SlideShare a Scribd company logo
1 of 10
Download to read offline
Z’ectonophysics, 30 (1976) 119-128
@ Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands
THE SIGNIFICANCE OF THE METAMORPHIC ROCKS OF TIMOR IN
THE DEVELOPMENT OF THE BANDA ARC, EASTERN INDONESIA
A.J. BARBER and M.G. AUDLEY-CHARLES
Department of Geology, Chelsea College, University of London, London (England)
Department of Geology, Imperial College of Science and Technology, IJniversity of
London, London (England)
(Submitted January 23, 1975; revised version accepted July 21, 1975)
ABSTRACT
Barber, A.J. and Audley-Charles, M.G., 1976. The significance of the metamorphic rocks
of Timor in the development of the Banda Arc, Eastern Indonesia. Tectonophysics,
30: 119-128.
The metamorphic rocks of Timor are reinterpreted in the light of reconnaissance
mapping of the whole island. All metamorphic rocks that crop out in Timor are alloch-
thonous. Several metamorphic massifs are reported for the first time, the outline of
others is revised. On the basis of their grade, three distinct groups can be mapped:
lustrous slate, amphibolite-serpentinite, and a granulite-amphibolite-greenschist
complex. Each group has distinctive structural relations to other allochthonous elements.
The granulite facies meta-anorthosite in Timor must have originated near the boundary
between the continental mantle and the crust. These and related high-grade metamorphic
rocks may represent slices of an ancient Asian continental basement. These rocks imply
that the history of the Mesozoic-Cainozoic fold belt of the Outer Banda Arc extends
into the Precambrian Era. The metamorphic rocks of Seram appear to be remarkably
similar to those of Timor in grade, distribution and structural relations. The overthrust
directions of the metamorphic rocks in Timor is southwards, in Seram it is northwards.
As the islands are separated by the 4-5 km deep Banda Sea, these directly opposite
thrusts may be explained in terms of the Banda Arc acouiring its sinuosity after the
emplacement of the metamorphic rocks.
INTRODUCTION
The island of Timor lies on the southern limb of the Banda Arc (Fig. l),
a double island arc which encloses the Banda Sea. The Banda Arc is generally
regarded as a product of Mesozoic and Tertiary erogenic events which are
still continuing. The Permian, Mesozoic and Tertiary stratigraphy of the
region is known in outline, but its earlier geological history remains almost
completely unknown. Recent geologic studies in Timor suggest that the
c r.
L __.-
<A‘. )(M
.- ..J
SEA
I-
Fig. 1. Outcrop map of the metamorphic rocks (shown in black) in the islands of the
Outer Banda Arc.
history of the metamorphic rocks probably extends from Precambrian to
Mesozoic time.
This paper is not a detailed discussion of all the metamorphic rocks of
Timor but attempts to show how reconnaissance mapping (on a scale of
1 : 100,000) of the whole island has revealed aspects of their composition,
spatial distribution of three clearly distinguishable metamorphic elements
and their different structural position that have important bearings on the
history of the Banda Arc.
THE METAMORPHIC ROCKS OF TIMOR
Metamorphic rocks in Timor, called the Lolotoi Complex by Audley-
Charles (1968), form a zone of massifs, with mountainous topography,
rising to a height of nearly 3,090 m in Indonesian Timor and extending the
whole length of the Island (Fig. 2). A general account and detailed de-
scriptions of the metamorphic rocks of Timor are in reports of the University
of Amsterdam’s pre-war expedition to the area (De Roever, 1940; Tappen-
beck, 1940) and the work of Lie Waard (1964,1966,1957a, 1967b, 1959).
The metamorphic massifs of Portuguese Timor were delineated by
12i
MAINLY AMPHIBOLITE 8 SERPENTINITE
MAiNLY LUSTROUS SLATE
Fig. 2. Outcrop map of the metamorphic rocks in Timor. The boundary between Por-
tuguese and Indonesian Timor, as well as the Ocussi enclave in Indonesian Timor, are
indicated.
Audley-Charles (1968). Subsequently we re-examined the specimens col-
lected by the University of Amsterdam’s expedition, and visited most of
the metamorphic massifs in both Indonesian and Portuguese Timor.
Three groups of metamorphic rocks can be distinguished in Timor on
the basis of their metamorphic grade.
HIGH-GRADE METAMORPHIC ROCKS
