner Brothers 2016Example 3, Warner Brothers 2016
Example 3, Warner Brothers 2016
 
Final Design Report Steelmaking
Final Design Report SteelmakingFinal Design Report Steelmaking
Final Design Report Steelmaking
 
C.S. Lewis Teaching & Activity Guides
C.S. Lewis Teaching & Activity GuidesC.S. Lewis Teaching & Activity Guides
C.S. Lewis Teaching & Activity Guides
 
Atul Kaushal_CV 2016
Atul Kaushal_CV 2016Atul Kaushal_CV 2016
Atul Kaushal_CV 2016
 
TRENDS, trends en nog eens trends 2015
TRENDS, trends en nog eens trends 2015TRENDS, trends en nog eens trends 2015
TRENDS, trends en nog eens trends 2015
 
Outline India Storyboard 2016
Outline India Storyboard 2016Outline India Storyboard 2016
Outline India Storyboard 2016
 

Similar to Report

MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptx
MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptxMM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptx
MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptxAahadShaikh1
 
Shape memory alloys and its applications
Shape memory alloys and its applicationsShape memory alloys and its applications
Shape memory alloys and its applicationsNaga Muruga
 
Shape-Memory-Alloys_Book_Final presentation.pptx
Shape-Memory-Alloys_Book_Final presentation.pptxShape-Memory-Alloys_Book_Final presentation.pptx
Shape-Memory-Alloys_Book_Final presentation.pptxSoundousTayssir
 
Shape memory alloys
Shape memory alloysShape memory alloys
Shape memory alloysuditkumar63
 
ni ti and martensitic transformation.pptx
ni ti and martensitic transformation.pptxni ti and martensitic transformation.pptx
ni ti and martensitic transformation.pptxAhmadKhateeb10
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1Naman Dave
 
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkf
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkfRV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkf
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkfSoundousTayssir
 
Shape Memory Alloys
Shape Memory AlloysShape Memory Alloys
Shape Memory AlloysIJERA Editor
 
SHAPE MEMORY ALLOYS(ppt_1).pptx
SHAPE MEMORY ALLOYS(ppt_1).pptxSHAPE MEMORY ALLOYS(ppt_1).pptx
SHAPE MEMORY ALLOYS(ppt_1).pptxShubhamKumar546083
 
shape memory alloys
shape memory alloysshape memory alloys
shape memory alloysRamvikasGS
 
Nickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxNickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxMohammedgumaan1
 
Austempered ductile iron production properties applications
Austempered ductile iron production properties applicationsAustempered ductile iron production properties applications
Austempered ductile iron production properties applicationsSAIFoundry
 
SHAPE MEMORY ALLOYS.pptx
SHAPE MEMORY ALLOYS.pptxSHAPE MEMORY ALLOYS.pptx
SHAPE MEMORY ALLOYS.pptxPriyatamKumar10
 
Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materialsDivagar S
 
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...Nickel titanium in orthodontics /certified fixed orthodontic courses by India...
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...Indian dental academy
 
Heat Treatment Lecture Notes
Heat Treatment Lecture NotesHeat Treatment Lecture Notes
Heat Treatment Lecture NotesFellowBuddy.com
 
Unit-5 notes in the topic of smart materials.pdf
Unit-5 notes in the topic of smart materials.pdfUnit-5 notes in the topic of smart materials.pdf
Unit-5 notes in the topic of smart materials.pdfSATHEESHK33
 
Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)thiru1mech
 

Similar to Report (20)

MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptx
MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptxMM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptx
MM22M04-DEEPAK SONAWANE-SMART MATERIAL.pptx
 
Shape memory alloys and its applications
Shape memory alloys and its applicationsShape memory alloys and its applications
Shape memory alloys and its applications
 
Shape-Memory-Alloys_Book_Final presentation.pptx
Shape-Memory-Alloys_Book_Final presentation.pptxShape-Memory-Alloys_Book_Final presentation.pptx
Shape-Memory-Alloys_Book_Final presentation.pptx
 
Shape memory alloys
Shape memory alloysShape memory alloys
Shape memory alloys
 
ni ti and martensitic transformation.pptx
ni ti and martensitic transformation.pptxni ti and martensitic transformation.pptx
ni ti and martensitic transformation.pptx
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1
 
