SlideShare a Scribd company logo
1 of 19
Electrical Machines-II
6th Semester, EE and EEE
By
Dr. Binod Kumar Sahu
Associate Professor, Electrical Engg.
Siksha ‘O’ Anusandhan, Deemed to be University,
Bhubaneswar, Odisha, India
Lecture-34
2
Learning Outcomes: - (Previous Lecture_33)
 To solve numerical on voltage equation to determine the back emf and load
angle of a Salient Pole Synchronous Motor.
 To analyse the power equation and power angle characteristics of a
cylindrical pole synchronous motor.
3
Learning Outcomes: - (Today’s Lecture_34)
 To solve numerical on power equation of a Cylindrical Pole Synchronous
Motor.
 To analyse the power equation and power angle characteristics of a Salient
Pole Synchronous Motor.
 To analyse the concept of synchronizing power coefficient and synchronizing
power.
4
2 2
cos( ) cos( ), sin( ) sin( )b b
i i
s s s s
VE VEV V
P and Q
Z Z Z Z
          
Real Power input ‘Pi’ and Reactive power input, ‘Qi’ to the cylindrical pole synchronous
motor are expressed as:
2
0 0
2 2
0 0
cos(90 ) cos(90 )
sin(90 ) sin(90 ) cos
b
i
s s
b b
s s s s
VEV
P
X X
VE VEV V
and Q Q
X X X X

 
   
      
b
s
b
s
VE
P = sinδ
X
V
Q = (V - E cosδ)
X
If the armature resistance is neglected, then, Zs = Xs and θ = 900. So, the expressions for
power input become:
5
2
cos( ) cos( )b b
g
s s
VE E
P
Z Z
    
2
sin( ) sin( )b b
g
s s
VE E
Q
Z Z
    
Real Power Output (i.e. Gross Mechanical Power Developed) ‘Pm’ and Reactive power
output, ‘Qm’ of the cylindrical pole synchronous motor are expressed as:
2
0 0
cos(90 ) cos(90 )b b
g
s s
VE E
P
X X
    b
g
s
VE
P = sinδ
X
 
2 2
0 0
sin(90 ) sin(90 ) cosb b b b
g
s s s s
VE E VE E
Q
X X X X
       b
g b
s
E
Q = Vcosδ - E
X
For machines having negligible armature resistance, i.e.
0
90s a s s sZ r jX jX X    
6
1. A 3-phase, 100 HP, 440 V, star connected synchronous motor has a synchronous impedance of
(0.1 + j 1) Ω/phase. Calculate the load angle, armature current, power factor and efficiency with
an excitation emf of 400 V if the excitation and torque losses are 4 kW.
0
2
440
, 254 .
3
400
, 230.94 .
3
0.1 1 1.005 84.3
, 100 746 4000 78600
3 3
cos( ) cos( )
440 400
78600 cos(84
1.005
b
s
g
b b
g
s s
Supply voltage V V
Back emf E V
Z j
Mechanical power developed P W
But mechanical power developed
VE E
P
Z Z
  
 
 
    
   
  


2
0 0
0
400
.3 ) cos(84.3 )
1.005
26.9


 
 
7
0 0
0
0
254 0 230.94 26.9
, , 114.33 19
0.1 1
cos(19 ) 0.95
, 3 cos( ) 3 440 114.33 0.95 82774.6
786
, 100
b
a
s
i L a
o
i
V E
So armaturecurrent I
Z j
Operating power factor lagging
Input power tothemotro P V I W
P
Efficiency
P


 
    
    

 
        
  
00
100 94.96%
82774.6
 
8
Power Equation of a salient pole Alternator: -
Eb
V
jIdXd
jIqXq
Id
Iq 

Vcos
O
Vsin
Ia
9
0
, 0 , , ' ' .
, cos( ) sin( )a a a a q d
Let E E V V taking E as reference
So I I I jI I jI

  
 

   
        