The highest grade metamorphic rocks are garnet meta-anorthosite ob-
tained from the Booi massif in western Timor. These rocks contain pyrope-
almandine (Py, sGrl 4Alms s ) garnet and plagioclase of labradorite (An, s )
composition. The presence of a high proportion of the pyrope molecule
in the garnets indicates that these rocks were metamorphosed in the granu-
lite facies. This is the first record of rocks of this grade occurring in the
Banda Arc.
Rocks metamorphosed in the amphibolite facies occur in many of the
massifs throughout Timor. The rock types include pyroxene amphibolite,
garnet amphibolite, and garnet-hornblendediopside gneiss (with brownish-
green hornblende, plagioclase at least as calcic as oligoclase, and rutile).
These rocks are commonly folded, foliated and lineated. Many specimens
of garnet amphibolite in particular show a complex progressive metamorphic
and structural history in inclusion trails within garnet crystals, many of
which are sigmoidal (De Waard, 1957b). An equally complex history is in-
dicated in the field where, for instance in the Mosu massif in the northwest.
foliated and lineated hornblende gneiss is cut by unfoliated diorite and
amphibolite dykes.
Amphibolitc-facies metasedimentary rocks also occur in many of the
massifs, for instance marble and talc-silicate rocks in Lalan Asu (De Waard,
1957b) and Lakaan. An extensive mass of cordierite gneiss occurs in the
Mosu massif in northwestern Timor. Massifs lying farther to the south and
east, Mollo, Mutis, Miomaffo and Lakaan, contain biotite gneiss and mica
schist with kyanite, garnet and staurolite. A thin section studied by Tappen-
beck (1940, p. 61, slide T127) and material collected by us from the Booi
massif (Fig. 2), shows original garnet-kyanite assemblage in process of
replacement by a cordierite-sillimanitespinel assemblage. Garnet crystals
are enclosed in rims of cordierite, whereas sillimanite occurs as aggregates
of coarse crystals pseudomorphic after kyanite. Spine1 forms a corona
around the sillimanite pseudomorphs. The textural relations indicate that the
high-pressure garnet-kyanite assemblage was formed early in the history of
the complex and the low-pressure cordieritesillimanite assemblage at a
later stage.
GREENSCHISTFACIESMETAMORPHICROCKS
Many of the amphibolite-facies basic and pelitic rocks show the effects
of later deformation and retrograde metamorphism with the replacement
of high-grade metamorphic minerals by aggregates of albite, epidote, chlorite
and actinolite of the greenschist facies. Relict garnet, hornblende and plagio-
clase crystals enclosed in augen, and large rutile crystals enclosed in sphene
rims, may be the only indication that the rock was formerly a high-grade
mineral assemblage. Further complexity can be seen where greenschist
facies foliation is itself refolded (De Roever, 1940, pl. V2). High-grade
crystalline rocks on the southern side of the Usu massif have been reduced
to fine-grained, banded, greenschist mylonite, resembling very closely
mylonite found in major thrust belts such as the Moine thrust belt of the
northwest Highlands of Scotland (Barber, 1965).
In addition to retrogressed high-grade rocks, many massifs, e.g. Mollo
(Tappenbeck, 1940) and Mutis (De Roever, 1940), include metavolcanic
and metasedimentary rocks which have been metamorphosed directly in
the greenschist facies. Rock types represented are serpentine-schist, albite-
epidote-chlorite-actinolite-schist, albite--epidote-chlorite-schist,
spessartite-piedmontite-quartzite, quartz-graphite-schist and graphite-.
marble. These rock types appear to represent a volcano-sedimentary se-
quence of serpentine, pillow lava, tuff, manganese chert and black shale.
These rock types are intimately associated in the field with retrogressed
amphibolite-facies rocks (De Roever, 1940) suggesting that they were
tectonically incorporated into pre-existing high-grade metamorphic com-
plexes before both rock groups were affected by greenschist facies meta-
morphism.
Tappenbeck (1940) observed the mineral glaucophane in the Mollo
massif, indicative of very high-pressure metamorphism. This record has
been used by others (e.g. Suwa, 1961) to make large-scale reconstructions
of circum-Pacific erogenic belts. The thin sections in which the glaucophane
was reported (T 193, T 288) were re-examined at the University of Am-
