SlideShare a Scribd company logo
1 of 41
Download to read offline
 
	
   i	
  
	
  
	
  
	
  
	
  
Questioning	
  the	
  Columbia	
  River	
  Crossing	
  Project:	
  
Was	
  an	
  Accurate	
  Analysis	
  of	
  the	
  Project’s	
  
Economic	
  Impact	
  Completed?	
  
	
  
	
  
	
  
By	
  
Cody	
  Smith	
  
	
  
	
  
Senior	
  Thesis	
  	
  
Econ	
  496W-­‐01	
  
Prof.	
  Mascarenhas	
  
	
  
	
  
	
  
May	
  11,	
  2015	
  
	
  
	
  	
  
 
	
   ii	
  
Table	
  of	
  Contents	
  
Introduction	
  ................................................................................................................................	
  1	
  
Theory	
  &	
  Context	
  .......................................................................................................................	
  3	
  
1)	
  Policies	
  for	
  Reducing	
  Congestion	
  ................................................................................................	
  7	
  
a)	
  Demand-­‐Side	
  Management	
  ...................................................................................................................	
  7	
  
b)	
  Supply-­‐Side	
  Management	
  ....................................................................................................................	
  10	
  
2)	
  Cost-­‐Benefit	
  Analysis	
  ...................................................................................................................	
  14	
  
Analysis	
  ......................................................................................................................................	
  15	
  
1)	
  Traveler	
  Time	
  Savings	
  .................................................................................................................	
  17	
  
a)	
  Analysis	
  of	
  the	
  Effectiveness	
  of	
  Extending	
  Light	
  Rail	
  ..............................................................	
  18	
  
b)	
  Analysis	
  of	
  the	
  Effectiveness	
  of	
  Increasing	
  I-­‐5’s	
  Capacity	
  .....................................................	
  23	
  
2)	
  Area	
  Market	
  Access	
  analysis	
  ......................................................................................................	
  27	
  
Conclusion	
  .................................................................................................................................	
  30	
  
References	
  .................................................................................................................................	
  33	
  
Appendix	
  1	
  –	
  CRC	
  Project	
  Area	
  Maps	
  ..................................................................................	
  36	
  
Appendix	
  2	
  –	
  Rose	
  Quarter	
  Map	
  ...........................................................................................	
  38	
  
Appendix	
  3	
  –	
  Vancouver	
  Light	
  Rail	
  Map	
  .............................................................................	
  39	
  
 
	
   1	
  
Introduction	
  	
  
	
   From	
  1995	
  to	
  the	
  spring	
  of	
  2014,	
  a	
  joint	
  project	
  managed	
  by	
  the	
  Washington	
  
Department	
  of	
  Transportation	
  (WSDOT)	
  and	
  Oregon	
  Department	
  of	
  Transportation	
  
(ODOT)	
  examined	
  the	
  impacts	
  of	
  potential	
  improvements	
  that	
  could	
  be	
  made	
  to	
  the	
  
Interstate-­‐5	
  corridor	
  connecting	
  Portland,	
  Oregon	
  to	
  Vancouver,	
  Washington.	
  
During	
  this	
  time	
  period,	
  the	
  project	
  operated	
  under	
  different	
  names,	
  the	
  final	
  being	
  
the	
  Columbia	
  River	
  Crossing	
  Project	
  (CRC).	
  As	
  of	
  May	
  31st,	
  2014,	
  the	
  CRC	
  was	
  closed	
  
down	
  after	
  both	
  the	
  legislatures	
  of	
  Oregon	
  and	
  Washington	
  failed	
  to	
  extend	
  funding	
  
for	
  the	
  project’s	
  future	
  (Thompson,	
  2014).	
  This	
  came	
  after	
  a	
  proposed	
  plan	
  was	
  
unveiled	
  that	
  would	
  replace	
  the	
  aging	
  Interstate	
  Bridge	
  system	
  with	
  a	
  new	
  set	
  of	
  
bridges	
  as	
  well	
  as	
  fund	
  improvements	
  to	
  approximately	
  5	
  miles	
  of	
  I-­‐5	
  in	
  the	
  form	
  of	
  
widening	
  sections	
  of	
  the	
  freeway	
  and	
  improving	
  interchanges	
  (see	
  map	
  in	
  Appendix	
  
1).	
  On	
  top	
  of	
  roadway	
  improvements,	
  the	
  CRC	
  proposal	
  would	
  have	
  introduced	
  
Portland’s	
  light	
  rail	
  system	
  to	
  Vancouver	
  as	
  an	
  added	
  form	
  of	
  transportation	
  
crossing	
  the	
  Columbia	
  River.	
  One	
  of	
  the	
  main	
  aims	
  of	
  the	
  CRC	
  was	
  to	
  reduce	
  
congestion	
  in	
  the	
  Portland-­‐Vancouver	
  area.	
  The	
  CRC,	
  an	
  extension	
  of	
  both	
  the	
  
Oregon	
  and	
  Washington	
  Departments	
  of	
  Transportation,	
  claimed	
  that	
  the	
  proposed	
  
supply-­‐side	
  increases	
  of	
  mass	
  transit	
  and	
  vehicular	
  transportation	
  would	
  be	
  enough	
  
to	
  reduce	
  area	
  congestion	
  substantially,	
  generating	
  a	
  net	
  benefit	
  of	
  the	
  greater	
  
Pacific	
  Northwest	
  economy.	
  
The	
  primary	
  tool	
  used	
  to	
  analyze	
  the	
  viability	
  of	
  public	
  works	
  projects	
  is	
  
cost-­‐benefit	
  analysis.	
  	
  The	
  CRC	
  completed	
  its	
  own	
  cost-­‐benefit	
  analysis,	
  finding	
  the	
  
 
	
   2	
  
project	
  would	
  reduce	
  area	
  congestion,	
  generating	
  benefit	
  for	
  the	
  Portland-­‐
Vancouver	
  area	
  and	
  their	
  respective	
  states	
  at	
  large.	
  Supporters	
  of	
  the	
  CRC	
  argued	
  
that	
  increasing	
  freeway	
  capacity	
  paired	
  with	
  increases	
  in	
  public	
  transportation	
  
crossing	
  the	
  Columbia	
  River	
  would	
  have	
  resulted	
  in	
  decreases	
  in	
  I-­‐5	
  congestion.	
  On	
  
the	
  surface,	
  this	
  seems	
  to	
  be	
  a	
  good	
  solution	
  for	
  congestion	
  reduction	
  in	
  the	
  greater	
  
Portland-­‐Vancouver	
  area.	
  However,	
  the	
  effects	
  of	
  freeway	
  improvements	
  in	
  
metropolitan	
  areas	
  are	
  more	
  complex	
  than	
  what	
  has	
  been	
  considered	
  by	
  the	
  CRC’s	
  
analysis,	
  which	
  suggests	
  that	
  increases	
  in	
  roadway	
  capacity	
  will	
  directly	
  reduce	
  
congestion	
  levels.	
  Under	
  further	
  examination	
  by	
  economic	
  scholars,	
  this	
  commonly	
  
held	
  assumption	
  begins	
  to	
  fall	
  apart.	
  
The	
  Final	
  Report	
  (2012)	
  published	
  by	
  the	
  CRC	
  indicated	
  that	
  completion	
  of	
  
the	
  CRC	
  project	
  would	
  have	
  resulted	
  in	
  a	
  net	
  benefit	
  to	
  the	
  regional	
  economy	
  of	
  the	
  
Pacific	
  Northwest.	
  Did	
  the	
  CRC	
  complete	
  an	
  accurate	
  cost-­‐benefit	
  evaluation	
  of	
  the	
  
project’s	
  impact	
  to	
  the	
  regional	
  economy	
  in	
  reaching	
  this	
  conclusion?	
  To	
  examine	
  
this,	
  the	
  effects	
  of	
  transportation	
  infrastructure	
  improvements	
  proposed	
  by	
  the	
  CRC	
  
must	
  be	
  well	
  understood.	
  This	
  paper	
  examines	
  the	
  economic	
  theory	
  used	
  by	
  the	
  CRC	
  
to	
  obtain	
  a	
  positive	
  benefit	
  to	
  cost	
  ratio	
  for	
  congruency	
  with	
  theory	
  that	
  examines	
  
the	
  effects	
  of	
  supply-­‐side	
  management	
  solutions	
  for	
  metropolitan	
  congestion.	
  The	
  
main	
  point	
  of	
  contention	
  relates	
  to	
  the	
  CRC’s	
  understanding	
  of	
  the	
  proposed	
  supply	
  
side	
  congestion	
  relief	
  policy	
  with	
  what	
  economic	
  research	
  has	
  found	
  characterizes	
  
congestion	
  on	
  metropolitan-­‐freeways.	
  This	
  is	
  key	
  because	
  if	
  the	
  CRC’s	
  theory	
  is	
  
found	
  to	
  be	
  inconsistent	
  with	
  known	
  traffic	
  phenomenon,	
  then	
  the	
  accuracy	
  of	
  the	
  
CRC’s	
  predicted	
  net	
  benefit	
  comes	
  into	
  question.	
  In	
  order	
  to	
  complete	
  this	
  study,	
  this	
  
 
	
   3	
  
paper	
  does	
  not	
  conduct	
  its	
  own	
  cost-­‐benefit	
  analysis	
  of	
  the	
  CRC	
  project;	
  instead	
  the	
  
paper	
  examines	
  the	
  economic	
  theory	
  that	
  underlies	
  the	
  CRC’s	
  calculations.	
  1	
  
In	
  order	
  to	
  conduct	
  such	
  a	
  critique	
  of	
  the	
  CRC	
  project,	
  this	
  paper	
  first	
  
explains	
  the	
  economic	
  theory	
  that	
  is	
  relevant	
  to	
  understanding	
  the	
  phenomenon	
  of	
  
traffic	
  congestion.	
  Next,	
  the	
  theoretical	
  framework	
  underlying	
  the	
  market	
  for	
  
transportation	
  and	
  congestion	
  reduction	
  solutions	
  are	
  defined.	
  Rounding	
  out	
  the	
  
theory	
  needed	
  for	
  this	
  analysis,	
  cost-­‐benefit	
  analysis	
  is	
  examined.	
  Then,	
  a	
  careful	
  
analysis	
  of	
  the	
  theory	
  implicit	
  in	
  the	
  CRC’s	
  cost-­‐benefit	
  analysis	
  is	
  conducted.	
  The	
  
focus,	
  again,	
  is	
  on	
  determining	
  whether	
  the	
  CRC’s	
  understanding	
  of	
  congestion	
  is	
  
consistent	
  with	
  the	
  known	
  impacts	
  of	
  similar	
  transportation	
  policies.	
  If	
  the	
  theory	
  
implicit	
  in	
  the	
  CRC’s	
  analysis	
  is	
  found	
  to	
  be	
  divergent	
  from	
  known	
  traffic	
  
phenomenon,	
  this	
  would	
  call	
  into	
  question	
  the	
  accuracy	
  of	
  the	
  CRC’s	
  claimed	
  net	
  
benefit.	
  Finally,	
  the	
  conclusion	
  summarizes	
  all	
  major	
  points	
  of	
  analysis	
  and	
  outlines	
  
areas	
  for	
  further	
  research.	
  	
  	
  	
  	
  
Theory	
  &	
  Context	
  
	
   In	
  order	
  to	
  fully	
  examine	
  whether	
  the	
  effects	
  of	
  the	
  CRC	
  project	
  were	
  
properly	
  accounted	
  for	
  in	
  the	
  CRC’s	
  cost-­‐benefit	
  analysis,	
  the	
  underlying	
  economic	
  
theory	
  generating	
  the	
  projected	
  benefit	
  values	
  must	
  be	
  understood.	
  The	
  topics	
  and	
  
issues	
  that	
  need	
  to	
  be	
  understood	
  to	
  begin	
  an	
  examination	
  of	
  the	
  CRC	
  project’s	
  net	
  
benefit	
  include	
  the	
  economics	
  of	
  freeway	
  congestion,	
  the	
  impacts	
  of	
  common	
  policy	
  
applications	
  for	
  congestion	
  and	
  finally,	
  cost-­‐benefit	
  analysis.	
  In	
  the	
  case	
  of	
  the	
  CRC,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  This	
  is	
  because	
  the	
  magnitude	
  of	
  an	
  independent	
  cost-­‐benefit	
  analysis	
  for	
  the	
  CRC	
  
project	
  would	
  prove	
  to	
  be	
  too	
  massive	
  to	
  be	
  completed	
  as	
  a	
  senior	
  thesis	
  project.	
  
 
	
   4	
  
like	
  other	
  transportation	
  project	
  related	
  analyses,	
  understanding	
  how	
  cost-­‐benefit	
  
analysis	
  is	
  conducted	
  relies	
  on	
  an	
  understanding	
  of	
  the	
  economic	
  forces	
  that	
  drive	
  
congestion.	
  For	
  this	
  reason,	
  it	
  is	
  best	
  to	
  first	
  understand	
  the	
  economics	
  of	
  traffic	
  and	
  
the	
  impacts	
  for	
  policy	
  prescription	
  before	
  diving	
  into	
  how	
  cost-­‐benefit	
  analysis	
  
would	
  take	
  place	
  for	
  such	
  a	
  project.	
  
	
   	
  Traffic	
  congestion	
  is	
  something	
  that	
  most	
  Americans	
  living	
  in	
  urban	
  areas	
  
have	
  become	
  all	
  too	
  familiar	
  with,	
  as	
  the	
  amount	
  of	
  vehicles	
  on	
  the	
  road	
  in	
  the	
  
United	
  States	
  has	
  increased	
  over	
  time.	
  Congestion	
  is	
  most	
  prevalent	
  in	
  cities	
  and	
  is	
  
something	
  that	
  many	
  have	
  come	
  to	
  accept	
  as	
  a	
  fact	
  of	
  urban	
  living.	
  Congestion	
  
effects	
  are	
  broad	
  reaching—in	
  1994,	
  “roughly	
  one-­‐third	
  of	
  all	
  [U.S.	
  metropolitan]	
  
vehicular	
  travel	
  [took]	
  place	
  under	
  congested	
  conditions”	
  (Arnott	
  &	
  Smalls,	
  1994,	
  
pg.	
  446).	
  Congestion	
  has	
  become	
  a	
  norm	
  in	
  large	
  cities,	
  with	
  effects	
  that	
  are	
  broad	
  
reaching.	
  This	
  being	
  the	
  case,	
  it	
  is	
  still	
  frustrating	
  for	
  many	
  drivers	
  that	
  experience	
  
congestion	
  on	
  a	
  day-­‐to-­‐day	
  basis,	
  as	
  they	
  are	
  held	
  captive	
  in	
  their	
  vehicles	
  while	
  
time	
  slips	
  away.	
  But	
  the	
  frustration	
  of	
  congestion	
  is	
  not	
  limited	
  to	
  personal	
  vehicle	
  
users.	
  Commercial	
  transportation	
  relies	
  on	
  the	
  same	
  road	
  network	
  as	
  private	
  
vehicles,	
  thus	
  causing	
  important	
  shipments	
  to	
  be	
  delayed	
  by	
  congestion	
  as	
  well.	
  This	
  
means	
  that	
  all	
  transportation	
  dependent	
  industries	
  are	
  also	
  affected	
  by	
  traffic	
  
delays.	
  Congestion	
  is	
  unlike	
  other	
  public	
  policy	
  problems	
  in	
  the	
  United	
  States	
  
because	
  it’s	
  affects	
  are	
  so	
  broad	
  reaching—whether	
  or	
  not	
  someone	
  is	
  of	
  a	
  high	
  or	
  
low	
  income	
  does	
  not	
  affect	
  whether	
  or	
  not	
  a	
  driver	
  will	
  be	
  caught	
  in	
  freeway	
  
congestion	
  (Downs,	
  1992).	
  Because	
  experience	
  with	
  congestion	
  is	
  so	
  prevalent,	
  
congestion	
  reduction	
  is	
  one	
  policy	
  issue	
  that	
  almost	
  all	
  people	
  agree	
  upon.	
  	
  
 
	
   5	
  
However,	
  reducing	
  congestion	
  on	
  freeways	
  is	
  not	
  as	
  easy	
  as	
  it	
  may	
  seem.	
  
Congestion	
  is	
  created	
  when	
  the	
  flow	
  of	
  traffic	
  demanding	
  a	
  certain	
  area	
  of	
  road	
  
space	
  is	
  greater	
  than	
  the	
  capacity	
  that	
  the	
  area	
  can	
  effectively	
  handle.	
  These	
  areas	
  
are	
  considered	
  chokepoints.	
  For	
  example,	
  in	
  the	
  Portland	
  area	
  one	
  of	
  the	
  major	
  
chokepoints	
  is	
  the	
  Interstate	
  Bridge.	
  The	
  Interstate	
  Bridge	
  is	
  narrower	
  than	
  the	
  
preceding	
  roadway	
  and	
  is	
  one	
  of	
  the	
  only	
  two	
  Columbia	
  River	
  crossing	
  points	
  in	
  the	
  
Portland-­‐Vancouver	
  area.	
  Because	
  of	
  this,	
  at	
  peak-­‐hours	
  the	
  flow	
  of	
  traffic	
  crossing	
  
(i.e.	
  the	
  demand	
  for	
  road	
  space)	
  the	
  Interstate	
  Bridge	
  is	
  greater	
  than	
  physical	
  
capacity	
  of	
  the	
  crossing	
  (i.e.	
  the	
  supply	
  of	
  road	
  space).	
  This	
  means	
  that	
  cars	
  that	
  
approach	
  the	
  bridge,	
  when	
  at	
  capacity,	
  must	
  endure	
  a	
  wait	
  to	
  cross	
  the	
  bridge.	
  
Another	
  way	
  that	
  freeway	
  congestion	
  forms	
  is	
  through	
  an	
  inadequate	
  surrounding	
  
street	
  network.	
  In	
  this	
  case,	
  the	
  chokepoint	
  is	
  not	
  on	
  the	
  freeway	
  itself	
  but	
  just	
  off	
  
the	
  exit	
  ramp.	
  This	
  scenario	
  is	
  best	
  explained	
  by	
  Günther	
  et	
  al.	
  (2011)	
  who	
  suggested	
  
that	
  freeway	
  congestion	
  can	
  be	
  caused	
  by	
  an	
  inadequate	
  surrounding	
  street	
  network.	
  
This	
  approach	
  to	
  understanding	
  congestion	
  finds	
  that	
  if	
  capacity	
  of	
  the	
  first	
  
intersection	
  after	
  exiting	
  the	
  freeway	
  is	
  exceeded,	
  queues	
  for	
  that	
  intersection	
  may	
  
stretch	
  back	
  into	
  the	
  freeway	
  (Günther	
  et.	
  al.	
  2011).	
  	
  This	
  means	
  that	
  road	
  space	
  that	
  
should	
  be	
  allocated	
  to	
  through	
  traffic	
  is	
  occupied	
  by	
  those	
  that	
  are	
  exiting	
  the	
  freeway.	
  	
  
Many	
  times	
  this	
  backup	
  affects	
  multiple	
  lanes	
  of	
  the	
  freeway	
  as	
  surrounding	
  cars	
  are	
  
forced	
  to	
  slow	
  down	
  as	
  cars	
  merge	
  into	
  the	
  exit	
  queue.	
  	
  This	
  is	
  just	
  another	
  way	
  that	
  
freeway	
  congestion	
  can	
  be	
  understood	
  in	
  the	
  CRC	
  project	
  area.	
  The	
  CRC	
  seems	
  to	
  
acknowledge	
  that	
  this	
  problem	
  exists	
  in	
  the	
  project	
  corridor;	
  one	
  of	
  the	
  commonly	
  
named	
  areas	
  that	
  experiences	
  a	
  similar	
  type	
  of	
  congestion	
  at	
  the	
  Rose	
  Quarter	
  Exit	
  in	
  
 
	
   6	
  
Portland	
  (see	
  map	
  in	
  Appendix	
  2).	
  In	
  this	
  area	
  during	
  peak	
  traffic	
  flow	
  periods,	
  the	
  
surrounding	
  street	
  network	
  is	
  unable	
  to	
  disperse	
  traffic	
  at	
  the	
  rate	
  at	
  which	
  it	
  is	
  exiting	
  
I-­‐5.	
  This	
  results	
  in	
  congestion	
  backups	
  of	
  cars	
  attempting	
  to	
  exit	
  the	
  freeway.	
  The	
  
solution	
  to	
  this	
  type	
  of	
  congestion	
  put	
  forth	
  by	
  Günther	
  et.	
  al.	
  (2011)	
  focuses	
  on	
  
alleviating	
  queues	
  on	
  off-­‐ramps	
  by	
  detouring	
  street	
  level	
  traffic	
  in	
  order	
  to	
  allocate	
  
more	
  of	
  the	
  off-­‐ramps	
  through	
  capacity	
  to	
  the	
  off-­‐ramp	
  traffic.	
  However,	
  this	
  detour	
  
does	
  place	
  some	
  of	
  the	
  burden	
  on	
  the	
  street	
  traffic	
  that	
  is	
  diverted	
  as	
  these	
  cars	
  now	
  
have	
  a	
  further	
  distance	
  to	
  travel	
  in	
  most	
  cases.	
  
	
  With	
  congestion	
  being	
  so	
  pervasive	
  in	
  U.S.	
  cities,	
  many	
  drivers	
  have	
  developed	
  
ways	
  to	
  cope	
  with	
  congestion.	
  Some	
  of	
  these	
  solutions	
  include	
  taking	
  alternate	
  routes	
  
as	
  well	
  as	
  altering	
  schedules	
  to	
  drive	
  during	
  periods	
  that	
  experience	
  lower	
  levels	
  of	
  
congestion.	
  Each	
  of	
  these	
  commuter	
  choice	
  based	
  solutions	
  can	
  be	
  traced	
  back	
  to	
  
individual	
  drivers	
  making	
  choices	
  to	
  reduce	
  their	
  own	
  private	
  cost	
  of	
  driving.	
  For	
  
drivers	
  that	
  experience	
  congestion,	
  there	
  is	
  a	
  cost	
  associated	
  with	
  their	
  lost	
  time.	
  To	
  
avoid	
  this	
  loss,	
  congestion	
  forces	
  drivers	
  to	
  make	
  choices	
  to	
  re-­‐allocate	
  their	
  resources	
  
to	
  achieve	
  more	
  efficient	
  outcomes.	
  “Congestion	
  …	
  causes	
  many	
  potential	
  rush-­‐hour	
  
vehicle	
  trips	
  to	
  be	
  canceled,	
  diverted	
  (for	
  example,	
  to	
  mass	
  transit,	
  to	
  carpools	
  and	
  to	
  
less-­‐congested	
  routes	
  and	
  destinations)	
  or	
  rescheduled”	
  (Arnott	
  &	
  Smalls,	
  1994,	
  pg.	
  