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkf
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkfRV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkf
RV5-SMA ppt.pptx shaoe memory alloys kkfkfkfkf
 
Shape Memory Alloys
Shape Memory AlloysShape Memory Alloys
Shape Memory Alloys
 
Shape memory alloys
Shape memory alloysShape memory alloys
Shape memory alloys
 
SHAPE MEMORY ALLOYS(ppt_1).pptx
SHAPE MEMORY ALLOYS(ppt_1).pptxSHAPE MEMORY ALLOYS(ppt_1).pptx
SHAPE MEMORY ALLOYS(ppt_1).pptx
 
shape memory alloys
shape memory alloysshape memory alloys
shape memory alloys
 
Nickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptxNickel -Titanium alloys (NiTi) PPT.pptx
Nickel -Titanium alloys (NiTi) PPT.pptx
 
Austempered ductile iron production properties applications
Austempered ductile iron production properties applicationsAustempered ductile iron production properties applications
Austempered ductile iron production properties applications
 
SHAPE MEMORY ALLOYS.pptx
SHAPE MEMORY ALLOYS.pptxSHAPE MEMORY ALLOYS.pptx
SHAPE MEMORY ALLOYS.pptx
 
Heat treatment of materials
Heat treatment of materialsHeat treatment of materials
Heat treatment of materials
 
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...Nickel titanium in orthodontics /certified fixed orthodontic courses by India...
Nickel titanium in orthodontics /certified fixed orthodontic courses by India...
 
Heat Treatment Lecture Notes
Heat Treatment Lecture NotesHeat Treatment Lecture Notes
Heat Treatment Lecture Notes
 
EMM lecture.ppt
EMM lecture.pptEMM lecture.ppt
EMM lecture.ppt
 
Unit-5 notes in the topic of smart materials.pdf
Unit-5 notes in the topic of smart materials.pdfUnit-5 notes in the topic of smart materials.pdf
Unit-5 notes in the topic of smart materials.pdf
 
Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)Annealing , normalizing , quenching , martensitic transformation (1)
Annealing , normalizing , quenching , martensitic transformation (1)
 