sterdam. The mineral from rocks collected in situ from the Mollo massif
was found to be blue-green actinolite, typical of the greenschist facies,
not glaucophane.
SLATE AND ASSOCIATED ROCKS
The third group of metamorphic rocks in Timor forms the Dili massif
on the northern side of the island. The southern margin of this massif is
composed of deformed crinoidal limestone and volcanic rocks of Permian
age (Maubisse facies of Audley-Charles, 1968) associated with slate, which
is by far the most important lithology of this massif. Towards the north
coast coarse-grained arenite becomes more important, and the slates develop
into mica schists intruded by occasional masses of gabbro. At the eastern
end of the Dili massif, near Manatuto the rocks include hornblende gneiss
and serpentine associated with marble in which crinoid ossicles may still
be recognized. This complex assemblage of slates, arenites, schists and
ophiolite suite were grouped as the Aileu facies by Audley-Charles (1968),
who mapped their contact with the highly fossiliferous Permian Maubisse
Formation as a thrust. Recent more detailed study of this contact has
shown it to be a stratigraphical transition in the Maubisse region. The im-
portance of this revision is that it proves the Permian age of at least part
of the slate succession of the Aileu facies as suggested by Gageonnet and
Lemoine (1958) on the basis of poorly preserved pelecypods in the slates.
It is possible that the Aileu sequence of slates and arenites extends up-
wards into the Mesozoic and possibly downwards into the older Palaeozoic.
In this massif both the complexity of the fold structures and the grade of
metamorphism increase towards the north coast, where it reaches garnet
grade in places.
The Permian limestones with volcanic rocks (Maubisse facies) also form
several smaller isolated thrust massifs throughout the length of central
Timor.
SIGNIFICANCE AND STRUCTURAL POSITION OF THE METAMORPHIC ROCKS
OF TIMOR
The granulite and amphibolite facies rocks of Timor may represent
fragments of ancient continental crust. The formation of pyrope garnet
and kyanite requires pressures greater than 5 kbars, which can be generated
12.1
only at depths of 15-20 km. Garnet meta-anorthosite, such as that of the
Booi massif, is known elsewhere only from continental Precambrian shields.
An outstanding feature of the metamorphic rocks of Timor is the absence
of rocks of granitic composition, especially migmatitic gneiss, which is a
characteristic feature of most ancient continental shield terrains.
The metamorphic rocks of Timor are isolated massifs, on thrust planes
above folded Permian to Jurassic sedimentary rocks of the Australian con-
tinental shelf (Audley-Charles, 1968). The metamorphic rocks are overlain
unconformably by Cretaceous sedimentary rocks (Palelo Series of Tappen-
beck, 1940) and unconformably by both Eocene limestone, tuff and ag-
glomerate and Early Miocene limestone. These Tertiary rocks are overlain
by the Bobonaro Scaly Clay, interpreted as an olistostrome (Audley-Charles,
1965a), which is composed of a great variety of rock fragments, some
nearly 0.5 km across the outcrop, in a fine-grained matrix of scaly clay.
The Bobonaro Scaly Clay generally surrounds the metamorphic massifs
and covers their slopes. In many river sections this deposit can be seen
resting on the metamorphic rocks.
North of the Lolotoi metamorphic massifs and clearly overriding them is
a northward-dipping thrust sheet composed of Permian limestone with
volcanic rocks (Maubisse facies) which passes stratigraphically into a much
more extensive area of lustrous slate, arenite and a small ophiolite complex
(Aileu facies).
OTHER ISLANDS OF THE OUTER BANDA ARC
Metamorphic rocks, similar to those described from Timor have been
recognized in many of the smaller islands of the Outer Banda Arc (Fig. 1)
j .-.I
L._. I..
LA
--
ky-1 1 LUSTROUS SLAT! 6 GRLYWACKE m PHYLL ITf .: 4
GREENSCHIST AMPWIBO:~TE 8 ‘GRANULITE
I
Fig. 3. Outcrop map of the metamorphic rocks of Seram (after Germeraad, 1946; Van
der Sluis, 1950; and Valk, 1945).
125
and summarized by Van Bemmelen (1949). In Seram (Fig. 3) are exten-
sive outcrops of amphibolite-facies gneiss, greenschist phyllite, and lustrous
slate. Among the amphibolite facies gneiss, metapelite with kyanite (Valk,