448).	
  For	
  some	
  drivers,	
  an	
  alternate	
  route	
  is	
  a	
  possibility.	
  This	
  route	
  may	
  be	
  a	
  longer	
  
distance	
  to	
  travel	
  than	
  if	
  they	
  were	
  to	
  use	
  the	
  freeway,	
  but	
  is	
  chosen	
  because	
  it	
  
ultimately	
  costs	
  the	
  driver	
  the	
  same	
  or	
  less	
  when	
  they	
  take	
  into	
  account	
  the	
  fact	
  that	
  
rather	
  than	
  waiting	
  a	
  given	
  amount	
  of	
  time	
  in	
  congestion,	
  they	
  have	
  extended	
  their	
  
drive	
  by	
  a	
  similar	
  amount	
  of	
  time.	
  However,	
  if	
  congestion	
  on	
  their	
  primary	
  route	
  were	
  
 
	
   7	
  
to	
  be	
  alleviated,	
  they	
  would	
  prefer	
  to	
  use	
  the	
  primary	
  route,	
  as	
  it	
  would	
  result	
  in	
  a	
  
more	
  efficient	
  outcome	
  for	
  them.	
  Other	
  choices	
  that	
  commuters	
  have	
  to	
  avoid	
  
congestion	
  involve	
  the	
  use	
  of	
  higher	
  capacity	
  transportation	
  options	
  that	
  either	
  don’t	
  
rely	
  on	
  congested	
  roadways	
  or	
  have	
  specially	
  designated	
  lanes,	
  such	
  as	
  high	
  occupancy	
  
vehicle	
  lanes	
  (HOVs)	
  or	
  carpool	
  lanes,	
  to	
  allow	
  for	
  faster	
  transportation.	
  These	
  options	
  
many	
  times	
  do	
  reduce	
  the	
  time	
  that	
  commuters	
  spend	
  trapped	
  in	
  congestion	
  but	
  
introduce	
  other	
  time	
  costs	
  to	
  commuters.	
  To	
  ride	
  public	
  transportation	
  requires	
  that	
  
patrons	
  arrive	
  early	
  at	
  a	
  transport	
  stop	
  and	
  wait	
  for	
  the	
  next	
  bus,	
  streetcar	
  or	
  light	
  rail	
  
vehicle	
  to	
  arrive.	
  Carpools	
  too	
  often	
  require	
  some	
  wait	
  as	
  the	
  other	
  patrons	
  arrive	
  at	
  
the	
  departure	
  location	
  or	
  are	
  picked	
  up	
  along	
  the	
  way.	
  This	
  shows	
  that	
  even	
  though	
  
commuters	
  may	
  have	
  found	
  more	
  desirable	
  options	
  than	
  commuting	
  in	
  personal	
  
vehicles	
  subject	
  to	
  congestion,	
  it	
  is	
  extremely	
  hard	
  for	
  commuters	
  to	
  escape	
  the	
  costs	
  
that	
  are	
  created	
  by	
  congestion.	
  
1)	
  Policies	
  for	
  Reducing	
  Congestion	
  
To	
  help	
  alleviate	
  congestion	
  in	
  metropolitan	
  areas,	
  policy-­‐writers	
  and	
  
lawmakers	
  have	
  developed	
  many	
  different	
  policies	
  aimed	
  at	
  reducing	
  congestion.	
  
These	
  policies	
  can	
  be	
  understood	
  from	
  an	
  economic	
  perspective	
  as	
  falling	
  into	
  either	
  
demand-­‐side	
  management	
  policy	
  or	
  supply-­‐side	
  management	
  policy.	
  	
  
a)	
  Demand-­‐Side	
  Management	
  	
  
	
  Demand	
  management	
  strategies	
  focus	
  on	
  reducing	
  the	
  amount	
  of	
  vehicles	
  that	
  
demand	
  to	
  use	
  the	
  road	
  during	
  peak	
  congestion.	
  This	
  can	
  be	
  done	
  in	
  many	
  different	
  
ways—he	
  two	
  most	
  common	
  are	
  regulating	
  the	
  number	
  of	
  cars	
  entering	
  the	
  freeway	
  
 
	
   8	
  
or	
  the	
  use	
  of	
  a	
  congestion	
  tax	
  to	
  deter	
  drivers	
  from	
  using	
  congested	
  roads.	
  Although	
  
demand	
  management	
  is	
  not	
  the	
  most	
  common	
  solution	
  to	
  congestion,	
  it	
  is	
  important	
  to	
  
understanding	
  how	
  congestion	
  works	
  and	
  what	
  the	
  effects	
  of	
  the	
  CRC	
  would	
  have	
  
been.	
  Within	
  the	
  demand	
  approach,	
  there	
  are	
  two	
  primary	
  policy	
  choices;	
  the	
  
regulatory	
  approach	
  and	
  a	
  market	
  based	
  approach	
  (Downs,	
  1992).	
  The	
  regulatory	
  
approach	
  limits	
  the	
  total	
  number	
  of	
  cars	
  allowed	
  on	
  the	
  road	
  through	
  restricting	
  entry	
  
onto	
  the	
  freeway.	
  This	
  approach,	
  unlike	
  the	
  market	
  approach,	
  mandates	
  behaviors.	
  
Anthony	
  Downs	
  examines	
  congestion	
  in	
  his	
  book	
  Stuck	
  In	
  Traffic:	
  Coping	
  With	
  Peak-­‐
Hour	
  Traffic	
  Congestion.	
  His	
  example	
  for	
  this	
  type	
  of	
  approach	
  would	
  be	
  if	
  a	
  governing	
  
agency	
  prohibited	
  vehicles	
  with	
  a	
  license	
  plate	
  number	
  ending	
  in	
  a	
  certain	
  digit	
  from	
  
entering	
  the	
  roadway	
  on	
  certain	
  days.	
  For	
  example,	
  prohibiting	
  vehicles	
  with	
  plates	
  
ending	
  in	
  a	
  six	
  from	
  entering	
  the	
  road	
  on	
  Mondays	
  and	
  so	
  on	
  (Downs,	
  1992).	
  Another	
  
example	
  of	
  the	
  regulatory	
  approach	
  that	
  is	
  commonly	
  used,	
  and	
  currently	
  employed	
  in	
  
the	
  I-­‐5	
  corridor,	
  is	
  the	
  use	
  of	
  traffic	
  control	
  devices	
  to	
  limit	
  entry	
  onto	
  the	
  freeway.	
  This	
  
tool	
  uses	
  timed	
  lights	
  to	
  slow	
  roadway	
  entry	
  rates	
  to	
  a	
  manageable	
  level	
  in	
  congested	
  
areas.	
  This	
  regulatory	
  approach	
  works	
  by	
  requiring	
  that	
  vehicles	
  that	
  wish	
  to	
  enter	
  the	
  
roadway	
  endure	
  a	
  wait	
  to	
  enter	
  the	
  roadway,	
  with	
  the	
  intent	
  being	
  that	
  by	
  limiting	
  the	
  
inflows	
  of	
  traffic,	
  the	
  road	
  will	
  remain	
  at	
  or	
  below	
  capacity.	
  This	
  would,	
  in	
  turn,	
  result	
  
in	
  uncongested	
  driving	
  while	
  on	
  the	
  freeway.	
  Although	
  this	
  type	
  of	
  regulatory	
  policy	
  is	
  
in	
  use	
  in	
  the	
  Portland	
  area,	
  I-­‐5	
  still	
  experiences	
  heavy	
  congestion	
  in	
  this	
  area.	
  This	
  may	
  
be	
  due	
  to	
  multiple	
  factors	
  such	
  as	
  heavy	
  traffic	
  flows	
  from	
  earlier,	
  unrestricted	
  road	
  
entry	
  points.	
  However,	
  analysis	
  of	
  the	
  effectiveness	
  of	
  this	
  current	
  policy	
  is	
  not	
  the	
  goal	
  
of	
  this	
  paper	
  and	
  will	
  not	
  be	
  directly	
  addressed.	
  	
  
 
	
   9	
  
The	
  other	
  policy	
  commonly	
  called	
  for	
  in	
  the	
  economic	
  literature	
  is	
  the	
  
implementation	
  and	
  use	
  of	
  a	
  congestion	
  charge.	
  The	
  economic	
  reasoning	
  behind	
  this	
  
policy	
  prescription	
  is	
  based	
  on	
  the	
  theory	
  that	
  congestion	
  is	
  an	
  external	
  cost	
  that	
  
individual	
  drivers	
  impose	
  on	
  those	
  around	
  them	
  when	
  they	
  choose	
  to	
  drive.	
  Thus,	
  
“drivers	
  do	
  not	
  pay	
  for	
  the	
  time	
  loss	
  that	
  they	
  impose	
  on	
  others,”	
  because	
  of	
  this,	
  
drivers	
  make	
  socially	
  inefficient	
  decisions	
  regarding	
  when	
  and	
  how	
  much	
  to	
  use	
  
personal	
  vehicles	
  (Arnott	
  &	
  Smalls,	
  1994,	
  pg.	
  448).	
  Economists	
  argue	
  that	
  a	
  congestion	
  
tax	
  will	
  internalize	
  this	
  cost	
  for	
  drivers,	
  making	
  personal	
  driving	
  more	
  costly	
  and	
  
deterring	
  drivers	
  from	
  behavior	
  that	
  induces	
  congestion.	
  This	
  would,	
  in	
  turn,	
  reduce	
  
traffic	
  to	
  a	
  socially	
  optimum	
  level.	
  However,	
  wide	
  scale	
  application	
  of	
  this	
  approach	
  
would	
  not	
  guarantee	
  an	
  end	
  to	
  congestion.	
  For	
  example,	
  if	
  a	
  congestion	
  tax	
  were	
  
imposed	
  in	
  an	
  area,	
  like	
  Portland’s	
  I-­‐5	
  corridor,	
  which	
  taxed	
  congestive	
  driving	
  habits	
  
in	
  accordance	
  with	
  the	
  costs	
  they	
  create,	
  the	
  resulting	
  equilibrium	
  of	
  drivers	
  on	
  the	
  
road	
  would	
  be	
  considered	
  socially	
  optimum.	
  However,	
  if	
  the	
  socially	
  optimum	
  amount	
  
of	
  road	
  usage	
  is	
  still	
  above	
  the	
  capacity	
  of	
  the	
  roadway,	
  congestion	
  will	
  continue	
  to	
  
exist.	
  On	
  the	
  other	
  hand,	
  if	
  the	
  policy	
  is	
  enacted	
  and	
  the	
  socially	
  optimum	
  level	
  is	
  below	
  
the	
  road’s	
  capacity,	
  the	
  road	
  would	
  be	
  underused.	
  This	
  set	
  of	
  hypotheticals	
  shows	
  the	
  
level	
  of	
  complexity	
  that	
  policies	
  dealing	
  with	
  congestion	
  must	
  account	
  for.	
  	
  
On	
  the	
  whole,	
  demand	
  side	
  congestion	
  management	
  policies	
  are	
  found	
  to	
  be	
  
effective	
  in	
  reducing	
  congestion	
  levels	
  when	
  applied	
  correctly.	
  But	
  that	
  does	
  not	
  mean	
  
that	
  demand	
  management	
  does	
  not	
  come	
  without	
  some	
  controversy.	
  Although	
  
effective	
  in	
  reducing	
  congestion,	
  a	
  key	
  argument	
  against	
  widespread	
  application	
  of	
  
congestion	
  taxes	
  is	
  that	
  they	
  would	
  place	
  a	
  greater	
  burden	
  on	
  low-­‐income	
  households,	
  
 
	
   10	
  
thus	
  their	
  implementation	
  would	
  be	
  considered	
  to	
  be	
  inequitable	
  (Downs,	
  1992).	
  This	
  
is	
  because	
  the	
  tax	
  that	
  each	
  driver	
  would	
  be	
  forced	
  to	
  pay	
  would	
  be	
  easier	
  for	
  those	
  
with	
  higher	
  incomes	
  to	
  pay	
  as	
  it	
  would	
  represent	
  a	
  smaller	
  portion	
  of	
  their	
  income.	
  
Also,	
  it	
  is	
  important	
  to	
  remember	
  that	
  currently	
  driving	
  on	
  freeways	
  in	
  the	
  United	
  
States	
  is	
  not	
  taxed.	
  This	
  means	
  that	
  the	
  adding	
  of	
  a	
  congestion	
  charge	
  would	
  result	
  in	
  a	
  
new	
  tax	
  for	
  a	
  city’s	
  residents,	
  an	
  outcome	
  unfavorable	
  to	
  most	
  citizens.	
  So	
  although	
  it	
  
can	
  be	
  an	
  effective	
  policy	
  when	
  precisely	
  executed,	
  demand	
  side	
  congestion	
  taxes	
  have	
  
proven	
  to	
  be	
  an	
  unpopular	
  option	
  in	
  the	
  eyes	
  of	
  the	
  public.	
  	
  
b)	
  Supply-­‐Side	
  Management	
  
The	
  second	
  and	
  more	
  commonly	
  applied	
  solution	
  to	
  congestion	
  is	
  supply-­‐side	
  
management.	
  Supply	
  management	
  focuses	
  on	
  increasing	
  the	
  supply	
  of	
  road	
  space	
  to	
  
reduce	
  congestion.	
  Many	
  times	
  referred	
  to	
  as	
  the	
  “build	
  your	
  way	
  out”	
  solution,	
  it	
  is	
  
also	
  the	
  more	
  costly	
  alternative	
  (Arnott	
  &	
  Smalls,	
  pg.	
  446,	
  1994).	
  This	
  is	
  what	
  most	
  
people	
  understand	
  as	
  the	
  intuitive	
  solution	
  to	
  congestion.	
  This	
  line	
  of	
  reasoning	
  sees	
  
that	
  freeways	
  are	
  overcrowded	
  and	
  reasons	
  that	
  if	
  the	
  road	
  had	
  more	
  lanes	
  (or	
  a	
  
greater	
  through	
  capacity)	
  the	
  congestion	
  would	
  dissipate.	
  The	
  logic	
  behind	
  this	
  policy	
  
is	
  intuitive;	
  if	
  there	
  isn’t	
  enough	
  room	
  for	
  the	
  current	
  amount	
  of	
  traffic,	
  build	
  more	
  
room.	
  Although	
  this	
  is	
  an	
  over	
  simplification	
  of	
  this	
  policy	
  approach,	
  it	
  captures	
  the	
  key	
  
reasoning	
  for	
  the	
  use	
  for	
  such	
  policy.	
  Other	
  less	
  considered	
  supply	
  management	
  
strategies	
  would	
  include	
  increasing	
  the	
  supply	
  of	
  public	
  transportation	
  available	
  or	
  
adding	
  a	
  separate	
  lane	
  structure	
  for	
  buses	
  or	
  truck	
  traffic.	
  It	
  is	
  important	
  to	
  consider	
  
the	
  effects	
  of	
  supply	
  management	
  solutions	
  because	
  this	
  is	
  the	
  primary	
  policy	
  that	
  the	
  
CRC’s	
  proposal	
  examined.	
  The	
  CRC	
  concluded	
  that	
  widening	
  I-­‐5	
  and	
  adding	
  light	
  rail	
  
 
	
   11	
  
transit	
  to	
  the	
  crossing	
  would	
  alleviate	
  congestion	
  substantially.	
  Thus,	
  a	
  careful	
  analysis	
  
of	
  the	
  affects	
  of	
  supply	
  management	
  policy	
  will	
  be	
  key	
  to	
  developing	
  a	
  sound	
  critique	
  
of	
  the	
  CRC’s	
  cost-­‐benefit	
  analysis.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
The	
  CRC	
  project	
  contained	
  two	
  major	
  supply	
  side	
  increases,	
  increasing	
  freeway	
  
road	
  space	
  and	
  extending	
  light-­‐rail	
  into	
  downtown	
  Vancouver.	
  First,	
  the	
  focus	
  will	
  be	
  
on	
  examining	
  the	
  impacts	
  of	
  increasing	
  the	
  capacity	
  of	
  I-­‐5	
  in	
  the	
  Portland-­‐Vancouver	
  
area	
  to	
  allow	
  traffic	
  greater	
  mobility.	
  To	
  do	
  this,	
  the	
  project	
  focused	
  on	
  alleviating	
  
choke	
  points	
  through	
  widening	
  sections	
  of	
  roadway	
  as	
  well	
  as	
  improving	
  a	
  large	
  
number	
  of	
  interchanges	
  to	
  allow	
  for	
  more	
  efficient	
  entry	
  and	
  exit	
  from	
  the	
  freeway	
  
(CRC	
  Final	
  Report,	
  2012).	
  This	
  freeway-­‐based	
  approach	
  was	
  also	
  paired	
  with	
  a	
  second	
  
major	
  transportation	
  supply	
  increase,	
  extending	
  TriMet	
  light-­‐rail.	
  The	
  CRC	
  project	
  
called	
  for	
  the	
  extension	
  of	
  Portland’s	
  already	
  established	
  MAX	
  (operated	
  through	
  
Portland’s	
  TriMet)	
  light-­‐rail	
  public	
  transportation	
  system	
  to	
  be	
  added	
  to	
  the	
  Colombia	
  
River	
  Crossing,	
  providing	
  a	
  second	
  form	
  of	
  transportation	
  connecting	
  Portland	
  and	
  
Vancouver	
  (CRC	
  Final	
  Report,	
  2012).	
  Each	
  of	
  these	
  CRC	
  transportation	
  improvements	
  
would	
  fall	
  under	
  the	
  stereotypical	
  congestion	
  solution	
  of	
  “building	
  a	
  way	
  out	
  of	
  the	
  
problem”	
  (Arnott	
  &	
  Smalls,	
  1994,	
  pg.	
  446).	
  Although	
  the	
  CRC’s	
  plan	
  happens	
  to	
  be	
  the	
  
most	
  commonly	
  used	
  solution	
  to	
  congestion	
  problems,	
  there	
  is	
  still	
  question	
  of	
  the	
  
effectiveness	
  of	
  supply	
  side	
  management	
  of	
  metropolitan	
  congestion.	
  
An	
  alternative	
  way	
  of	
  thinking	
  about	
  increasing	
  highway	
  capacity	
  is	
  put	
  forth	
  
by	
  David	
  J.	
  Forkenbrock	
  and	
  Paul	
  F.	
  Hanley	
  (2010)	
  as	
  they	
  examine	
  supply	
  
management	
  through	
  the	
  alternative	
  lens	
  of	
  Truck-­‐Only	
  Highway	
  Lanes.	
  	
  In	
  this	
  paper,	
  
Forkenbrock	
  and	
  Hanley	
  (2010)	
  examine	
  and	
  endorse	
  building	
  separate	
  lanes	
  for	
  
 
	
   12	
  
trucks.	
  Their	
  research	
  concludes	
  that,	
  in	
  most	
  cases,	
  adding	
  truck	
  only	
  lanes	
  would	
  
result	
  in	
  benefits	
  for	
  both	
  the	
  trucking	
  industry	
  as	
  well	
  as	
  passenger	
  vehicle	
  traffic	
  
(Forkenbrock	
  	
  &	
  Hanley,	
  2010).	
  Although	
  adding	
  truck	
  only	
  lanes	
  to	
  existing	
  freeways	
  
is	
  not	
  directly	
  adding	
  more	
  road	
  space	
  for	
  personal	
  vehicles	
  to	
  use,	
  it	
  has	
  the	
  affect	
  of	
  
opening	
  up	
  road	
  space	
  because	
  the	
  space	
  previously	
  used	
  by	
  trucks	
  is	
  available	
  for	
  
commuting	
  vehicles.	
  In	
  addition	
  to	
  allowing	
  more	
  road	
  space	
  to	
  commuters,	
  allocating	
  
separate	
  facilities	
  for	
  trucks	
  and	
  commuter	
  traffic	
  has	
  the	
  added	
  benefit	
  of	
  grouping	
  
vehicles	
  with	
  similar	
  performance	
  levels	
  together.	
  This	
  is	
  because	
  “the	
  acceleration	
  
and	
  braking	
  performance	
  of	
  trucks	
  is	
  much	
  lower	
  than	
  that	
  of	
  most	
  passenger	
  
vehicles,”	
  meaning	
  that	
  “removing	
  trucks	
  [from	
  roadways]	
  would	
  substantially	
  
improve	
  flow	
  of	
  segments	
  with	
  heavy	
  traffic”	
  (Forkenbrock	
  	
  &	
  Hanley,	
  2010	
  ,	
  pg.	
  102).	
  	
  
Although	
  truck	
  lanes	
  were	
  not	
  a	
  policy	
  identified	
  by	
  the	
  CRC	
  as	
  a	
  solution,	
  it	
  is	
  
important	
  to	
  understand	
  that	
  there	
  is	
  a	
  multitude	
  of	
  different	
  ways	
  to	
  approach	
  each	
  of	
  
these	
  policies.	
  Thus,	
  building	
  an	
  understanding	
  of	
  the	
  different	
  ways	
  to	
  achieve	
  a	
  
similar	
  end	
  result	
  will	
  be	
  useful	
  in	
  critiquing	
  the	
  CRC’s	
  analysis	
  of	
  the	
  application	
  of	
  
such	
  policies.	
  	
  
Also	
  necessary	
  to	
  executing	
  a	
  critique	
  of	
  the	
  CRC’s	
  cost-­‐benefit	
  analysis,	
  is	
  the	
  
examination	
  of	
  the	
  effectiveness	
  of	
  such	
  supply	
  side	
  policies.	
  This	
  examination	
  of	
  
supply	
  side	
  policy	
  will	
  be	
  of	
  the	
  greatest	
  importance	
  because	
  this	
  type	
  of	
  policy	
  makes	
  
up	
  most	
  of	
  the	
  CRC’s	
  project.	
  This,	
  in	
  turn,	
  means	
  that	
  almost	
  all	
  of	
  the	
  CRC’s	
  predicted	
  
benefits	
  result	
  from	
  supply	
  increases.	
  Thus,	
  making	
  it	
  of	
  paramount	
  importance	
  that	
  
the	
  effectiveness	
  of	
  supply	
  side	
  congestion	
  relief	
  policy	
  be	
  thoroughly	
  examined.	
  The	
  
effectiveness	
  of	
  supply	
  side	
  approaches	
  to	
  congestion	
  reduction	
  is	
  not	
  as	
  
 
	
   13	
  
straightforward	
  as	
  it	
  may	
  appear.	
  Skeptics	
  of	
  this	
  approach	
  argue	
  that	
  increasing	
  the	
  
supply	
  of	
  roadways	
  does	
  not	
  necessarily	
  result	
  in	
  reductions	
  in	
  congestion.	
  Although	
  
defined	
  differently	
  by	
  different	
  authors,	
  the	
  reasoning	
  to	
  support	
  this	
  argument	
  is	
  
simple—latent	
  demand	
  exists	
  for	
  many	
  of	
  the	
  congested	
  routes	
  in	
  a	
  city.	
  This	
  means,	
  
“the	
  traffic	
  we	
  see	
  does	
  not	
  represent	
  the	
  full	
  demand	
  for	
  peak	
  travel”	
  (Arnott	
  &	
  
Smalls,	
  1994,	
  pg.	
  448).	
  Most	
  people,	
  even	
  those	
  without	
  an	
  economic	
  background,	
  
would	
  agree	
  this	
  is	
  the	
  case	
  and	
  that	
  congestion	
  deters	
  some	
  drivers	
  from	
  using	
  roads	
  
during	
  periods	
  of	
  congestion.	
  Many	
  times	
  this	
  is	
  done	
  to	
  avoid	
  the	
  time	
  loss	
  that	
  
congestion	
  brings	
  and	
  the	
  solution	
  is	
  for	
  some	
  drivers	
  to	
  schedule	
  their	
  trips	
  during	
  
times	
  of	
  less	
  congestion.	
  This	
  would	
  not	
  be	
  their	
  first	
  choice,	
  but	
  they	
  have	
  adjusted	
  to	
  
avoid	
  driving	
  during	
  peak	
  congestion.	
  This	
  would	
  mean	
  that	
  following	
  an	
  increase	
  in	
  
roadway	
  capacity,	
  it	
  would	
  be	
  expected	
  that	
  commuters	
  that	
  previously	
  were	
  deterred	
  
from	
  traveling	
  during	
  peak	
  hours	
  now	
  travel	
  during	
  this	
  time	
  because	
  there	
  is	
  more	
  
available	
  road	
  space.	
  The	
  result	
  is	
  that	
  now	
  a	
  greater	
  amount	
  of	
  commuters	
  are	
  
subjected	
  to	
  congestion.	
  Anthony	
  Downs	
  (1992)	
  explains	
  this	
  as	
  the	
  “triple	
  
convergence”	
  effect.	
  Triple	
  convergence	
  occurs	
  after	
  an	
  improvement	
  is	
  made	
  to	
  a	
  
freeway	
  because	
  shortly	
  after	
  the	
  expansion	
  is	
  complete,	
  traffic	
  is	
  able	
  to	
  move	
  at	
  an	
  
increased	
  rate.	
  This	
  then	
  attracts	
  those	
  whom	
  had	
  previously	
  traveled	
  alternate	
  routes	
  
or	
  at	
  inopportune	
  times	
  to	
  join	
  the	
  peak	
  traffic	
  flow.	
  Downs’	
  “triple	
  convergence”	
  finds	
  
that	
  drivers	
  that	
  used	
  alternate	
  routes,	
  traveled	
  at	
  times	
  just	
  before	
  or	
  after	
  peak	
  
congestion,	
  or	
  used	
  alternative	
  modes	
  of	
  transport,	
  will	
  converge	
  on	
  the	
  more	
  efficient	
  
highway	
  (Downs,	
  1992).	
  The	
  result	
  is	
  that	
  freeway	
  traffic	
  continues	
  to	
  move	
  along	
  at	
  a	
  
crawl,	
  only	
  now	
  there	
  are	
  more	
  cars	
  involved	
  in	
  the	
  congestion.	
  This	
  has	
  shown	
  that	
  
 
	
   14	
  
the	
  connection	
  between	
  supply	
  side	
  congestion	
  management	
  policy	
  and	
  congestion	
  
reduction	
  is	
  much	
  more	
  complicated	
  than	
  many	
  consider	
  it	
  to	
  be.	
  	