Report

  • 1. DevinRowe MET 532 Shape Memory Alloys Introduction Materialscapable of returningtoa predeterminedformafterbeingdeformedduringuse waslong thoughtto be science fictionuntil 1932 whenthe Shape MemoryEffect (SME) was firstobservedina gold-cadmium. Since thenmanytypesof materialshave beenengineeredtoexhibit SMEsuch as polymers,ceramics,gelsandof course metallicalloys. Shape MemoryAlloys(SMAs)are the most covetedshape memorymaterialsforobviousreasonsof astheyhave all the traitsof metalsand can essential “fix”itself afterextensivedeformationduringuse. Andsothe remainderof thisreportwill be devotedtoSMAsand theiruses The Basics of SMAs To be consideredaSMA two unique propertiesmustbe observedinthe metal. Firstisof course the SME, the metal mustbe able to returnto a presetshape afterexposure toaparticularenvironmental stimuli inthiscase a thermal-cycle. Howeveritisworthnotingthatthe thermal-cycleisn’tnecessarily a part of the definitionas othershape memorymaterial returntotheiroriginalshape afterexposerto certainchemicals, pHchanges andmagneticfields ,it’sjustthata temperature change isthe primary thingthat causes SMAs to returnto theirshapes. Secondthe alloymustshow traitsof superplasticity, whichisthe abilityof a material toexhibit large recoverablestrains(uptoaround 15%), while deformed withinatemperature range thatis characteristicof a specificalloy. How they work So howdoesshape memoryworkinSMA’s? Well ingeneral itiscausedbya cycle of phase transformations. All SMAshave anaustenite andmartensitephase thatare stable atdifferent temperatures. However,theseare notthe same austenite and martensitephasesthatwe are familiar withinIron-carbonalloyswhere austenite wasanFCCstructure and martensite wasaBCT structure broughton by retainedcarbon. Inthe case of SMAs the austenite isstrongerthanthe martensite phase and the austenite issome sortof cubicstructure while the martensite canvaryfromtetragonal, orthorhombicand monoclinicstructure. Lookbelow toFigure 1for an illustrationof the how SMAs work. Figure 1. A macroscopic illustration of SMAs deformation and recovery process. Figure was takenfrom page 4 of Shape MemoryPolymers and Textiles.
  • 2. Once the SMA isinits shape, the austenite iscooled belowthe transformationtemperature where it transformsto a thermoelasticmartensite whosestructure hasmanyvariants,typicallyshearedplatelets. Because the martensiticstructure isself-accommodating,there isnodeformation tothe overall shape of the componentwhenaustenite changesto martensite.The martensite deformsbyatwinning mechanismthattransforms the differentvariantstothe variantthatcan accommodate the maximum elongationinthe directionof the appliedforce.The interfacesbetweenplateletsinthe martensite phase slipveryreadilyandthe material isdeformedat relativelylow appliedstresses.Howeverthe austenite phase hasonlyone possible orientation,thuswhenheated,all the possible deformed structuresof the martensite phase mustreverttothisone orientationof the austenitememoryphase and the material recoversitsoriginal shape. Howeverthisisnotalwaysa single steptransformation, dependingonthe thermal and/ormechanicalhistoryof the alloy,the transformationcanbe 2 or multiple step. Manufacturing and Processing The manufacturingprocesscan varydependingwhatelementsare prevalentinthe SMA,butas a general rule SMAsare producedinmannersverysimilartothe methodscommonto theirbase metal but withhigherrestrictionsplacedonthe range of alloyingcompositionasthisisa keypart of what determines the base transformationtemperature of thatalloy. SomostSMA are producedintraditional mannerslike EAF,butSMAs thatare highin Ti are made in mannerssuchas VacuumArc or Vacuum InductionmeltingprocessesasTi isveryeasilyoxidized. As forprocessingthe same general hotandcoldworkingcan be employedasthose usedformost metals. Howeveritisimportanttonote that the transformation temperatures of SMAsare altered duringthese processingsteps. Coldworkingisknowntoraise the transformationtemperature of SMAs, althoughitisn’tfullyunderstoodwhy itisbelievedthatvacanciesanddislocationsinthe lattice are mechanismsthatcan stabilize martensite. Followingthis idea,one wouldthinkthatannealingwould bringthe transformationtemperaturesdownbutinrealityitactuallyhelpstofix thematthe higher temperature broughtonby coldworking. (See Figure 2below.) Thermalcyclingisthe onlymethodaside fromjust recastingthatisknownto reduce the transformationtemperaturesof SMAsbutjustlike how coldworkingraisesthe temperature,itisstill notfullyunderstoodwhatthermal cyclingdoestolowerit. Figure 2. Transformation temperatures with 10%CW followed by annealing at different temperatures. Figure was takenfrom Shape MemoryAlloys:Processing, CharacterizationandApplications.