1945) or cordierite (Germeraad, 1946) have been recorded, indicating that
both high- and low-pressure metamorphic terrains are present.
INTERPRETATION
Of the two main divisions of the Lolotoi the higher-grade metamorphic
rocks form the earliest unit, perhaps representing fragments of an ancient
Precambrian continental shield. This would imply that the greenschist
facies volcano-sedimentary sequence accreted to these older continental
rocks during Late Precambrian or Palaeozoic time.
Two alternative hypotheses can be proposed to account for the high-
grade continental metamorphic rocks in the Banda Arc. These rocks may
represent the southeast margin of Sundaland of the Asiatic continent,
detached from Western Indonesia and overthrust onto the northern margin
of the Australian continent when the two continents collided during the
Cenozoic (Fig. 4). The obvious obstacle to this hypothesis is that the Banda
Arc is separated from Western Indonesia by the Banda Sea. This difficulty
might be resolved if the Banda Sea could be shown to be a marginal basin
of the Sea of Japan type (Matsuda and Uyeda, 1970), formed by the devel-
opment of a spreading axis which has separated the Banda Arc from Western
Indonesia.
Fig. 4. Sketch cross-section through the southern part of the Banda Arcs interpreting
the allochthonous metamorphic rocks in Timor as detached thrust sheets from the
continental margin of Western Indonesia. The absence of volcanism since the Pliocene
in the islands opposite Timor may indicate subduction has ceased in this part of the
Banda Arc.
1“6
-- ._ ..---
Fig. 5. Sketch cross-section through the southern part of the Banda Arcs interpreting
the allochthonous metamorphic Lolotoi rocks in Timor as basement slices of the
Australian continental margin overthrust onto the imbricated strata of the outer part
of the Australian shelf, which forms the para-autochthon in Timor.
Alternatively the Lolotoi metamorphic rocks may represent crystalline
basement rocks which formed the northern edge of the Australian con-
tinent. According to this interpretation (Fig. 5) the leading edge was thrust
back over continental-shelf deposits when it reached a subduction trench
during the northerly drift of Australia (Audley-Charles et al., 1972). A
variation of this interpretation has already been put forward by W. Hamilton
(1973 and written communication, 1974). Hamilton also regards the Lolotoi
metamorphic rocks as part of the Australian continent but considers that
they have been driven over a wedge of melange and imbricated materials by
the advance of an island arc migrating outwards from Sulawesi during the
Cenozoic.
The overthrust succession of lustrous slates in the Outer Banda Arc, is
closely associated in Timor and Leti with Permian limestone and volcanic
rocks, which must have accumulated in tropical seas because they contain
tropical faunas. During the Permian, Australia lay far to the south according
to palaeomagnetic and palaeoclimatic data (Smith et al., 1973). Audley-
Charles (1965b) suggested that the Maubisse facies of Permian limestone
and volcanic rocks were derived from the northern margin of Tethys be-
cause of the presence of tropical faunas and similarity of the rocks in parts
of Western Indonesia. Our recent observation that the Maubisse facies
locally passes laterally into the Aileu facies of lustrous slate suggests that
all the rocks of the Dili metamorphic massif originated at the Asian con-
tinental margin, perhaps forming part of southeast Sundaland from where
the Lolotoi may have been derived. Certainly the stratigraphical association
between the Aileu and Maubisse Permian facies seems to rule out the pos-
127
sibility that the Aileu flysch slate facies could be the deformed equivalents
of the Permian Australian marginal facies, as suggested by Audley-Charles
et al. (1972). The presence of quartz arenites in the Aileu facies along the
north coast of Portuguese Timor implies a landmass source for the sand,
north of Timor. This accords with the suggestion that the Aileu facies
thrust sheet was derived from Sundaland.
The direction of overthrusting of the metamorphic rocks in Seram (Van
Bemmelen, 1949) is towards the north, in Timor it is towards the south.
Thus the present distribution of the metamorphic rocks in the Banda Arc