  
2)	
  Cost-­‐Benefit	
  Analysis	
  
The	
  final	
  and	
  most	
  important	
  economic	
  tool	
  that	
  needs	
  to	
  be	
  understood	
  in	
  
order	
  to	
  critique	
  the	
  CRC’s	
  project	
  analysis	
  is	
  cost-­‐benefit	
  analysis.	
  Simply	
  put,	
  cost-­‐
benefit	
  analysis	
  is,	
  “an	
  economic	
  tool	
  for	
  comparing	
  the	
  desirable	
  and	
  undesirable	
  
impacts	
  of	
  proposed	
  policies”	
  (Arrow	
  et.	
  al.	
  1996	
  pg.	
  221).	
  It	
  is	
  also	
  worth	
  noting	
  
that	
  cost-­‐benefit	
  analysis	
  is	
  the	
  standard	
  tool	
  used	
  in	
  economic	
  policy	
  analysis	
  and	
  
in	
  most	
  cases	
  is	
  required	
  before	
  government	
  organizations	
  can	
  begin	
  a	
  project	
  of	
  a	
  
substantial	
  nature.	
  Cost-­‐benefit	
  analysis	
  “serves	
  the	
  single	
  purpose	
  of	
  registering	
  
systematically	
  the	
  positive	
  and	
  negative	
  effects	
  of	
  infrastructure	
  investments	
  and	
  of	
  
assessing	
  them	
  in	
  terms	
  of	
  economic	
  goals”	
  (Georgi,	
  1973,	
  pg.5).	
  The	
  registering	
  of	
  
each	
  of	
  the	
  positive	
  and	
  negative	
  effects	
  of	
  a	
  policy	
  choice,	
  when	
  summed,	
  
determines	
  the	
  net	
  economic	
  effect	
  of	
  the	
  implementation	
  of	
  that	
  policy.	
  The	
  idea	
  
behind	
  the	
  use	
  of	
  cost-­‐benefit	
  analysis	
  is	
  that	
  if	
  the	
  net	
  benefit	
  of	
  the	
  project	
  can	
  be	
  
predicted	
  before	
  an	
  investment	
  is	
  made,	
  rational	
  decisions	
  can	
  be	
  made	
  as	
  to	
  
whether	
  or	
  not	
  a	
  policy	
  or	
  project	
  should	
  be	
  implemented.	
  To	
  accomplish	
  this,	
  all	
  of	
  
the	
  costs	
  and	
  benefits	
  are	
  estimated	
  in	
  terms	
  of	
  their	
  monetary	
  impact.	
  In	
  terms	
  of	
  
the	
  CRC,	
  a	
  short	
  list	
  of	
  the	
  beneficial	
  impacts	
  that	
  would	
  have	
  been	
  created	
  include	
  
possible	
  time-­‐savings	
  for	
  drivers	
  due	
  to	
  decreases	
  in	
  congestion,	
  job	
  creation,	
  
decreases	
  in	
  traffic	
  accidents,	
  and	
  increases	
  in	
  freight	
  mobility.	
  The	
  potential	
  costs	
  
that	
  the	
  CRC	
  could	
  have	
  created,	
  other	
  than	
  the	
  total	
  cost	
  spent	
  to	
  complete	
  the	
  
project	
  are:	
  	
  possible	
  increases	
  in	
  the	
  total	
  amount	
  of	
  pollution	
  generated	
  in	
  the	
  
 
	
   15	
  
project	
  area,	
  increases	
  in	
  per	
  person	
  pollution	
  rates	
  in	
  the	
  I-­‐5	
  corridor,	
  damages	
  to	
  
the	
  environment	
  that	
  occur	
  during	
  construction,	
  possible	
  effects	
  to	
  river	
  based	
  
transit	
  due	
  to	
  bridge	
  clearance	
  levels,	
  as	
  well	
  as	
  many	
  more.	
  	
  With	
  the	
  CRC	
  having	
  
such	
  a	
  broad	
  reaching	
  effect,	
  cost-­‐benefit	
  analysis	
  is	
  the	
  go-­‐to	
  tool	
  in	
  an	
  economist’s	
  
toolbox	
  because	
  each	
  of	
  the	
  effects	
  are	
  assigned	
  dollar	
  values	
  and	
  summed.	
  Cost-­‐
benefit	
  analysis	
  allows	
  a	
  large	
  public	
  policy	
  decision	
  to	
  be	
  simplified	
  in	
  order	
  to	
  
achieve	
  desirable	
  results.	
  	
  
In	
  terms	
  of	
  this	
  paper,	
  it	
  is	
  important	
  to	
  understand	
  where	
  the	
  costs	
  and	
  
benefits	
  of	
  the	
  project	
  are	
  generated.	
  However,	
  because	
  this	
  paper	
  does	
  not	
  seek	
  to	
  
complete	
  its	
  own	
  separate	
  cost-­‐benefit	
  analysis	
  of	
  the	
  CRC,	
  it	
  will	
  not	
  be	
  necessary	
  
to	
  derive	
  values	
  for	
  these	
  effects	
  outside	
  of	
  those	
  presented	
  by	
  the	
  CRC.	
  In	
  this	
  way,	
  
the	
  point	
  of	
  analysis	
  for	
  this	
  paper	
  is	
  not	
  whether	
  the	
  CRC	
  net	
  benefit	
  value	
  was	
  
correct,	
  but	
  whether	
  the	
  understanding	
  of	
  the	
  effects	
  of	
  the	
  CRC	
  project	
  are	
  
accurately	
  captured	
  in	
  the	
  CRC’s	
  generated	
  time	
  savings	
  values.	
  	
  
Analysis	
  
	
   In	
  order	
  to	
  determine	
  the	
  legitimacy	
  of	
  the	
  CRC’s	
  projected	
  net	
  benefit,	
  
careful	
  analysis	
  must	
  take	
  place	
  to	
  determine	
  whether	
  the	
  theories	
  underlying	
  the	
  
CRC’s	
  benefit	
  valuation	
  can	
  be	
  considered	
  accurate.	
  In	
  beginning	
  this	
  analysis,	
  it	
  is	
  
first	
  necessary	
  to	
  explain	
  how	
  the	
  CRC	
  defined	
  effects	
  of	
  supply	
  side	
  congestion	
  
management	
  solutions.	
  This	
  understanding	
  will	
  then	
  be	
  compared	
  to	
  the	
  previously	
  
defined	
  theories	
  that	
  this	
  paper	
  has	
  laid	
  out.	
  If	
  it	
  is	
  found	
  that	
  the	
  CRC	
  used	
  accurate	
  
theory	
  to	
  understand	
  the	
  project’s	
  possible	
  impact,	
  this	
  will	
  provide	
  validity	
  to	
  the	
  
 
	
   16	
  
CRC’s	
  benefit	
  valuation.	
  However,	
  if	
  this	
  is	
  not	
  the	
  case	
  and	
  the	
  CRC’s	
  benefit	
  
valuation	
  is	
  flawed	
  due	
  to	
  inconsistency	
  with	
  recorded	
  economic	
  theory	
  regarding	
  
the	
  impacts	
  of	
  congestion	
  management	
  policies,	
  this	
  will	
  call	
  into	
  question	
  the	
  
legitimacy	
  of	
  the	
  CRC’s	
  calculated	
  net	
  benefit.	
  If	
  this	
  is	
  the	
  case,	
  this	
  can	
  then	
  be	
  
viewed	
  as	
  an	
  explanation	
  of	
  why	
  the	
  CRC	
  project	
  failed	
  to	
  be	
  completed.	
  If	
  the	
  CRC’s	
  
understanding	
  of	
  the	
  project’s	
  effects	
  on	
  Portland	
  area	
  congestion	
  is	
  found	
  to	
  be	
  
accurate,	
  then	
  other	
  explanations	
  for	
  the	
  project’s	
  failure	
  will	
  need	
  to	
  be	
  explored.	
  	
  
	
   The	
  CRC	
  claimed	
  that	
  completion	
  of	
  the	
  project	
  would	
  result	
  in	
  net	
  benefit	
  of	
  
approximately	
  $4	
  to	
  $6	
  billion	
  in	
  net	
  present	
  value	
  when	
  benefits	
  and	
  costs	
  are	
  
estimated	
  until	
  the	
  year	
  2050	
  (CRC	
  Final	
  Report,	
  2012).	
  To	
  conduct	
  a	
  through	
  
analysis	
  of	
  the	
  CRC’s	
  claim,	
  the	
  projected	
  costs	
  and	
  benefits	
  of	
  the	
  project	
  will	
  need	
  
to	
  be	
  broken	
  down	
  to	
  be	
  further	
  understood.	
  However,	
  this	
  paper	
  will	
  not	
  examine	
  
the	
  cost	
  estimations	
  put	
  forth	
  by	
  the	
  CRC	
  because	
  many	
  of	
  the	
  costs	
  of	
  the	
  CRC	
  
project	
  are	
  associated	
  with	
  construction	
  costs.	
  Although	
  there	
  is	
  always	
  a	
  chance	
  
that	
  any	
  public	
  works	
  project	
  will	
  come	
  in	
  over	
  budget,	
  arguing	
  that	
  the	
  CRC	
  under	
  
estimated	
  the	
  costs	
  of	
  construction	
  is	
  not	
  the	
  goal	
  of	
  this	
  paper.	
  This	
  paper	
  is	
  most	
  
concerned	
  with	
  examining	
  whether	
  the	
  CRC	
  generated	
  accurate	
  values	
  of	
  benefits	
  
based	
  on	
  its	
  understanding	
  of	
  the	
  project’s	
  effects	
  on	
  congestion	
  in	
  the	
  Portland-­‐
Vancouver	
  area,	
  and	
  ultimately	
  on	
  the	
  economy	
  of	
  the	
  Pacific	
  Northwest.	
  Once	
  the	
  
CRC’s	
  calculation	
  of	
  the	
  project’s	
  benefits	
  is	
  understood,	
  the	
  CRC’s	
  methods	
  for	
  
generating	
  projected	
  benefit	
  values	
  can	
  be	
  critiqued	
  through	
  the	
  theories	
  previously	
  
presented	
  in	
  this	
  paper.	
  Comparing	
  the	
  CRC’s	
  predicted	
  effect	
  on	
  the	
  area	
  economy	
  
to	
  what	
  established	
  economic	
  theory	
  would,	
  in	
  general,	
  find	
  as	
  an	
  outcome	
  of	
  such	
  
 
	
   17	
  
policy,	
  will	
  show	
  whether	
  the	
  CRC	
  developed	
  a	
  credible	
  cost-­‐benefit	
  analysis	
  for	
  the	
  
project’s	
  impact.	
  	
  
	
   In	
  developing	
  its	
  cost-­‐benefit	
  analysis,	
  the	
  CRC	
  found	
  the	
  project’s	
  economic	
  
impact	
  in	
  two	
  ways.	
  First,	
  that	
  the	
  project	
  would	
  create	
  “traveler	
  time	
  savings	
  from	
  
improved	
  system	
  efficiency	
  impacts”	
  (CRC	
  Final	
  Report,	
  2012,	
  pg.	
  5-­‐1).	
  	
  The	
  benefits	
  
that	
  the	
  CRC	
  finds	
  under	
  this	
  category	
  include	
  reductions	
  in	
  the	
  cost	
  of	
  operating	
  
motor	
  vehicles	
  in	
  the	
  area	
  due	
  to	
  a	
  predicted	
  shift	
  to	
  public	
  transit	
  as	
  well	
  as	
  a	
  
reduction	
  in	
  the	
  costs	
  of	
  area	
  congestion	
  due	
  to	
  increased	
  highway	
  performance	
  
(CRC	
  Final	
  Report,	
  2012).	
  	
  The	
  second	
  main	
  area	
  of	
  benefit	
  that	
  the	
  CRC	
  finds	
  in	
  
completion	
  of	
  the	
  project	
  is	
  increased	
  area	
  market	
  access	
  (CRC	
  Final	
  Report,	
  2012).	
  	
  
This	
  category	
  of	
  benefits	
  focuses	
  not	
  on	
  the	
  direct	
  reductions	
  of	
  transportation	
  cost,	
  
but	
  on	
  the	
  next	
  level	
  of	
  impact.	
  It	
  is	
  found	
  by	
  the	
  CRC,	
  as	
  well	
  as	
  other	
  economic	
  
sources,	
  that	
  congestion	
  can	
  slow	
  the	
  growth	
  of	
  metropolitan	
  areas.	
  Thus	
  if	
  
congestion	
  can	
  be	
  reduced	
  in	
  the	
  Portland-­‐Vancouver	
  area,	
  greater	
  economic	
  
growth	
  can	
  then	
  be	
  experienced	
  in	
  the	
  area	
  as	
  firms	
  are	
  attracted	
  to	
  the	
  area	
  to	
  
conduct	
  their	
  business.	
  These	
  two	
  main	
  claims	
  of	
  the	
  CRC	
  will	
  thus	
  be	
  two	
  points	
  of	
  
analysis	
  for	
  this	
  paper.	
  	
  
1)	
  Traveler	
  Time	
  Savings	
  	
  
In	
  examining	
  the	
  first	
  of	
  these	
  claims,	
  the	
  predicted	
  effects	
  of	
  the	
  project	
  will	
  
need	
  further	
  explanation	
  before	
  analysis	
  of	
  their	
  individual	
  accuracy	
  can	
  be	
  
conducted.	
  The	
  CRC	
  finds	
  that	
  underneath	
  the	
  umbrella	
  of	
  traveler	
  savings,	
  there	
  
are	
  many	
  sub-­‐categories	
  that	
  would	
  have	
  created	
  benefits	
  had	
  the	
  project	
  been	
  
completed.	
  As	
  previously	
  identified	
  as	
  the	
  main	
  area	
  of	
  concern	
  for	
  this	
  paper,	
  the	
  
 
	
   18	
  
CRC	
  indicates	
  that	
  the	
  majority	
  of	
  the	
  benefit	
  in	
  this	
  category	
  would	
  come	
  from	
  a	
  
reduction	
  in	
  I-­‐5	
  congestion.	
  This	
  reduction	
  is	
  claimed	
  to	
  be	
  the	
  effect	
  of	
  two	
  sources,	
  
increased	
  road	
  capacity	
  and	
  a	
  shift	
  away	
  from	
  personal	
  vehicle	
  transit	
  to	
  the	
  
project’s	
  new	
  light-­‐rail	
  expansion.	
  	
  
a)	
  Analysis	
  of	
  the	
  Effectiveness	
  of	
  Extending	
  Light	
  Rail	
  	
  
The	
  CRC	
  finds	
  that	
  adding	
  a	
  light-­‐rail	
  public	
  transportation	
  crossing	
  to	
  the	
  
proposed	
  Columbia	
  River	
  Crossing	
  Bridge	
  would	
  result	
  in	
  a	
  shift	
  in	
  modal	
  transport	
  
in	
  the	
  crossing	
  area.	
  This	
  means	
  that	
  persons	
  whom	
  previously	
  would	
  have	
  used	
  
personal	
  vehicle	
  crossings	
  as	
  their	
  mode	
  of	
  transport	
  for	
  their	
  commutes	
  would	
  
now	
  be	
  drawn	
  to	
  use	
  public	
  transportation	
  instead.	
  This	
  shift	
  would	
  then	
  reduce	
  the	
  
traffic	
  demand	
  on	
  the	
  I-­‐5	
  crossing	
  and	
  its	
  surrounding	
  area.	
  	
  This	
  would	
  then	
  be	
  
supplemented	
  by	
  the	
  CRC’s	
  second	
  claim,	
  reduced	
  congestion	
  stemming	
  from	
  
increased	
  performance	
  from	
  the	
  roadway	
  network	
  (CRC	
  Final	
  Report,	
  2012).	
  	
  This	
  
claim	
  assumes	
  that	
  increasing	
  the	
  supply	
  of	
  both	
  roads	
  space	
  and	
  public	
  
transportation	
  in	
  the	
  I-­‐5	
  corridor	
  will	
  create	
  a	
  large	
  reduction	
  in	
  congestion.	
  The	
  
intuitive	
  understanding	
  behind	
  this	
  source	
  of	
  benefit	
  is,	
  if	
  the	
  capacities	
  of	
  area	
  
bottlenecks	
  (such	
  as	
  the	
  Interstate	
  Bridge)	
  are	
  increased,	
  a	
  large	
  amount	
  of	
  roadway	
  
congestion	
  can	
  be	
  alleviated.	
  This	
  however	
  is	
  not	
  as	
  simple	
  as	
  the	
  CRC	
  leads	
  some	
  to	
  
believe.	
  As	
  previously	
  stated,	
  congestion	
  and	
  traffic	
  management	
  are	
  very	
  complex	
  
issues	
  needing	
  deeper	
  analysis	
  than	
  given	
  in	
  the	
  CRC’s	
  calculation	
  of	
  its	
  benefits	
  in	
  
its	
  Final	
  Report	
  (2012).	
  	
  
	
   This	
  prediction	
  is	
  now	
  examined	
  from	
  both	
  a	
  supply	
  and	
  demand	
  market	
  
perspective	
  and	
  also	
  through	
  the	
  lens	
  of	
  those	
  whom	
  have	
  conducted	
  larger	
  studies	
  
 
	
   19	
  
of	
  the	
  economics	
  of	
  traffic	
  congestion.	
  Looking	
  from	
  a	
  market	
  view,	
  it	
  should	
  be	
  
understood	
  that	
  there	
  can	
  be	
  a	
  certain	
  supply	
  and	
  demand	
  for	
  a	
  given	
  commute,	
  
such	
  as	
  the	
  commute	
  to	
  and	
  from	
  Portland	
  and	
  Vancouver.	
  This	
  demand	
  is	
  met	
  with	
  
the	
  supply	
  of	
  any	
  form	
  of	
  transit	
  that	
  can	
  accomplish	
  this	
  commute.	
  Currently,	
  the	
  
supply	
  is	
  almost	
  completely	
  made	
  up	
  of	
  options	
  that	
  use	
  road	
  space	
  on	
  the	
  
Columbia’s	
  two	
  freeway	
  crossings.	
  Market	
  economics	
  would	
  thus	
  suggest	
  that	
  if	
  the	
  
supply	
  of	
  public	
  transportation,	
  not	
  dependent	
  on	
  road	
  space,	
  for	
  the	
  route	
  between	
  
Portland	
  and	
  Vancouver	
  was	
  to	
  be	
  increased,	
  this	
  would,	
  in	
  turn,	
  draw	
  commuters	
  
away	
  from	
  that	
  road	
  space.	
  This	
  is	
  because	
  public	
  transportation	
  is	
  considered	
  a	
  
substitute	
  for	
  personal	
  vehicle	
  use.	
  However,	
  this	
  doesn’t	
  mean	
  that	
  public	
  
transportation	
  is	
  a	
  perfect	
  substitute	
  for	
  personal	
  vehicle	
  use.	
  As	
  Arnott	
  and	
  Smalls	
  
(1994,	
  pg.	
  446)	
  point	
  out,	
  “the	
  advantages	
  of	
  the	
  car	
  are	
  simply	
  too	
  great,”	
  citing	
  that	
  
personal	
  vehicles	
  provide	
  more	
  comfort	
  and	
  privacy	
  than	
  forms	
  of	
  public	
  transport.	
  
This	
  would	
  mean	
  that	
  most	
  commuters	
  would	
  prefer	
  to	
  use	
  a	
  personal	
  vehicle	
  
rather	
  that	
  use	
  public	
  transportation.	
  What	
  this	
  would	
  mean	
  in	
  terms	
  of	
  the	
  CRC’s	
  
benefit	
  calculation	
  is	
  that	
  because	
  finding	
  the	
  exact	
  preference	
  for	
  each	
  of	
  Portland-­‐
Vancouver	
  commuters	
  would	
  be	
  impossible;	
  estimates	
  have	
  been	
  made	
  by	
  the	
  CRC	
  
to	
  predict	
  the	
  rate	
  at	
  which	
  commuters	
  would	
  substitute	
  public	
  transit	
  for	
  personal	
  
vehicle	
  use.	
  This	
  brings	
  up	
  an	
  issue—because	
  the	
  CRC	
  group	
  was	
  very	
  much	
  in	
  favor	
  
of	
  completing	
  the	
  project,	
  the	
  CRC	
  would	
  have	
  had	
  an	
  incentive	
  to	
  use	
  a	
  higher	
  
estimate	
  of	
  predicted	
  public	
  transportation	
  use.	
  Use	
  of	
  a	
  higher	
  rate	
  of	
  public	
  transit	
  
use	
  would	
  have	
  also	
  meant	
  lower	
  predicted	
  vehicle	
  demand	
  in	
  the	
  I-­‐5	
  corridor.	
  This	
  
would	
  suggest	
  that	
  the	
  predicted	
  reduction	
  in	
  congestion	
  would	
  have	
  been	
  much	
  
 
	
   20	
  
greater,	
  generating	
  a	
  larger	
  predicted	
  benefit.	
  However,	
  it	
  is	
  hard	
  to	
  imagine	
  that	
  the	
  
CRC’s	
  addition	
  of	
  a	
  light	
  rail	
  crossing	
  over	
  the	
  Columbia	
  River	
  would	
  have	
  drawn	
  as	
  
much	
  ridership	
  as	
  predicted	
  by	
  the	
  CRC	
  due	
  to	
  the	
  known	
  preference	
  that	
  
commuters	
  have	
  for	
  personal	
  vehicles.	
  
Further	
  examination	
  of	
  the	
  proposed	
  light	
  rail	
  option	
  highlights	
  why	
  most	
  
commuters	
  prefer	
  personal	
  vehicle	
  use	
  as	
  their	
  primary	
  form	
  of	
  transportation.	
  
When	
  thinking	
  about	
  public	
  transit,	
  it	
  is	
  important	
  to	
  note	
  that,	
  for	
  most	
  persons	
  
demanding	
  travel	
  in	
  a	
  metropolitan	
  area,	
  there	
  is	
  no	
  public	
  transportation	
  route	
  
that	
  starts	
  at	
  their	
  front	
  door	
  and	
  ends	
  directly	
  at	
  their	
  desired	
  destination.	
  Many	
  
times	
  this	
  would	
  mean	
  that	
  an	
  individual	
  seeking	
  to	
  go	
  from	
  their	
  home	
  to	
  their	
  
place	
  of	
  work	
  would	
  need	
  to	
  use	
  multiple	
  forms	
  of	
  transport	
  in	
  order	
  to	
  use	
  public	
  
transportation	
  to	
  get	
  from	
  point	
  A	
  to	
  point	
  B.	
  In	
  terms	
  of	
  the	
  CRC,	
  this	
  problem	
  may	
  
be	
  exacerbated	
  by	
  the	
  fact	
  that	
  the	
  proposed	
  extension	
  of	
  Portland’s	
  light-­‐rail	
  into	
  
the	
  Vancouver	
  area	
  would	
  be	
  limited	
  to	
  a	
  small	
  area	
  of	
  downtown	
  Vancouver.	
  
