SlideShare a Scribd company logo
1 of 8
Download to read offline
  1	
  
Implementing	
  Solar	
  Power:	
  Suitability	
  Modeling	
  in	
  Land	
  
Acquisition	
  for	
  Mid	
  Size	
  Solar	
  Farms	
  
	
  
Abstract	
  	
  
	
   Rising	
  fossil	
  fuel	
  costs	
  and	
  their	
  negative	
  effects	
  on	
  the	
  environment	
  have	
  
led	
  to	
  promotion	
  and	
  implementation	
  of	
  solar	
  energy	
  in	
  the	
  United	
  States.	
  
German-­‐owned	
  company	
  Geenex	
  works	
  to	
  implement	
  solar	
  energy	
  into	
  existing	
  
power	
  grids	
  in	
  the	
  southeastern	
  United	
  States.	
  This	
  paper	
  introduces	
  a	
  GIS	
  
suitability	
  model	
  tailored	
  to	
  locating	
  areas	
  for	
  mid-­‐sized	
  solar	
  farms	
  constructed	
  
by	
  Geenex	
  in	
  North	
  and	
  South	
  Carolina.	
  The	
  suitability	
  model	
  aids	
  the	
  Geenex	
  
land	
  acquisition	
  team	
  by	
  graphically	
  displaying	
  suitable	
  parcels	
  to	
  consider	
  for	
  
leasing	
  and	
  construction.	
  	
  The	
  model	
  takes	
  the	
  following	
  factors	
  into	
  account:	
  
parcel	
  size,	
  parcel	
  distance	
  from	
  a	
  power	
  station,	
  parcel	
  distance	
  from	
  power	
  
lines,	
  and	
  parcel	
  elevation	
  variance.	
  The	
  model	
  uses	
  a	
  pass-­‐fail	
  approach,	
  where	
  
only	
  properties	
  that	
  are	
  acceptable	
  in	
  each	
  factor	
  are	
  included	
  in	
  the	
  final	
  results.	
  
The	
  suitability	
  model	
  was	
  demonstrated	
  in	
  Northern	
  Lancaster	
  County,	
  South	
  
Carolina,	
  resulting	
  in	
  13	
  passing	
  parcels	
  suitable	
  for	
  building	
  solar	
  farms.	
  
Although	
  this	
  model	
  can	
  be	
  used	
  in	
  most	
  areas,	
  it	
  does	
  not	
  rank	
  the	
  resulting	
  
suitable	
  parcels,	
  as	
  some	
  factors	
  in	
  parcel	
  selection	
  are	
  difficult	
  to	
  model	
  in	
  a	
  GIS.	
  
With	
  increased	
  research	
  and	
  experience	
  acquiring	
  parcels	
  in	
  the	
  southeast,	
  this	
  
model	
  can	
  be	
  improved,	
  possibly	
  ranking	
  the	
  parcels	
  using	
  an	
  ordinal	
  
combination	
  or	
  an	
  inverse	
  distance	
  weighted	
  model.	
  	
  
	
  
Introduction	
  	
  
	
   Oil,	
  coal	
  and	
  gas	
  prices	
  have	
  been	
  steadily	
  increasing	
  over	
  the	
  past	
  few	
  
decades	
  as	
  current	
  supplies	
  have	
  diminished.	
  Although	
  more	
  known	
  fossil	
  fuel	
  
reserves	
  exist	
  and	
  may	
  be	
  found	
  with	
  continued	
  searches	
  and	
  exploration,	
  
digging	
  deeper	
  into	
  the	
  ocean	
  floor	
  and	
  searching	
  in	
  high	
  risk	
  and	
  dangerous	
  
areas	
  such	
  as	
  the	
  Arctic	
  Circle	
  will	
  drive	
  prices	
  for	
  fossil	
  fuels	
  even	
  higher.	
  In	
  
addition	
  to	
  experiencing	
  rising	
  costs,	
  fossil	
  fuels	
  are	
  harmful	
  to	
  the	
  environment.	
  
The	
  burning	
  of	
  fossil	
  fuels	
  releases	
  carbon	
  dioxide,	
  methane	
  and	
  other	
  gasses	
  
into	
  the	
  atmosphere	
  causing	
  a	
  greenhouse	
  effect	
  that	
  traps	
  heat	
  and	
  causes	
  
temperature	
  increases.	
  Global	
  temperatures	
  have	
  increased	
  more	
  than	
  1	
  degree	
  
C	
  over	
  the	
  past	
  century,	
  and	
  are	
  estimated	
  to	
  increase	
  at	
  least	
  an	
  additional	
  2.5	
  
degrees	
  C	
  by	
  2100	
  as	
  a	
  result	
  of	
  greenhouse	
  gas	
  emissions	
  (Parmesan	
  2004).	
  
These	
  temperature	
  increases	
  have	
  caused	
  sea	
  levels	
  to	
  rise,	
  species	
  habitats	
  to	
  
change	
  and	
  decline,	
  and	
  weather	
  pattern	
  to	
  shift,	
  leading	
  to	
  extreme	
  droughts	
  in	
  
some	
  areas.	
  	
  
	
   Alternatives	
  to	
  fossil	
  fuels	
  include:	
  hydropower,	
  nuclear	
  energy,	
  wind	
  
turbines,	
  geothermal	
  energy,	
  biofuels,	
  and	
  solar	
  power.	
  	
  Solar	
  electricity,	
  or	
  
photovoltaic	
  (PV)	
  cells	
  convert	
  sunlight	
  into	
  electricity.	
  Solar	
  electric	
  power	
  use	
  
in	
  the	
  United	
  States	
  has	
  increased	
  from	
  334.2	
  megawatts	
  in	
  1997	
  to	
  6,220.3	
  
megawatts	
  in	
  2013.	
  Despite	
  this	
  increase,	
  solar	
  power	
  accounts	
  for	
  only	
  .2%	
  of	
  
the	
  electricity	
  generated	
  in	
  the	
  US	
  (Department	
  of	
  Energy,	
  Institute	
  for	
  Energy	
  
Research).	
  	
  
In	
  addition	
  to	
  research	
  and	
  development	
  on	
  how	
  to	
  improve	
  photovoltaic	
  
efficiency	
  and	
  reduce	
  costs,	
  linking	
  more	
  photovoltaic	
  cells	
  to	
  existing	
  electric	
  
options	
  will	
  help	
  solar	
  power	
  grow	
  in	
  the	
  US.	
  Originally	
  started	
  in	
  Germany,	
  
  2	
  
Geenex	
  is	
  a	
  vertically	
  integrated	
  company	
  that	
  aims	
  to	
  implement	
  solar	
  power	
  
use	
  in	
  the	
  United	
  States.	
  One	
  of	
  the	
  main	
  components	
  Geenex	
  works	
  on	
  is	
  land	
  
acquisition	
  to	
  build	
  solar	
  farms.	
  In	
  the	
  United	
  States,	
  Geenex	
  is	
  implementing	
  
solar	
  farms	
  in	
  North	
  Carolina,	
  South	
  Carolina	
  and	
  Florida	
  as	
  of	
  November	
  2014	
  
(Geenex).	
  	
  
	
   The	
  solar	
  farms	
  being	
  built	
  by	
  Geenex	
  are	
  much	
  larger	
  than	
  the	
  solar	
  
panels	
  implemented	
  on	
  rooftops	
  for	
  singular	
  residential	
  power.	
  Currently,	
  in	
  
South	
  and	
  North	
  Carolina,	
  solar	
  farms	
  require	
  at	
  least	
  20.23	
  hectares	
  of	
  land.	
  
These	
  mid-­‐sized	
  commercial	
  solar	
  farms	
  need	
  to	
  be	
  hooked	
  up	
  to	
  mid-­‐level	
  
power	
  lines,	
  or	
  three-­‐phase	
  power	
  systems.	
  Three-­‐phase	
  power	
  systems	
  have	
  
three	
  electrical	
  power	
  lines	
  running	
  through	
  them	
  and	
  originate	
  from	
  
distribution	
  substations.	
  In	
  contrast,	
  the	
  solar	
  farms	
  in	
  Florida	
  deliver	
  more	
  
power	
  and	
  require	
  32	
  hectares	
  of	
  land.	
  These	
  larger	
  projects	
  need	
  to	
  be	
  hooked	
  
to	
  much	
  higher	
  voltage	
  transmission	
  lines	
  beginning	
  in	
  larger	
  transmission	
  
stations.	
  Geenex	
  finds	
  suitable	
  parcels	
  for	
  building	
  solar	
  farms,	
  leases	
  the	
  land	
  
from	
  the	
  current	
  property	
  owner,	
  and	
  constructs	
  a	
  solar	
  farm	
  that	
  will	
  link	
  to	
  the	
  
electrical	
  grid	
  in	
  the	
  selected	
  area.	
  This	
  paper	
  provides	
  a	
  GIS	
  suitability	
  model	
  
appropriate	
  for	
  aiding	
  Geenex,	
  and	
  similar	
  solar	
  power	
  businesses,	
  in	
  finding	
  
suitable	
  land	
  for	
  building	
  mid-­‐sized	
  solar	
  farms.	
  
	
  
Literature	
  Review	
  
	
   More	
  energy	
  strikes	
  the	
  earth’s	
  surface	
  in	
  one	
  hour	
  than	
  is	
  used	
  in	
  a	
  year	
  
worldwide	
  (Lewis	
  2007).	
  However,	
  current	
  photovoltaic	
  cells	
  are	
  not	
  able	
  to	
  
capture	
  this	
  incoming	
  energy,	
  with	
  theoretical	
  maximum	
  efficiency	
  capped	
  at	
  
70%	
  (Lewis	
  2007).	
  The	
  amount	
  of	
  solar	
  power	
  that	
  can	
  be	
  generated	
  is	
  
dependent	
  upon	
  the	
  incident	
  solar	
  radiation	
  received	
  at	
  a	
  location,	
  which	
  varies	
  
between	
  latitudes	
  and	
  seasons	
  (Pasqualetti	
  1984).	
  	