From the phasor diagram we get,
So, complex power input,
sin
sin .
cos
cos
q q q
q
b
b d d d
d
V
V I X I
X
V E
V E I X I
X




  

   
cossin
* ( ) ( cos sin ) b
a q d
q d
V EV
S V I V I jI V jV j
X X

  
   
         
 
 
Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’.
2 2
sin cos sin sin cosb
q d d
E VV V
P
X X X
    
 
     
 
 
2
b
d q d
VE V 1 1
sinδ + - sin2δ
X 2 X X
10
2 2 2 2
2 2
2
1 cos2 1 cos2
cos cos sin cos
2 2
1 1 1 1
cos cos2
2
b
d d q d d q
d q d q d
VEV V EV V V
Q
X X X X X X
EV V
X X X X X
 
   
 
 
         
    
         
    
    
Waveforms are plotted by taking V = 1.0 pu;
Eb = 0.98 pu; Xd = 1.0 pu and Xq = 0.6 pu.
11
Condition for maximum Power in Salient Pole type Synchronous
Motor: -
Active Power equation is:
Condition for maximum power is
2
1 2
1 1
sin sin 2 sin sin 2
2
m m
d q d
EV V
P P P
X X X
   
 
     
 
 
1 2
2
2 1
2
2 1 2
2 2
1 1 2
2
2 2
1 1 21
2
0
cos 2 cos2 0
2 (2cos 1) cos 0
4 cos cos 2 0
32
cos
8
32
cos
8
m m
m m
m m m
m m m
m
m m m
m
dP
d
P P
P P
P P P
P P P
P
P P P
P

 
 
 

 

  
   
   
  
 
   
  
 
 
12
So, the load angle for maximum power output can be obtained using the relation:
2 2 2
1 1 21
1 2
2
32 1 1
cos , ,
8 2
m m m
m m m
m d q d
P P P EV V
Where P and P
P X X X
 
     
     
  
  
13
Synchronizing Power Coefficient: -
 The rate at which synchronous power ‘P’ varies with load angle ‘δ’ is called the
synchronizing power coefficient ‘Psy’. It is also known as stiffness of coupling, rigidity
factor or, stability factor.
 For cylindrical pole type synchronous motor, power input/phase
So, synchronizing power coefficient/phase in Watts/electrical radian
 For salient pole type alternator, power input/phase
So, synchronizing power coefficient/phase in Watts/electrical radian
sin
s
EV
P
X

cossy
s
dP EV
P
d X


 
2
1 1
sin sin 2
2d q d
EV V
P
X X X
 
 
   
 
 
2 1 1
cos cos2sy
d q d
EV
P V
X X X
 
 
   
 
 
14
So, synchronizing power coefficient (total for 3 phases) in Watts/electrical degree
 Synchronizing power coefficient (total for 3 phases) in Watts/mechanical degree
1
3 cos 3 cos
180 180
sy
s s
EV EV
P
X X

 

     
 
 
 