(Fig. 1) suggests they have been thrust outwards away from the Banda
Sea. As the Banda Sea is 4-5 km deep it seems a highly unlikely source for
this variety of metamorphic rocks. These observations suggest that the
sinuosity of the Banda Arc was acquired (cf. Visser and Hermes, 1962)
after the metamorphic rocks had been overthrust onto Seram and Timor.
This would produce an apparent divergence of thrust directions not rep-
resentative of the original thrust movements. This hypothesis could be
tested by palaeomagnetic studies of the unmetamorphosed intrusions into
the overthrust metamorphic thrust sheets that field mapping indicates were
emplaced before the thrusts were emplaced. Independent indications that
the sinuosity of the Arc has been acquired are provided by the gross struc-
ture of the Arc. The gradual diminution of the volcanic arc eastwards sug-
gests that subduction may have been progressively less important towards
the eastern end of the arc where strike-slip movements may have predom-
inated at the plate boundary. This would allow the arc to have developed
its sinuosity while it evolved.
ACKNOWLEDGEMENTS
W.P. de Roever provided facilities at the University of Amsterdam and
commented on an early draft of the paper. W. Hamilton suggested improve-
ments which have been incorporated. G. Witty carried out microprobe
analyses, G.A. Chinner assisted in the identification of aluminium silicate
minerals.
REFERENCES
Audley-Charles, M.G., 1965a. A Miocene gravity slide deposit from Timor. Geol. Msg.,
102: 267--276.
Audley-Charles, M.G., 1965b. Permian palaeogeography of the northern Australia-
Timor region. Palaeogr. Palaeoclimatol. Palaeoecol., 1: 297-305.
Audley-Charles, M.G., 1968. The geology of Portuguese Timor. Geol. Sot. Lond. Mem.,
4: l-76.
Audley-Charles, M.G., Carter, D.J. and Milsom, J.S., 1972. Tectonic development of
eastern Indonesia in relation to Gondwanaland dispersal. Nature (Phys. Sci.), 239:
35-39.
12s
Barber, A.J., 1965. The History of the Moine Thrust Zone, Lochcarron and Lochalsh,
Scotland. Proc. Geol. Assoc., 76: 215-242.
De Roever, W.P., 1940. Geological investigations in the south-western Moetis region
(Netherlands Timor). Geol. Exped. Lesser Sunda Islands, 2: 97-344.
De Waard, D., 1954. Structural development of the crystalline schists in Timor, tec-
tonics of the Lalan Asu massif. Indones. J. Nat. Sci., 110: 143-153.
De Waard, D., 1956. Geology of a N-S section across western Timor. Indones. J. Nat.
Sci., 112: 101-114.
De Waard, D., 1957a. Contributions to the geology of Timor XII. The third Timor
geological expedition, preliminary results. Indones. J. Nat. Sci., 113: 7-42.
De Waard, D., 1957b. Zones of regional metamorphism in the Lalan Asu massif, Timor.
K. Ned. Akad. Wet., Proc., 60: 383-392.
De Waard, D., 1959. Anorthite content of plagioclase in basic and pelitic crystalline
schists as related to metamorphic zoning in the Usu massif. Timor. Am. J. Sci., 257:
553-562,
Gageonnet, R. and Lemoine, M., 1958. Contribution ‘a la connaissance de la geologic de
la province portugaise de Timor. Estudos Ensaios. Docum. Jta. Invest. Ultramar,
48: l-138.
Germeraad, J.H., 1946. Geology of Central Seran. De Bussy, Amsterdam, pp. l-135.
Hamilton, W., 1973. Tectonics of the Indonesian region. Geol. Sot. Malaysia Bull., 6:
3-10.
Matsuda, T. and Uyeda, S., 1970. On the Pacific-type orogeny and its mode1 extension
of the paired belts concept and possible origin of marginal seas. Tectonophysics,
11: 5-27.
Smith, A.G., Briden, J.C. and Drewry, G.E., 1973. Phanerozoic World Maps. Spec.
Pap. Palaeontol., 12: l-42.
Suwa, K.; 1961. Petrological and geological studies in the Ryoke metamorphic belt.
J. Earth Sci. Nagoya Univ., 9: 224-303.
Tappenbeck, D., 1940. Geologic des Mollogebirges und einiger benachbarter Gebiete
(Niederllndisch Timor). Geol. Exped. Lesser Sunda Islands, 1: l-105.
Valk, W., 1945. Contributions to the Geology of Western Seran. De Bussy, Amster-
dam, pp. l-104.
Van Bemmelen, R.W., 1949. The geology of Indonesia. Netherlands Government
Printing Office, The Hague, 997 p.
Van der Sluis, J.P., 1950. Geology of East Seran. De Bussy, Amsterdam, pp. l-63.
Visser, W.A. and Hermes, J.J., 1962. Geological results of the exploration for oil in
Netherlands New Guinea. Verh. K. Ned. Geol. Mijnbouwkd. Genoot., 20: l-265.