Specifically,	
  one	
  of	
  the	
  major	
  stations	
  for	
  commuters	
  in	
  Vancouver	
  would	
  be	
  a	
  park-­‐
and-­‐ride	
  near	
  the	
  campus	
  of	
  Clark	
  College	
  (see	
  Appendix	
  3).	
  This	
  would	
  mean	
  that	
  
for	
  all	
  trips	
  to	
  and	
  from	
  the	
  Vancouver	
  area,	
  not	
  originating	
  or	
  terminating	
  in	
  the	
  
downtown	
  area,	
  light	
  rail	
  users	
  would	
  require	
  an	
  added	
  leg	
  of	
  transportation	
  to	
  
travel	
  to	
  and	
  from	
  other	
  Vancouver	
  areas	
  as	
  well	
  as	
  to	
  and	
  from	
  the	
  terminus	
  of	
  the	
  
light	
  rail	
  network.	
  There	
  are	
  many	
  ways	
  that	
  this	
  leg	
  of	
  a	
  daily	
  commute	
  could	
  take	
  
place.	
  For	
  those	
  whom	
  reside	
  outside	
  of	
  the	
  downtown	
  area,	
  some	
  of	
  those	
  options	
  
could	
  include	
  using	
  a	
  bus,	
  cab,	
  personal	
  vehicle	
  or	
  bike	
  to	
  the	
  light-­‐rail	
  stations	
  that	
  
would	
  be	
  located	
  downtown.	
  Although	
  it	
  is	
  possible	
  and	
  inevitable	
  that	
  some	
  
 
	
   21	
  
commuters	
  will	
  choose	
  one	
  of	
  these	
  options,	
  they	
  all	
  add	
  to	
  the	
  cost	
  that	
  commuters	
  
would	
  have	
  to	
  endure	
  in	
  order	
  to	
  use	
  a	
  new	
  light-­‐rail	
  crossing.	
  For	
  example,	
  if	
  a	
  
commuter	
  chooses	
  to	
  use	
  a	
  bus	
  in	
  conjunction	
  with	
  the	
  new	
  light-­‐rail	
  option,	
  on	
  top	
  
of	
  the	
  comfort	
  and	
  privacy	
  they	
  give	
  up	
  by	
  not	
  using	
  a	
  personal	
  vehicle,	
  they	
  would	
  
most	
  likely	
  also	
  have	
  to	
  endure	
  waits	
  for	
  both	
  the	
  use	
  of	
  the	
  light-­‐rail	
  and	
  for	
  the	
  bus	
  
as	
  they	
  transfer	
  modes	
  of	
  transportation.	
  This	
  added	
  time	
  would	
  deter	
  commuters	
  
from	
  choosing	
  the	
  new	
  light-­‐rail	
  option	
  over	
  the	
  perceived	
  increased	
  capacity	
  of	
  a	
  
widened	
  I-­‐5	
  crossing.	
  	
  
As	
  analysis	
  of	
  the	
  CRC’s	
  claimed	
  traveler	
  time	
  savings	
  benefits	
  takes	
  place,	
  
more	
  issues	
  become	
  apparent.	
  With	
  the	
  increased	
  capacity	
  of	
  the	
  CRC’s	
  proposed	
  
new	
  bridge,	
  more	
  cars	
  will	
  be	
  attracted	
  to	
  fill	
  this	
  road	
  space	
  rather	
  than	
  use	
  the	
  
CRC’s	
  new	
  Vancouver	
  light	
  rail	
  connection.	
  	
  This	
  is	
  because	
  increasing	
  the	
  capacity	
  
of	
  the	
  bridge	
  and	
  other	
  chokepoints	
  in	
  congestion	
  with	
  light	
  rail	
  extension	
  will	
  
initially	
  mean	
  that	
  congestion	
  will	
  ease,	
  reducing	
  the	
  cost	
  to	
  a	
  commuter	
  to	
  travel	
  by	
  
roadway.	
  However,	
  this	
  reduction	
  in	
  cost	
  will	
  then	
  lure	
  those	
  whom	
  previously	
  used	
  
to	
  travel	
  at	
  less	
  opportune	
  times	
  and	
  through	
  alternative	
  modes	
  of	
  transit	
  to	
  now	
  
travel	
  during	
  peak	
  hour,	
  retaining	
  high	
  levels	
  of	
  congestion.	
  Following	
  this	
  line	
  of	
  
reasoning,	
  more	
  vehicles	
  would	
  then	
  be	
  expected	
  to	
  be	
  caught	
  in	
  rush	
  hour	
  
congestion	
  than	
  previously.	
  This	
  should	
  be	
  expected	
  because,	
  as	
  previously	
  
established,	
  personal	
  vehicles	
  are	
  the	
  preferred	
  mode	
  of	
  transportation	
  for	
  the	
  
American	
  commuter	
  for	
  reasons	
  such	
  as	
  privacy	
  and	
  the	
  ability	
  of	
  the	
  driver	
  to	
  
manage	
  their	
  own	
  route	
  (Arnott	
  and	
  Smalls,	
  1994).	
  Thus,	
  it	
  can	
  be	
  concluded	
  that	
  it	
  
is	
  more	
  than	
  likely	
  that	
  the	
  CRC	
  has	
  overestimated	
  the	
  benefit	
  that	
  adding	
  a	
  light	
  rail	
  
 
	
   22	
  
crossing	
  would	
  create	
  in	
  terms	
  of	
  traveler	
  time	
  savings.	
  This	
  assertion	
  becomes	
  
even	
  more	
  damning	
  when	
  Don	
  Pickrell’s	
  (1989)	
  work	
  examining	
  the	
  forecasted	
  
ridership	
  for	
  nine	
  U.S.	
  metropolitan	
  rail	
  projects	
  is	
  viewed.	
  Through	
  Pickrell’s	
  
(1989)	
  examination,	
  he	
  came	
  to	
  a	
  similar	
  conclusion	
  that	
  of	
  the	
  nine	
  metro-­‐rail	
  
projects	
  studied,	
  all	
  of	
  them	
  had	
  actual	
  usage	
  rates	
  that	
  were	
  below	
  or	
  far	
  below	
  the	
  
forecasted	
  rates	
  used	
  to	
  justify	
  their	
  completion.	
  Even	
  worse	
  news	
  for	
  the	
  CRC,	
  it	
  
was	
  found	
  that	
  for	
  three	
  of	
  the	
  nine	
  projects	
  there	
  was	
  diversion	
  of	
  personal	
  vehicle	
  
users.	
  Included	
  in	
  this	
  study	
  was	
  Portland’s	
  early	
  light	
  rail	
  system,	
  which	
  failed	
  to	
  
meet	
  its	
  forecasted	
  ridership	
  estimates.	
  This	
  shows	
  that	
  the	
  Portland	
  area	
  has	
  
already	
  had	
  problems	
  drawing	
  ridership	
  to	
  its	
  light	
  rail	
  system.	
  	
  
Looking	
  further	
  into	
  the	
  Portland’s	
  MAX	
  light	
  rail	
  history	
  paints	
  an	
  even	
  
bleaker	
  picture.	
  As	
  pointed	
  out	
  by	
  Joseph	
  Rose	
  (2015)	
  of	
  the	
  Oregonian/Oregon	
  
Live,	
  Portland’s	
  MAX	
  has	
  always	
  operated	
  on	
  the	
  honor	
  system,	
  as	
  far	
  as	
  fares	
  go.	
  
Under	
  this	
  system,	
  it	
  would	
  be	
  expected	
  that	
  ridership	
  numbers	
  of	
  the	
  MAX	
  light	
  rail	
  
would	
  have	
  been	
  bolstered	
  by	
  “free	
  riders,”	
  those	
  who	
  use	
  the	
  MAX	
  to	
  commute	
  but	
  
pay	
  no	
  fare.	
  This	
  would	
  draw	
  more	
  riders	
  to	
  the	
  MAX	
  because	
  riders	
  are	
  able	
  to	
  
cheat	
  the	
  system,	
  keeping	
  their	
  personal	
  cost	
  of	
  transit	
  low,	
  and	
  in	
  turn	
  increasing	
  
the	
  total	
  number	
  of	
  riders	
  on	
  the	
  MAX	
  system.	
  However,	
  this	
  may	
  be	
  changing—
Rose	
  (2015)	
  reports	
  that	
  TriMet	
  is	
  adding	
  turnstiles	
  to	
  some	
  of	
  its	
  new	
  stations	
  in	
  
Portland	
  to	
  help	
  cut	
  down	
  on	
  fare	
  cheating.	
  TriMet	
  states	
  that	
  the	
  turnstiles	
  are	
  
being	
  installed	
  on	
  a	
  trial	
  basis	
  (Rose,	
  2015).	
  Although	
  it	
  is	
  not	
  explicitly	
  stated	
  in	
  the	
  
CRC	
  cost-­‐benefit	
  analysis	
  report,	
  it	
  should	
  be	
  assumed,	
  for	
  two	
  reasons,	
  that	
  
turnstiles	
  would	
  be	
  installed	
  at	
  any	
  of	
  the	
  new	
  Vancouver	
  stations	
  should	
  the	
  CRC	
  
 
	
   23	
  
ever	
  be	
  completed.	
  The	
  first	
  is,	
  after	
  such	
  a	
  large	
  public	
  investment,	
  the	
  CRC	
  would	
  
need	
  to	
  recover	
  costs	
  from	
  the	
  building	
  of	
  the	
  project.	
  Turnstiles	
  make	
  “free	
  riding”	
  
on	
  a	
  mass	
  transit	
  system	
  much	
  harder	
  and	
  thus,	
  would	
  allow	
  TriMet	
  to	
  recover	
  a	
  
larger	
  percentage	
  of	
  transit	
  fares.	
  Second,	
  turnstiles	
  could	
  be	
  expected	
  at	
  any	
  of	
  the	
  
CRC’s	
  proposed	
  new	
  stations	
  because	
  TriMet	
  has	
  worked	
  extensively	
  to	
  build	
  and	
  
introduce	
  an	
  electronic	
  fare	
  system	
  to	
  work	
  with	
  the	
  turnstiles	
  (Rose,	
  2015).	
  
Though	
  cutting	
  down	
  on	
  free	
  riding	
  will	
  allow	
  TriMet	
  to	
  capture	
  lost	
  revenue,	
  it	
  will	
  
also	
  mean	
  a	
  decrease	
  in	
  the	
  use	
  of	
  the	
  of	
  the	
  MAX	
  and	
  TriMet	
  system,	
  resulting	
  in	
  
commuters	
  shifting	
  to	
  alternative	
  modes	
  of	
  transport	
  such	
  as	
  personal	
  vehicles.	
  
Again,	
  it	
  can	
  be	
  seen	
  that	
  the	
  addition	
  of	
  the	
  CRC’s	
  proposed	
  light	
  rail	
  crossing	
  
would	
  not	
  generate	
  the	
  same	
  level	
  of	
  benefit	
  predicted	
  in	
  the	
  CRC	
  cost-­‐benefit	
  
analysis.	
  	
  	
  
b)	
  Analysis	
  of	
  the	
  Effectiveness	
  of	
  Increasing	
  I-­‐5’s	
  Capacity	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Looking	
  past	
  the	
  impact	
  of	
  the	
  light	
  rail,	
  the	
  Portland-­‐Vancouver	
  area	
  already	
  
experiences	
  long	
  periods	
  of	
  peak	
  congestion	
  as	
  stated	
  by	
  the	
  CRC’s	
  Final	
  Report	
  
(2012)	
  and	
  supported	
  by	
  other	
  analyses	
  of	
  the	
  areas	
  congestion	
  problems	
  (The	
  
Costs	
  of	
  Congestion,	
  2005).	
  These	
  long	
  periods	
  of	
  congestion	
  signal	
  problems	
  that	
  
are	
  not	
  simply	
  solved	
  by	
  adding	
  lanes	
  to	
  a	
  roadway.	
  In	
  the	
  Portland-­‐Vancouver	
  area,	
  
periods	
  of	
  congestion	
  stretch	
  from	
  morning	
  peak	
  periods	
  into	
  the	
  late	
  evening	
  (The	
  
Costs	
  of	
  Congestion,	
  2005),	
  affecting	
  not	
  only	
  those	
  who	
  depend	
  on	
  commuting	
  
during	
  peak	
  hours,	
  but	
  everyone	
  who	
  travels	
  during	
  the	
  day.	
  The	
  CRC	
  seeks	
  to	
  
remedy	
  a	
  portion	
  of	
  this	
  congestion	
  by	
  increasing	
  I-­‐5’s	
  traffic	
  capacity	
  through	
  
expanding	
  the	
  capacity	
  of	
  bottlenecks.	
  The	
  CRC	
  then	
  predicts	
  that	
  by	
  increasing	
  the	
  
 
	
   24	
  
capacity	
  of	
  the	
  I-­‐5	
  crossing	
  and	
  interchanges	
  in	
  the	
  immediate	
  area,	
  much	
  of	
  this	
  
congestion	
  can	
  be	
  alleviated.	
  Although	
  the	
  CRC	
  Final	
  Report	
  (2012)	
  does	
  
acknowledge	
  that	
  all	
  peak	
  hour	
  congestion	
  would	
  not	
  be	
  alleviated,	
  it	
  paints	
  a	
  very	
  
favorable	
  picture	
  for	
  possible	
  reduction	
  results.	
  It	
  is	
  concluded	
  that	
  there	
  would	
  be	
  
massive	
  reduction	
  in	
  congestion	
  that	
  would	
  generate	
  substantial	
  benefits	
  in	
  terms	
  of	
  
time	
  savings.	
  However,	
  in	
  claiming	
  this	
  benefit,	
  the	
  CRC	
  neglects	
  to	
  address	
  that	
  an	
  
increased	
  road	
  capacity	
  will	
  draw	
  more	
  commuters.	
  Much	
  like	
  consumers	
  having	
  
latent	
  demand	
  for	
  the	
  newest	
  smartphone	
  when	
  new	
  features	
  are	
  added,	
  when	
  the	
  
capacity	
  of	
  I-­‐5’s	
  Columbia	
  River	
  Crossing	
  is	
  increased,	
  new	
  trips	
  will	
  fill	
  this	
  
capacity.	
  	
  	
  	
  	
  
Even	
  though	
  it	
  is	
  undeniable	
  that	
  increasing	
  road	
  space	
  will	
  have	
  an	
  effect	
  on	
  
congestion,	
  economists	
  that	
  study	
  congestion	
  argue	
  that	
  any	
  increases	
  in	
  roadway	
  
peak-­‐hour	
  efficiency	
  will	
  quickly	
  be	
  overcome	
  for	
  multiple	
  reasons.	
  The	
  first	
  is	
  
addressed	
  by	
  Arnott	
  and	
  Smalls	
  (1994)	
  in	
  their	
  examination	
  of	
  latent	
  demand	
  for	
  
personal	
  vehicle	
  use.	
  They	
  understand	
  that	
  for	
  most	
  congested	
  roadways,	
  the	
  
resulting	
  level	
  of	
  congestion	
  may	
  not	
  represent	
  the	
  full	
  demand	
  for	
  a	
  roadway	
  if	
  
traffic	
  were	
  to	
  be	
  able	
  to	
  flow	
  freely	
  (Arnott	
  and	
  Smalls,	
  1994).	
  This	
  is	
  because	
  
congestion	
  itself,	
  affects	
  the	
  choices	
  that	
  commuters	
  make	
  for	
  transit	
  because	
  it	
  is	
  
felt	
  as	
  an	
  added	
  cost	
  to	
  driving.	
  Although	
  the	
  cost	
  of	
  congestion	
  to	
  the	
  commuter	
  is	
  
not	
  monetized,	
  commuters	
  still	
  make	
  the	
  choice	
  to	
  avoid	
  this	
  cost.	
  This	
  means	
  that	
  
when	
  examining	
  peak-­‐hour	
  trip	
  costs	
  verses	
  off-­‐time	
  trip	
  costs,	
  the	
  monetary	
  costs	
  
are	
  very	
  comparable.	
  However,	
  the	
  non-­‐monetary	
  cost	
  for	
  the	
  peak-­‐hour	
  trip	
  is	
  
much	
  greater	
  due	
  to	
  congestions	
  time	
  loss.	
  This	
  added	
  cost	
  results	
  in	
  the	
  deterrence	
  
 
	
   25	
  
of	
  a	
  portion	
  of	
  trips	
  that	
  would	
  be	
  made	
  at	
  that	
  monetary	
  cost	
  under	
  less	
  congested	
  
conditions.	
  This	
  brings	
  Arnott	
  and	
  Smalls	
  (1994,	
  pg.	
  448)	
  to	
  the	
  conclusion	
  that	
  
“Any	
  reduction	
  in	
  congestion	
  resulting	
  from	
  capacity	
  expansion	
  encourages	
  others	
  
to	
  drive	
  during	
  hours	
  or	
  on	
  routes	
  they	
  would	
  normally	
  not	
  use”.	
  This	
  means	
  that	
  as	
  
capacity	
  is	
  built	
  into	
  a	
  system,	
  demand	
  from	
  commuters	
  for	
  peak	
  travel	
  will	
  grow	
  to	
  
fill	
  it.	
  
Further	
  clarifying	
  the	
  concept	
  of	
  latent	
  demand,	
  transportation	
  researcher,	
  
Dr.	
  Patricia	
  L.	
  Mokhtarian	
  presented	
  “Latent	
  Demand	
  in	
  Traffic”	
  to	
  the	
  California	
  
Department	
  of	
  Transportation	
  in	
  April	
  of	
  2004.	
  In	
  her	
  presentation,	
  she	
  makes	
  a	
  
distinction	
  that	
  is	
  not	
  made	
  by	
  Arnott	
  and	
  Smalls	
  (1994),	
  that	
  when	
  examining	
  the	
  
phenomenon	
  of	
  congestion	
  and	
  management	
  solutions,	
  there	
  are	
  distinctions	
  to	
  be	
  
made	
  when	
  examining	
  capacity	
  induced	
  demand	
  changes.	
  She	
  points	
  out	
  that	
  latent	
  
demand	
  is	
  “Pent-­‐up	
  [or]	
  dormant	
  demand	
  for	
  travel	
  …	
  that	
  is	
  desired	
  but	
  
unrealized”	
  while	
  induced	
  demand	
  is	
  “Realized	
  demand	
  that	
  is	
  generated	
  [by]	
  
improvements	
  to	
  the	
  transportation	
  system”	
  (Mokhtarian,	
  2004).	
  This	
  distinction	
  is	
  
important	
  when	
  examining	
  the	
  benefit	
  calculation	
  of	
  the	
  CRC	
  because	
  when	
  the	
  
driving	
  force	
  of	
  latent	
  demand	
  is	
  not	
  considered	
  when	
  calculating	
  time	
  savings	
  
benefits,	
  the	
  phenomena	
  of	
  induced	
  demand	
  will	
  be	
  sure	
  to	
  follow	
  a	
  capacity	
  
increase	
  of	
  the	
  I-­‐5	
  Columbia	
  crossing.	
  The	
  CRC	
  project	
  seems	
  to	
  neglect	
  the	
  concept	
  
of	
  latent	
  and	
  induced	
  demand	
  as	
  they	
  predict	
  that	
  the	
  average	
  weekly	
  traffic	
  flow	
  for	
  
the	
  I-­‐5	
  crossing	
  in	
  the	
  year	
  2030	
  would	
  be	
  178,500	
  vehicles	
  under	
  a	
  build	
  scenario	
  
(CRC	
  Final	
  Report,	
  2012).	
  This	
  is	
  less	
  than	
  the	
  184,000	
  vehicles	
  predicted	
  to	
  demand	
  
 
	
   26	
  
crossing	
  in	
  the	
  year	
  2030	
  under	
  a	
  no	
  build	
  scenario	
  (CRC	
  Final	
  Report,	
  2012).2	
  Even	
  
stepping	
  outside	
  of	
  the	
  realm	
  of	
  economics,	
  this	
  does	
  not	
  pass	
  the	
  sniff	
  test.	
  It	
  is	
  
hard	
  to	
  believe	
  that	
  in	
  the	
  year	
  2030,	
  the	
  six-­‐lane,	
  Interstate	
  Bridge	
  would	
  carry	
  
more	
  weekly	
  traffic	
  than	
  a	
  ten-­‐lane	
  bridge,	
  designed	
  to	
  allow	
  traffic	
  more	
  efficiently.	
  
In	
  calculating	
  these	
  estimates,	
  the	
  CRC	
  has	
  either	
  underestimated	
  the	
  effects	
  that	
  
latent	
  demand	
  in	
  the	
  area	
  would	
  have	
  if	
  the	
  CRC	
  were	
  to	
  be	
  built	
  or	
  overestimated	
  
the	
  increase	
  in	
  traffic	
  demand	
  from	
  now	
  until	
  2030	
  under	
  a	
  no	
  build	
  scenario.	
  As	
  
this	
  paper	
  is	
  focused	
  on	
  the	
  accuracy	
  of	
  the	
  theory	
  employed	
  by	
  the	
  CRC	
  and	
  makes	
  
no	
  attempt	
  to	
  perform	
  benefit	
  calculations,	
  it	
  is	
  not	
  possible	
  to	
  say	
  which	
  error	
  the	
  
CRC	
  has	
  committed.	
  However,	
  both	
  will	
  be	
  further	
  examined.	
  	
  	
  	
  	
  	
  
Underestimating	
  latent	
  demand,	
  and	
  thus	
  finding	
  a	
  significantly	
  low	
  estimate	
  
of	
  induced	
  demand	
  by	
  the	
  increasing	
  of	
  I-­‐5	
  roadway	
  efficiency,	
  will	
  underestimate	
  
the	
  level	
  of	
  congestion	
  in	
  the	
  future	
  build	
  scenario.	
  In	
  turn,	
  this	
  would	
  overestimate	
  
the	
  benefit	
  generated	
  through	
  time	
  saving.	
  On	
  the	
  other	
  hand,	
  if	
  the	
  CRC	
  has	
  
overestimated	
  the	
  increase	
  in	
  area	
  traffic	
  demand	
  induced	
  by	
  growth	
  under	
  a	
  no	
  
build	
  scenario,	
  this	
  would	
  overestimate	
  the	
  level	
  of	
  congestion	
  and	
  the	
  costs	
  
associated	
  with	
  it.	
  Again,	
  resulting	
  in	
  a	
  CRC	
  benefit	
  calculation	
  that	
  predicts	
  larger	
  
reductions	
  in	
  congestion	
  than	
  should	
  be	
  expected	
  in	
  reality.	
  In	
  both	
  situations,	
  the	
  
CRC	
  is	
  overestimating	
  the	
  effect	
  that	
  increased	
  roadway	
  efficiency	
  would	
  have	
  on	
  
congestion.	
  This,	
  paired	
  with	
  the	
  likely	
  overestimation	
  of	
  the	
  congestion	
  reducing	
  
effects	
  of	
  commuters	
  being	
  drawn	
  to	
  the	
  new	
  light	
  rail	
  crossing,	
  leads	
  to	
  the	
  likely	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  It	
  should	
  be	
  noted	
  that	
  this	
  number	
  is	
  not	
  the	
  total	
  number	
  of	
  persons	
  demanding	
  
crossing	
  though	
  all	
  modes	
  of	
  transit,	
  but	
  only	
  the	
  number	
  of	
  vehicles	
  using	
  road	
  
space.	
  The	
  total	
  demand	
  for	
  crossing	
  the	
  Columbia	
  would	
  be	
  expect	
  to	
  increase	
  
though	
  a	
  combination	
  of	
  all	
  modes	
  of	
  transit.	
  	
  	
  
 
	
   27	
  
conclusion	
  that	
  the	
  CRC’s	
  first	
  major	
  claimed	
  benefit	
  of	
  traveler	
  time	
  saving	
  has	
  
been	
  overestimated	
  in	
  the	
  CRC’s	
  Final	
  Report	
  (2012).	
  	