3 cos 3 cos
180 2 360
sy
s s
EV P P EV
P
X X
 
       
15
Cylindrical Pole Synchronous Motor
Salient Pole Synchronous Motor
Figures are plotted by taking V = 1.0 pu; Eb = 0.98 pu; Xs = 1.0 pu for cylindrical pole and
V = 1.0 pu; Eb = 0.98 pu; Xd = 1.0 pu and Xq = 0.6 pu for salient pole Machine
16
 Synchronizing power coefficient (Psy), is an indication of stiffness of electromagnetic
coupling between stator and rotor magnetic field.
 Too large stiffness of coupling means, that the stator field closely follow the variation in
the rotor speed caused by a sudden disturbance in prime-mover torque.
 A sudden disturbance in the generator or motor field current, also causes the
synchronizing power to come into play, so as to maintain the synchronism.
 So, too rigid electromagnetic coupling i.e. higher stiffness causes undue mechanical
shocks, whenever the synchronous machine is subjected to a sudden change in
mechanical power input.
 Synchronizing power coefficient is directly proportional to excitation emf (E) and
inversely proportional to Xs or Xd.
 So, overexcited alternators are more stiffer.
 Again machines having large air-gaps will have less Xs or Xd, and therefore more stiffer.
 Synchronizing power coefficient (Psy), is positive for stable operating region and
negative for unstable region.
 For smaller values of load angle, Psy value large so, the degree of stability is high.
 As δ increases, Psy decreases and therefore the degree of stability is reduced.
17
Synchronizing Power: -
 The variation in synchronous power due to a small change in load angle is as called the
synchronizing power (Ps).
 When the load angle changes from δ to Δδ, the synchronizing power,
 Synchronizing power ‘Ps’ is transient in nature and comes into play whenever there is a
sudden change in steady state operating condition. Synchronizing power either flow
from or to the bus to restore steady state stability and maintain synchronism.
 The synchronizing power flows from, or to, the bus, in order to maintain the relative
velocity between interacting stator and rotor fields zero; once this is attained, the
synchronizing power vanishes.
2
cos .
1 1
cos cos2 .
s
s
d q d
EV
for cylindrial polealternator
X
dP
P
d EV
V for salient polealternator
X X X
 


  



     
    
   
  
18
 Synchronizing torque (Ts) can be calculated as:
Where, ‘Tsy’ is the synchronizing torque coefficient.
1 1
. . . .s s sy
s s
dP
T P m P
d
 
  
    
19
Thank you

More Related Content

What's hot

Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenaga
suparman unkhair
 

What's hot (20)

Electrical engineering-formulas
Electrical engineering-formulasElectrical engineering-formulas
Electrical engineering-formulas
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
analisa sistem tenaga lanjut
analisa sistem tenaga lanjutanalisa sistem tenaga lanjut
analisa sistem tenaga lanjut
 
Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39Eet3082 binod kumar sahu lecture_39
Eet3082 binod kumar sahu lecture_39
 
Jawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenagaJawaban uts astl ganjil analisa sistem tenaga
Jawaban uts astl ganjil analisa sistem tenaga
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Soln unit5
Soln unit5Soln unit5
Soln unit5
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Lect3 smatgrid-power systemspart2
Lect3 smatgrid-power systemspart2Lect3 smatgrid-power systemspart2
Lect3 smatgrid-power systemspart2
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Electrical machines solved objective
Electrical machines solved objectiveElectrical machines solved objective
Electrical machines solved objective
 
Electrycity 2 p c r o 1
Electrycity 2 p c r o 1Electrycity 2 p c r o 1
Electrycity 2 p c r o 1
 
Unit 3 Part 1
Unit 3 Part 1Unit 3 Part 1
Unit 3 Part 1
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37Eet3082 binod kumar sahu lecture_37
Eet3082 binod kumar sahu lecture_37
 

Similar to Eet3082 binod kumar sahu lecture_34

Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
Zahid Yousaf
 

Similar to Eet3082 binod kumar sahu lecture_34 (20)

Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14Eet3082 binod kumar sahu lecturer_14
Eet3082 binod kumar sahu lecturer_14
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
 
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdfEET3082_Binod Kumar Sahu_Lecturer_08.pdf
EET3082_Binod Kumar Sahu_Lecturer_08.pdf
 
Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38Eet3082 binod kumar sahu lecture_38
Eet3082 binod kumar sahu lecture_38
 
Rohit presentation
Rohit presentationRohit presentation
Rohit presentation
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Power System Stability Introduction
Power System Stability IntroductionPower System Stability Introduction
Power System Stability Introduction
 
Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31Eet3082 binod kumar sahu lecture_31
Eet3082 binod kumar sahu lecture_31
 
Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08Eet3082 binod kumar sahu lecturer_08
Eet3082 binod kumar sahu lecturer_08
 
RGPV EX 503 Unit IV
RGPV EX 503 Unit IVRGPV EX 503 Unit IV
RGPV EX 503 Unit IV
 
Load flow study Part-II
Load flow study Part-IILoad flow study Part-II
Load flow study Part-II
 
Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11Eet3082 binod kumar sahu lecturer_11
Eet3082 binod kumar sahu lecturer_11
 
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.pptBEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
BEF 23803 - Lecture 8 - Conservation of Complex Power.ppt
 
Reactive Power Concepts
Reactive Power ConceptsReactive Power Concepts
Reactive Power Concepts
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
Eet3082 binod kumar sahu lecturer_20
Eet3082 binod kumar sahu lecturer_20Eet3082 binod kumar sahu lecturer_20
Eet3082 binod kumar sahu lecturer_20
 
5-series-compensation.pdf
5-series-compensation.pdf5-series-compensation.pdf
5-series-compensation.pdf
 
Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25Eet3082 binod kumar sahu lecturer_25
Eet3082 binod kumar sahu lecturer_25
 
EMEC-II, unit 1
EMEC-II, unit 1EMEC-II, unit 1
EMEC-II, unit 1
 

More from BinodKumarSahu5

More from BinodKumarSahu5 (20)

Design of rotating electrical machines
Design of rotating electrical machinesDesign of rotating electrical machines
Design of rotating electrical machines
 
Electrical machines 1
Electrical machines 1Electrical machines 1
Electrical machines 1
 
Inductor and transformer desing
Inductor and transformer desingInductor and transformer desing
Inductor and transformer desing
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32Eet3082 binod kumar sahu lecture_32
Eet3082 binod kumar sahu lecture_32
 
Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30Eet3082 binod kumar sahu lecture_30
Eet3082 binod kumar sahu lecture_30
 
Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29Eet3082 binod kumar sahu lecture_29
Eet3082 binod kumar sahu lecture_29
 
Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28Eet3082 binod kumar sahu lecture_28
Eet3082 binod kumar sahu lecture_28
 
Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27Eet3082 binod kumar sahu lecture_27
Eet3082 binod kumar sahu lecture_27
 
Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26Eet3082 binod kumar sahu lecture_26
Eet3082 binod kumar sahu lecture_26
 
Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09Eet3082 binod kumar sahu lecturer_09
Eet3082 binod kumar sahu lecturer_09
 
Eet3082 binod kumar sahu lecturer_13
Eet3082 binod kumar sahu lecturer_13Eet3082 binod kumar sahu lecturer_13
Eet3082 binod kumar sahu lecturer_13
 
Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10Eet3082 binod kumar sahu lecturer_10
Eet3082 binod kumar sahu lecturer_10
 
Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12Eet3082 binod kumar sahu lecturer_12
Eet3082 binod kumar sahu lecturer_12
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
 
Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07Eet3082 binod kumar sahu lecturer_07
Eet3082 binod kumar sahu lecturer_07
 
Eet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 newEet3082 binod kumar sahu lecturer_05 & 6 new
Eet3082 binod kumar sahu lecturer_05 & 6 new
 
Eet3082 binod kumar sahu lecture_03
Eet3082 binod kumar sahu lecture_03Eet3082 binod kumar sahu lecture_03
Eet3082 binod kumar sahu lecture_03
 
Eet3082 binod kumar sahu lecture_02
Eet3082 binod kumar sahu lecture_02Eet3082 binod kumar sahu lecture_02
Eet3082 binod kumar sahu lecture_02
 
Eet3082 binod kumar sahu lecture_01
Eet3082 binod kumar sahu lecture_01Eet3082 binod kumar sahu lecture_01
Eet3082 binod kumar sahu lecture_01
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Eet3082 binod kumar sahu lecture_34