  In	
  addition	
  to	
  having	
  low	
  
efficiency,	
  photovoltaic	
  cells	
  are	
  expensive	
  and	
  are	
  not	
  currently	
  competitive	
  
with	
  fossil	
  fuel	
  prices.	
  An	
  additional	
  drawback	
  to	
  implementing	
  solar	
  power	
  is	
  
that	
  it	
  requires	
  a	
  very	
  large	
  surface	
  area.	
  In	
  the	
  past	
  20	
  years,	
  however,	
  
advancements	
  in	
  solar	
  technology	
  have	
  led	
  to	
  the	
  implementation	
  in	
  single	
  unit	
  
homes	
  of	
  rooftop	
  photovoltaic	
  cells,	
  reducing	
  energy	
  costs	
  substantially	
  (Ellison	
  
2006).	
  Currently,	
  solar	
  power	
  is	
  used	
  mainly	
  at	
  the	
  household	
  level	
  in	
  the	
  form	
  of	
  
stand-­‐alone	
  modules	
  in	
  individual	
  homes	
  in	
  remote	
  areas,	
  where	
  it	
  is	
  hard	
  to	
  link	
  
to	
  the	
  main	
  power	
  grid	
  (Bose	
  2008).	
  To	
  become	
  a	
  competitive	
  energy	
  source,	
  
solar	
  power	
  must	
  be	
  accessible	
  to	
  a	
  much	
  larger	
  market.	
  Extending	
  solar	
  power	
  
to	
  a	
  larger	
  market	
  involves	
  linking	
  solar	
  power	
  to	
  a	
  main	
  electric	
  grid	
  (Bose	
  
2008).	
  Although	
  solar	
  use	
  is	
  currently	
  low,	
  20%	
  of	
  new	
  buildings	
  are	
  expected	
  to	
  
be	
  fitted	
  with	
  solar	
  panels	
  in	
  the	
  coming	
  years	
  (Ellison	
  2006).	
  Solar	
  power	
  
growth	
  rate	
  in	
  the	
  US	
  is	
  at	
  only	
  25%;	
  however,	
  the	
  global	
  solar	
  power	
  growth	
  
rate	
  is	
  at	
  40%,	
  with	
  60%	
  in	
  Germany	
  (Ellison	
  2006).	
  Implementation	
  of	
  solar	
  
power	
  can	
  be	
  especially	
  beneficial	
  in	
  the	
  daytime	
  during	
  the	
  summer,	
  when	
  solar	
  
rays	
  are	
  at	
  their	
  strongest	
  and	
  energy	
  use	
  is	
  at	
  its	
  maximum	
  due	
  to	
  energy	
  
requirements	
  for	
  cooling	
  (Bose	
  2008).	
  	
  
	
  
Background	
  	
  
	
   The	
  first	
  step	
  in	
  implementing	
  a	
  solar	
  farm	
  is	
  to	
  identify	
  electrical	
  
companies	
  that	
  are	
  willing	
  to	
  work	
  with	
  solar	
  power.	
  Geenex	
  has	
  found	
  that	
  in	
  
the	
  southeast	
  US,	
  larger	
  electrical	
  companies	
  are	
  more	
  willing	
  to	
  incorporate	
  
  3	
  
solar	
  power	
  than	
  smaller	
  electrical	
  cooperative	
  companies.	
  Therefore,	
  the	
  solar	
  
farms,	
  the	
  electrical	
  lines	
  they	
  link	
  up	
  to,	
  and	
  the	
  substation	
  or	
  transmission	
  
station	
  the	
  solar	
  farms	
  connect	
  to,	
  all	
  need	
  to	
  be	
  in	
  the	
  territory	
  of	
  a	
  major	
  
electrical	
  company	
  willing	
  to	
  work	
  with	
  Geenex.	
  For	
  the	
  projects	
  in	
  the	
  southeast	
  
US,	
  electrical	
  companies	
  working	
  with	
  Geenex	
  include	
  Duke	
  Power,	
  South	
  
Carolina	
  Electric	
  and	
  Gas	
  (SCE	
  &G),	
  and	
  Florida	
  Power	
  and	
  Light.	
  	
  
	
   The	
  second	
  step	
  is	
  to	
  choose	
  counties	
  for	
  solar	
  farm	
  locations.	
  The	
  
counties	
  should	
  have	
  the	
  majority	
  of	
  land	
  serviced	
  by	
  Duke,	
  SCE&G	
  or	
  Florida	
  
Power	
  and	
  Light;	
  counties	
  should	
  also	
  be	
  relatively	
  flat.	
  County	
  selection	
  is	
  done	
  
by	
  the	
  head	
  of	
  land	
  acquisition	
  for	
  that	
  solar	
  power	
  company.	
  Once	
  a	
  county	
  is	
  
selected,	
  the	
  next	
  step	
  is	
  to	
  find	
  the	
  location	
  of	
  electrical	
  substations.	
  To	
  do	
  this,	
  
parcels	
  are	
  searched	
  by	
  owner	
  name	
  to	
  locate	
  parcels	
  owned	
  by	
  the	
  major	
  
electric	
  company	
  in	
  that	
  area;	
  this	
  will	
  show	
  all	
  of	
  the	
  substations	
  and	
  
transmission	
  stations	
  available	
  to	
  link	
  to	
  solar	
  farms.	
  This	
  can	
  either	
  be	
  done	
  by	
  
putting	
  the	
  parcel	
  data	
  in	
  Arcmap	
  and	
  selecting	
  parcels	
  by	
  owner	
  name,	
  or	
  
through	
  the	
  county’s	
  GIS	
  website	
  (if	
  parcel	
  data	
  does	
  not	
  contain	
  this	
  
information).	
  Once	
  all	
  parcels	
  owned	
  by	
  the	
  electric	
  company	
  are	
  selected,	
  they	
  
are	
  viewed	
  (either	
  through	
  imagery	
  base	
  map	
  in	
  Arcmap	
  or	
  county	
  website)	
  to	
  
see	
  which	
  parcels	
  contain	
  substations	
  (for	
  North	
  and	
  South	
  Carolina)	
  and	
  
transmission	
  stations	
  (Florida).	
  Once	
  all	
  substations	
  or	
  transmission	
  stations	
  are	
  
located,	
  a	
  final	
  station(s)	
  is	
  chosen	
  by	
  the	
  head	
  of	
  land	
  acquisition	
  for	
  further	
  
analysis.	
  The	
  land	
  acquisition	
  team	
  often	
  prefers	
  substations	
  that	
  are	
  in	
  more	
  
rural	
  areas	
  of	
  the	
  county,	
  where	
  there	
  are	
  larger	
  parcels	
  and	
  more	
  open	
  land.	
  
Rural	
  areas	
  are	
  also	
  desirable	
  since	
  most	
  people	
  consider	
  large-­‐scale	
  solar	
  farms	
  
to	
  be	
  unattractive,	
  and	
  do	
  not	
  want	
  a	
  solar	
  farm	
  in	
  their	
  back	
  yard,	
  so	
  building	
  in	
  
more	
  remote	
  areas	
  would	
  reduce	
  complaints	
  from	
  residents.	
  	
  Land	
  is	
  also	
  likely	
  
to	
  be	
  less	
  expensive	
  in	
  more	
  rural	
  areas	
  than	
  in	
  more	
  densely	
  populated	
  areas.	
  
	
   Once	
  a	
  final	
  station	
  is	
  selected,	
  GIS	
  technology	
  is	
  used	
  to	
  select	
  a	
  final	
  list	
  
of	
  parcels.	
  Before	
  narrowing	
  down	
  the	
  search	
  for	
  parcels,	
  the	
  power	
  lines	
  
extending	
  from	
  the	
  substation	
  or	
  transmission	
  station	
  must	
  be	
  traced	
  by	
  creating	
  
a	
  new	
  line	
  feature	
  class.	
  The	
  power	
  lines	
  drawn	
  will	
  extend	
  3.22	
  kilometers	
  from	
  
the	
  substation,	
  as	
  that	
  is	
  the	
  maximum	
  distance	
  a	
  solar	
  farm	
  can	
  be	
  from	
  the	
  
power	
  distribution	
  center	
  (substation	
  or	
  transmission	
  station).
	
  	
  
Figure	
  1	
  describes	
  the	
  conceptual	
  model	
  used	
  to	
  select	
  parcels	
  for	
  mid	
  size	
  solar	
  farm.	
  
Methods	
  
	
   The	
  next	
  steps	
  in	
  the	
  selection	
  process	
  uses	
  the	
  conceptual	
  model	
  from	
  
figure	
  1	
  to	
  select	
  the	
  most	
  suitable	
  parcels.	
  This	
  model	
  focuses	
  on	
  selecting	
  
parcels	
  for	
  a	
  mid-­‐sized	
  solar	
  farm	
  in	
  North	
  or	
  South	
  Carolina.	
  The	
  first	
  step	
  is	
  to	
  
start	
  with	
  all	
  of	
  the	
  parcels	
  near	
  the	
  selected	
  substation.	
  This	
  can	
  either	
  be	
  done	
  
using	
  all	
  county	
  parcels	
  or	
  extracting	
  a	
  selection	
  from	
  the	
  county	
  GIS	
  website.	
  