  	
  
2)	
  Area	
  Market	
  Access	
  analysis	
  	
  
The	
  CRC’s	
  second	
  large	
  claim	
  of	
  project	
  benefit	
  is	
  generated	
  from	
  predicted	
  
increased	
  area	
  market	
  access	
  (CRC	
  Final	
  Report,	
  2012).	
  This	
  benefit	
  is	
  generated	
  
from	
  the	
  theory	
  that	
  congestion	
  imposes	
  a	
  cost	
  on	
  those	
  who	
  demand	
  use	
  of	
  area	
  
roadways.	
  However,	
  there	
  is	
  a	
  new	
  intricacy	
  to	
  examine.	
  This	
  benefit	
  draws	
  on	
  
theory	
  that	
  finds	
  that	
  congestion	
  affects	
  the	
  access	
  of	
  firms	
  to	
  a	
  market	
  area	
  and	
  
even	
  further,	
  hampers	
  economic	
  growth	
  (Sweet,	
  2014).	
  Congestion	
  has	
  an	
  even	
  
greater	
  effect	
  of	
  deterring	
  firms	
  that	
  are	
  transportation	
  dependent,	
  such	
  as	
  shipping	
  
or	
  other	
  industries	
  that	
  rely	
  heavily	
  on	
  transportation.	
  In	
  terms	
  of	
  the	
  Portland-­‐
Vancouver	
  area,	
  this	
  is	
  an	
  important	
  area	
  of	
  benefit	
  to	
  examine	
  because	
  of	
  the	
  area’s	
  
industry	
  make	
  up.	
  Portland	
  is	
  uniquely	
  situated	
  in	
  the	
  region	
  to	
  have	
  distinctive	
  
advantages	
  in	
  transportation	
  dependent	
  industries	
  (The	
  Costs	
  of	
  Congestion,	
  2005).	
  
Portland’s	
  advantage	
  is	
  due	
  to	
  many	
  factors	
  both	
  natural	
  in	
  origin	
  and	
  human	
  
induced.	
  The	
  Portland-­‐Vancouver	
  area	
  is	
  situated	
  in	
  the	
  middle	
  of	
  the	
  Northwest	
  
region,	
  on	
  the	
  Columbia	
  River.	
  This	
  location	
  provides	
  natural	
  advantages	
  for	
  these	
  
industries	
  such	
  as,	
  a	
  central	
  location	
  in	
  the	
  Northwest	
  to	
  allow	
  for	
  more	
  efficient	
  
transport	
  by	
  land,	
  with	
  access	
  to	
  shipping	
  on	
  the	
  Pacific	
  Ocean	
  via	
  the	
  Columbia	
  
River	
  (The	
  Costs	
  of	
  Congestion,	
  2005).	
  Adding	
  to	
  the	
  area’s	
  transportation	
  industry	
  
advantages,	
  Portland	
  is	
  the	
  intersection	
  of	
  I-­‐5	
  with	
  not	
  only	
  sea	
  shipping	
  but	
  also	
  
both	
  of	
  the	
  West’s	
  major	
  rail	
  lines,	
  the	
  Union	
  Pacific	
  and	
  Burlington	
  Northern	
  &	
  
Santa	
  Fe	
  Railroad.	
  Added	
  to	
  this,	
  Portland	
  is	
  the	
  home	
  of	
  an	
  international	
  airport,	
  
 
	
   28	
  
PDX.	
  This	
  presents	
  a	
  very	
  large	
  amount	
  of	
  opportunity	
  for	
  the	
  Portland	
  area	
  to	
  grow	
  
its	
  transportation	
  industry,	
  in	
  turn	
  growing	
  its	
  economy	
  (The	
  Costs	
  of	
  Congestion,	
  
2005).	
  	
  
Examination	
  of	
  the	
  CRC’s	
  claimed	
  area	
  access	
  benefit	
  must	
  begin	
  as	
  the	
  
previous	
  analyses	
  have,	
  at	
  the	
  theory	
  level.	
  Here,	
  we	
  begin	
  with	
  the	
  CRC’s	
  
understanding	
  of	
  how	
  this	
  benefit	
  is	
  generated.	
  “Market	
  Access	
  Impacts”	
  are	
  effects	
  
that	
  go	
  beyond	
  the	
  costs	
  of	
  travel,	
  affecting	
  things	
  like	
  freight	
  delivery,	
  logistics,	
  
productivity	
  and	
  labor	
  markets	
  (The	
  Costs	
  of	
  Congestion,	
  2005).	
  	
  It	
  is	
  intuitive	
  to	
  
understand	
  how	
  deliveries	
  and	
  logistics	
  would	
  be	
  affected	
  by	
  congestion,	
  as	
  
congestion	
  leads	
  to	
  unpredictable	
  delays	
  of	
  shipments.	
  This	
  then	
  affects	
  
productivity	
  of	
  industries	
  as	
  they	
  depend	
  on	
  having	
  inputs	
  to	
  produce	
  goods.	
  For	
  the	
  
Portland-­‐Vancouver	
  area,	
  the	
  CRC	
  claimed	
  that	
  the	
  benefit	
  created	
  by	
  completion	
  of	
  
the	
  CRC	
  project	
  in	
  terms	
  of	
  increased	
  business	
  output	
  was	
  predicted	
  to	
  be	
  $332	
  
million	
  through	
  the	
  year	
  2030	
  in	
  2012	
  USD	
  (CRC	
  Final	
  Report,	
  2012).	
  	
  However,	
  
unlike	
  the	
  previous	
  benefit	
  value	
  that	
  the	
  CRC	
  has	
  generated,	
  it	
  has	
  been	
  determined	
  
that	
  congestion	
  does	
  have	
  an	
  effect	
  on	
  the	
  prospects	
  of	
  a	
  regional	
  economy.	
  	
  
Matthias	
  Sweet	
  (2014)	
  finds	
  this	
  to	
  be	
  true	
  when	
  conducting	
  his	
  own	
  analysis	
  of	
  the	
  
topic,	
  citing	
  that	
  many	
  inter-­‐metropolitan	
  studies	
  find	
  that	
  higher	
  congestion	
  levels	
  
reduce	
  regional	
  economic	
  growth	
  and	
  slow	
  employment	
  growth.	
  This,	
  paired	
  with	
  
his	
  own	
  econometric	
  analysis	
  on	
  the	
  topic,	
  lead	
  to	
  the	
  conclusion	
  that	
  “higher	
  
congestion	
  …	
  appears	
  to	
  be	
  associated	
  with	
  decreasing	
  regional	
  employment	
  
growth”	
  as	
  well	
  as	
  connected	
  to	
  “slower	
  productivity	
  growth	
  per	
  worker”	
  (Sweet,	
  
2014,	
  pg.	
  2107).	
  Following	
  this	
  line	
  of	
  work,	
  congestion	
  is	
  found	
  to	
  have	
  a	
  negative	
  
 
	
   29	
  
effect	
  on	
  area	
  growth.	
  Thus,	
  it	
  should	
  be	
  understood	
  that	
  eliminating	
  this	
  draw	
  on	
  
the	
  economy	
  would	
  result	
  in	
  higher	
  area	
  growth	
  rates.	
  This	
  body	
  of	
  work	
  supports	
  
the	
  claim	
  of	
  the	
  CRC	
  that	
  congestion	
  is	
  a	
  hamper	
  to	
  area	
  growth,	
  especially	
  due	
  to	
  
the	
  area’s	
  transportation	
  dependent	
  industries.	
  This	
  means	
  that	
  the	
  theory	
  that	
  
underlies	
  this	
  area	
  of	
  the	
  CRC’s	
  benefit	
  calculation	
  is	
  sound	
  as	
  it	
  relates	
  to	
  the	
  work	
  
of	
  others	
  that	
  have	
  studied	
  the	
  effects	
  of	
  congestion	
  on	
  an	
  economy.	
  	
  
However,	
  even	
  though	
  the	
  CRC	
  has	
  a	
  properly	
  backed	
  theory	
  underlying	
  this	
  
section	
  of	
  its	
  benefit	
  calculation,	
  this	
  does	
  not	
  mean	
  that	
  the	
  CRC	
  properly	
  
accounted	
  for	
  its	
  affects.	
  When	
  forecasting	
  traffic	
  flows	
  from	
  2012-­‐2030	
  upon	
  which	
  
congestion	
  levels	
  would	
  be	
  calculated,	
  the	
  CRC	
  Final	
  Report	
  (2012)	
  makes	
  a	
  
monumental	
  mistake.	
  	
  When	
  calculating	
  future	
  baseline	
  congestion	
  cost	
  values	
  
under	
  a	
  no	
  build	
  scenario,	
  the	
  CRC	
  uses	
  “the	
  same	
  assumptions	
  as	
  the	
  Build	
  
alternatives	
  regarding	
  population	
  growth	
  and	
  employment	
  growth	
  through	
  2030”	
  
(CRC	
  Final	
  Report,	
  2012,	
  pg.	
  4-­‐2).	
  This	
  is	
  problematic	
  because	
  the	
  CRC	
  is	
  assumed	
  to	
  
increase	
  “area	
  access,”	
  an	
  outcome	
  that	
  is	
  consistent	
  with	
  theory	
  on	
  the	
  topic.	
  This	
  
would	
  the	
  mean	
  that	
  the	
  build	
  alternative	
  would	
  be	
  assumed	
  to	
  cause	
  growth	
  in	
  the	
  
area	
  economy,	
  increasing	
  both	
  population	
  and	
  employment.	
  This	
  growth	
  is	
  not	
  
taken	
  into	
  account	
  when	
  the	
  CRC	
  assumes	
  the	
  same	
  area	
  growth	
  rates	
  under	
  both	
  
the	
  no	
  build	
  and	
  build	
  scenarios.	
  Using	
  the	
  same	
  population	
  estimates	
  for	
  both	
  
options	
  through	
  2030	
  would	
  overestimate	
  the	
  population	
  under	
  a	
  no	
  build	
  scenario	
  
or	
  underestimate	
  the	
  population	
  under	
  the	
  build	
  scenario.	
  Continuing,	
  because	
  
demand	
  for	
  transportation	
  and	
  road	
  space	
  is	
  a	
  function	
  of	
  population	
  and	
  the	
  
economy,	
  overestimating	
  the	
  population	
  under	
  the	
  no	
  build	
  scenario	
  would	
  have	
  
 
	
   30	
  
resulted	
  in	
  an	
  artificially	
  high	
  level	
  of	
  congestion	
  in	
  the	
  no	
  build	
  scenario.	
  Thus,	
  
inflating	
  cost	
  savings	
  calculated	
  from	
  congestion	
  reduction.	
  In	
  the	
  alternative,	
  an	
  
underestimated	
  population	
  in	
  a	
  build	
  scenario	
  would	
  result	
  in	
  a	
  predicted	
  demand	
  
for	
  road	
  space	
  below	
  what	
  would	
  actually	
  be	
  observed.	
  This	
  would	
  in	
  turn	
  
underestimate	
  future	
  congestion	
  levels	
  under	
  a	
  build	
  scenario,	
  generating	
  an	
  
inaccurately	
  large	
  benefit	
  value	
  from	
  “reduced”	
  congestion.	
  This	
  mistake,	
  paired	
  
with	
  the	
  previously	
  identified	
  mistakes	
  of	
  the	
  CRC’s	
  benefit	
  calculation	
  of	
  travel	
  time	
  
savings	
  should	
  leave	
  us	
  questioning	
  the	
  CRC’s	
  economic	
  viability	
  if	
  the	
  project	
  were	
  
to	
  ever	
  be	
  revived.	
  
Conclusion	
  
	
   	
  	
  In	
  closing,	
  the	
  intent	
  of	
  this	
  examination	
  was	
  to	
  determine	
  whether	
  the	
  
Columbia	
  River	
  Crossing	
  Project	
  was	
  truly	
  economically	
  viable	
  as	
  the	
  CRC	
  concluded	
  
in	
  is	
  Final	
  Report	
  (2012).	
  Rather	
  than	
  complete	
  a	
  full	
  alternative	
  cost-­‐benefit	
  
analysis	
  of	
  the	
  project’s	
  net	
  impact	
  to	
  the	
  area	
  economy,	
  this	
  paper	
  focused	
  on	
  
critiquing	
  the	
  theory	
  understanding	
  congestion	
  (it’s	
  causes	
  and	
  effects)	
  implicit	
  in	
  
the	
  CRC	
  analysis	
  of	
  the	
  project.	
  This	
  research	
  was	
  sparked	
  as	
  the	
  project	
  became	
  
relatively	
  controversial	
  after	
  plans	
  were	
  developed	
  but	
  construction	
  never	
  began	
  
due	
  to	
  non-­‐funding	
  from	
  Washington	
  and	
  Oregon.	
  Some	
  understood	
  this	
  was	
  due	
  to	
  
political	
  reasons,	
  while	
  others	
  questioned	
  whether	
  it	
  would	
  have	
  truly	
  created	
  the	
  
benefit	
  that	
  the	
  CRC	
  claimed.	
  This	
  paper	
  was	
  intended	
  to	
  shed	
  light	
  on	
  the	
  
economics	
  of	
  the	
  project,	
  ultimately	
  concluding	
  that	
  the	
  project’s	
  benefit,	
  if	
  
 
	
   31	
  
completed,	
  would	
  more	
  than	
  likely	
  not	
  be	
  as	
  large	
  as	
  the	
  CRC	
  Final	
  Report	
  claimed	
  it	
  
would	
  be.	
  	
  
	
   This	
  was	
  conducted	
  by	
  first	
  looking	
  at	
  previous	
  economic	
  analyses	
  of	
  
metropolitan	
  freeway	
  congestion	
  to	
  develop	
  theory	
  understanding	
  how,	
  why,	
  and	
  
what	
  its	
  effects	
  are	
  on	
  an	
  area	
  economy.	
  This	
  theory	
  included	
  examining	
  common	
  
policy	
  application	
  to	
  freeway	
  congestion	
  and	
  their	
  expected	
  effectiveness	
  when	
  
applied	
  generally.	
  This	
  was	
  followed	
  by	
  examining	
  how	
  and	
  why	
  cost-­‐benefit	
  
analysis	
  is	
  the	
  most	
  commonly	
  employed	
  tool	
  for	
  determining	
  the	
  economic	
  merit	
  of	
  
certain	
  public	
  works	
  projects.	
  From	
  this	
  theoretical	
  starting	
  point,	
  analysis	
  of	
  the	
  
CRC’s	
  claimed	
  benefits	
  took	
  place.	
  Although	
  this	
  analysis	
  completed	
  no	
  calculations	
  
that	
  disprove	
  the	
  net	
  benefit	
  presented	
  in	
  the	
  CRC	
  Final	
  Report	
  (2012),	
  it	
  has	
  shown	
  
that	
  the	
  theory	
  that	
  underlies	
  a	
  large	
  portion	
  of	
  the	
  benefit	
  calculation	
  has	
  major	
  
inconsistencies	
  with	
  the	
  observed	
  economics	
  of	
  traffic.	
  Each	
  of	
  the	
  main	
  categories	
  
of	
  benefit	
  identified	
  by	
  the	
  CRC	
  have	
  been	
  shown	
  to	
  have	
  some	
  inconsistencies	
  
when	
  examined	
  within	
  a	
  theoretical	
  framework	
  developed	
  by	
  researchers	
  that	
  have	
  
conducted	
  economic	
  analysis	
  of	
  the	
  phenomenon	
  of	
  traffic	
  congestion.	
  Key	
  issues	
  
include	
  overestimation	
  of	
  supply	
  side	
  reductions	
  to	
  congestion	
  through	
  increasing	
  I-­‐
5	
  road	
  space	
  and	
  extension	
  of	
  the	
  MAX.	
  This,	
  combined	
  with	
  the	
  CRC’s	
  failure	
  to	
  
properly	
  account	
  for	
  any	
  population	
  growth	
  that	
  would	
  have	
  been	
  a	
  direct	
  effect	
  of	
  
any	
  congestion	
  reduction	
  generated	
  by	
  the	
  build	
  scenario,	
  led	
  to	
  the	
  conclusion	
  that	
  
the	
  CRC’s	
  Final	
  Report	
  (2012)	
  was	
  not	
  an	
  accurate	
  analysis	
  of	
  the	
  projects	
  impact.	
  
These	
  issues	
  leave	
  room	
  for	
  doubt	
  that	
  the	
  project	
  would	
  benefit	
  the	
  area	
  if	
  it	
  were	
  
to	
  have	
  been	
  completed.	
  	
  
 
	
   32	
  
	
   Further	
  research	
  into	
  the	
  CRC’s	
  economic	
  viability,	
  if	
  ever	
  conducted,	
  should	
  
take	
  into	
  account	
  the	
  work	
  of	
  researchers	
  who	
  have	
  dedicated	
  themselves	
  to	
  
understanding	
  the	
  economics	
  of	
  traffic.	
  This	
  further	
  analysis	
  should	
  include	
  a	
  model	
  
that	
  monetizes	
  the	
  benefits	
  of	
  the	
  project	
  properly.	
  Through	
  this,	
  an	
  independent	
  
analysis	
  of	
  the	
  projects	
  effects	
  will	
  be	
  available	
  to	
  compare	
  to	
  the	
  CRC’s,	
  allowing	
  the	
  
public	
  to	
  see	
  what	
  the	
  true	
  net	
  economic	
  effect	
  of	
  the	
  CRC	
  project	
  may	
  have	
  been.	
  
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015
Smith_Cody_Economics_Thesis_2015

More Related Content

What's hot

Application of Support Vector Machine for River flow Estimation
Application of Support Vector Machine for River flow EstimationApplication of Support Vector Machine for River flow Estimation
Application of Support Vector Machine for River flow EstimationAI Publications
 
Nicolas Gomez - Measuring bus ride satisfaction from latent attributes
Nicolas Gomez - Measuring bus ride satisfaction from latent attributesNicolas Gomez - Measuring bus ride satisfaction from latent attributes
Nicolas Gomez - Measuring bus ride satisfaction from latent attributesJoseph Chow
 
Corridor Identification UTS
Corridor Identification UTSCorridor Identification UTS
Corridor Identification UTSfreshwoody patel
 
Transportation plan preparation
Transportation plan preparationTransportation plan preparation
Transportation plan preparationMital Damani
 
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...Premier Publishers
 
Critical issues in estimating human exposure to traffic related air pollution...
Critical issues in estimating human exposure to traffic related air pollution...Critical issues in estimating human exposure to traffic related air pollution...
Critical issues in estimating human exposure to traffic related air pollution...Institute for Transport Studies (ITS)
 

What's hot (7)

Application of Support Vector Machine for River flow Estimation
Application of Support Vector Machine for River flow EstimationApplication of Support Vector Machine for River flow Estimation
Application of Support Vector Machine for River flow Estimation
 
Nicolas Gomez - Measuring bus ride satisfaction from latent attributes
Nicolas Gomez - Measuring bus ride satisfaction from latent attributesNicolas Gomez - Measuring bus ride satisfaction from latent attributes
Nicolas Gomez - Measuring bus ride satisfaction from latent attributes
 
my final paper
my final papermy final paper
my final paper
 
Corridor Identification UTS
Corridor Identification UTSCorridor Identification UTS
Corridor Identification UTS
 
Transportation plan preparation
Transportation plan preparationTransportation plan preparation
Transportation plan preparation
 
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...
Exploring Queuing Theory to Minimize Traffic Congestion Problem in Calabar-Hi...
 
Critical issues in estimating human exposure to traffic related air pollution...
Critical issues in estimating human exposure to traffic related air pollution...Critical issues in estimating human exposure to traffic related air pollution...
Critical issues in estimating human exposure to traffic related air pollution...
 

Viewers also liked

Guia.rev.francesa. est unidos idep
Guia.rev.francesa. est unidos idepGuia.rev.francesa. est unidos idep
Guia.rev.francesa. est unidos idepCarlos Martinez
 
50 The Beginnings of Imperialism
50 The Beginnings of Imperialism50 The Beginnings of Imperialism
50 The Beginnings of ImperialismDaniel Davis Wood
 
Caso práctico de la motivación en una empresa
Caso práctico de la motivación en una empresaCaso práctico de la motivación en una empresa
Caso práctico de la motivación en una empresaYuritza Castillo Orozco
 
едмодо за ученике
едмодо за ученикеедмодо за ученике
едмодо за ученикеtio_marina
 
Book Stall: 3DS Stall
Book Stall: 3DS StallBook Stall: 3DS Stall
Book Stall: 3DS StallTanya M.
 
Faberlic leto 2012_presentation
Faberlic leto 2012_presentationFaberlic leto 2012_presentation
Faberlic leto 2012_presentationvedagor
 
2013 SaM ENG Profile PHP/WEB
2013 SaM ENG Profile PHP/WEB2013 SaM ENG Profile PHP/WEB
2013 SaM ENG Profile PHP/WEBIvan Komskyy
 
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403ดาวเทียม(ภูริณัฐ+ปุญญิศา)403
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403Purinut Wongmaneeroj
 
Case study - France - Interactive tools for a captivating teaching
Case study - France - Interactive tools for a captivating teachingCase study - France - Interactive tools for a captivating teaching
Case study - France - Interactive tools for a captivating teachingeInstruction EMEA
 
Konsolidasi kades 22 jan 2013 1
Konsolidasi kades 22 jan 2013 1Konsolidasi kades 22 jan 2013 1
Konsolidasi kades 22 jan 2013 1Dade Saripudin
 
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3. Yura Maturin
 
Powerpoint tik bab i
Powerpoint tik bab iPowerpoint tik bab i
Powerpoint tik bab itariyeah
 
марафон чтения 2013
марафон чтения 2013марафон чтения 2013
марафон чтения 2013Elekxa
 
ψυχαγωγια και υπερβολικη χρηση
ψυχαγωγια και υπερβολικη χρησηψυχαγωγια και υπερβολικη χρηση
ψυχαγωγια και υπερβολικη χρησηroulagkika
 
My Current Activities and SERVICES
My Current Activities and SERVICESMy Current Activities and SERVICES
My Current Activities and SERVICESPutcha Narasimham
 

Viewers also liked (19)

Guia.rev.francesa. est unidos idep
Guia.rev.francesa. est unidos idepGuia.rev.francesa. est unidos idep
Guia.rev.francesa. est unidos idep
 
50 The Beginnings of Imperialism
50 The Beginnings of Imperialism50 The Beginnings of Imperialism
50 The Beginnings of Imperialism
 
Caso práctico de la motivación en una empresa
Caso práctico de la motivación en una empresaCaso práctico de la motivación en una empresa
Caso práctico de la motivación en una empresa
 
едмодо за ученике
едмодо за ученикеедмодо за ученике
едмодо за ученике
 
Book Stall: 3DS Stall
Book Stall: 3DS StallBook Stall: 3DS Stall
Book Stall: 3DS Stall
 
Faberlic leto 2012_presentation
Faberlic leto 2012_presentationFaberlic leto 2012_presentation
Faberlic leto 2012_presentation
 
2013 SaM ENG Profile PHP/WEB
2013 SaM ENG Profile PHP/WEB2013 SaM ENG Profile PHP/WEB
2013 SaM ENG Profile PHP/WEB
 
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403ดาวเทียม(ภูริณัฐ+ปุญญิศา)403
ดาวเทียม(ภูริณัฐ+ปุญญิศา)403
 
Parcial
ParcialParcial
Parcial
 
Case study - France - Interactive tools for a captivating teaching
Case study - France - Interactive tools for a captivating teachingCase study - France - Interactive tools for a captivating teaching
Case study - France - Interactive tools for a captivating teaching
 
Konsolidasi kades 22 jan 2013 1
Konsolidasi kades 22 jan 2013 1Konsolidasi kades 22 jan 2013 1
Konsolidasi kades 22 jan 2013 1
 
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Том 3.
 