  • 3. Thisraisesanotherquestion, howdoSMAsknow whatshape to remember? Well toputitsimplythe SMAs undergoa heattreatingprocesscalled“training”. Totrainthe austenite,the metal mustbe cooledtothe martensite phase first. The metal isthenbentandfastenedintoshape. Thistime when the martensite isheatedtoaustenite,thiscauses internalstrainsinitslattice thatnormallywouldn’t developbecauseshiftingduringthe recoveryof the shape wouldpreventthembutnow developsince the austenite canno longercorrectitself. Bytime the entire SMA hasreachedthermal equilibriumwith the annealingtemperature of the furnace,these internal strains have beenremovedfromthe lattice so the processis finishedwitharapidcoolingandreversiontomartensite. The temperatureforthis processiscarefullyselectedbasedonthe SMAscomposition. Asone wouldexpectthe SMEisn’t perfect,the SMA will graduallybegintolose itsshape memorywithrepeatedthermal-cyclingassome recrystallizationbeginstake effect,butrepeatingthe initial annealingprocesswillrestore the initial shape memoryof the SMA. One-way vs Two-way All SMAsdisplaythe abilitytorememberashape uponheatingintothe austenite range whichisknown as the One-WayShape MemoryEffect(OWSME),but some SMAs can alsorememberanothershape uponcoolingto martensite whichisknownasTwo-WayShape MemoryEffect(TWSME).(See Figure 3 belowfora macroscopicviewof the twodeferentshape memories). Figure 3. Macroscopically Mechanism of One vs Two Way Shape Memory Effect: One Way, (a) Martensite,(b)Loaded and Deformedinmartensite phase T≤ Mf, (c) Heatedabove T G As (austenite),(d) Cooling to martensite T≤ Mf. TwoWay, (a) Martensite state, (b)Several deformation withan irreversible amount, (c) Heated, (d)Cooled Unlike OWSME andsuperplasticitywhichare naturallyoccurringpropertiesinSMAs,aTWSME must be “trained”intothe material ina similarmannertohow the metal was givenitsinitial shapeforOWSM. In OWSMthe austenite wasthe only phase thatrememberedashape,inTWSMthe martensite now remembersashape as well. Toaccomplishthisplasticstrains are inducedduringthissecondarytraining that generate internal stressesand material asymmetrieswhichproduce preferential formationof specificmartensitevariants.Asaresult,the material returnstoabiasedmartensite state when
  • 4. temperaturesare cooledfromAustenitefinishedtemperature (Af) toMartensite finishtemperature (Mf) rather thantwinnedmartensiteconfiguration. There are three knownwaystoinduce a TWSME ina SMA andtheyinclude shape memorytraining, pseudoelastictraining,andthermal cyclingtrainingunderaconstantstress.Shape memorytraining involvesrepeatedcyclesof deformationof the alloybyastress-inducedmartensitictransformationand recoveryof the deformationbyareverse transformationinducedbyheatingundernostress. Pseudoelastictrainingissimplyamechanical cyclingprocessinpseudoelasticitythroughthe stress- inducedmartensitictransformationandthe reverse transformationthatproceedsagainstthe external stress.Thermal cyclingtraininginvolvessubjectingthe alloytorepeatedthermaltransformationcycles underthe influence of anexternal biasstress.Amongthesethree trainingproceduresconstant-stress thermal cyclinghasappearedtobe the mosteffectivemethodinintroducingTWSME. Types of SMAs There are several differenttypesof SMAs. Asmentionedbeforethe firstSMA discoveredwasagold- cadmiumalloyin1932, but as one wouldexpectthismetal isfartoosoft andexpensive forcommercial use. Otheralloysbasedonironand zincwhere discoveredbutonlyCopper-basedandNickle-based SMAs have beencommerciallyexploitedtoanysignificantextentasthese twodisplaythe greatest potential torecoverfromstrains. Copper-based and Nickel-based SMAs Copper-basedshape memoryalloysexhibithigheractuationtemperatures(approximatelyinthe range - 200 to +200°C) thanNiTi alloysandare sometimesthe onlychoice forhightemperature applications, (i.e.