Suitable	
  
parcels	
  	
  
Parcels	
  over	
  
20.23	
  hetacres	
   Relativley	
  	
  
dlat	
  	
  parcels	
  	
  
Parcels	
  within	
  
3.22	
  km	
  of	
  
power	
  station	
  
All	
  parcels	
  near	
  
selcted	
  power	
  
station	
   Parcels	
  within	
  
182.88m	
  of	
  
power	
  line	
  
  4	
  
From	
  the	
  available	
  parcels,	
  all	
  parcels	
  over	
  20.23	
  hectares	
  are	
  selected.	
  From	
  this	
  
selection,	
  only	
  parcels	
  within	
  3.22	
  km	
  of	
  the	
  substation	
  are	
  selected.	
  The	
  
threshold	
  of	
  3.22	
  km	
  is	
  chosen	
  to	
  keep	
  costs	
  within	
  an	
  acceptable	
  range.	
  Next,	
  
the	
  power	
  line	
  feature	
  class	
  is	
  added,	
  and	
  parcels	
  within	
  182.88	
  meters	
  of	
  the	
  
drawn	
  distribution	
  lines	
  are	
  selected	
  from	
  the	
  previously	
  selected	
  parcels.	
  The	
  
solar	
  farm	
  must	
  be	
  connected	
  to	
  the	
  three-­‐phase	
  power;	
  however,	
  if	
  an	
  ideal	
  
parcel	
  is	
  very	
  close	
  (within	
  182.88	
  meters	
  of	
  distribution	
  lines),	
  an	
  easement	
  can	
  
be	
  used	
  to	
  link	
  the	
  two	
  at	
  minimal	
  cost.	
  Large-­‐scale	
  solar	
  farms	
  require	
  a	
  
relatively	
  flat	
  area	
  and	
  cannot	
  be	
  located	
  on	
  a	
  steep	
  slope	
  or	
  hill.	
  Therefore,	
  
parcels	
  with	
  high	
  elevation	
  variance	
  are	
  removed	
  from	
  the	
  currently	
  selected	
  
parcels	
  that	
  are	
  over	
  20.23	
  hectares,	
  within	
  3.22	
  km	
  of	
  the	
  power	
  station	
  and	
  
182.88	
  meters	
  of	
  distribution	
  lines.	
  The	
  final	
  remaining	
  parcels	
  are	
  then	
  
considered	
  suitable	
  for	
  building	
  a	
  solar	
  farm.	
  This	
  conceptual	
  model	
  in	
  Figure	
  1	
  
can	
  also	
  be	
  expressed	
  as	
  the	
  following	
  mathematical	
  models.	
  	
  
	
  
	
  
Figure	
  2:	
  Mathematical	
  Model	
  for	
  selecting	
  suitable	
  parcels	
  for	
  mid	
  size	
  solar	
  farm	
  	
  
	
   For	
  each	
  factor	
  in	
  this	
  mathematical	
  model,	
  parcels	
  that	
  meet	
  the	
  criteria	
  
are	
  given	
  a	
  value	
  1	
  while	
  the	
  rest	
  are	
  given	
  a	
  value	
  of	
  0.	
  For	
  example,	
  for	
  factor	
  1,	
  
parcels	
  that	
  are	
  over	
  20.23	
  hectares	
  are	
  given	
  a	
  value	
  of	
  1;	
  the	
  rest	
  of	
  the	
  parcels	
  
receive	
  a	
  value	
  of	
  0.	
  In	
  order	
  to	
  determine	
  parcel	
  elevation	
  variance	
  for	
  factor	
  4,	
  
elevation	
  standard	
  deviation	
  is	
  used.	
  Standard	
  deviation	
  is	
  a	
  good	
  measure	
  of	
  
how	
  much	
  the	
  elevation	
  varies	
  in	
  a	
  parcel.	
  Parcels	
  with	
  high	
  variation	
  in	
  
elevation	
  are	
  not	
  suitable	
  for	
  building	
  a	
  solar	
  farm;	
  therefore	
  parcels	
  with	
  a	
  
standard	
  deviation	
  greater	
  than	
  10	
  are	
  removed,	
  and	
  given	
  a	
  value	
  of	
  0.	
  When	
  all	
  
4	
  factors	
  are	
  multiplied	
  together,	
  only	
  parcels	
  that	
  receive	
  a	
  1	
  for	
  each	
  factor	
  will	
  
have	
  a	
  final	
  value	
  of	
  1.	
  All	
  parcels	
  with	
  a	
  value	
  of	
  1	
  are	
  the	
  parcels	
  suitable	
  for	
  
solar	
  implementation.	
  	
  
Study	
  Area	
  Example	
  
	
   For	
  this	
  study,	
  Northern	
  Lancaster	
  County,	
  South	
  Carolina	
  was	
  chosen	
  to	
  
implement	
  the	
  suitability	
  model	
  for	
  mid-­‐sized	
  solar	
  farms	
  described	
  above.	
  In	
  
Lancaster	
  County,	
  the	
  major	
  electrical	
  provider	
  is	
  Duke	
  Energy.	
  The	
  selected	
  
Duke	
  Energy	
  substation	
  is	
  in	
  Northern	
  Lancaster	
  County,	
  at	
  approximately	
  34.82	
  
degrees	
  0	
  N	
  80.830	
  W.	
  This	
  area	
  of	
  Lancaster	
  County	
  is	
  rural	
  with	
  many	
  large	
  
parcels.	
  Parcels	
  were	
  extracted	
  from	
  the	
  Lancaster	
  County	
  GIS	
  website;	
  the	
  
parcel	
  selection	
  was	
  approximately	
  9.66	
  km	
  in	
  width	
  by	
  12.87	
  km	
  in	
  length.	
  	
  
	
  
Factor	
  1:	
  Parcel	
  
Size	
  
Factor	
  2:	
  Parcel	
  
Distancefrom	
  
Substation	
  
Factor	
  3:	
  
Parcel	
  
Distance	
  
from	
  
Powerline	
  
Factor	
  4:	
  
Parcel	
  
Elevation	
  
Variance	
  
Resulting	
  
Parcels	
  
  5	
  
	
  
Figure	
  3:	
  Map	
  of	
  Parcels	
  near	
  selected	
  substation	
  in	
  Lancaster	
  County	
  with	
  power	
  lines	
  	
  
Figure	
  3	
  shows	
  the	
  study	
  region	
  in	
  Lancaster	
  County,	
  SC;	
  the	
  distribution	
  
substation	
  is	
  in	
  the	
  center	
  of	
  the	
  study	
  area	
  parcels	
  with	
  power	
  lines	
  extending	
  
north,	
  northeast	
  and	
  south	
  from	
  the	
  substation.	
  In	
  order	
  to	
  select	
  the	
  most	
  
suitable	
  parcels	
  from	
  this	
  area,	
  the	
  model	
  below	
  in	
  Figure	
  4	
  was	
  implemented	
  in	
  
model	
  builder	
  in	
  Arcmap.	
  	
  
	
  
Figure	
  4:	
  Suitability	
  model	
  for	
  locating	
  parcels	
  for	
  mid	
  size	
  solar	
  farm	
  	
  
	
   The	
  data	
  for	
  this	
  model	
  uses	
  the	
  parcel	
  data	
  from	
  Lancaster	
  County	
  
extracted	
  from	
  the	
  Lancaster	
  County	
  GIS	
  website	
  as	
  well	
  as	
  a	
  power	
  line	
  
shapefile	
  traced	
  by	
  hand	
  (Lancaster	
  County	
  Assessors	
  Office).	
  To	
  determine	
  
elevation	
  variance,	
  elevation	
  data	
  from	
  United	
  States	
  Geological	
  Survey’s	
  
National	
  Elevation	
  Dataset	
  was	
  used;	
  this	
  data	
  set	
  contained	
  19m	
  resolution	
  data	
  
(United	
  States	
  Geological	
  Survey).	
  	
  	
  
	
   The	
  Lancaster	
  County	
  parcel	
  data	
  contained	
  very	
  little	
  information	
  about	
  
each	
  parcel,	
  similar	
  to	
  much	
  of	
  the	
  free	
  GIS	
  data	
  available	
  to	
  Geenex.	
  Therefore,	
  
step	
  one	
  in	
  the	
  model	
  is	
  to	
  add	
  an	
  area	
  field	
  for	
  each	
  parcel	
  and	
  calculate	
  the	
  area	
  
for	
  each	
  parcel	
  using	
  the	
  calculate	
  field	
  tool.	
  After	
  each	
  parcel	
  contained	
  an	
  area	
  
field,	
  parcels	
  over	
  20.23	
  hectares	
  (50	
  acres)	
  were	
  selected	
  using	
  the	
  select	
  by	
  
  6	
  
attributes	
  tool.	
  Next,	
  parcels	
  were	
  selected	
  from	
  within	
  the	
  existing	
  set	
  using	
  the	
  
select-­‐by-­‐location	
  tool,	
  to	
  identify	
  parcels	
  that	
  were	
  within	
  3.22	
  km	
  (2	
  miles)	
  of	
  
the	
  chosen	
  substation.	
  The	
  resulting	
  parcels	
  are	
  over	
  20.23	
  hectares	
  and	
  within	
  
3.22	
  km	
  of	
  the	
  substation.	
  The	
  select-­‐by-­‐location	
  tool	
  was	
  used	
  again	
  to	
  locate	
  
parcels	
  from	
  current	
  selection	
  that	
  were	
  within	
  182.88m	
  (600	
  ft)	
  of	
  the	
  
distribution	
  lines.	
  Next,	
  the	
  zonal	
  statistics	
  were	
  used	
  to	
  determine	
  elevation	
  
characteristics	
  (mean,	
  minimum,	
  maximum,	
  range,	
  standard	
  deviation,	
  etc.)	
  for	
  
each	
  parcel.	
  This	
  procedure	
  manipulated	
  the	
  elevation	
  data,	
  in	
  raster	
  form,	
  to	
  
use	
  with	
  the	
  vector	
  data	
  for	
  this	
  model.	
  The	
  statistical	
  elevation	
  data	
  was	
  then	
  
linked	
  to	
  the	
  parcel	
  attribute	
  table	
  using	
  the	
  add/join	
  tool.	
  The	
  final	
  step	
  of	
  the	
  
model	
  was	
  to	
  eliminate	
  the	
  parcels	
  with	
  the	
  highest	
  variance	
  in	
  elevation	
  using	
  
the	
  standard	
  deviation	
  value	
  calculated	
  for	
  each	
  parcel.	
  From	
  the	
  selected	
  
parcels	
  that	
  were	
  over	
  20.23	
  hectares,	
  within	
  3.22	
  km	
  of	
  the	
  substation,	
  and	
  
182.88	
  m	
  of	
  the	
  power	
  lines,	
  a	
  final	
  select-­‐by-­‐attributes	
  function	
  was	
  used	
  to	
  
select	
  the	
  parcels	
  with	
  a	
  standard	
  deviation	
  value	
  of	
  ten	
  or	
  less.	
  Parcels	
  with	
  a	
  
standard	
  deviation	
  greater	
  than	
  10	
  were	
  considered	
  to	
  have	
  too	
  much	
  elevation	
  
variance.	
  	