More Related Content

Similar to barber_audleycharles_1976 Timor metamorphics.pdf

Geochemistry and petrographic analysis of sandstone facies of eze aku formati...
Geochemistry and petrographic analysis of sandstone facies of eze aku formati...Geochemistry and petrographic analysis of sandstone facies of eze aku formati...
Geochemistry and petrographic analysis of sandstone facies of eze aku formati...Alexander Decker
 
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Alexander Decker
 
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...MYO AUNG Myanmar
 
Neogene sedimentary fringe (2012)
Neogene sedimentary fringe (2012)Neogene sedimentary fringe (2012)
Neogene sedimentary fringe (2012)KYI KHIN
 
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzania
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzaniabasin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzania
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in TanzaniaEvèñ Vìvø Edúärð
 
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...Alexander Decker
 
Geological and Mining Potential of Ecuador
Geological and Mining Potential of EcuadorGeological and Mining Potential of Ecuador
Geological and Mining Potential of EcuadorJohn Efraín Bolaños
 
The Geology of South Central Milos, L.Begley.
The Geology of South Central Milos, L.Begley.The Geology of South Central Milos, L.Begley.
The Geology of South Central Milos, L.Begley.Loman Begley
 
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptComparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptDr. Ibr@him
 
Stratigraphy of Trichinopoloy
Stratigraphy of TrichinopoloyStratigraphy of Trichinopoloy
Stratigraphy of TrichinopoloyABHISHEK KUMAR
 
03 hadisuwito presentation rev
03 hadisuwito presentation rev03 hadisuwito presentation rev
03 hadisuwito presentation revMonatom Mgl
 
Antarctic Granites Paper
Antarctic Granites PaperAntarctic Granites Paper
Antarctic Granites PaperRobert Smillie
 
THE PRESENTATION OF MY GRADUATION PROJECT
THE PRESENTATION OF MY GRADUATION PROJECT THE PRESENTATION OF MY GRADUATION PROJECT
THE PRESENTATION OF MY GRADUATION PROJECT MetwallyHamza1
 
audley-charles1965 (1) mangan.pdf
audley-charles1965 (1) mangan.pdfaudley-charles1965 (1) mangan.pdf
audley-charles1965 (1) mangan.pdfBUMIManilapai1
 
audley-charles1965.pdf
audley-charles1965.pdfaudley-charles1965.pdf
audley-charles1965.pdfBUMIManilapai1
 
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration Geologist
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration GeologistMyanmar Gold Geology Report Collection by Myo Aung Ex-Exploration Geologist
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration GeologistMYO AUNG Myanmar
 
Petrological Characterisitics and Paleodepositional Environment of the Sandst...
Petrological Characterisitics and Paleodepositional Environment of the Sandst...Petrological Characterisitics and Paleodepositional Environment of the Sandst...
Petrological Characterisitics and Paleodepositional Environment of the Sandst...iosrjce
 
Thakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsThakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsJyoti Khatiwada
 
A possible new alluvial diamond field related to the Klipspringer kimberlite ...
A possible new alluvial diamond field related to the Klipspringer kimberlite ...A possible new alluvial diamond field related to the Klipspringer kimberlite ...
A possible new alluvial diamond field related to the Klipspringer kimberlite ...James AH Campbell
 

Similar to barber_audleycharles_1976 Timor metamorphics.pdf (20)

Geochemistry and petrographic analysis of sandstone facies of eze aku formati...
Geochemistry and petrographic analysis of sandstone facies of eze aku formati...Geochemistry and petrographic analysis of sandstone facies of eze aku formati...
Geochemistry and petrographic analysis of sandstone facies of eze aku formati...
 