Aryo 9e internet
Aryo 9e internetAryo 9e internet
Aryo 9e internet
 
Powerpoint tik bab i
Powerpoint tik bab iPowerpoint tik bab i
Powerpoint tik bab i
 
Program for temadagen af Ida Rasmussen, InfinIT
Program for temadagen af Ida Rasmussen, InfinITProgram for temadagen af Ida Rasmussen, InfinIT
Program for temadagen af Ida Rasmussen, InfinIT
 
марафон чтения 2013
марафон чтения 2013марафон чтения 2013
марафон чтения 2013
 
ψυχαγωγια και υπερβολικη χρηση
ψυχαγωγια και υπερβολικη χρησηψυχαγωγια και υπερβολικη χρηση
ψυχαγωγια και υπερβολικη χρηση
 
Green computing
Green computingGreen computing
Green computing
 
My Current Activities and SERVICES
My Current Activities and SERVICESMy Current Activities and SERVICES
My Current Activities and SERVICES
 

Similar to Smith_Cody_Economics_Thesis_2015

1 Nick Foster, Tian Tian,
1  Nick Foster, Tian Tian,1  Nick Foster, Tian Tian,
1 Nick Foster, Tian Tian,AbbyWhyte974
 
Feasibility Study of Congestion Pricing in Paris
Feasibility Study of Congestion Pricing in ParisFeasibility Study of Congestion Pricing in Paris
Feasibility Study of Congestion Pricing in ParisMathews George
 
Investing in transportation: The role of value for money analysis
Investing in transportation: The role of value for money analysisInvesting in transportation: The role of value for money analysis
Investing in transportation: The role of value for money analysisPwC
 
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...John Crocker
 
MTC core capacity transit study
MTC core capacity transit studyMTC core capacity transit study
MTC core capacity transit studyAdina Levin
 
Cutting To The Chase in Designing New Measures of Transportation System Perfo...
Cutting To The Chase in Designing New Measures of Transportation System Perfo...Cutting To The Chase in Designing New Measures of Transportation System Perfo...
Cutting To The Chase in Designing New Measures of Transportation System Perfo...Barry Wellar
 
Transportation and Logistics 2030
Transportation and Logistics 2030Transportation and Logistics 2030
Transportation and Logistics 2030GUSTrans
 
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015Rui (Rae) Tu, AICP, ENV SP
 
Final master thesis_-_eva_verwijs_-_public_version
Final master thesis_-_eva_verwijs_-_public_versionFinal master thesis_-_eva_verwijs_-_public_version
Final master thesis_-_eva_verwijs_-_public_versionTarik Chowdhury
 
Final Report
Final ReportFinal Report
Final ReportFeng Mai
 
Beyond Traffic: US DOT's 30 Year Framework for the Future
Beyond Traffic: US DOT's 30 Year Framework for the FutureBeyond Traffic: US DOT's 30 Year Framework for the Future
Beyond Traffic: US DOT's 30 Year Framework for the FutureLudovic Privat
 
Draft beyond traffic_framework
Draft beyond traffic_frameworkDraft beyond traffic_framework
Draft beyond traffic_frameworkBrendan O'Connor
 
COTA NextGen Evaluation Framework
COTA NextGen Evaluation FrameworkCOTA NextGen Evaluation Framework
COTA NextGen Evaluation FrameworkCOTA BUS
 
Freight Analysis Framework for Major Metropolitan Areas in Kansas
Freight Analysis Framework for Major Metropolitan Areas in KansasFreight Analysis Framework for Major Metropolitan Areas in Kansas
Freight Analysis Framework for Major Metropolitan Areas in Kansaseostgulen
 

Similar to Smith_Cody_Economics_Thesis_2015 (20)

Thesis for Linkedin
Thesis for LinkedinThesis for Linkedin
Thesis for Linkedin
 
85554017 cost-benefit-analysis-of-a-project (1)
85554017 cost-benefit-analysis-of-a-project (1)85554017 cost-benefit-analysis-of-a-project (1)
85554017 cost-benefit-analysis-of-a-project (1)
 
1 Nick Foster, Tian Tian,
1  Nick Foster, Tian Tian,1  Nick Foster, Tian Tian,
1 Nick Foster, Tian Tian,
 
1 Nick Foster, Tian Tian,
1  Nick Foster, Tian Tian,1  Nick Foster, Tian Tian,
1 Nick Foster, Tian Tian,
 
Feasibility Study of Congestion Pricing in Paris
Feasibility Study of Congestion Pricing in ParisFeasibility Study of Congestion Pricing in Paris
Feasibility Study of Congestion Pricing in Paris
 
Investing in transportation: The role of value for money analysis
Investing in transportation: The role of value for money analysisInvesting in transportation: The role of value for money analysis
Investing in transportation: The role of value for money analysis
 
Business decision making
Business decision makingBusiness decision making
Business decision making
 
CBI Paper for ISEHP 2016
CBI Paper for ISEHP 2016CBI Paper for ISEHP 2016
CBI Paper for ISEHP 2016
 
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...
121808 - FINAL Report on the Potential Impact of Regional Transit on Metropol...
 
MTC core capacity transit study
MTC core capacity transit studyMTC core capacity transit study
MTC core capacity transit study
 
Cutting To The Chase in Designing New Measures of Transportation System Perfo...
Cutting To The Chase in Designing New Measures of Transportation System Perfo...Cutting To The Chase in Designing New Measures of Transportation System Perfo...
Cutting To The Chase in Designing New Measures of Transportation System Perfo...
 
Transportation and Logistics 2030
Transportation and Logistics 2030Transportation and Logistics 2030
Transportation and Logistics 2030
 
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015
EIFD - A Mechanism for Eco Rapid Transit - FinalDraft_22Jan2015
 
Final master thesis_-_eva_verwijs_-_public_version
Final master thesis_-_eva_verwijs_-_public_versionFinal master thesis_-_eva_verwijs_-_public_version
Final master thesis_-_eva_verwijs_-_public_version
 
Final Report
Final ReportFinal Report
Final Report
 
Beyond Traffic: US DOT's 30 Year Framework for the Future
Beyond Traffic: US DOT's 30 Year Framework for the FutureBeyond Traffic: US DOT's 30 Year Framework for the Future
Beyond Traffic: US DOT's 30 Year Framework for the Future
 
Draft beyond traffic_framework
Draft beyond traffic_frameworkDraft beyond traffic_framework
Draft beyond traffic_framework
 
COTA NextGen Evaluation Framework
COTA NextGen Evaluation FrameworkCOTA NextGen Evaluation Framework
COTA NextGen Evaluation Framework
 
Transport policy appraisal and decision making
Transport policy appraisal and decision makingTransport policy appraisal and decision making
Transport policy appraisal and decision making
 
Freight Analysis Framework for Major Metropolitan Areas in Kansas
Freight Analysis Framework for Major Metropolitan Areas in KansasFreight Analysis Framework for Major Metropolitan Areas in Kansas
Freight Analysis Framework for Major Metropolitan Areas in Kansas
 