  
	
   This	
  suitability	
  model	
  did	
  not	
  use	
  the	
  reclassify	
  and	
  times	
  function	
  
described	
  in	
  the	
  mathematical	
  model	
  in	
  figure	
  2,	
  as	
  the	
  majority	
  of	
  the	
  data	
  used	
  
in	
  this	
  model	
  was	
  in	
  vector	
  format.	
  The	
  raster	
  elevation	
  data	
  was	
  aggregated	
  
with	
  the	
  vector	
  parcels	
  using	
  zonal	
  statistics	
  as	
  a	
  table.	
  The	
  final	
  resulting	
  parcels	
  
were	
  added	
  to	
  the	
  original	
  map	
  to	
  show	
  which	
  parcels	
  were	
  suitable	
  to	
  build	
  a	
  
mid	
  range	
  solar	
  farm	
  on	
  near	
  the	
  study	
  substation	
  shown	
  in	
  Figure	
  5.	
  	
  
	
  
Results	
  
	
  
Figure	
  5:	
  Map	
  of	
  parcels	
  selected	
  by	
  the	
  suitability	
  model	
  	
  
	
   The	
  results	
  of	
  the	
  suitability	
  model	
  described	
  above	
  show	
  13	
  parcels	
  that	
  
fit	
  the	
  requirements	
  for	
  building	
  a	
  mid-­‐range	
  solar	
  farm.	
  The	
  following	
  parcels	
  
were	
  then	
  linked	
  to	
  owner	
  name	
  and	
  address,	
  parcel	
  number	
  and	
  approximate	
  
sale	
  price	
  data	
  from	
  the	
  Lancaster	
  County	
  GIS	
  website	
  (Lancaster	
  County	
  
  7	
  
Assessors	
  Office).	
  Each	
  selected	
  parcel	
  was	
  identified	
  by	
  comparing	
  the	
  output	
  
map	
  above	
  (Figure	
  5)	
  with	
  the	
  online	
  map	
  from	
  Lancaster	
  County	
  GIS.	
  As	
  the	
  
parcel	
  data	
  was	
  extracted	
  for	
  free	
  from	
  Lancaster	
  County,	
  the	
  shapefile	
  did	
  not	
  
contain	
  much	
  information.	
  	
  However,	
  other	
  county	
  data	
  shapefiles	
  used	
  for	
  land	
  
acquisition	
  by	
  Geenex	
  contains	
  parcel	
  information	
  in	
  the	
  database	
  file,	
  and	
  this	
  
extra	
  step	
  is	
  not	
  needed.	
  The	
  map	
  with	
  selected	
  parcels	
  as	
  well	
  as	
  a	
  file	
  linking	
  
each	
  parcel	
  to	
  owner	
  and	
  price	
  details	
  was	
  then	
  sent	
  to	
  the	
  head	
  of	
  land	
  
acquisition	
  for	
  negotiating	
  a	
  single	
  parcel	
  to	
  lease.	
  The	
  selected	
  parcel	
  directly	
  
south	
  of	
  the	
  power	
  station	
  was	
  chosen	
  and	
  leased	
  in	
  October	
  2014,	
  and	
  
construction	
  of	
  a	
  mid-­‐sized	
  solar	
  farm	
  will	
  commence	
  in	
  early	
  2015.	
  	
  
Conclusion	
  	
  
	
   The	
  suitability	
  model	
  for	
  selecting	
  parcels	
  for	
  mid-­‐sized	
  solar	
  farms	
  can	
  
be	
  used	
  for	
  most	
  regions	
  in	
  the	
  US.	
  The	
  selected	
  area	
  must	
  contain	
  a	
  substation,	
  
with	
  the	
  extending	
  distribution	
  lines	
  traced	
  into	
  a	
  new	
  feature	
  class	
  as	
  well	
  as	
  
parcel	
  shapefile	
  data.	
  	
  The	
  selected	
  area	
  must	
  also	
  contain	
  elevation	
  data.	
  
Although	
  the	
  USGS	
  has	
  elevation	
  data	
  for	
  almost	
  all	
  areas	
  of	
  the	
  United	
  States,	
  
some	
  areas	
  have	
  data	
  with	
  large	
  resolutions.	
  Larger	
  elevation	
  data	
  resolutions,	
  
such	
  as	
  200m,	
  can	
  still	
  be	
  applied	
  in	
  the	
  model,	
  but	
  may	
  not	
  yield	
  accurate	
  
results,	
  as	
  the	
  larger	
  cell	
  size	
  will	
  not	
  adequately	
  capture	
  variance	
  in	
  elevation.	
  	
  
The	
  suitability	
  model	
  will	
  also	
  work	
  in	
  areas	
  where	
  power	
  lines	
  do	
  not	
  extend	
  
3.22	
  km	
  from	
  a	
  substation;	
  power	
  lines	
  may	
  end	
  or	
  split	
  into	
  smaller	
  one-­‐phase	
  
power	
  lines.	
  	
  This	
  model	
  will	
  also	
  work	
  for	
  areas	
  where	
  parcel	
  data	
  does	
  not	
  
extend	
  3.22	
  km	
  from	
  the	
  substation,	
  for	
  example,	
  when	
  the	
  county	
  border	
  is	
  
close	
  to	
  the	
  substation	
  and	
  parcel	
  data	
  is	
  not	
  available	
  for	
  the	
  neighboring	
  
county.	
  Although	
  the	
  example	
  in	
  Lancaster	
  County	
  used	
  only	
  one	
  substation,	
  this	
  
model	
  will	
  work	
  for	
  finding	
  suitable	
  parcels	
  for	
  multiple	
  substations,	
  as	
  long	
  as	
  
all	
  substations	
  are	
  combined	
  in	
  one	
  shapefile.	
  In	
  addition	
  to	
  Lancaster	
  County,	
  
this	
  model	
  has	
  also	
  been	
  used	
  to	
  locate	
  suitable	
  parcels	
  for	
  solar	
  farms	
  in	
  
Anderson	
  County,	
  SC	
  using	
  multiple	
  substations.	
  Although	
  this	
  model	
  is	
  designed	
  
for	
  locating	
  parcels	
  for	
  mid-­‐sized	
  solar	
  farms,	
  it	
  can	
  be	
  easily	
  altered	
  to	
  identify	
  
suitable	
  parcels	
  for	
  larger	
  farms.	
  To	
  do	
  this,	
  a	
  transmission	
  station	
  is	
  used	
  
instead	
  of	
  a	
  substation,	
  and	
  the	
  traced	
  feature	
  class	
  will	
  involve	
  extending	
  
transmission	
  lines	
  instead	
  of	
  phase-­‐three	
  distribution	
  lines.	
  The	
  only	
  change	
  
needed	
  is	
  when	
  selecting	
  parcels	
  by	
  size,	
  to	
  adjust	
  the	
  cutoff	
  point	
  to	
  be	
  32	
  
hectares	
  of	
  land,	
  as	
  opposed	
  to	
  23.23	
  hectares.	
  	
  
	
   Although	
  this	
  model	
  finds	
  all	
  parcels	
  suitable	
  for	
  solar	
  implementation,	
  it	
  
does	
  not	
  rank	
  these	
  suitable	
  parcels.	
  Factors	
  that	
  are	
  difficult	
  to	
  model	
  in	
  a	
  GIS	
  
are	
  used	
  after	
  suitable	
  parcels	
  are	
  selected	
  to	
  determine	
  the	
  optimal	
  parcel	
  for	
  
leasing.	
  These	
  factors	
  include	
  what	
  type	
  of	
  landcover	
  the	
  parcel	
  has.	
  Wooded	
  
parcels	
  are	
  undesirable,	
  as	
  trees	
  need	
  to	
  be	
  removed;	
  however	
  the	
  price	
  of	
  
removal	
  depends	
  on	
  the	
  area	
  and	
  can	
  be	
  affordable	
  in	
  some	
  regions.	
  Selected	
  
suitable	
  parcels	
  located	
  near	
  other	
  parcels	
  that	
  are	
  considered	
  to	
  be	
  unsightly	
  or	
  
unfavorable	
  (power	
  or	
  chemical	
  plants,	
  landfills)	
  to	
  nearby	
  residents	
  are	
  
considered	
  desirable,	
  as	
  few	
  people	
  are	
  likely	
  to	
  live	
  in	
  that	
  area	
  and	
  oppose	
  a	
  
solar	
  farm	
  near	
  them.	
  Another	
  factor	
  that	
  cannot	
  be	
  modeled	
  in	
  a	
  GIS	
  is	
  the	
  
likelihood	
  the	
  parcel	
  owner	
  is	
  willing	
  to	
  lease;	
  property	
  owners	
  may	
  live	
  
elsewhere	
  and	
  be	
  interested	
  in	
  leasing	
  the	
  land.	
  However,	
  this	
  information	
  can	
  
only	
  be	
  obtained	
  by	
  contacting	
  each	
  property	
  owner.	
  Although	
  information	
  on	
  
property	
  value	
  can	
  be	
  found,	
  leasing	
  prices	
  for	
  each	
  parcel	
  are	
  determined	
  
  8	
  
through	
  negotiations	
  with	
  each	
  parcel	
  owner.	
  With	
  increased	
  research	
  and	
  
experience	
  acquiring	
  parcels	
  in	
  the	
  southeast,	
  this	
  model	
  can	
  be	
  improved,	
  
possibly	
  ranking	
  the	
  parcels	
  using	
  an	
  ordinal	
  combination	
  or	
  an	
  inverse	
  distance	
  
weighted	
  model.	
  	