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
Geochemical characteristics of granitoids (ho gneiss) from the pan – african ...
 
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
Tectonic Processes and Metallogeny along the Tethyan Mountain Ranges of the M...
 
Neogene sedimentary fringe (2012)
Neogene sedimentary fringe (2012)Neogene sedimentary fringe (2012)
Neogene sedimentary fringe (2012)
 
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzania
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzaniabasin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzania
basin stratigraphic analysis of Tanga,Ruvu and mandawa basin in Tanzania
 
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...
Keys to paleoenvironmental interpretation of the nkporo formation, afikpo sub...
 
Geological and Mining Potential of Ecuador
Geological and Mining Potential of EcuadorGeological and Mining Potential of Ecuador
Geological and Mining Potential of Ecuador
 
The Geology of South Central Milos, L.Begley.
The Geology of South Central Milos, L.Begley.The Geology of South Central Milos, L.Begley.
The Geology of South Central Milos, L.Begley.
 
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, EgyptComparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
Comparative Study Between Some Uraniferous Volcanic Rocks, Eastern Desert, Egypt
 
Stratigraphy of Trichinopoloy
Stratigraphy of TrichinopoloyStratigraphy of Trichinopoloy
Stratigraphy of Trichinopoloy
 
03 hadisuwito presentation rev
03 hadisuwito presentation rev03 hadisuwito presentation rev
03 hadisuwito presentation rev
 
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang BasinSedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
Sedimentary Facies And Petroleum System Of San Sai Oil Field, Fang Basin
 
Antarctic Granites Paper
Antarctic Granites PaperAntarctic Granites Paper
Antarctic Granites Paper
 
THE PRESENTATION OF MY GRADUATION PROJECT
THE PRESENTATION OF MY GRADUATION PROJECT THE PRESENTATION OF MY GRADUATION PROJECT
THE PRESENTATION OF MY GRADUATION PROJECT
 
audley-charles1965 (1) mangan.pdf
audley-charles1965 (1) mangan.pdfaudley-charles1965 (1) mangan.pdf
audley-charles1965 (1) mangan.pdf
 
audley-charles1965.pdf
audley-charles1965.pdfaudley-charles1965.pdf
audley-charles1965.pdf
 
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration Geologist
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration GeologistMyanmar Gold Geology Report Collection by Myo Aung Ex-Exploration Geologist
Myanmar Gold Geology Report Collection by Myo Aung Ex-Exploration Geologist
 
Petrological Characterisitics and Paleodepositional Environment of the Sandst...
Petrological Characterisitics and Paleodepositional Environment of the Sandst...Petrological Characterisitics and Paleodepositional Environment of the Sandst...
Petrological Characterisitics and Paleodepositional Environment of the Sandst...
 
Thakkhola –mustang garben sediments
Thakkhola –mustang garben sedimentsThakkhola –mustang garben sediments
Thakkhola –mustang garben sediments
 
A possible new alluvial diamond field related to the Klipspringer kimberlite ...
A possible new alluvial diamond field related to the Klipspringer kimberlite ...A possible new alluvial diamond field related to the Klipspringer kimberlite ...
A possible new alluvial diamond field related to the Klipspringer kimberlite ...
 

More from BUMIManilapai1

Herpetological_Diversity_of_Timor_Leste (1).pdf
Herpetological_Diversity_of_Timor_Leste (1).pdfHerpetological_Diversity_of_Timor_Leste (1).pdf
Herpetological_Diversity_of_Timor_Leste (1).pdfBUMIManilapai1
 
reptilesofind02rooi.pdf
reptilesofind02rooi.pdfreptilesofind02rooi.pdf
reptilesofind02rooi.pdfBUMIManilapai1
 
The_Pythons_of_New_Guinea.pdf
The_Pythons_of_New_Guinea.pdfThe_Pythons_of_New_Guinea.pdf
The_Pythons_of_New_Guinea.pdfBUMIManilapai1
 