Smith_Cody_Economics_Thesis_2015

  • 1.     i           Questioning  the  Columbia  River  Crossing  Project:   Was  an  Accurate  Analysis  of  the  Project’s   Economic  Impact  Completed?         By   Cody  Smith       Senior  Thesis     Econ  496W-­‐01   Prof.  Mascarenhas         May  11,  2015        
  • 2.     ii   Table  of  Contents   Introduction  ................................................................................................................................  1   Theory  &  Context  .......................................................................................................................  3   1)  Policies  for  Reducing  Congestion  ................................................................................................  7   a)  Demand-­‐Side  Management  ...................................................................................................................  7   b)  Supply-­‐Side  Management  ....................................................................................................................  10   2)  Cost-­‐Benefit  Analysis  ...................................................................................................................  14   Analysis  ......................................................................................................................................  15   1)  Traveler  Time  Savings  .................................................................................................................  17   a)  Analysis  of  the  Effectiveness  of  Extending  Light  Rail  ..............................................................  18   b)  Analysis  of  the  Effectiveness  of  Increasing  I-­‐5’s  Capacity  .....................................................  23   2)  Area  Market  Access  analysis  ......................................................................................................  27   Conclusion  .................................................................................................................................  30   References  .................................................................................................................................  33   Appendix  1  –  CRC  Project  Area  Maps  ..................................................................................  36   Appendix  2  –  Rose  Quarter  Map  ...........................................................................................  38   Appendix  3  –  Vancouver  Light  Rail  Map  .............................................................................  39  
  • 3.     1   Introduction       From  1995  to  the  spring  of  2014,  a  joint  project  managed  by  the  Washington   Department  of  Transportation  (WSDOT)  and  Oregon  Department  of  Transportation   (ODOT)  examined  the  impacts  of  potential  improvements  that  could  be  made  to  the   Interstate-­‐5  corridor  connecting  Portland,  Oregon  to  Vancouver,  Washington.   During  this  time  period,  the  project  operated  under  different  names,  the  final  being   the  Columbia  River  Crossing  Project  (CRC).  As  of  May  31st,  2014,  the  CRC  was  closed   down  after  both  the  legislatures  of  Oregon  and  Washington  failed  to  extend  funding   for  the  project’s  future  (Thompson,  2014).  This  came  after  a  proposed  plan  was   unveiled  that  would  replace  the  aging  Interstate  Bridge  system  with  a  new  set  of   bridges  as  well  as  fund  improvements  to  approximately  5  miles  of  I-­‐5  in  the  form  of   widening  sections  of  the  freeway  and  improving  interchanges  (see  map  in  Appendix   1).  On  top  of  roadway  improvements,  the  CRC  proposal  would  have  introduced   Portland’s  light  rail  system  to  Vancouver  as  an  added  form  of  transportation   crossing  the  Columbia  River.  One  of  the  main  aims  of  the  CRC  was  to  reduce   congestion  in  the  Portland-­‐Vancouver  area.  The  CRC,  an  extension  of  both  the   Oregon  and  Washington  Departments  of  Transportation,  claimed  that  the  proposed   supply-­‐side  increases  of  mass  transit  and  vehicular  transportation  would  be  enough   to  reduce  area  congestion  substantially,  generating  a  net  benefit  of  the  greater   Pacific  Northwest  economy.   The  primary  tool  used  to  analyze  the  viability  of  public  works  projects  is   cost-­‐benefit  analysis.    The  CRC  completed  its  own  cost-­‐benefit  analysis,  finding  the  
  • 4.     2   project  would  reduce  area  congestion,  generating  benefit  for  the  Portland-­‐ Vancouver  area  and  their  respective  states  at  large.  Supporters  of  the  CRC  argued   that  increasing  freeway  capacity  paired  with  increases  in  public  transportation   crossing  the  Columbia  River  would  have  resulted  in  decreases  in  I-­‐5  congestion.  On   the  surface,  this  seems  to  be  a  good  solution  for  congestion  reduction  in  the  greater   Portland-­‐Vancouver  area.  However,  the  effects  of  freeway  improvements  in   metropolitan  areas  are  more  complex  than  what  has  been  considered  by  the  CRC’s   analysis,  which  suggests  that  increases  in  roadway  capacity  will  directly  reduce   congestion  levels.  Under  further  examination  by  economic  scholars,  this  commonly   held  assumption  begins  to  fall  apart.   The  Final  Report  (2012)  published  by  the  CRC  indicated  that  completion  of   the  CRC  project  would  have  resulted  in  a  net  benefit  to  the  regional  economy  of  the   Pacific  Northwest.  Did  the  CRC  complete  an  accurate  cost-­‐benefit  evaluation  of  the   project’s  impact  to  the  regional  economy  in  reaching  this  conclusion?  To  examine   this,  the  effects  of  transportation  infrastructure  improvements  proposed  by  the  CRC   must  be  well  understood.  This  paper  examines  the  economic  theory  used  by  the  CRC   to  obtain  a  positive  benefit  to  cost  ratio  for  congruency  with  theory  that  examines   the  effects  of  supply-­‐side  management  solutions  for  metropolitan  congestion.  The   main  point  of  contention  relates  to  the  CRC’s  understanding  of  the  proposed  supply   side  congestion  relief  policy  with  what  economic  research  has  found  characterizes   congestion  on  metropolitan-­‐freeways.  This  is  key  because  if  the  CRC’s  theory  is   found  to  be  inconsistent  with  known  traffic  phenomenon,  then  the  accuracy  of  the   CRC’s  predicted  net  benefit  comes  into  question.  In  order  to  complete  this  study,  this  
  • 5.     3   paper  does  not  conduct  its  own  cost-­‐benefit  analysis  of  the  CRC  project;  instead  the   paper  examines  the  economic  theory  that  underlies  the  CRC’s  calculations.  1   In  order  to  conduct  such  a  critique  of  the  CRC  project,  this  paper  first   explains  the  economic  theory  that  is  relevant  to  understanding  the  phenomenon  of   traffic  congestion.  Next,  the  theoretical  framework  underlying  the  market  for   transportation  and  congestion  reduction  solutions  are  defined.  Rounding  out  the   theory  needed  for  this  analysis,  cost-­‐benefit  analysis  is  examined.  Then,  a  careful   analysis  of  the  theory  implicit  in  the  CRC’s  cost-­‐benefit  analysis  is  conducted.  The   focus,  again,  is  on  determining  whether  the  CRC’s  understanding  of  congestion  is   consistent  with  the  known  impacts  of  similar  transportation  policies.  If  the  theory   implicit  in  the  CRC’s  analysis  is  found  to  be  divergent  from  known  traffic   phenomenon,  this  would  call  into  question  the  accuracy  of  the  CRC’s  claimed  net   benefit.  Finally,  the  conclusion  summarizes  all  major  points  of  analysis  and  outlines   areas  for  further  research.           Theory  &  Context     In  order  to  fully  examine  whether  the  effects  of  the  CRC  project  were   properly  accounted  for  in  the  CRC’s  cost-­‐benefit  analysis,  the  underlying  economic   theory  generating  the  projected  benefit  values  must  be  understood.  The  topics  and   issues  that  need  to  be  understood  to  begin  an  examination  of  the  CRC  project’s  net   benefit  include  the  economics  of  freeway  congestion,  the  impacts  of  common  policy   applications  for  congestion  and  finally,  cost-­‐benefit  analysis.  In  the  case  of  the  CRC,                                                                                                                   1  This  is  because  the  magnitude  of  an  independent  cost-­‐benefit  analysis  for  the  CRC   project  would  prove  to  be  too  massive  to  be  completed  as  a  senior  thesis  project.  
  • 6.     4   like  other  transportation  project  related  analyses,  understanding  how  cost-­‐benefit   analysis  is  conducted  relies  on  an  understanding  of  the  economic  forces  that  drive   congestion.  For  this  reason,  it  is  best  to  first  understand  the  economics  of  traffic  and   the  impacts  for  policy  prescription  before  diving  into  how  cost-­‐benefit  analysis   would  take  place  for  such  a  project.      Traffic  congestion  is  something  that  most  Americans  living  in  urban  areas   have  become  all  too  familiar  with,  as  the  amount  of  vehicles  on  the  road  in  the   United  States  has  increased  over  time.  Congestion  is  most  prevalent  in  cities  and  is   something  that  many  have  come  to  accept  as  a  fact  of  urban  living.  Congestion   effects  are  broad  reaching—in  1994,  “roughly  one-­‐third  of  all  [U.S.  metropolitan]   vehicular  travel  [took]  place  under  congested  conditions”  (Arnott  &  Smalls,  1994,   pg.  446).  Congestion  has  become  a  norm  in  large  cities,  with  effects  that  are  broad   reaching.  This  being  the  case,  it  is  still  frustrating  for  many  drivers  that  experience   congestion  on  a  day-­‐to-­‐day  basis,  as  they  are  held  captive  in  their  vehicles  while   time  slips  away.  But  the  frustration  of  congestion  is  not  limited  to  personal  vehicle   users.  Commercial  transportation  relies  on  the  same  road  network  as  private   vehicles,  thus  causing  important  shipments  to  be  delayed  by  congestion  as  well.  This   means  that  all  transportation  dependent  industries  are  also  affected  by  traffic   delays.  Congestion  is  unlike  other  public  policy  problems  in  the  United  States   because  it’s  affects  are  so  broad  reaching—whether  or  not  someone  is  of  a  high  or   low  income  does  not  affect  whether  or  not  a  driver  will  be  caught  in  freeway   congestion  (Downs,  1992).  Because  experience  with  congestion  is  so  prevalent,   congestion  reduction  is  one  policy  issue  that  almost  all  people  agree  upon.    
  • 7.     5   However,  reducing  congestion  on  freeways  is  not  as  easy  as  it  may  seem.   Congestion  is  created  when  the  flow  of  traffic  demanding  a  certain  area  of  road   space  is  greater  than  the  capacity  that  the  area  can  effectively  handle.  These  areas   are  considered  chokepoints.  For  example,  in  the  Portland  area  one  of  the  major   chokepoints  is  the  Interstate  Bridge.  The  Interstate  Bridge  is  narrower  than  the   preceding  roadway  and  is  one  of  the  only  two  Columbia  River  crossing  points  in  the   Portland-­‐Vancouver  area.  Because  of  this,  at  peak-­‐hours  the  flow  of  traffic  crossing   (i.e.  the  demand  for  road  space)  the  Interstate  Bridge  is  greater  than  physical   capacity  of  the  crossing  (i.e.  the  supply  of  road  space).  This  means  that  cars  that   approach  the  bridge,  when  at  capacity,  must  endure  a  wait  to  cross  the  bridge.   Another  way  that  freeway  congestion  forms  is  through  an  inadequate  surrounding   street  network.  In  this  case,  the  chokepoint  is  not  on  the  freeway  itself  but  just  off   the  exit  ramp.  This  scenario  is  best  explained  by  Günther  et  al.  (2011)  who  suggested   that  freeway  congestion  can  be  caused  by  an  inadequate  surrounding  street  network.   This  approach  to  understanding  congestion  finds  that  if  capacity  of  the  first   intersection  after  exiting  the  freeway  is  exceeded,  queues  for  that  intersection  may   stretch  back  into  the  freeway  (Günther  et.  al.  2011).    This  means  that  road  space  that   should  be  allocated  to  through  traffic  is  occupied  by  those  that  are  exiting  the  freeway.     Many  times  this  backup  affects  multiple  lanes  of  the  freeway  as  surrounding  cars  are   forced  to  slow  down  as  cars  merge  into  the  exit  queue.    This  is  just  another  way  that   freeway  congestion  can  be  understood  in  the  CRC  project  area.  The  CRC  seems  to   acknowledge  that  this  problem  exists  in  the  project  corridor;  one  of  the  commonly   named  areas  that  experiences  a  similar  type  of  congestion  at  the  Rose  Quarter  Exit  in  
  • 8.     6   Portland  (see  map  in  Appendix  2).  In  this  area  during  peak  traffic  flow  periods,  the   surrounding  street  network  is  unable  to  disperse  traffic  at  the  rate  at  which  it  is  exiting   I-­‐5.  This  results  in  congestion  backups  of  cars  attempting  to  exit  the  freeway.  The   solution  to  this  type  of  congestion  put  forth  by  Günther  et.  al.  (2011)  focuses  on   alleviating  queues  on  off-­‐ramps  by  detouring  street  level  traffic  in  order  to  allocate   more  of  the  off-­‐ramps  through  capacity  to  the  off-­‐ramp  traffic.  However,  this  detour   does  place  some  of  the  burden  on  the  street  traffic  that  is  diverted  as  these  cars  now   have  a  further  distance  to  travel  in  most  cases.    With  congestion  being  so  pervasive  in  U.S.  cities,  many  drivers  have  developed   ways  to  cope  with  congestion.  Some  of  these  solutions  include  taking  alternate  routes   as  well  as  altering  schedules  to  drive  during  periods  that  experience  lower  levels  of   congestion.  Each  of  these  commuter  choice  based  solutions  can  be  traced  back  to   individual  drivers  making  choices  to  reduce  their  own  private  cost  of  driving.  For   drivers  that  experience  congestion,  there  is  a  cost  associated  with  their  lost  time.  To   avoid  this  loss,  congestion  forces  drivers  to  make  choices  to  re-­‐allocate  their  resources   to  achieve  more  efficient  outcomes.  “Congestion  …  causes  many  potential  rush-­‐hour   vehicle  trips  to  be  canceled,  diverted  (for  example,  to  mass  transit,  to  carpools  and  to   less-­‐congested  routes  and  destinations)  or  rescheduled”  (Arnott  &  Smalls,  1994,  pg.   448).  For  some  drivers,  an  alternate  route  is  a  possibility.  This  route  may  be  a  longer   distance  to  travel  than  if  they  were  to  use  the  freeway,  but  is  chosen  because  it   ultimately  costs  the  driver  the  same  or  less  when  they  take  into  account  the  fact  that   rather  than  waiting  a  given  amount  of  time  in  congestion,  they  have  extended  their   drive  by  a  similar  amount  of  time.  However,  if  congestion  on  their  primary  route  were  
  • 9.     7   to  be  alleviated,  they  would  prefer  to  use  the  primary  route,  as  it  would  result  in  a   more  efficient  outcome  for  them.  Other  choices  that  commuters  have  to  avoid   congestion  involve  the  use  of  higher  capacity  transportation  options  that  either  don’t   rely  on  congested  roadways  or  have  specially  designated  lanes,  such  as  high  occupancy   vehicle  lanes  (HOVs)  or  carpool  lanes,  to  allow  for  faster  transportation.  These  options   many  times  do  reduce  the  time  that  commuters  spend  trapped  in  congestion  but   introduce  other  time  costs  to  commuters.  To  ride  public  transportation  requires  that   patrons  arrive  early  at  a  transport  stop  and  wait  for  the  next  bus,  streetcar  or  light  rail   vehicle  to  arrive.  Carpools  too  often  require  some  wait  as  the  other  patrons  arrive  at   the  departure  location  or  are  picked  up  along  the  way.  This  shows  that  even  though   commuters  may  have  found  more  desirable  options  than  commuting  in  personal   vehicles  subject  to  congestion,  it  is  extremely  hard  for  commuters  to  escape  the  costs   that  are  created  by  congestion.   1)  Policies  for  Reducing  Congestion   To  help  alleviate  congestion  in  metropolitan  areas,  policy-­‐writers  and   lawmakers  have  developed  many  different  policies  aimed  at  reducing  congestion.   These  policies  can  be  understood  from  an  economic  perspective  as  falling  into  either   demand-­‐side  management  policy  or  supply-­‐side  management  policy.     a)  Demand-­‐Side  Management      Demand  management  strategies  focus  on  reducing  the  amount  of  vehicles  that   demand  to  use  the  road  during  peak  congestion.  This  can  be  done  in  many  different   ways—he  two  most  common  are  regulating  the  number  of  cars  entering  the  freeway  
  • 10.     8   or  the  use  of  a  congestion  tax  to  deter  drivers  from  using  congested  roads.  Although   demand  management  is  not  the  most  common  solution  to  congestion,  it  is  important  to   understanding  how  congestion  works  and  what  the  effects  of  the  CRC  would  have   been.  Within  the  demand  approach,  there  are  two  primary  policy  choices;  the   regulatory  approach  and  a  market  based  approach  (Downs,  1992).  The  regulatory   approach  limits  the  total  number  of  cars  allowed  on  the  road  through  restricting  entry   onto  the  freeway.  This  approach,  unlike  the  market  approach,  mandates  behaviors.   Anthony  Downs  examines  congestion  in  his  book  Stuck  In  Traffic:  Coping  With  Peak-­‐ Hour  Traffic  Congestion.  His  example  for  this  type  of  approach  would  be  if  a  governing   agency  prohibited  vehicles  with  a  license  plate  number  ending  in  a  certain  digit  from   entering  the  roadway  on  certain  days.  For  example,  prohibiting  vehicles  with  plates   ending  in  a  six  from  entering  the  road  on  Mondays  and  so  on  (Downs,  1992).  Another   example  of  the  regulatory  approach  that  is  commonly  used,  and  currently  employed  in   the  I-­‐5  corridor,  is  the  use  of  traffic  control  devices  to  limit  entry  onto  the  freeway.  This   tool  uses  timed  lights  to  slow  roadway  entry  rates  to  a  manageable  level  in  congested   areas.  This  regulatory  approach  works  by  requiring  that  vehicles  that  wish  to  enter  the   roadway  endure  a  wait  to  enter  the  roadway,  with  the  intent  being  that  by  limiting  the   inflows  of  traffic,  the  road  will  remain  at  or  below  capacity.  This  would,  in  turn,  result   in  uncongested  driving  while  on  the  freeway.  Although  this  type  of  regulatory  policy  is   in  use  in  the  Portland  area,  I-­‐5  still  experiences  heavy  congestion  in  this  area.  This  may   be  due  to  multiple  factors  such  as  heavy  traffic  flows  from  earlier,  unrestricted  road   entry  points.  However,  analysis  of  the  effectiveness  of  this  current  policy  is  not  the  goal   of  this  paper  and  will  not  be  directly  addressed.    
  • 11.     9   The  other  policy  commonly  called  for  in  the  economic  literature  is  the   implementation  and  use  of  a  congestion  charge.  The  economic  reasoning  behind  this   policy  prescription  is  based  on  the  theory  that  congestion  is  an  external  cost  that   individual  drivers  impose  on  those  around  them  when  they  choose  to  drive.  Thus,   “drivers  do  not  pay  for  the  time  loss  that  they  impose  on  others,”  because  of  this,   drivers  make  socially  inefficient  decisions  regarding  when  and  how  much  to  use   personal  vehicles  (Arnott  &  Smalls,  1994,  pg.  448).  Economists  argue  that  a  congestion   tax  will  internalize  this  cost  for  drivers,  making  personal  driving  more  costly  and   deterring  drivers  from  behavior  that  induces  congestion.  This  would,  in  turn,  reduce   traffic  to  a  socially  optimum  level.  However,  wide  scale  application  of  this  approach   would  not  guarantee  an  end  to  congestion.  For  example,  if  a  congestion  tax  were   imposed  in  an  area,  like  Portland’s  I-­‐5  corridor,  which  taxed  congestive  driving  habits   in  accordance  with  the  costs  they  create,  the  resulting  equilibrium  of  drivers  on  the   road  would  be  considered  socially  optimum.  However,  if  the  socially  optimum  amount   of  road  usage  is  still  above  the  capacity  of  the  roadway,  congestion  will  continue  to   exist.  On  the  other  hand,  if  the  policy  is  enacted  and  the  socially  optimum  level  is  below   the  road’s  capacity,  the  road  would  be  underused.  This  set  of  hypotheticals  shows  the   level  of  complexity  that  policies  dealing  with  congestion  must  account  for.     On  the  whole,  demand  side  congestion  management  policies  are  found  to  be   effective  in  reducing  congestion  levels  when  applied  correctly.  But  that  does  not  mean   that  demand  management  does  not  come  without  some  controversy.  Although   effective  in  reducing  congestion,  a  key  argument  against  widespread  application  of   congestion  taxes  is  that  they  would  place  a  greater  burden  on  low-­‐income  households,  
  • 12.     10   thus  their  implementation  would  be  considered  to  be  inequitable  (Downs,  1992).  This   is  because  the  tax  that  each  driver  would  be  forced  to  pay  would  be  easier  for  those   with  higher  incomes  to  pay  as  it  would  represent  a  smaller  portion  of  their  income.   Also,  it  is  important  to  remember  that  currently  driving  on  freeways  in  the  United   States  is  not  taxed.  This  means  that  the  adding  of  a  congestion  charge  would  result  in  a   new  tax  for  a  city’s  residents,  an  outcome  unfavorable  to  most  citizens.  So  although  it   can  be  an  effective  policy  when  precisely  executed,  demand  side  congestion  taxes  have   proven  to  be  an  unpopular  option  in  the  eyes  of  the  public.     b)  Supply-­‐Side  Management   The  second  and  more  commonly  applied  solution  to  congestion  is  supply-­‐side   management.  Supply  management  focuses  on  increasing  the  supply  of  road  space  to   reduce  congestion.  Many  times  referred  to  as  the  “build  your  way  out”  solution,  it  is   also  the  more  costly  alternative  (Arnott  &  Smalls,  pg.  446,  1994).  This  is  what  most   people  understand  as  the  intuitive  solution  to  congestion.  This  line  of  reasoning  sees   that  freeways  are  overcrowded  and  reasons  that  if  the  road  had  more  lanes  (or  a   greater  through  capacity)  the  congestion  would  dissipate.  The  logic  behind  this  policy   is  intuitive;  if  there  isn’t  enough  room  for  the  current  amount  of  traffic,  build  more   room.  Although  this  is  an  over  simplification  of  this  policy  approach,  it  captures  the  key   reasoning  for  the  use  for  such  policy.  Other  less  considered  supply  management   strategies  would  include  increasing  the  supply  of  public  transportation  available  or   adding  a  separate  lane  structure  for  buses  or  truck  traffic.  It  is  important  to  consider   the  effects  of  supply  management  solutions  because  this  is  the  primary  policy  that  the   CRC’s  proposal  examined.  The  CRC  concluded  that  widening  I-­‐5  and  adding  light  rail  
  • 13.     11   transit  to  the  crossing  would  alleviate  congestion  substantially.  Thus,  a  careful  analysis   of  the  affects  of  supply  management  policy  will  be  key  to  developing  a  sound  critique   of  the  CRC’s  cost-­‐benefit  analysis.                             The  CRC  project  contained  two  major  supply  side  increases,  increasing  freeway   road  space  and  extending  light-­‐rail  into  downtown  Vancouver.  First,  the  focus  will  be   on  examining  the  impacts  of  increasing  the  capacity  of  I-­‐5  in  the  Portland-­‐Vancouver   area  to  allow  traffic  greater  mobility.  To  do  this,  the  project  focused  on  alleviating   choke  points  through  widening  sections  of  roadway  as  well  as  improving  a  large   number  of  interchanges  to  allow  for  more  efficient  entry  and  exit  from  the  freeway   (CRC  Final  Report,  2012).  This  freeway-­‐based  approach  was  also  paired  with  a  second   major  transportation  supply  increase,  extending  TriMet  light-­‐rail.  The  CRC  project   called  for  the  extension  of  Portland’s  already  established  MAX  (operated  through   Portland’s  TriMet)  light-­‐rail  public  transportation  system  to  be  added  to  the  Colombia   River  Crossing,  providing  a  second  form  of  transportation  connecting  Portland  and   Vancouver  (CRC  Final  Report,  2012).  Each  of  these  CRC  transportation  improvements   would  fall  under  the  stereotypical  congestion  solution  of  “building  a  way  out  of  the   problem”  (Arnott  &  Smalls,  1994,  pg.  446).  Although  the  CRC’s  plan  happens  to  be  the   most  commonly  used  solution  to  congestion  problems,  there  is  still  question  of  the   effectiveness  of  supply  side  management  of  metropolitan  congestion.   An  alternative  way  of  thinking  about  increasing  highway  capacity  is  put  forth   by  David  J.  Forkenbrock  and  Paul  F.  Hanley  (2010)  as  they  examine  supply   management  through  the  alternative  lens  of  Truck-­‐Only  Highway  Lanes.    In  this  paper,   Forkenbrock  and  Hanley  (2010)  examine  and  endorse  building  separate  lanes  for  
  • 14.     12   trucks.  Their  research  concludes  that,  in  most  cases,  adding  truck  only  lanes  would   result  in  benefits  for  both  the  trucking  industry  as  well  as  passenger  vehicle  traffic   (Forkenbrock    &  Hanley,  2010).  Although  adding  truck  only  lanes  to  existing  freeways   is  not  directly  adding  more  road  space  for  personal  vehicles  to  use,  it  has  the  affect  of   opening  up  road  space  because  the  space  previously  used  by  trucks  is  available  for   commuting  vehicles.  In  addition  to  allowing  more  road  space  to  commuters,  allocating   separate  facilities  for  trucks  and  commuter  traffic  has  the  added  benefit  of  grouping   vehicles  with  similar  performance  levels  together.  This  is  because  “the  acceleration   and  braking  performance  of  trucks  is  much  lower  than  that  of  most  passenger   vehicles,”  meaning  that  “removing  trucks  [from  roadways]  would  substantially   improve  flow  of  segments  with  heavy  traffic”  (Forkenbrock    &  Hanley,  2010  ,  pg.  102).     Although  truck  lanes  were  not  a  policy  identified  by  the  CRC  as  a  solution,  it  is   important  to  understand  that  there  is  a  multitude  of  different  ways  to  approach  each  of   these  policies.  Thus,  building  an  understanding  of  the  different  ways  to  achieve  a   similar  end  result  will  be  useful  in  critiquing  the  CRC’s  analysis  of  the  application  of   such  policies.     Also  necessary  to  executing  a  critique  of  the  CRC’s  cost-­‐benefit  analysis,  is  the   examination  of  the  effectiveness  of  such  supply  side  policies.  This  examination  of   supply  side  policy  will  be  of  the  greatest  importance  because  this  type  of  policy  makes   up  most  of  the  CRC’s  project.  This,  in  turn,  means  that  almost  all  of  the  CRC’s  predicted   benefits  result  from  supply  increases.  Thus,  making  it  of  paramount  importance  that   the  effectiveness  of  supply  side  congestion  relief  policy  be  thoroughly  examined.  The   effectiveness  of  supply  side  approaches  to  congestion  reduction  is  not  as  
  • 15.     13   straightforward  as  it  may  appear.  Skeptics  of  this  approach  argue  that  increasing  the   supply  of  roadways  does  not  necessarily  result  in  reductions  in  congestion.  Although   defined  differently  by  different  authors,  the  reasoning  to  support  this  argument  is   simple—latent  demand  exists  for  many  of  the  congested  routes  in  a  city.  This  means,   “the  traffic  we  see  does  not  represent  the  full  demand  for  peak  travel”  (Arnott  &   Smalls,  1994,  pg.  448).  Most  people,  even  those  without  an  economic  background,   would  agree  this  is  the  case  and  that  congestion  deters  some  drivers  from  using  roads   during  periods  of  congestion.  Many  times  this  is  done  to  avoid  the  time  loss  that   congestion  brings  and  the  solution  is  for  some  drivers  to  schedule  their  trips  during   times  of  less  congestion.  This  would  not  be  their  first  choice,  but  they  have  adjusted  to   avoid  driving  during  peak  congestion.  This  would  mean  that  following  an  increase  in   roadway  capacity,  it  would  be  expected  that  commuters  that  previously  were  deterred   from  traveling  during  peak  hours  now  travel  during  this  time  because  there  is  more   available  road  space.  The  result  is  that  now  a  greater  amount  of  commuters  are   subjected  to  congestion.  Anthony  Downs  (1992)  explains  this  as  the  “triple   convergence”  effect.  Triple  convergence  occurs  after  an  improvement  is  made  to  a   freeway  because  shortly  after  the  expansion  is  complete,  traffic  is  able  to  move  at  an   increased  rate.  This  then  attracts  those  whom  had  previously  traveled  alternate  routes   or  at  inopportune  times  to  join  the  peak  traffic  flow.  Downs’  “triple  convergence”  finds   that  drivers  that  used  alternate  routes,  traveled  at  times  just  before  or  after  peak   congestion,  or  used  alternative  modes  of  transport,  will  converge  on  the  more  efficient   highway  (Downs,  1992).  The  result  is  that  freeway  traffic  continues  to  move  along  at  a   crawl,  only  now  there  are  more  cars  involved  in  the  congestion.  This  has  shown  that  
  • 16.     14   the  connection  between  supply  side  congestion  management  policy  and  congestion   reduction  is  much  more  complicated  than  many  consider  it  to  be.     2)  Cost-­‐Benefit  Analysis   The  final  and  most  important  economic  tool  that  needs  to  be  understood  in   order  to  critique  the  CRC’s  project  analysis  is  cost-­‐benefit  analysis.  Simply  put,  cost-­‐ benefit  analysis  is,  “an  economic  tool  for  comparing  the  desirable  and  undesirable   impacts  of  proposed  policies”  (Arrow  et.  al.  1996  pg.  221).  It  is  also  worth  noting   that  cost-­‐benefit  analysis  is  the  standard  tool  used  in  economic  policy  analysis  and   in  most  cases  is  required  before  government  organizations  can  begin  a  project  of  a   substantial  nature.  Cost-­‐benefit  analysis  “serves  the  single  purpose  of  registering   systematically  the  positive  and  negative  effects  of  infrastructure  investments  and  of   assessing  them  in  terms  of  economic  goals”  (Georgi,  1973,  pg.5).  The  registering  of   each  of  the  positive  and  negative  effects  of  a  policy  choice,  when  summed,   determines  the  net  economic  effect  of  the  implementation  of  that  policy.  The  idea   behind  the  use  of  cost-­‐benefit  analysis  is  that  if  the  net  benefit  of  the  project  can  be   predicted  before  an  investment  is  made,  rational  decisions  can  be  made  as  to   whether  or  not  a  policy  or  project  should  be  implemented.  To  accomplish  this,  all  of   the  costs  and  benefits  are  estimated  in  terms  of  their  monetary  impact.  In  terms  of   the  CRC,  a  short  list  of  the  beneficial  impacts  that  would  have  been  created  include   possible  time-­‐savings  for  drivers  due  to  decreases  in  congestion,  job  creation,   decreases  in  traffic  accidents,  and  increases  in  freight  mobility.  The  potential  costs   that  the  CRC  could  have  created,  other  than  the  total  cost  spent  to  complete  the   project  are:    possible  increases  in  the  total  amount  of  pollution  generated  in  the  
  • 17.     15   project  area,  increases  in  per  person  pollution  rates  in  the  I-­‐5  corridor,  damages  to   the  environment  that  occur  during  construction,  possible  effects  to  river  based   transit  due  to  bridge  clearance  levels,  as  well  as  many  more.    With  the  CRC  having   such  a  broad  reaching  effect,  cost-­‐benefit  analysis  is  the  go-­‐to  tool  in  an  economist’s   toolbox  because  each  of  the  effects  are  assigned  dollar  values  and  summed.  Cost-­‐ benefit  analysis  allows  a  large  public  policy  decision  to  be  simplified  in  order  to   achieve  desirable  results.     In  terms  of  this  paper,  it  is  important  to  understand  where  the  costs  and   benefits  of  the  project  are  generated.  However,  because  this  paper  does  not  seek  to   complete  its  own  separate  cost-­‐benefit  analysis  of  the  CRC,  it  will  not  be  necessary   to  derive  values  for  these  effects  outside  of  those  presented  by  the  CRC.  In  this  way,   the  point  of  analysis  for  this  paper  is  not  whether  the  CRC  net  benefit  value  was   correct,  but  whether  the  understanding  of  the  effects  of  the  CRC  project  are   accurately  captured  in  the  CRC’s  generated  time  savings  values.     Analysis     In  order  to  determine  the  legitimacy  of  the  CRC’s  projected  net  benefit,   careful  analysis  must  take  place  to  determine  whether  the  theories  underlying  the   CRC’s  benefit  valuation  can  be  considered  accurate.  In  beginning  this  analysis,  it  is   first  necessary  to  explain  how  the  CRC  defined  effects  of  supply  side  congestion   management  solutions.  This  understanding  will  then  be  compared  to  the  previously   defined  theories  that  this  paper  has  laid  out.  If  it  is  found  that  the  CRC  used  accurate   theory  to  understand  the  project’s  possible  impact,  this  will  provide  validity  to  the  