  
	
  
	
  	
  
References	
  
	
  
Bose,	
  Deb	
  Kumar.	
  “Prospects	
  of	
  Solar	
  Power	
  in	
  India	
  Under	
  Global	
  Warming”.	
  
Economic	
  and	
  Political	
  Weekly	
  43(2008)	
  14-­‐17.	
  	
  
	
  
Department	
  of	
  Energy.	
  “Renewable	
  Energy:	
  An	
  Overview”,	
  Energy	
  Efficiency	
  and	
  
Renewable	
  Energy	
  Clearninghouse	
  (2001).	
  Accessed	
  December	
  11,	
  2014.	
  	
  
DOE/GO-­‐102001-­‐1102.	
  	
  
	
  
Ellison,	
  Katherine.	
  Solar	
  power:	
  The	
  future	
  looks	
  bright,	
  Frontiers	
  in	
  Ecology	
  and	
  
the	
  Environment,	
  4(8)	
  448.	
  	
  
	
  
Geenex.	
  “Geenex-­‐	
  A	
  solar	
  company”	
  Accessed	
  December	
  10,	
  2014.	
  	
  
http://www.geenexsolar.com/.	
  	
  
	
  
Institute	
  for	
  Energy	
  Research.	
  “Solar”.	
  Accessed	
  December	
  11,	
  2014.	
  
http://instituteforenergyresearch.org/topics/encyclopedia/solar/	
  
	
  
Lancaster	
  County	
  Assessors	
  Office.	
  “Lancaster	
  County	
  Assessors	
  Office.	
  Accessed	
  
December	
  12,	
  2014.	
  
http://qpublic5.qpublic.net/sc_search2.php?county=sc_lancaster.	
  	
  
Lewis,	
  Nathan	
  S.	
  “Toward	
  Cost-­‐Effective	
  Solar	
  Energy	
  Use”.	
  Science	
  315(2007)	
  
798-­‐801.	
  	
  
Parmesan,	
  Camille.	
  “Observed	
  impacts	
  of	
  global	
  climate	
  change	
  in	
  the	
  U.S.”.	
  Pew	
  
Center	
  on	
  Global	
  Climate	
  Change	
  2004	
  1-­‐47.	
  	
  
Pasqualetti,	
  Martin	
  J.	
  and	
  Byron	
  A.	
  Miller.	
  “Land	
  Requirements	
  for	
  the	
  Solar	
  and	
  
Coal	
  Options”.	
  The	
  Geographical	
  Journal	
  150(1984):	
  192-­‐212.	
  
United	
  States	
  Geological	
  Survey.	
  “National	
  Elevation	
  Data	
  Set”.	
  Accessed	
  Dec	
  10,	
  
2014.	
  http://ned.usgs.gov/.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  

More Related Content

What's hot

Solar mission
Solar missionSolar mission
Solar missionkundana
 
1. article azojete vol 11 1 12 ngala
1. article azojete vol 11 1 12 ngala1. article azojete vol 11 1 12 ngala
1. article azojete vol 11 1 12 ngalaOyeniyi Samuel
 
Jawaharlal nehru national solar mission
Jawaharlal nehru national solar missionJawaharlal nehru national solar mission
Jawaharlal nehru national solar missionDileep V Raj
 
Renewable energy for slideshare
Renewable energy for slideshareRenewable energy for slideshare
Renewable energy for slideshareDamion Lawrence
 
IRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of IndiaIRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of IndiaIRJET Journal
 
Solartoenergypresentation geofreyyator-140224025127-phpapp02
Solartoenergypresentation geofreyyator-140224025127-phpapp02Solartoenergypresentation geofreyyator-140224025127-phpapp02
Solartoenergypresentation geofreyyator-140224025127-phpapp02Mukesh Meena
 
Renewable Energy Sources Lecture Notes
Renewable Energy Sources Lecture NotesRenewable Energy Sources Lecture Notes
Renewable Energy Sources Lecture NotesFellowBuddy.com
 
Renewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyRenewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyMalik Sameeullah
 
Scott Sklar | The Stella Group
Scott Sklar | The Stella GroupScott Sklar | The Stella Group
Scott Sklar | The Stella GroupGW Solar Institute
 
C03403012017
C03403012017C03403012017
C03403012017theijes
 
Grid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemGrid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemijtsrd
 
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...IRJET Journal
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic ProjectHarry Indig
 

What's hot (20)

Solar mission
Solar missionSolar mission
Solar mission
 
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel GersFundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
 
1. article azojete vol 11 1 12 ngala
1. article azojete vol 11 1 12 ngala1. article azojete vol 11 1 12 ngala
1. article azojete vol 11 1 12 ngala
 
Jawaharlal nehru national solar mission
Jawaharlal nehru national solar missionJawaharlal nehru national solar mission
Jawaharlal nehru national solar mission
 
Renewable energy for slideshare
Renewable energy for slideshareRenewable energy for slideshare
Renewable energy for slideshare
 
Chapter17 copy
Chapter17   copyChapter17   copy
Chapter17 copy
 
IRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of IndiaIRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of India
 
Solartoenergypresentation geofreyyator-140224025127-phpapp02
Solartoenergypresentation geofreyyator-140224025127-phpapp02Solartoenergypresentation geofreyyator-140224025127-phpapp02
Solartoenergypresentation geofreyyator-140224025127-phpapp02
 
Renewable Energy Sources Lecture Notes
Renewable Energy Sources Lecture NotesRenewable Energy Sources Lecture Notes
Renewable Energy Sources Lecture Notes
 
Renewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyRenewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and Policy
 
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
 
Scott Sklar | The Stella Group
Scott Sklar | The Stella GroupScott Sklar | The Stella Group
Scott Sklar | The Stella Group
 
C03403012017
C03403012017C03403012017
C03403012017
 
Solar mission
Solar missionSolar mission
Solar mission
 
Grid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemGrid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power system
 
Hybrid wind solar energy system
Hybrid wind solar energy systemHybrid wind solar energy system
Hybrid wind solar energy system
 
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
 
Q&a on re
Q&a on reQ&a on re
Q&a on re
 
Session 11 renewable energy
Session 11   renewable energySession 11   renewable energy
Session 11 renewable energy
 
Photovoltaic Project
Photovoltaic ProjectPhotovoltaic Project
Photovoltaic Project
 

Viewers also liked

Napoleontiden
NapoleontidenNapoleontiden
Napoleontidensojimmy
 
Cover page finance
Cover page financeCover page finance
Cover page financebadsharc
 
E samanvay Magazine - Issue 9
E samanvay Magazine - Issue 9E samanvay Magazine - Issue 9
E samanvay Magazine - Issue 9Dhiraj Adwani
 
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...nine
 
TechTalkThursday 27.10.2016: Ceph im NVME Cluster
TechTalkThursday 27.10.2016: Ceph im NVME ClusterTechTalkThursday 27.10.2016: Ceph im NVME Cluster
TechTalkThursday 27.10.2016: Ceph im NVME Clusternine
 
Cuando el problema no es la falta de planeación sino de ejecución
Cuando el problema no es la falta de planeación sino de ejecuciónCuando el problema no es la falta de planeación sino de ejecución
Cuando el problema no es la falta de planeación sino de ejecuciónSALONVIRTUAL
 
Modelo de Negocio - Lienzo Canvas
Modelo de Negocio - Lienzo CanvasModelo de Negocio - Lienzo Canvas
Modelo de Negocio - Lienzo CanvasSALONVIRTUAL
 
Planeación estratégica
Planeación estratégicaPlaneación estratégica
Planeación estratégicajagari25
 
Architecture and town planning
Architecture and town planningArchitecture and town planning
Architecture and town planningVisionary_
 
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...nine
 
Slide tabela periodica
Slide tabela periodicaSlide tabela periodica
Slide tabela periodicaIsasesantos
 

Viewers also liked (13)

Presentación1 (1)
Presentación1 (1)Presentación1 (1)
Presentación1 (1)
 
Napoleontiden
NapoleontidenNapoleontiden
Napoleontiden
 
Cover page finance
Cover page financeCover page finance
Cover page finance
 
E samanvay Magazine - Issue 9
E samanvay Magazine - Issue 9E samanvay Magazine - Issue 9
E samanvay Magazine - Issue 9
 
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...
TechTalkThursday 27.10.2016: upd89.org - Orchestrierung von Security-Updates ...
 
TechTalkThursday 27.10.2016: Ceph im NVME Cluster
TechTalkThursday 27.10.2016: Ceph im NVME ClusterTechTalkThursday 27.10.2016: Ceph im NVME Cluster
TechTalkThursday 27.10.2016: Ceph im NVME Cluster
 
Cuando el problema no es la falta de planeación sino de ejecución
Cuando el problema no es la falta de planeación sino de ejecuciónCuando el problema no es la falta de planeación sino de ejecución
Cuando el problema no es la falta de planeación sino de ejecución
 
Modelo de Negocio - Lienzo Canvas
Modelo de Negocio - Lienzo CanvasModelo de Negocio - Lienzo Canvas
Modelo de Negocio - Lienzo Canvas
 
Planeación estratégica
Planeación estratégicaPlaneación estratégica
Planeación estratégica
 
Architecture and town planning
Architecture and town planningArchitecture and town planning
Architecture and town planning
 
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...
TechTalkThursday 26.11.2015: Manage the minions - Docker Container mit Kubern...
 