>100°C) buttheirlack of strengthand oxidationresistance oftenmakesNickelbasedSMAsthe metal of choice. Applications SMAs are oftenemployedinthe medical fieldasstintsastheyare capable of bendingwiththe body withminimal discomforttothe patient. Buttheyhave alsofoundtheirwayintodentistry and optometry. IndentistrySMAsSME are usedto dowork,in braceswhenthe wiresare originallysetthey are inthe deformedmartensitestate butuponheatingtothe ambienttemperatureof yourmouththey cross the Af temperature andare nowtryingto returnto itsoriginal setshape pullingyourteethasthey do. SMAs inoptometryare usedinthe constructionof framesfor glasses. Ordinarymetal or plasticeye glassesframeswouldbeenof breakafteraccidentsthatoccur duringeverydaylifebutSMAswould allowthe framestobendthenreturnto normal immediatelyafterwardswiththe use of athermal cycle. How theydidthisissimple,theyengineerthe allowsAs temperaturebelownormal roomtemperatures. What thisdoesiswhena loadis applied anddeformationoccursthe austenite changestoastress inducedmartensite,whenthe loadisreleasedthe martensiteimmediatelychangesbacktoaustenite and regainsitsshape. SMAsare alsousedinwide veritiesof othermiscellaneousapplications such mechanical dampeners,andstructural supportsbutinmostrecentyearsSMAs are beingsoughtforuses inhightemperature applications.
  • 5. High Temperature Shape Memory Alloys (HTSMA) HTSMAs have become a growinginterestinaerospace,automotive,processcontrol andenergy industries inrecentyears. Asthe usesfora shape changingalloysare essentiallyinfinite the most applicationdesiredisinactuators,asSMA basedactuators are far lighterandmore efficientthanother traditional actuatingunits. ButSMAsare limitedbytheirrespectivetransformationtemperatures makingthemreallyonlyeffective atlowertemperaturesusuallyinthe range of ±100o C formost NiTi SMAs and ±200o C for Copper-basedSMAs. Unfortunatelymaydesiredapplicationswouldneedworkat much highertemperaturesforexample inaerospace actuatorswouldneedtooperate between200- 1000o C and inautomotive actuatorsinandaround the engine needtoworkataround 100-300o C. But inrecentyearsresearchhas beenperformedtoincrease the transformationtemperatureforthese alloyswithafocus onalloyingadditionstoNiTi andCuAl SMAs. Nickel basedSMAsare by far the mostimportantSMA showingthe greateststrengthtoductilityratioof all the SMAs alongwithgoodcorrosion resistance. AccordingtoresearchersatNASA the additionof Pt or Pd to NiTi have beenknowntopushthe upperlimitsof transformationtemperature to1050o C, which at face value soundspromising,butlaterstatedthe datacollectedforthose particular systemswere understressfree conditionsandtofindoutif theycouldperformasactuators subsequenttestsmustbe performed. Asthere report stated,“..the mere exhibitionof shape memoryatelevatedtemperaturesis not sufficientwhenconsideringthesematerialsforactuatorapplications.”,whichisverytrue as actuator isexpectedtobe able to dowork soevenif the material doeshave shape memory,if itcan’t exertenoughforce ontoanobjectwhile changingshape itisuselessasan actuator. Furtherliterature researchand experimentationinthe same documentreportedthatPt/Pdadditionstoof about15-30 at% at the expense of Ni showpromisingworkpotential withamaximumof about10.5J/cm3 . However otherfactors needtobe take intoconsiderationwiththe additionof otheralloyelementsthe yield strengthsof the austenite phase andthe twinnedmartensitechange asshowninFigure 4 below. Figure 4. Effect of Pd content on the yield strength of martensite and austenite. Figure was takenfrom Challenges and Progress in the Development of High-Temperature Shape MemoryAlloys Based onNiTiXCompositions for High-Force Actuator Applications. Figure 4 showsthe yieldingbehaviorof 50o C above the Af and below the Mf,as you can see once the additionof Pdhitsabout37% the yieldstrengthof bothphasesare aboutequal and the entire planon usingthe HTSMAs hingesonthe martensite yieldingbutnotthe austenite. Thispossibledilemmaaside anotherproblemmaybecome important, the heavyadditionof PdandPt to these alloysmaymake