  • 1. Electrical Machines-II 6th Semester, EE and EEE By Dr. Binod Kumar Sahu Associate Professor, Electrical Engg. Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India Lecture-34
  • 2. 2 Learning Outcomes: - (Previous Lecture_33)  To solve numerical on voltage equation to determine the back emf and load angle of a Salient Pole Synchronous Motor.  To analyse the power equation and power angle characteristics of a cylindrical pole synchronous motor.
  • 3. 3 Learning Outcomes: - (Today’s Lecture_34)  To solve numerical on power equation of a Cylindrical Pole Synchronous Motor.  To analyse the power equation and power angle characteristics of a Salient Pole Synchronous Motor.  To analyse the concept of synchronizing power coefficient and synchronizing power.
  • 4. 4 2 2 cos( ) cos( ), sin( ) sin( )b b i i s s s s VE VEV V P and Q Z Z Z Z            Real Power input ‘Pi’ and Reactive power input, ‘Qi’ to the cylindrical pole synchronous motor are expressed as: 2 0 0 2 2 0 0 cos(90 ) cos(90 ) sin(90 ) sin(90 ) cos b i s s b b s s s s VEV P X X VE VEV V and Q Q X X X X               b s b s VE P = sinδ X V Q = (V - E cosδ) X If the armature resistance is neglected, then, Zs = Xs and θ = 900. So, the expressions for power input become:
  • 5. 5 2 cos( ) cos( )b b g s s VE E P Z Z      2 sin( ) sin( )b b g s s VE E Q Z Z      Real Power Output (i.e. Gross Mechanical Power Developed) ‘Pm’ and Reactive power output, ‘Qm’ of the cylindrical pole synchronous motor are expressed as: 2 0 0 cos(90 ) cos(90 )b b g s s VE E P X X     b g s VE P = sinδ X   2 2 0 0 sin(90 ) sin(90 ) cosb b b b g s s s s VE E VE E Q X X X X        b g b s E Q = Vcosδ - E X For machines having negligible armature resistance, i.e. 0 90s a s s sZ r jX jX X    
  • 6. 6 1. A 3-phase, 100 HP, 440 V, star connected synchronous motor has a synchronous impedance of (0.1 + j 1) Ω/phase. Calculate the load angle, armature current, power factor and efficiency with an excitation emf of 400 V if the excitation and torque losses are 4 kW. 0 2 440 , 254 . 3 400 , 230.94 . 3 0.1 1 1.005 84.3 , 100 746 4000 78600 3 3 cos( ) cos( ) 440 400 78600 cos(84 1.005 b s g b b g s s Supply voltage V V Back emf E V Z j Mechanical power developed P W But mechanical power developed VE E P Z Z                      2 0 0 0 400 .3 ) cos(84.3 ) 1.005 26.9      
  • 7. 7 0 0 0 0 254 0 230.94 26.9 , , 114.33 19 0.1 1 cos(19 ) 0.95 , 3 cos( ) 3 440 114.33 0.95 82774.6 786 , 100 b a s i L a o i V E So armaturecurrent I Z j Operating power factor lagging Input power tothemotro P V I W P Efficiency P                              00 100 94.96% 82774.6  
  • 8. 8 Power Equation of a salient pole Alternator: - Eb V jIdXd jIqXq Id Iq   Vcos O Vsin Ia
  • 9. 9 0 , 0 , , ' ' . , cos( ) sin( )a a a a q d Let E E V V taking E as reference So I I I jI I jI                     From the phasor diagram we get, So, complex power input, sin sin . cos cos q q q q b b d d d d V V I X I X V E V E I X I X             cossin * ( ) ( cos sin ) b a q d q d V EV S V I V I jI V jV j X X                       Real Power, P = Real part of ‘S’, and reactive power Q = Imaginary part of ‘S’. 2 2 sin cos sin sin cosb q d d E VV V P X X X                  2 b d q d VE V 1 1 sinδ + - sin2δ X 2 X X
  • 10. 10 2 2 2 2 2 2 2 1 cos2 1 cos2 cos cos sin cos 2 2 1 1 1 1 cos cos2 2 b d d q d d q d q d q d VEV V EV V V Q X X X X X X EV V X X X X X                                              Waveforms are plotted by taking V = 1.0 pu; Eb = 0.98 pu; Xd = 1.0 pu and Xq = 0.6 pu.
  • 11. 11 Condition for maximum Power in Salient Pole type Synchronous Motor: - Active Power equation is: Condition for maximum power is 2 1 2 1 1 sin sin 2 sin sin 2 2 m m d q d EV V P P P X X X                 1 2 2 2 1 2 2 1 2 2 2 1 1 2 2 2 2 1 1 21 2 0 cos 2 cos2 0 2 (2cos 1) cos 0 4 cos cos 2 0 32 cos 8 32 cos 8 m m m m m m m m m m m m m m m dP d P P P P P P P P P P P P P P P                                      