Slide tabela periodica
Slide tabela periodicaSlide tabela periodica
Slide tabela periodica
 
Aula sobre tabela periódica
Aula sobre tabela periódicaAula sobre tabela periódica
Aula sobre tabela periódica
 

Similar to WritingExampleBonnieEpstein

Solar energy
Solar energySolar energy
Solar energySAMJESUS1
 
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal Power
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal PowerSolar Power: Solar Heating, Photovoltaics, and Solar Thermal Power
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal PowerToni Menninger
 
176032.pdf
176032.pdf176032.pdf
176032.pdfystitou
 
While a majority of the worlds current electricity supply is gener.pdf
While a majority of the worlds current electricity supply is gener.pdfWhile a majority of the worlds current electricity supply is gener.pdf
While a majority of the worlds current electricity supply is gener.pdfapleathers
 
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...Turlough Guerin GAICD FGIA
 
A Glimpse into the Future of Solar Energy
A Glimpse into the Future of Solar EnergyA Glimpse into the Future of Solar Energy
A Glimpse into the Future of Solar EnergyDominic DeMicco
 
The New Role of Renewable Energy Systems In Developing GCC Electricity Market
The New Role of Renewable Energy Systems In Developing GCC Electricity MarketThe New Role of Renewable Energy Systems In Developing GCC Electricity Market
The New Role of Renewable Energy Systems In Developing GCC Electricity MarketCSCJournals
 
Renewable Energy, 03 2 2011
Renewable Energy, 03 2 2011Renewable Energy, 03 2 2011
Renewable Energy, 03 2 2011James Jurgensen
 
Renewable Energy, 07 29 09
Renewable Energy, 07 29 09Renewable Energy, 07 29 09
Renewable Energy, 07 29 09James Jurgensen
 
Cost Effectively Increasing the Electrical Output of Solar Panels
Cost Effectively Increasing the Electrical Output of Solar PanelsCost Effectively Increasing the Electrical Output of Solar Panels
Cost Effectively Increasing the Electrical Output of Solar PanelsTim Floyd
 
Solarcentury Africa Hybrid Brochure 0216
Solarcentury Africa Hybrid Brochure 0216Solarcentury Africa Hybrid Brochure 0216
Solarcentury Africa Hybrid Brochure 0216Daniel Davies
 
Control For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsControl For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsPRABHAHARAN429
 
Io ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsIo ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsKAIZEN Group Experts
 

Similar to WritingExampleBonnieEpstein (20)

Solar energy
Solar energySolar energy
Solar energy
 
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal Power
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal PowerSolar Power: Solar Heating, Photovoltaics, and Solar Thermal Power
Solar Power: Solar Heating, Photovoltaics, and Solar Thermal Power
 
Lunarsps1
Lunarsps1Lunarsps1
Lunarsps1
 
72177.pdf
72177.pdf72177.pdf
72177.pdf
 
case study photovoltaic
case study photovoltaiccase study photovoltaic
case study photovoltaic
 
176032.pdf
176032.pdf176032.pdf
176032.pdf
 
Alternative energy
Alternative energyAlternative energy
Alternative energy
 
While a majority of the worlds current electricity supply is gener.pdf
While a majority of the worlds current electricity supply is gener.pdfWhile a majority of the worlds current electricity supply is gener.pdf
While a majority of the worlds current electricity supply is gener.pdf
 
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...
Impacts and opportunities from large-scale solar photovoltaic (PV) electricit...
 
A Glimpse into the Future of Solar Energy
A Glimpse into the Future of Solar EnergyA Glimpse into the Future of Solar Energy
A Glimpse into the Future of Solar Energy
 
The New Role of Renewable Energy Systems In Developing GCC Electricity Market
The New Role of Renewable Energy Systems In Developing GCC Electricity MarketThe New Role of Renewable Energy Systems In Developing GCC Electricity Market
The New Role of Renewable Energy Systems In Developing GCC Electricity Market
 
Renewable Energy, 03 2 2011
Renewable Energy, 03 2 2011Renewable Energy, 03 2 2011
Renewable Energy, 03 2 2011
 
Renewable Energy, 07 29 09
Renewable Energy, 07 29 09Renewable Energy, 07 29 09
Renewable Energy, 07 29 09
 
Cost Effectively Increasing the Electrical Output of Solar Panels
Cost Effectively Increasing the Electrical Output of Solar PanelsCost Effectively Increasing the Electrical Output of Solar Panels
Cost Effectively Increasing the Electrical Output of Solar Panels
 
Solarcentury Africa Hybrid Brochure 0216
Solarcentury Africa Hybrid Brochure 0216Solarcentury Africa Hybrid Brochure 0216
Solarcentury Africa Hybrid Brochure 0216
 
Electric vehicles and renewable energy
Electric vehicles and renewable energyElectric vehicles and renewable energy
Electric vehicles and renewable energy
 
Dm24727732
Dm24727732Dm24727732
Dm24727732
 
Control For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart GridsControl For Renewable Energy & Smart Grids
Control For Renewable Energy & Smart Grids
 
Io ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart gridsIo ct part1-06resg-_control for renewable energy and smart grids
Io ct part1-06resg-_control for renewable energy and smart grids
 
Wind Solar Electricity Report
Wind Solar Electricity ReportWind Solar Electricity Report
Wind Solar Electricity Report
 