  • 6. themtoo expensivetobe practical but whenbalancedagainstall the weighttheywouldbe savingby replacingbulkypneumaticand hydraulicactuatorsonspace shuttlesandotherdevice where weightis keyit mayevenout. Thisthe reasonthat CopperbasedSMAsare of interest. CopperbasedSMAsare an attractive alternative tonickel basedonesastheymuchcheaper and display a betterSME thaniron basedSME, howevertheirtransformationtemperatureisonlyataround120o C for themto be of any use in HighTemperature applicationsthe upperlimitswill needtobe pushedabit. Like withNiTi alloy additionstoestablishedCuAlsystemshave shownthatthe transformation temperaturescanbe raised. Itis fairlywell knownthatCu-Al-Ni canmeethightemperature transformationneedsbutbecause of theirlackof ductilityinpolycrystalline form,onlysingle crystals wouldworkmakingitcostlyagain. OtherCu-Al-Xsystemshave beenfoundthatshow higher transformationtemperaturessuchas Cu–Al–Agalloys whichshowedamartensitictransformation temperature higherthan300o C. Cu–Al–Fe alloyscanbe consideredtofunctionabove 200°Cwith relativelygoodSME.Cu–Al–Nballoyswere alsostudied asCu–Al-basedHTMSAs,exhibitingthe combinedpropertiesof highmartensitictransformationtemperature(around300°C),12.7% tensile strainand 90% shape memoryratio. Buta recentarticle from SmartMaterialsand Structures mentionedresearchintoanewCu–Al-basedHTMSA,aCu-Al-Tasystem. Preliminaryresultsprove tobe promisingasthe alloyshowsa transformationtemperature ashighas450o C witha 100% recoverywith up to 2.5% strainon the material.Furtherresearchneedstobe done intothe work capabilitiesof this alloysoit isn’tcertainyetwhetherthiswill be the metal we have beenwaitingforinSMAs. OtherHTSMAs such as Ni–Ti–Zr/Hf,Ni–Al,Ni–Mn,Zr–,Ru–Ta/Nballoys have beendevelopedbutstill face some keyissue. Forinstance,Ni–Al alloysare consideredtobe unstable;Ni–Ti–ZrandNi–Mn- basedalloysare toobrittle foractual production. Sountil new material ishasbeenbroughtintofocus Ni-Ti-Pt/PdandCu-Al-Taalloysare ourbestbetforHTSMAs.
  • 7. References Asteris,PanagiotisG.,andVagelisPlevris. Handbookof Research on SeismicAssessmentand Rehabilitation of Historic Structures.Print. AZoM.com."Nickel - TitaniumShape MemoryAlloys - Manufacture andFabrication."Nickel - Titanium Shape MemoryAlloys - Manufacture andFabrication.AZoM.com, 11 June 2013. Web.03 Mar. 2016. <http://www.azom.com/article.aspx?ArticleID=1364>. Barnes,Clive."Shape MemoryandSuperelasticAlloys."Www.copper.org.CopperDevelopment AssociationInc.,July1999. Web.04 Mar. 2016. <http://www.copper.org/publications/newsletters/innovations/1999/07/shape.html>. C P Wang, Y Su, S Y Yang, Z Shi and X J Liu. A New Type of Cu–Al–Ta ShapeMemory Alloy with High MartensiticTransformation Temperature.Rep.2nded.Vol.23.IOP,2014. Print.SmartMaterialsand Structures. Hu, Jinlian. ShapeMemory Polymersand Textiles.Cambridge:WoodheadinAssociationwithTextile Institute,2007. Print. Lui Yinong. Two-way ShapeMemory EffectDeveloped by MartensiteDeformation in NiTi.1st ed.Vol.47. 1998. Print.ActaMaterialia. MaterialsForming and Machining Research and Development.WoodheadPub,2016. Print. Manuel,Braz FernandesFrancisco.ShapeMemory Alloys:Processing,Characterization and Applications. Rijeka,Croatia:InTech,2013. Web.04 Mar. 2016. <http://cdn.intechopen.com/pdfs-wm/44020.pdf> Narayan,RogerJ.. (2012). ASMHandbook,Volume23- Materialsfor Medical Devices.ASM International.Online versionavailableat: http://app.knovel.com/hotlink/toc/id:kpASMHVM11/asm- handbook-volume-23/asm-handbook-volume-23 Rios,Orlando. Advanced High-temperatureShape-memory Alloy Developmentand Thermomechanical Characterization of Platinumand PalladiumModified NitiBased SMAs.Thesis.UNIVERSITYOFFLORIDA, 2006. Print. SantoPadula,GlenBigelow,RonaldNoebe,Darrell Gaydosh,andAnitaGarg. Challengesand Progressin the Developmentof High-TemperatureShapeMemory AlloysBased on NiTiXCompositionsforHigh- Force ActuatorApplications.Tech.Cleveland,OH:NASA GlennResearchCenter.Print. Smith,RalphC. SmartMaterial Systems:ModelDevelopment.Philadelphia:SocietyforIndustrial and AppliedMathematics,2005. Print. Titanium:PhysicalMetallurgy,Processing,and Applications.MaterialsPark:AsmInternational,2015. Print. Wikipedia.WikimediaFoundation,24Jan.2016. Web.01 Feb.2016.
  • 8. Worden,K.,W. A. Bullough,andJ.Haywood. SmartTechnologies.RiverEdge,NJ:WorldScientific,2003. Print. Zanaboni,Eleonora. OneWay and Two Way–ShapeMemory Effect:Thermo–Mechanical Characterization of Ni–Ti Wires. Diss.UniversitaDegli Studi Di Pavia,2007/2008. Print.Dissertation