  • 12. 12 So, the load angle for maximum power output can be obtained using the relation: 2 2 2 1 1 21 1 2 2 32 1 1 cos , , 8 2 m m m m m m m d q d P P P EV V Where P and P P X X X                    
  • 13. 13 Synchronizing Power Coefficient: -  The rate at which synchronous power ‘P’ varies with load angle ‘δ’ is called the synchronizing power coefficient ‘Psy’. It is also known as stiffness of coupling, rigidity factor or, stability factor.  For cylindrical pole type synchronous motor, power input/phase So, synchronizing power coefficient/phase in Watts/electrical radian  For salient pole type alternator, power input/phase So, synchronizing power coefficient/phase in Watts/electrical radian sin s EV P X  cossy s dP EV P d X     2 1 1 sin sin 2 2d q d EV V P X X X             2 1 1 cos cos2sy d q d EV P V X X X            
  • 14. 14 So, synchronizing power coefficient (total for 3 phases) in Watts/electrical degree  Synchronizing power coefficient (total for 3 phases) in Watts/mechanical degree 1 3 cos 3 cos 180 180 sy s s EV EV P X X                 3 cos 3 cos 180 2 360 sy s s EV P P EV P X X          
  • 15. 15 Cylindrical Pole Synchronous Motor Salient Pole Synchronous Motor Figures are plotted by taking V = 1.0 pu; Eb = 0.98 pu; Xs = 1.0 pu for cylindrical pole and V = 1.0 pu; Eb = 0.98 pu; Xd = 1.0 pu and Xq = 0.6 pu for salient pole Machine
  • 16. 16  Synchronizing power coefficient (Psy), is an indication of stiffness of electromagnetic coupling between stator and rotor magnetic field.  Too large stiffness of coupling means, that the stator field closely follow the variation in the rotor speed caused by a sudden disturbance in prime-mover torque.  A sudden disturbance in the generator or motor field current, also causes the synchronizing power to come into play, so as to maintain the synchronism.  So, too rigid electromagnetic coupling i.e. higher stiffness causes undue mechanical shocks, whenever the synchronous machine is subjected to a sudden change in mechanical power input.  Synchronizing power coefficient is directly proportional to excitation emf (E) and inversely proportional to Xs or Xd.  So, overexcited alternators are more stiffer.  Again machines having large air-gaps will have less Xs or Xd, and therefore more stiffer.  Synchronizing power coefficient (Psy), is positive for stable operating region and negative for unstable region.  For smaller values of load angle, Psy value large so, the degree of stability is high.  As δ increases, Psy decreases and therefore the degree of stability is reduced.
  • 17. 17 Synchronizing Power: -  The variation in synchronous power due to a small change in load angle is as called the synchronizing power (Ps).  When the load angle changes from δ to Δδ, the synchronizing power,  Synchronizing power ‘Ps’ is transient in nature and comes into play whenever there is a sudden change in steady state operating condition. Synchronizing power either flow from or to the bus to restore steady state stability and maintain synchronism.  The synchronizing power flows from, or to, the bus, in order to maintain the relative velocity between interacting stator and rotor fields zero; once this is attained, the synchronizing power vanishes. 2 cos . 1 1 cos cos2 . s s d q d EV for cylindrial polealternator X dP P d EV V for salient polealternator X X X                            
  • 18. 18  Synchronizing torque (Ts) can be calculated as: Where, ‘Tsy’ is the synchronizing torque coefficient. 1 1 . . . .s s sy s s dP T P m P d          