WritingExampleBonnieEpstein

  • 1.   1   Implementing  Solar  Power:  Suitability  Modeling  in  Land   Acquisition  for  Mid  Size  Solar  Farms     Abstract       Rising  fossil  fuel  costs  and  their  negative  effects  on  the  environment  have   led  to  promotion  and  implementation  of  solar  energy  in  the  United  States.   German-­‐owned  company  Geenex  works  to  implement  solar  energy  into  existing   power  grids  in  the  southeastern  United  States.  This  paper  introduces  a  GIS   suitability  model  tailored  to  locating  areas  for  mid-­‐sized  solar  farms  constructed   by  Geenex  in  North  and  South  Carolina.  The  suitability  model  aids  the  Geenex   land  acquisition  team  by  graphically  displaying  suitable  parcels  to  consider  for   leasing  and  construction.    The  model  takes  the  following  factors  into  account:   parcel  size,  parcel  distance  from  a  power  station,  parcel  distance  from  power   lines,  and  parcel  elevation  variance.  The  model  uses  a  pass-­‐fail  approach,  where   only  properties  that  are  acceptable  in  each  factor  are  included  in  the  final  results.   The  suitability  model  was  demonstrated  in  Northern  Lancaster  County,  South   Carolina,  resulting  in  13  passing  parcels  suitable  for  building  solar  farms.   Although  this  model  can  be  used  in  most  areas,  it  does  not  rank  the  resulting   suitable  parcels,  as  some  factors  in  parcel  selection  are  difficult  to  model  in  a  GIS.   With  increased  research  and  experience  acquiring  parcels  in  the  southeast,  this   model  can  be  improved,  possibly  ranking  the  parcels  using  an  ordinal   combination  or  an  inverse  distance  weighted  model.       Introduction       Oil,  coal  and  gas  prices  have  been  steadily  increasing  over  the  past  few   decades  as  current  supplies  have  diminished.  Although  more  known  fossil  fuel   reserves  exist  and  may  be  found  with  continued  searches  and  exploration,   digging  deeper  into  the  ocean  floor  and  searching  in  high  risk  and  dangerous   areas  such  as  the  Arctic  Circle  will  drive  prices  for  fossil  fuels  even  higher.  In   addition  to  experiencing  rising  costs,  fossil  fuels  are  harmful  to  the  environment.   The  burning  of  fossil  fuels  releases  carbon  dioxide,  methane  and  other  gasses   into  the  atmosphere  causing  a  greenhouse  effect  that  traps  heat  and  causes   temperature  increases.  Global  temperatures  have  increased  more  than  1  degree   C  over  the  past  century,  and  are  estimated  to  increase  at  least  an  additional  2.5   degrees  C  by  2100  as  a  result  of  greenhouse  gas  emissions  (Parmesan  2004).   These  temperature  increases  have  caused  sea  levels  to  rise,  species  habitats  to   change  and  decline,  and  weather  pattern  to  shift,  leading  to  extreme  droughts  in   some  areas.       Alternatives  to  fossil  fuels  include:  hydropower,  nuclear  energy,  wind   turbines,  geothermal  energy,  biofuels,  and  solar  power.    Solar  electricity,  or   photovoltaic  (PV)  cells  convert  sunlight  into  electricity.  Solar  electric  power  use   in  the  United  States  has  increased  from  334.2  megawatts  in  1997  to  6,220.3   megawatts  in  2013.  Despite  this  increase,  solar  power  accounts  for  only  .2%  of   the  electricity  generated  in  the  US  (Department  of  Energy,  Institute  for  Energy   Research).     In  addition  to  research  and  development  on  how  to  improve  photovoltaic   efficiency  and  reduce  costs,  linking  more  photovoltaic  cells  to  existing  electric   options  will  help  solar  power  grow  in  the  US.  Originally  started  in  Germany,  
  • 2.   2   Geenex  is  a  vertically  integrated  company  that  aims  to  implement  solar  power   use  in  the  United  States.  One  of  the  main  components  Geenex  works  on  is  land   acquisition  to  build  solar  farms.  In  the  United  States,  Geenex  is  implementing   solar  farms  in  North  Carolina,  South  Carolina  and  Florida  as  of  November  2014   (Geenex).       The  solar  farms  being  built  by  Geenex  are  much  larger  than  the  solar   panels  implemented  on  rooftops  for  singular  residential  power.  Currently,  in   South  and  North  Carolina,  solar  farms  require  at  least  20.23  hectares  of  land.   These  mid-­‐sized  commercial  solar  farms  need  to  be  hooked  up  to  mid-­‐level   power  lines,  or  three-­‐phase  power  systems.  Three-­‐phase  power  systems  have   three  electrical  power  lines  running  through  them  and  originate  from   distribution  substations.  In  contrast,  the  solar  farms  in  Florida  deliver  more   power  and  require  32  hectares  of  land.  These  larger  projects  need  to  be  hooked   to  much  higher  voltage  transmission  lines  beginning  in  larger  transmission   stations.  Geenex  finds  suitable  parcels  for  building  solar  farms,  leases  the  land   from  the  current  property  owner,  and  constructs  a  solar  farm  that  will  link  to  the   electrical  grid  in  the  selected  area.  This  paper  provides  a  GIS  suitability  model   appropriate  for  aiding  Geenex,  and  similar  solar  power  businesses,  in  finding   suitable  land  for  building  mid-­‐sized  solar  farms.     Literature  Review     More  energy  strikes  the  earth’s  surface  in  one  hour  than  is  used  in  a  year   worldwide  (Lewis  2007).  However,  current  photovoltaic  cells  are  not  able  to   capture  this  incoming  energy,  with  theoretical  maximum  efficiency  capped  at   70%  (Lewis  2007).  The  amount  of  solar  power  that  can  be  generated  is   dependent  upon  the  incident  solar  radiation  received  at  a  location,  which  varies   between  latitudes  and  seasons  (Pasqualetti  1984).    In  addition  to  having  low   efficiency,  photovoltaic  cells  are  expensive  and  are  not  currently  competitive   with  fossil  fuel  prices.  An  additional  drawback  to  implementing  solar  power  is   that  it  requires  a  very  large  surface  area.  In  the  past  20  years,  however,   advancements  in  solar  technology  have  led  to  the  implementation  in  single  unit   homes  of  rooftop  photovoltaic  cells,  reducing  energy  costs  substantially  (Ellison   2006).  Currently,  solar  power  is  used  mainly  at  the  household  level  in  the  form  of   stand-­‐alone  modules  in  individual  homes  in  remote  areas,  where  it  is  hard  to  link   to  the  main  power  grid  (Bose  2008).  To  become  a  competitive  energy  source,   solar  power  must  be  accessible  to  a  much  larger  market.  Extending  solar  power   to  a  larger  market  involves  linking  solar  power  to  a  main  electric  grid  (Bose   2008).  Although  solar  use  is  currently  low,  20%  of  new  buildings  are  expected  to   be  fitted  with  solar  panels  in  the  coming  years  (Ellison  2006).  Solar  power   growth  rate  in  the  US  is  at  only  25%;  however,  the  global  solar  power  growth   rate  is  at  40%,  with  60%  in  Germany  (Ellison  2006).  Implementation  of  solar   power  can  be  especially  beneficial  in  the  daytime  during  the  summer,  when  solar   rays  are  at  their  strongest  and  energy  use  is  at  its  maximum  due  to  energy   requirements  for  cooling  (Bose  2008).       Background       The  first  step  in  implementing  a  solar  farm  is  to  identify  electrical   companies  that  are  willing  to  work  with  solar  power.  Geenex  has  found  that  in   the  southeast  US,  larger  electrical  companies  are  more  willing  to  incorporate  
  • 3.   3   solar  power  than  smaller  electrical  cooperative  companies.  Therefore,  the  solar   farms,  the  electrical  lines  they  link  up  to,  and  the  substation  or  transmission   station  the  solar  farms  connect  to,  all  need  to  be  in  the  territory  of  a  major   electrical  company  willing  to  work  with  Geenex.  For  the  projects  in  the  southeast   US,  electrical  companies  working  with  Geenex  include  Duke  Power,  South   Carolina  Electric  and  Gas  (SCE  &G),  and  Florida  Power  and  Light.       The  second  step  is  to  choose  counties  for  solar  farm  locations.  The   counties  should  have  the  majority  of  land  serviced  by  Duke,  SCE&G  or  Florida   Power  and  Light;  counties  should  also  be  relatively  flat.  County  selection  is  done   by  the  head  of  land  acquisition  for  that  solar  power  company.  Once  a  county  is   selected,  the  next  step  is  to  find  the  location  of  electrical  substations.  To  do  this,   parcels  are  searched  by  owner  name  to  locate  parcels  owned  by  the  major   electric  company  in  that  area;  this  will  show  all  of  the  substations  and   transmission  stations  available  to  link  to  solar  farms.  This  can  either  be  done  by   putting  the  parcel  data  in  Arcmap  and  selecting  parcels  by  owner  name,  or   through  the  county’s  GIS  website  (if  parcel  data  does  not  contain  this   information).  Once  all  parcels  owned  by  the  electric  company  are  selected,  they   are  viewed  (either  through  imagery  base  map  in  Arcmap  or  county  website)  to   see  which  parcels  contain  substations  (for  North  and  South  Carolina)  and   transmission  stations  (Florida).  Once  all  substations  or  transmission  stations  are   located,  a  final  station(s)  is  chosen  by  the  head  of  land  acquisition  for  further   analysis.  The  land  acquisition  team  often  prefers  substations  that  are  in  more   rural  areas  of  the  county,  where  there  are  larger  parcels  and  more  open  land.   Rural  areas  are  also  desirable  since  most  people  consider  large-­‐scale  solar  farms   to  be  unattractive,  and  do  not  want  a  solar  farm  in  their  back  yard,  so  building  in   more  remote  areas  would  reduce  complaints  from  residents.    Land  is  also  likely   to  be  less  expensive  in  more  rural  areas  than  in  more  densely  populated  areas.     Once  a  final  station  is  selected,  GIS  technology  is  used  to  select  a  final  list   of  parcels.  Before  narrowing  down  the  search  for  parcels,  the  power  lines   extending  from  the  substation  or  transmission  station  must  be  traced  by  creating   a  new  line  feature  class.  The  power  lines  drawn  will  extend  3.22  kilometers  from   the  substation,  as  that  is  the  maximum  distance  a  solar  farm  can  be  from  the   power  distribution  center  (substation  or  transmission  station).     Figure  1  describes  the  conceptual  model  used  to  select  parcels  for  mid  size  solar  farm.   Methods     The  next  steps  in  the  selection  process  uses  the  conceptual  model  from   figure  1  to  select  the  most  suitable  parcels.  This  model  focuses  on  selecting   parcels  for  a  mid-­‐sized  solar  farm  in  North  or  South  Carolina.  The  first  step  is  to   start  with  all  of  the  parcels  near  the  selected  substation.  This  can  either  be  done   using  all  county  parcels  or  extracting  a  selection  from  the  county  GIS  website.   Suitable   parcels     Parcels  over   20.23  hetacres   Relativley     dlat    parcels     Parcels  within   3.22  km  of   power  station   All  parcels  near   selcted  power   station   Parcels  within   182.88m  of   power  line  