  • 18.     16   CRC’s  benefit  valuation.  However,  if  this  is  not  the  case  and  the  CRC’s  benefit   valuation  is  flawed  due  to  inconsistency  with  recorded  economic  theory  regarding   the  impacts  of  congestion  management  policies,  this  will  call  into  question  the   legitimacy  of  the  CRC’s  calculated  net  benefit.  If  this  is  the  case,  this  can  then  be   viewed  as  an  explanation  of  why  the  CRC  project  failed  to  be  completed.  If  the  CRC’s   understanding  of  the  project’s  effects  on  Portland  area  congestion  is  found  to  be   accurate,  then  other  explanations  for  the  project’s  failure  will  need  to  be  explored.       The  CRC  claimed  that  completion  of  the  project  would  result  in  net  benefit  of   approximately  $4  to  $6  billion  in  net  present  value  when  benefits  and  costs  are   estimated  until  the  year  2050  (CRC  Final  Report,  2012).  To  conduct  a  through   analysis  of  the  CRC’s  claim,  the  projected  costs  and  benefits  of  the  project  will  need   to  be  broken  down  to  be  further  understood.  However,  this  paper  will  not  examine   the  cost  estimations  put  forth  by  the  CRC  because  many  of  the  costs  of  the  CRC   project  are  associated  with  construction  costs.  Although  there  is  always  a  chance   that  any  public  works  project  will  come  in  over  budget,  arguing  that  the  CRC  under   estimated  the  costs  of  construction  is  not  the  goal  of  this  paper.  This  paper  is  most   concerned  with  examining  whether  the  CRC  generated  accurate  values  of  benefits   based  on  its  understanding  of  the  project’s  effects  on  congestion  in  the  Portland-­‐ Vancouver  area,  and  ultimately  on  the  economy  of  the  Pacific  Northwest.  Once  the   CRC’s  calculation  of  the  project’s  benefits  is  understood,  the  CRC’s  methods  for   generating  projected  benefit  values  can  be  critiqued  through  the  theories  previously   presented  in  this  paper.  Comparing  the  CRC’s  predicted  effect  on  the  area  economy   to  what  established  economic  theory  would,  in  general,  find  as  an  outcome  of  such  
  • 19.     17   policy,  will  show  whether  the  CRC  developed  a  credible  cost-­‐benefit  analysis  for  the   project’s  impact.       In  developing  its  cost-­‐benefit  analysis,  the  CRC  found  the  project’s  economic   impact  in  two  ways.  First,  that  the  project  would  create  “traveler  time  savings  from   improved  system  efficiency  impacts”  (CRC  Final  Report,  2012,  pg.  5-­‐1).    The  benefits   that  the  CRC  finds  under  this  category  include  reductions  in  the  cost  of  operating   motor  vehicles  in  the  area  due  to  a  predicted  shift  to  public  transit  as  well  as  a   reduction  in  the  costs  of  area  congestion  due  to  increased  highway  performance   (CRC  Final  Report,  2012).    The  second  main  area  of  benefit  that  the  CRC  finds  in   completion  of  the  project  is  increased  area  market  access  (CRC  Final  Report,  2012).     This  category  of  benefits  focuses  not  on  the  direct  reductions  of  transportation  cost,   but  on  the  next  level  of  impact.  It  is  found  by  the  CRC,  as  well  as  other  economic   sources,  that  congestion  can  slow  the  growth  of  metropolitan  areas.  Thus  if   congestion  can  be  reduced  in  the  Portland-­‐Vancouver  area,  greater  economic   growth  can  then  be  experienced  in  the  area  as  firms  are  attracted  to  the  area  to   conduct  their  business.  These  two  main  claims  of  the  CRC  will  thus  be  two  points  of   analysis  for  this  paper.     1)  Traveler  Time  Savings     In  examining  the  first  of  these  claims,  the  predicted  effects  of  the  project  will   need  further  explanation  before  analysis  of  their  individual  accuracy  can  be   conducted.  The  CRC  finds  that  underneath  the  umbrella  of  traveler  savings,  there   are  many  sub-­‐categories  that  would  have  created  benefits  had  the  project  been   completed.  As  previously  identified  as  the  main  area  of  concern  for  this  paper,  the  
  • 20.     18   CRC  indicates  that  the  majority  of  the  benefit  in  this  category  would  come  from  a   reduction  in  I-­‐5  congestion.  This  reduction  is  claimed  to  be  the  effect  of  two  sources,   increased  road  capacity  and  a  shift  away  from  personal  vehicle  transit  to  the   project’s  new  light-­‐rail  expansion.     a)  Analysis  of  the  Effectiveness  of  Extending  Light  Rail     The  CRC  finds  that  adding  a  light-­‐rail  public  transportation  crossing  to  the   proposed  Columbia  River  Crossing  Bridge  would  result  in  a  shift  in  modal  transport   in  the  crossing  area.  This  means  that  persons  whom  previously  would  have  used   personal  vehicle  crossings  as  their  mode  of  transport  for  their  commutes  would   now  be  drawn  to  use  public  transportation  instead.  This  shift  would  then  reduce  the   traffic  demand  on  the  I-­‐5  crossing  and  its  surrounding  area.    This  would  then  be   supplemented  by  the  CRC’s  second  claim,  reduced  congestion  stemming  from   increased  performance  from  the  roadway  network  (CRC  Final  Report,  2012).    This   claim  assumes  that  increasing  the  supply  of  both  roads  space  and  public   transportation  in  the  I-­‐5  corridor  will  create  a  large  reduction  in  congestion.  The   intuitive  understanding  behind  this  source  of  benefit  is,  if  the  capacities  of  area   bottlenecks  (such  as  the  Interstate  Bridge)  are  increased,  a  large  amount  of  roadway   congestion  can  be  alleviated.  This  however  is  not  as  simple  as  the  CRC  leads  some  to   believe.  As  previously  stated,  congestion  and  traffic  management  are  very  complex   issues  needing  deeper  analysis  than  given  in  the  CRC’s  calculation  of  its  benefits  in   its  Final  Report  (2012).       This  prediction  is  now  examined  from  both  a  supply  and  demand  market   perspective  and  also  through  the  lens  of  those  whom  have  conducted  larger  studies  
  • 21.     19   of  the  economics  of  traffic  congestion.  Looking  from  a  market  view,  it  should  be   understood  that  there  can  be  a  certain  supply  and  demand  for  a  given  commute,   such  as  the  commute  to  and  from  Portland  and  Vancouver.  This  demand  is  met  with   the  supply  of  any  form  of  transit  that  can  accomplish  this  commute.  Currently,  the   supply  is  almost  completely  made  up  of  options  that  use  road  space  on  the   Columbia’s  two  freeway  crossings.  Market  economics  would  thus  suggest  that  if  the   supply  of  public  transportation,  not  dependent  on  road  space,  for  the  route  between   Portland  and  Vancouver  was  to  be  increased,  this  would,  in  turn,  draw  commuters   away  from  that  road  space.  This  is  because  public  transportation  is  considered  a   substitute  for  personal  vehicle  use.  However,  this  doesn’t  mean  that  public   transportation  is  a  perfect  substitute  for  personal  vehicle  use.  As  Arnott  and  Smalls   (1994,  pg.  446)  point  out,  “the  advantages  of  the  car  are  simply  too  great,”  citing  that   personal  vehicles  provide  more  comfort  and  privacy  than  forms  of  public  transport.   This  would  mean  that  most  commuters  would  prefer  to  use  a  personal  vehicle   rather  that  use  public  transportation.  What  this  would  mean  in  terms  of  the  CRC’s   benefit  calculation  is  that  because  finding  the  exact  preference  for  each  of  Portland-­‐ Vancouver  commuters  would  be  impossible;  estimates  have  been  made  by  the  CRC   to  predict  the  rate  at  which  commuters  would  substitute  public  transit  for  personal   vehicle  use.  This  brings  up  an  issue—because  the  CRC  group  was  very  much  in  favor   of  completing  the  project,  the  CRC  would  have  had  an  incentive  to  use  a  higher   estimate  of  predicted  public  transportation  use.  Use  of  a  higher  rate  of  public  transit   use  would  have  also  meant  lower  predicted  vehicle  demand  in  the  I-­‐5  corridor.  This   would  suggest  that  the  predicted  reduction  in  congestion  would  have  been  much  
  • 22.     20   greater,  generating  a  larger  predicted  benefit.  However,  it  is  hard  to  imagine  that  the   CRC’s  addition  of  a  light  rail  crossing  over  the  Columbia  River  would  have  drawn  as   much  ridership  as  predicted  by  the  CRC  due  to  the  known  preference  that   commuters  have  for  personal  vehicles.   Further  examination  of  the  proposed  light  rail  option  highlights  why  most   commuters  prefer  personal  vehicle  use  as  their  primary  form  of  transportation.   When  thinking  about  public  transit,  it  is  important  to  note  that,  for  most  persons   demanding  travel  in  a  metropolitan  area,  there  is  no  public  transportation  route   that  starts  at  their  front  door  and  ends  directly  at  their  desired  destination.  Many   times  this  would  mean  that  an  individual  seeking  to  go  from  their  home  to  their   place  of  work  would  need  to  use  multiple  forms  of  transport  in  order  to  use  public   transportation  to  get  from  point  A  to  point  B.  In  terms  of  the  CRC,  this  problem  may   be  exacerbated  by  the  fact  that  the  proposed  extension  of  Portland’s  light-­‐rail  into   the  Vancouver  area  would  be  limited  to  a  small  area  of  downtown  Vancouver.   Specifically,  one  of  the  major  stations  for  commuters  in  Vancouver  would  be  a  park-­‐ and-­‐ride  near  the  campus  of  Clark  College  (see  Appendix  3).  This  would  mean  that   for  all  trips  to  and  from  the  Vancouver  area,  not  originating  or  terminating  in  the   downtown  area,  light  rail  users  would  require  an  added  leg  of  transportation  to   travel  to  and  from  other  Vancouver  areas  as  well  as  to  and  from  the  terminus  of  the   light  rail  network.  There  are  many  ways  that  this  leg  of  a  daily  commute  could  take   place.  For  those  whom  reside  outside  of  the  downtown  area,  some  of  those  options   could  include  using  a  bus,  cab,  personal  vehicle  or  bike  to  the  light-­‐rail  stations  that   would  be  located  downtown.  Although  it  is  possible  and  inevitable  that  some  
  • 23.     21   commuters  will  choose  one  of  these  options,  they  all  add  to  the  cost  that  commuters   would  have  to  endure  in  order  to  use  a  new  light-­‐rail  crossing.  For  example,  if  a   commuter  chooses  to  use  a  bus  in  conjunction  with  the  new  light-­‐rail  option,  on  top   of  the  comfort  and  privacy  they  give  up  by  not  using  a  personal  vehicle,  they  would   most  likely  also  have  to  endure  waits  for  both  the  use  of  the  light-­‐rail  and  for  the  bus   as  they  transfer  modes  of  transportation.  This  added  time  would  deter  commuters   from  choosing  the  new  light-­‐rail  option  over  the  perceived  increased  capacity  of  a   widened  I-­‐5  crossing.     As  analysis  of  the  CRC’s  claimed  traveler  time  savings  benefits  takes  place,   more  issues  become  apparent.  With  the  increased  capacity  of  the  CRC’s  proposed   new  bridge,  more  cars  will  be  attracted  to  fill  this  road  space  rather  than  use  the   CRC’s  new  Vancouver  light  rail  connection.    This  is  because  increasing  the  capacity   of  the  bridge  and  other  chokepoints  in  congestion  with  light  rail  extension  will   initially  mean  that  congestion  will  ease,  reducing  the  cost  to  a  commuter  to  travel  by   roadway.  However,  this  reduction  in  cost  will  then  lure  those  whom  previously  used   to  travel  at  less  opportune  times  and  through  alternative  modes  of  transit  to  now   travel  during  peak  hour,  retaining  high  levels  of  congestion.  Following  this  line  of   reasoning,  more  vehicles  would  then  be  expected  to  be  caught  in  rush  hour   congestion  than  previously.  This  should  be  expected  because,  as  previously   established,  personal  vehicles  are  the  preferred  mode  of  transportation  for  the   American  commuter  for  reasons  such  as  privacy  and  the  ability  of  the  driver  to   manage  their  own  route  (Arnott  and  Smalls,  1994).  Thus,  it  can  be  concluded  that  it   is  more  than  likely  that  the  CRC  has  overestimated  the  benefit  that  adding  a  light  rail  
  • 24.     22   crossing  would  create  in  terms  of  traveler  time  savings.  This  assertion  becomes   even  more  damning  when  Don  Pickrell’s  (1989)  work  examining  the  forecasted   ridership  for  nine  U.S.  metropolitan  rail  projects  is  viewed.  Through  Pickrell’s   (1989)  examination,  he  came  to  a  similar  conclusion  that  of  the  nine  metro-­‐rail   projects  studied,  all  of  them  had  actual  usage  rates  that  were  below  or  far  below  the   forecasted  rates  used  to  justify  their  completion.  Even  worse  news  for  the  CRC,  it   was  found  that  for  three  of  the  nine  projects  there  was  diversion  of  personal  vehicle   users.  Included  in  this  study  was  Portland’s  early  light  rail  system,  which  failed  to   meet  its  forecasted  ridership  estimates.  This  shows  that  the  Portland  area  has   already  had  problems  drawing  ridership  to  its  light  rail  system.     Looking  further  into  the  Portland’s  MAX  light  rail  history  paints  an  even   bleaker  picture.  As  pointed  out  by  Joseph  Rose  (2015)  of  the  Oregonian/Oregon   Live,  Portland’s  MAX  has  always  operated  on  the  honor  system,  as  far  as  fares  go.   Under  this  system,  it  would  be  expected  that  ridership  numbers  of  the  MAX  light  rail   would  have  been  bolstered  by  “free  riders,”  those  who  use  the  MAX  to  commute  but   pay  no  fare.  This  would  draw  more  riders  to  the  MAX  because  riders  are  able  to   cheat  the  system,  keeping  their  personal  cost  of  transit  low,  and  in  turn  increasing   the  total  number  of  riders  on  the  MAX  system.  However,  this  may  be  changing— Rose  (2015)  reports  that  TriMet  is  adding  turnstiles  to  some  of  its  new  stations  in   Portland  to  help  cut  down  on  fare  cheating.  TriMet  states  that  the  turnstiles  are   being  installed  on  a  trial  basis  (Rose,  2015).  Although  it  is  not  explicitly  stated  in  the   CRC  cost-­‐benefit  analysis  report,  it  should  be  assumed,  for  two  reasons,  that   turnstiles  would  be  installed  at  any  of  the  new  Vancouver  stations  should  the  CRC  
  • 25.     23   ever  be  completed.  The  first  is,  after  such  a  large  public  investment,  the  CRC  would   need  to  recover  costs  from  the  building  of  the  project.  Turnstiles  make  “free  riding”   on  a  mass  transit  system  much  harder  and  thus,  would  allow  TriMet  to  recover  a   larger  percentage  of  transit  fares.  Second,  turnstiles  could  be  expected  at  any  of  the   CRC’s  proposed  new  stations  because  TriMet  has  worked  extensively  to  build  and   introduce  an  electronic  fare  system  to  work  with  the  turnstiles  (Rose,  2015).   Though  cutting  down  on  free  riding  will  allow  TriMet  to  capture  lost  revenue,  it  will   also  mean  a  decrease  in  the  use  of  the  of  the  MAX  and  TriMet  system,  resulting  in   commuters  shifting  to  alternative  modes  of  transport  such  as  personal  vehicles.   Again,  it  can  be  seen  that  the  addition  of  the  CRC’s  proposed  light  rail  crossing   would  not  generate  the  same  level  of  benefit  predicted  in  the  CRC  cost-­‐benefit   analysis.       b)  Analysis  of  the  Effectiveness  of  Increasing  I-­‐5’s  Capacity                                               Looking  past  the  impact  of  the  light  rail,  the  Portland-­‐Vancouver  area  already   experiences  long  periods  of  peak  congestion  as  stated  by  the  CRC’s  Final  Report   (2012)  and  supported  by  other  analyses  of  the  areas  congestion  problems  (The   Costs  of  Congestion,  2005).  These  long  periods  of  congestion  signal  problems  that   are  not  simply  solved  by  adding  lanes  to  a  roadway.  In  the  Portland-­‐Vancouver  area,   periods  of  congestion  stretch  from  morning  peak  periods  into  the  late  evening  (The   Costs  of  Congestion,  2005),  affecting  not  only  those  who  depend  on  commuting   during  peak  hours,  but  everyone  who  travels  during  the  day.  The  CRC  seeks  to   remedy  a  portion  of  this  congestion  by  increasing  I-­‐5’s  traffic  capacity  through   expanding  the  capacity  of  bottlenecks.  The  CRC  then  predicts  that  by  increasing  the  
  • 26.     24   capacity  of  the  I-­‐5  crossing  and  interchanges  in  the  immediate  area,  much  of  this   congestion  can  be  alleviated.  Although  the  CRC  Final  Report  (2012)  does   acknowledge  that  all  peak  hour  congestion  would  not  be  alleviated,  it  paints  a  very   favorable  picture  for  possible  reduction  results.  It  is  concluded  that  there  would  be   massive  reduction  in  congestion  that  would  generate  substantial  benefits  in  terms  of   time  savings.  However,  in  claiming  this  benefit,  the  CRC  neglects  to  address  that  an   increased  road  capacity  will  draw  more  commuters.  Much  like  consumers  having   latent  demand  for  the  newest  smartphone  when  new  features  are  added,  when  the   capacity  of  I-­‐5’s  Columbia  River  Crossing  is  increased,  new  trips  will  fill  this   capacity.           Even  though  it  is  undeniable  that  increasing  road  space  will  have  an  effect  on   congestion,  economists  that  study  congestion  argue  that  any  increases  in  roadway   peak-­‐hour  efficiency  will  quickly  be  overcome  for  multiple  reasons.  The  first  is   addressed  by  Arnott  and  Smalls  (1994)  in  their  examination  of  latent  demand  for   personal  vehicle  use.  They  understand  that  for  most  congested  roadways,  the   resulting  level  of  congestion  may  not  represent  the  full  demand  for  a  roadway  if   traffic  were  to  be  able  to  flow  freely  (Arnott  and  Smalls,  1994).  This  is  because   congestion  itself,  affects  the  choices  that  commuters  make  for  transit  because  it  is   felt  as  an  added  cost  to  driving.  Although  the  cost  of  congestion  to  the  commuter  is   not  monetized,  commuters  still  make  the  choice  to  avoid  this  cost.  This  means  that   when  examining  peak-­‐hour  trip  costs  verses  off-­‐time  trip  costs,  the  monetary  costs   are  very  comparable.  However,  the  non-­‐monetary  cost  for  the  peak-­‐hour  trip  is   much  greater  due  to  congestions  time  loss.  This  added  cost  results  in  the  deterrence  
  • 27.     25   of  a  portion  of  trips  that  would  be  made  at  that  monetary  cost  under  less  congested   conditions.  This  brings  Arnott  and  Smalls  (1994,  pg.  448)  to  the  conclusion  that   “Any  reduction  in  congestion  resulting  from  capacity  expansion  encourages  others   to  drive  during  hours  or  on  routes  they  would  normally  not  use”.  This  means  that  as   capacity  is  built  into  a  system,  demand  from  commuters  for  peak  travel  will  grow  to   fill  it.   Further  clarifying  the  concept  of  latent  demand,  transportation  researcher,   Dr.  Patricia  L.  Mokhtarian  presented  “Latent  Demand  in  Traffic”  to  the  California   Department  of  Transportation  in  April  of  2004.  In  her  presentation,  she  makes  a   distinction  that  is  not  made  by  Arnott  and  Smalls  (1994),  that  when  examining  the   phenomenon  of  congestion  and  management  solutions,  there  are  distinctions  to  be   made  when  examining  capacity  induced  demand  changes.  She  points  out  that  latent   demand  is  “Pent-­‐up  [or]  dormant  demand  for  travel  …  that  is  desired  but   unrealized”  while  induced  demand  is  “Realized  demand  that  is  generated  [by]   improvements  to  the  transportation  system”  (Mokhtarian,  2004).  This  distinction  is   important  when  examining  the  benefit  calculation  of  the  CRC  because  when  the   driving  force  of  latent  demand  is  not  considered  when  calculating  time  savings   benefits,  the  phenomena  of  induced  demand  will  be  sure  to  follow  a  capacity   increase  of  the  I-­‐5  Columbia  crossing.  The  CRC  project  seems  to  neglect  the  concept   of  latent  and  induced  demand  as  they  predict  that  the  average  weekly  traffic  flow  for   the  I-­‐5  crossing  in  the  year  2030  would  be  178,500  vehicles  under  a  build  scenario   (CRC  Final  Report,  2012).  This  is  less  than  the  184,000  vehicles  predicted  to  demand  
  • 28.     26   crossing  in  the  year  2030  under  a  no  build  scenario  (CRC  Final  Report,  2012).2  Even   stepping  outside  of  the  realm  of  economics,  this  does  not  pass  the  sniff  test.  It  is   hard  to  believe  that  in  the  year  2030,  the  six-­‐lane,  Interstate  Bridge  would  carry   more  weekly  traffic  than  a  ten-­‐lane  bridge,  designed  to  allow  traffic  more  efficiently.   In  calculating  these  estimates,  the  CRC  has  either  underestimated  the  effects  that   latent  demand  in  the  area  would  have  if  the  CRC  were  to  be  built  or  overestimated   the  increase  in  traffic  demand  from  now  until  2030  under  a  no  build  scenario.  As   this  paper  is  focused  on  the  accuracy  of  the  theory  employed  by  the  CRC  and  makes   no  attempt  to  perform  benefit  calculations,  it  is  not  possible  to  say  which  error  the   CRC  has  committed.  However,  both  will  be  further  examined.             Underestimating  latent  demand,  and  thus  finding  a  significantly  low  estimate   of  induced  demand  by  the  increasing  of  I-­‐5  roadway  efficiency,  will  underestimate   the  level  of  congestion  in  the  future  build  scenario.  In  turn,  this  would  overestimate   the  benefit  generated  through  time  saving.  On  the  other  hand,  if  the  CRC  has   overestimated  the  increase  in  area  traffic  demand  induced  by  growth  under  a  no   build  scenario,  this  would  overestimate  the  level  of  congestion  and  the  costs   associated  with  it.  Again,  resulting  in  a  CRC  benefit  calculation  that  predicts  larger   reductions  in  congestion  than  should  be  expected  in  reality.  In  both  situations,  the   CRC  is  overestimating  the  effect  that  increased  roadway  efficiency  would  have  on   congestion.  This,  paired  with  the  likely  overestimation  of  the  congestion  reducing   effects  of  commuters  being  drawn  to  the  new  light  rail  crossing,  leads  to  the  likely                                                                                                                   2  It  should  be  noted  that  this  number  is  not  the  total  number  of  persons  demanding   crossing  though  all  modes  of  transit,  but  only  the  number  of  vehicles  using  road   space.  The  total  demand  for  crossing  the  Columbia  would  be  expect  to  increase   though  a  combination  of  all  modes  of  transit.      
  • 29.     27   conclusion  that  the  CRC’s  first  major  claimed  benefit  of  traveler  time  saving  has   been  overestimated  in  the  CRC’s  Final  Report  (2012).       2)  Area  Market  Access  analysis     The  CRC’s  second  large  claim  of  project  benefit  is  generated  from  predicted   increased  area  market  access  (CRC  Final  Report,  2012).  This  benefit  is  generated   from  the  theory  that  congestion  imposes  a  cost  on  those  who  demand  use  of  area   roadways.  However,  there  is  a  new  intricacy  to  examine.  This  benefit  draws  on   theory  that  finds  that  congestion  affects  the  access  of  firms  to  a  market  area  and   even  further,  hampers  economic  growth  (Sweet,  2014).  Congestion  has  an  even   greater  effect  of  deterring  firms  that  are  transportation  dependent,  such  as  shipping   or  other  industries  that  rely  heavily  on  transportation.  In  terms  of  the  Portland-­‐ Vancouver  area,  this  is  an  important  area  of  benefit  to  examine  because  of  the  area’s   industry  make  up.  Portland  is  uniquely  situated  in  the  region  to  have  distinctive   advantages  in  transportation  dependent  industries  (The  Costs  of  Congestion,  2005).   Portland’s  advantage  is  due  to  many  factors  both  natural  in  origin  and  human   induced.  The  Portland-­‐Vancouver  area  is  situated  in  the  middle  of  the  Northwest   region,  on  the  Columbia  River.  This  location  provides  natural  advantages  for  these   industries  such  as,  a  central  location  in  the  Northwest  to  allow  for  more  efficient   transport  by  land,  with  access  to  shipping  on  the  Pacific  Ocean  via  the  Columbia   River  (The  Costs  of  Congestion,  2005).  Adding  to  the  area’s  transportation  industry   advantages,  Portland  is  the  intersection  of  I-­‐5  with  not  only  sea  shipping  but  also   both  of  the  West’s  major  rail  lines,  the  Union  Pacific  and  Burlington  Northern  &   Santa  Fe  Railroad.  Added  to  this,  Portland  is  the  home  of  an  international  airport,  
  • 30.     28   PDX.  This  presents  a  very  large  amount  of  opportunity  for  the  Portland  area  to  grow   its  transportation  industry,  in  turn  growing  its  economy  (The  Costs  of  Congestion,   2005).     Examination  of  the  CRC’s  claimed  area  access  benefit  must  begin  as  the   previous  analyses  have,  at  the  theory  level.  Here,  we  begin  with  the  CRC’s   understanding  of  how  this  benefit  is  generated.  “Market  Access  Impacts”  are  effects   that  go  beyond  the  costs  of  travel,  affecting  things  like  freight  delivery,  logistics,   productivity  and  labor  markets  (The  Costs  of  Congestion,  2005).    It  is  intuitive  to   understand  how  deliveries  and  logistics  would  be  affected  by  congestion,  as   congestion  leads  to  unpredictable  delays  of  shipments.  This  then  affects   productivity  of  industries  as  they  depend  on  having  inputs  to  produce  goods.  For  the   Portland-­‐Vancouver  area,  the  CRC  claimed  that  the  benefit  created  by  completion  of   the  CRC  project  in  terms  of  increased  business  output  was  predicted  to  be  $332   million  through  the  year  2030  in  2012  USD  (CRC  Final  Report,  2012).    However,   unlike  the  previous  benefit  value  that  the  CRC  has  generated,  it  has  been  determined   that  congestion  does  have  an  effect  on  the  prospects  of  a  regional  economy.     Matthias  Sweet  (2014)  finds  this  to  be  true  when  conducting  his  own  analysis  of  the   topic,  citing  that  many  inter-­‐metropolitan  studies  find  that  higher  congestion  levels   reduce  regional  economic  growth  and  slow  employment  growth.  This,  paired  with   his  own  econometric  analysis  on  the  topic,  lead  to  the  conclusion  that  “higher   congestion  …  appears  to  be  associated  with  decreasing  regional  employment   growth”  as  well  as  connected  to  “slower  productivity  growth  per  worker”  (Sweet,   2014,  pg.  2107).  Following  this  line  of  work,  congestion  is  found  to  have  a  negative  
  • 31.     29   effect  on  area  growth.  Thus,  it  should  be  understood  that  eliminating  this  draw  on   the  economy  would  result  in  higher  area  growth  rates.  This  body  of  work  supports   the  claim  of  the  CRC  that  congestion  is  a  hamper  to  area  growth,  especially  due  to   the  area’s  transportation  dependent  industries.  This  means  that  the  theory  that   underlies  this  area  of  the  CRC’s  benefit  calculation  is  sound  as  it  relates  to  the  work   of  others  that  have  studied  the  effects  of  congestion  on  an  economy.     However,  even  though  the  CRC  has  a  properly  backed  theory  underlying  this   section  of  its  benefit  calculation,  this  does  not  mean  that  the  CRC  properly   accounted  for  its  affects.  When  forecasting  traffic  flows  from  2012-­‐2030  upon  which   congestion  levels  would  be  calculated,  the  CRC  Final  Report  (2012)  makes  a   monumental  mistake.    When  calculating  future  baseline  congestion  cost  values   under  a  no  build  scenario,  the  CRC  uses  “the  same  assumptions  as  the  Build   alternatives  regarding  population  growth  and  employment  growth  through  2030”   (CRC  Final  Report,  2012,  pg.  4-­‐2).  This  is  problematic  because  the  CRC  is  assumed  to   increase  “area  access,”  an  outcome  that  is  consistent  with  theory  on  the  topic.  This   would  the  mean  that  the  build  alternative  would  be  assumed  to  cause  growth  in  the   area  economy,  increasing  both  population  and  employment.  This  growth  is  not   taken  into  account  when  the  CRC  assumes  the  same  area  growth  rates  under  both   the  no  build  and  build  scenarios.  Using  the  same  population  estimates  for  both   options  through  2030  would  overestimate  the  population  under  a  no  build  scenario   or  underestimate  the  population  under  the  build  scenario.  Continuing,  because   demand  for  transportation  and  road  space  is  a  function  of  population  and  the   economy,  overestimating  the  population  under  the  no  build  scenario  would  have  
  • 32.     30   resulted  in  an  artificially  high  level  of  congestion  in  the  no  build  scenario.  Thus,   inflating  cost  savings  calculated  from  congestion  reduction.  In  the  alternative,  an   underestimated  population  in  a  build  scenario  would  result  in  a  predicted  demand   for  road  space  below  what  would  actually  be  observed.  This  would  in  turn   underestimate  future  congestion  levels  under  a  build  scenario,  generating  an   inaccurately  large  benefit  value  from  “reduced”  congestion.  This  mistake,  paired   with  the  previously  identified  mistakes  of  the  CRC’s  benefit  calculation  of  travel  time   savings  should  leave  us  questioning  the  CRC’s  economic  viability  if  the  project  were   to  ever  be  revived.   Conclusion        In  closing,  the  intent  of  this  examination  was  to  determine  whether  the   Columbia  River  Crossing  Project  was  truly  economically  viable  as  the  CRC  concluded   in  is  Final  Report  (2012).  Rather  than  complete  a  full  alternative  cost-­‐benefit   analysis  of  the  project’s  net  impact  to  the  area  economy,  this  paper  focused  on   critiquing  the  theory  understanding  congestion  (it’s  causes  and  effects)  implicit  in   the  CRC  analysis  of  the  project.  This  research  was  sparked  as  the  project  became   relatively  controversial  after  plans  were  developed  but  construction  never  began   due  to  non-­‐funding  from  Washington  and  Oregon.  Some  understood  this  was  due  to   political  reasons,  while  others  questioned  whether  it  would  have  truly  created  the   benefit  that  the  CRC  claimed.  This  paper  was  intended  to  shed  light  on  the   economics  of  the  project,  ultimately  concluding  that  the  project’s  benefit,  if  
  • 33.     31   completed,  would  more  than  likely  not  be  as  large  as  the  CRC  Final  Report  claimed  it   would  be.       This  was  conducted  by  first  looking  at  previous  economic  analyses  of   metropolitan  freeway  congestion  to  develop  theory  understanding  how,  why,  and   what  its  effects  are  on  an  area  economy.  This  theory  included  examining  common   policy  application  to  freeway  congestion  and  their  expected  effectiveness  when   applied  generally.  This  was  followed  by  examining  how  and  why  cost-­‐benefit   analysis  is  the  most  commonly  employed  tool  for  determining  the  economic  merit  of   certain  public  works  projects.  From  this  theoretical  starting  point,  analysis  of  the   CRC’s  claimed  benefits  took  place.  Although  this  analysis  completed  no  calculations   that  disprove  the  net  benefit  presented  in  the  CRC  Final  Report  (2012),  it  has  shown   that  the  theory  that  underlies  a  large  portion  of  the  benefit  calculation  has  major   inconsistencies  with  the  observed  economics  of  traffic.  Each  of  the  main  categories   of  benefit  identified  by  the  CRC  have  been  shown  to  have  some  inconsistencies   when  examined  within  a  theoretical  framework  developed  by  researchers  that  have   conducted  economic  analysis  of  the  phenomenon  of  traffic  congestion.  Key  issues   include  overestimation  of  supply  side  reductions  to  congestion  through  increasing  I-­‐ 5  road  space  and  extension  of  the  MAX.  This,  combined  with  the  CRC’s  failure  to   properly  account  for  any  population  growth  that  would  have  been  a  direct  effect  of   any  congestion  reduction  generated  by  the  build  scenario,  led  to  the  conclusion  that   the  CRC’s  Final  Report  (2012)  was  not  an  accurate  analysis  of  the  projects  impact.   These  issues  leave  room  for  doubt  that  the  project  would  benefit  the  area  if  it  were   to  have  been  completed.    
  • 34.     32     Further  research  into  the  CRC’s  economic  viability,  if  ever  conducted,  should   take  into  account  the  work  of  researchers  who  have  dedicated  themselves  to   understanding  the  economics  of  traffic.  This  further  analysis  should  include  a  model   that  monetizes  the  benefits  of  the  project  properly.  Through  this,  an  independent   analysis  of  the  projects  effects  will  be  available  to  compare  to  the  CRC’s,  allowing  the   public  to  see  what  the  true  net  economic  effect  of  the  CRC  project  may  have  been.