  • 4.   4   From  the  available  parcels,  all  parcels  over  20.23  hectares  are  selected.  From  this   selection,  only  parcels  within  3.22  km  of  the  substation  are  selected.  The   threshold  of  3.22  km  is  chosen  to  keep  costs  within  an  acceptable  range.  Next,   the  power  line  feature  class  is  added,  and  parcels  within  182.88  meters  of  the   drawn  distribution  lines  are  selected  from  the  previously  selected  parcels.  The   solar  farm  must  be  connected  to  the  three-­‐phase  power;  however,  if  an  ideal   parcel  is  very  close  (within  182.88  meters  of  distribution  lines),  an  easement  can   be  used  to  link  the  two  at  minimal  cost.  Large-­‐scale  solar  farms  require  a   relatively  flat  area  and  cannot  be  located  on  a  steep  slope  or  hill.  Therefore,   parcels  with  high  elevation  variance  are  removed  from  the  currently  selected   parcels  that  are  over  20.23  hectares,  within  3.22  km  of  the  power  station  and   182.88  meters  of  distribution  lines.  The  final  remaining  parcels  are  then   considered  suitable  for  building  a  solar  farm.  This  conceptual  model  in  Figure  1   can  also  be  expressed  as  the  following  mathematical  models.         Figure  2:  Mathematical  Model  for  selecting  suitable  parcels  for  mid  size  solar  farm       For  each  factor  in  this  mathematical  model,  parcels  that  meet  the  criteria   are  given  a  value  1  while  the  rest  are  given  a  value  of  0.  For  example,  for  factor  1,   parcels  that  are  over  20.23  hectares  are  given  a  value  of  1;  the  rest  of  the  parcels   receive  a  value  of  0.  In  order  to  determine  parcel  elevation  variance  for  factor  4,   elevation  standard  deviation  is  used.  Standard  deviation  is  a  good  measure  of   how  much  the  elevation  varies  in  a  parcel.  Parcels  with  high  variation  in   elevation  are  not  suitable  for  building  a  solar  farm;  therefore  parcels  with  a   standard  deviation  greater  than  10  are  removed,  and  given  a  value  of  0.  When  all   4  factors  are  multiplied  together,  only  parcels  that  receive  a  1  for  each  factor  will   have  a  final  value  of  1.  All  parcels  with  a  value  of  1  are  the  parcels  suitable  for   solar  implementation.     Study  Area  Example     For  this  study,  Northern  Lancaster  County,  South  Carolina  was  chosen  to   implement  the  suitability  model  for  mid-­‐sized  solar  farms  described  above.  In   Lancaster  County,  the  major  electrical  provider  is  Duke  Energy.  The  selected   Duke  Energy  substation  is  in  Northern  Lancaster  County,  at  approximately  34.82   degrees  0  N  80.830  W.  This  area  of  Lancaster  County  is  rural  with  many  large   parcels.  Parcels  were  extracted  from  the  Lancaster  County  GIS  website;  the   parcel  selection  was  approximately  9.66  km  in  width  by  12.87  km  in  length.       Factor  1:  Parcel   Size   Factor  2:  Parcel   Distancefrom   Substation   Factor  3:   Parcel   Distance   from   Powerline   Factor  4:   Parcel   Elevation   Variance   Resulting   Parcels  
  • 5.   5     Figure  3:  Map  of  Parcels  near  selected  substation  in  Lancaster  County  with  power  lines     Figure  3  shows  the  study  region  in  Lancaster  County,  SC;  the  distribution   substation  is  in  the  center  of  the  study  area  parcels  with  power  lines  extending   north,  northeast  and  south  from  the  substation.  In  order  to  select  the  most   suitable  parcels  from  this  area,  the  model  below  in  Figure  4  was  implemented  in   model  builder  in  Arcmap.       Figure  4:  Suitability  model  for  locating  parcels  for  mid  size  solar  farm       The  data  for  this  model  uses  the  parcel  data  from  Lancaster  County   extracted  from  the  Lancaster  County  GIS  website  as  well  as  a  power  line   shapefile  traced  by  hand  (Lancaster  County  Assessors  Office).  To  determine   elevation  variance,  elevation  data  from  United  States  Geological  Survey’s   National  Elevation  Dataset  was  used;  this  data  set  contained  19m  resolution  data   (United  States  Geological  Survey).         The  Lancaster  County  parcel  data  contained  very  little  information  about   each  parcel,  similar  to  much  of  the  free  GIS  data  available  to  Geenex.  Therefore,   step  one  in  the  model  is  to  add  an  area  field  for  each  parcel  and  calculate  the  area   for  each  parcel  using  the  calculate  field  tool.  After  each  parcel  contained  an  area   field,  parcels  over  20.23  hectares  (50  acres)  were  selected  using  the  select  by  
  • 6.   6   attributes  tool.  Next,  parcels  were  selected  from  within  the  existing  set  using  the   select-­‐by-­‐location  tool,  to  identify  parcels  that  were  within  3.22  km  (2  miles)  of   the  chosen  substation.  The  resulting  parcels  are  over  20.23  hectares  and  within   3.22  km  of  the  substation.  The  select-­‐by-­‐location  tool  was  used  again  to  locate   parcels  from  current  selection  that  were  within  182.88m  (600  ft)  of  the   distribution  lines.  Next,  the  zonal  statistics  were  used  to  determine  elevation   characteristics  (mean,  minimum,  maximum,  range,  standard  deviation,  etc.)  for   each  parcel.  This  procedure  manipulated  the  elevation  data,  in  raster  form,  to   use  with  the  vector  data  for  this  model.  The  statistical  elevation  data  was  then   linked  to  the  parcel  attribute  table  using  the  add/join  tool.  The  final  step  of  the   model  was  to  eliminate  the  parcels  with  the  highest  variance  in  elevation  using   the  standard  deviation  value  calculated  for  each  parcel.  From  the  selected   parcels  that  were  over  20.23  hectares,  within  3.22  km  of  the  substation,  and   182.88  m  of  the  power  lines,  a  final  select-­‐by-­‐attributes  function  was  used  to   select  the  parcels  with  a  standard  deviation  value  of  ten  or  less.  Parcels  with  a   standard  deviation  greater  than  10  were  considered  to  have  too  much  elevation   variance.       This  suitability  model  did  not  use  the  reclassify  and  times  function   described  in  the  mathematical  model  in  figure  2,  as  the  majority  of  the  data  used   in  this  model  was  in  vector  format.  The  raster  elevation  data  was  aggregated   with  the  vector  parcels  using  zonal  statistics  as  a  table.  The  final  resulting  parcels   were  added  to  the  original  map  to  show  which  parcels  were  suitable  to  build  a   mid  range  solar  farm  on  near  the  study  substation  shown  in  Figure  5.       Results     Figure  5:  Map  of  parcels  selected  by  the  suitability  model       The  results  of  the  suitability  model  described  above  show  13  parcels  that   fit  the  requirements  for  building  a  mid-­‐range  solar  farm.  The  following  parcels   were  then  linked  to  owner  name  and  address,  parcel  number  and  approximate   sale  price  data  from  the  Lancaster  County  GIS  website  (Lancaster  County  
  • 7.   7   Assessors  Office).  Each  selected  parcel  was  identified  by  comparing  the  output   map  above  (Figure  5)  with  the  online  map  from  Lancaster  County  GIS.  As  the   parcel  data  was  extracted  for  free  from  Lancaster  County,  the  shapefile  did  not   contain  much  information.    However,  other  county  data  shapefiles  used  for  land   acquisition  by  Geenex  contains  parcel  information  in  the  database  file,  and  this   extra  step  is  not  needed.  The  map  with  selected  parcels  as  well  as  a  file  linking   each  parcel  to  owner  and  price  details  was  then  sent  to  the  head  of  land   acquisition  for  negotiating  a  single  parcel  to  lease.  The  selected  parcel  directly   south  of  the  power  station  was  chosen  and  leased  in  October  2014,  and   construction  of  a  mid-­‐sized  solar  farm  will  commence  in  early  2015.     Conclusion       The  suitability  model  for  selecting  parcels  for  mid-­‐sized  solar  farms  can   be  used  for  most  regions  in  the  US.  The  selected  area  must  contain  a  substation,   with  the  extending  distribution  lines  traced  into  a  new  feature  class  as  well  as   parcel  shapefile  data.    The  selected  area  must  also  contain  elevation  data.   Although  the  USGS  has  elevation  data  for  almost  all  areas  of  the  United  States,   some  areas  have  data  with  large  resolutions.  Larger  elevation  data  resolutions,   such  as  200m,  can  still  be  applied  in  the  model,  but  may  not  yield  accurate   results,  as  the  larger  cell  size  will  not  adequately  capture  variance  in  elevation.     The  suitability  model  will  also  work  in  areas  where  power  lines  do  not  extend   3.22  km  from  a  substation;  power  lines  may  end  or  split  into  smaller  one-­‐phase   power  lines.    This  model  will  also  work  for  areas  where  parcel  data  does  not   extend  3.22  km  from  the  substation,  for  example,  when  the  county  border  is   close  to  the  substation  and  parcel  data  is  not  available  for  the  neighboring   county.  Although  the  example  in  Lancaster  County  used  only  one  substation,  this   model  will  work  for  finding  suitable  parcels  for  multiple  substations,  as  long  as   all  substations  are  combined  in  one  shapefile.  In  addition  to  Lancaster  County,   this  model  has  also  been  used  to  locate  suitable  parcels  for  solar  farms  in   Anderson  County,  SC  using  multiple  substations.  Although  this  model  is  designed   for  locating  parcels  for  mid-­‐sized  solar  farms,  it  can  be  easily  altered  to  identify   suitable  parcels  for  larger  farms.  To  do  this,  a  transmission  station  is  used   instead  of  a  substation,  and  the  traced  feature  class  will  involve  extending   transmission  lines  instead  of  phase-­‐three  distribution  lines.  The  only  change   needed  is  when  selecting  parcels  by  size,  to  adjust  the  cutoff  point  to  be  32   hectares  of  land,  as  opposed  to  23.23  hectares.       Although  this  model  finds  all  parcels  suitable  for  solar  implementation,  it   does  not  rank  these  suitable  parcels.  Factors  that  are  difficult  to  model  in  a  GIS   are  used  after  suitable  parcels  are  selected  to  determine  the  optimal  parcel  for   leasing.  These  factors  include  what  type  of  landcover  the  parcel  has.  Wooded   parcels  are  undesirable,  as  trees  need  to  be  removed;  however  the  price  of   removal  depends  on  the  area  and  can  be  affordable  in  some  regions.  Selected   suitable  parcels  located  near  other  parcels  that  are  considered  to  be  unsightly  or   unfavorable  (power  or  chemical  plants,  landfills)  to  nearby  residents  are   considered  desirable,  as  few  people  are  likely  to  live  in  that  area  and  oppose  a   solar  farm  near  them.  Another  factor  that  cannot  be  modeled  in  a  GIS  is  the   likelihood  the  parcel  owner  is  willing  to  lease;  property  owners  may  live   elsewhere  and  be  interested  in  leasing  the  land.  However,  this  information  can   only  be  obtained  by  contacting  each  property  owner.  Although  information  on   property  value  can  be  found,  leasing  prices  for  each  parcel  are  determined  
  • 8.   8   through  negotiations  with  each  parcel  owner.  With  increased  research  and   experience  acquiring  parcels  in  the  southeast,  this  model  can  be  improved,   possibly  ranking  the  parcels  using  an  ordinal  combination  or  an  inverse  distance   weighted  model.           References     Bose,  Deb  Kumar.  “Prospects  of  Solar  Power  in  India  Under  Global  Warming”.   Economic  and  Political  Weekly  43(2008)  14-­‐17.       Department  of  Energy.  “Renewable  Energy:  An  Overview”,  Energy  Efficiency  and   Renewable  Energy  Clearninghouse  (2001).  Accessed  December  11,  2014.     DOE/GO-­‐102001-­‐1102.       Ellison,  Katherine.  Solar  power:  The  future  looks  bright,  Frontiers  in  Ecology  and   the  Environment,  4(8)  448.       Geenex.  “Geenex-­‐  A  solar  company”  Accessed  December  10,  2014.     http://www.geenexsolar.com/.       Institute  for  Energy  Research.  “Solar”.  Accessed  December  11,  2014.   http://instituteforenergyresearch.org/topics/encyclopedia/solar/     Lancaster  County  Assessors  Office.  “Lancaster  County  Assessors  Office.  Accessed   December  12,  2014.   http://qpublic5.qpublic.net/sc_search2.php?county=sc_lancaster.     Lewis,  Nathan  S.  “Toward  Cost-­‐Effective  Solar  Energy  Use”.  Science  315(2007)   798-­‐801.     Parmesan,  Camille.  “Observed  impacts  of  global  climate  change  in  the  U.S.”.  Pew   Center  on  Global  Climate  Change  2004  1-­‐47.     Pasqualetti,  Martin  J.  and  Byron  A.  Miller.  “Land  Requirements  for  the  Solar  and   Coal  Options”.  The  Geographical  Journal  150(1984):  192-­‐212.   United  States  Geological  Survey.  “National  Elevation  Data  Set”.  Accessed  Dec  10,   2014.  http://ned.usgs.gov/.