Hukum Pidana Pof Didik Endro.pdf
Hukum Pidana Pof Didik Endro.pdfHukum Pidana Pof Didik Endro.pdf
Hukum Pidana Pof Didik Endro.pdfBUMIManilapai1
 
Environmental_Crime_article.pdf
Environmental_Crime_article.pdfEnvironmental_Crime_article.pdf
Environmental_Crime_article.pdfBUMIManilapai1
 
dasar hukum pidana bidang migas.pdf
dasar hukum pidana bidang migas.pdfdasar hukum pidana bidang migas.pdf
dasar hukum pidana bidang migas.pdfBUMIManilapai1
 
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...BUMIManilapai1
 
hukum pidana prof. adni sofyan.pdf
hukum pidana prof. adni sofyan.pdfhukum pidana prof. adni sofyan.pdf
hukum pidana prof. adni sofyan.pdfBUMIManilapai1
 
Buku_Pengantar_KRIMINOLOGI (1).pdf
Buku_Pengantar_KRIMINOLOGI (1).pdfBuku_Pengantar_KRIMINOLOGI (1).pdf
Buku_Pengantar_KRIMINOLOGI (1).pdfBUMIManilapai1
 
buku pengantar hukum pidana-revcompressed.pdf
buku pengantar hukum pidana-revcompressed.pdfbuku pengantar hukum pidana-revcompressed.pdf
buku pengantar hukum pidana-revcompressed.pdfBUMIManilapai1
 
buku ajar hukum pidana.pdf
buku ajar hukum pidana.pdfbuku ajar hukum pidana.pdf
buku ajar hukum pidana.pdfBUMIManilapai1
 
BIG_VII_Banda_Lesser_Sunda_7.pdf
BIG_VII_Banda_Lesser_Sunda_7.pdfBIG_VII_Banda_Lesser_Sunda_7.pdf
BIG_VII_Banda_Lesser_Sunda_7.pdfBUMIManilapai1
 
barber_1981 Timor structure.pdf
barber_1981 Timor structure.pdfbarber_1981 Timor structure.pdf
barber_1981 Timor structure.pdfBUMIManilapai1
 
11-stratigrafi-dan-sejarahgeologi.pdf
11-stratigrafi-dan-sejarahgeologi.pdf11-stratigrafi-dan-sejarahgeologi.pdf
11-stratigrafi-dan-sejarahgeologi.pdfBUMIManilapai1
 

More from BUMIManilapai1 (17)

Herpetological_Diversity_of_Timor_Leste (1).pdf
Herpetological_Diversity_of_Timor_Leste (1).pdfHerpetological_Diversity_of_Timor_Leste (1).pdf
Herpetological_Diversity_of_Timor_Leste (1).pdf
 
reptilesofind02rooi.pdf
reptilesofind02rooi.pdfreptilesofind02rooi.pdf
reptilesofind02rooi.pdf
 
The_Timor_Story.pdf
The_Timor_Story.pdfThe_Timor_Story.pdf
The_Timor_Story.pdf
 
The_Pythons_of_New_Guinea.pdf
The_Pythons_of_New_Guinea.pdfThe_Pythons_of_New_Guinea.pdf
The_Pythons_of_New_Guinea.pdf
 
Hukum Pidana Pof Didik Endro.pdf
Hukum Pidana Pof Didik Endro.pdfHukum Pidana Pof Didik Endro.pdf
Hukum Pidana Pof Didik Endro.pdf
 
Environmental_Crime_article.pdf
Environmental_Crime_article.pdfEnvironmental_Crime_article.pdf
Environmental_Crime_article.pdf
 
dasar hukum pidana bidang migas.pdf
dasar hukum pidana bidang migas.pdfdasar hukum pidana bidang migas.pdf
dasar hukum pidana bidang migas.pdf
 
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...
Dasar-Dasar Hukum Pidana di Indonesia by Dr. Fitri Wahyuni., S.H., M.H. (z-li...
 
hukum pidana prof. adni sofyan.pdf
hukum pidana prof. adni sofyan.pdfhukum pidana prof. adni sofyan.pdf
hukum pidana prof. adni sofyan.pdf
 
Buku_Pengantar_KRIMINOLOGI (1).pdf
Buku_Pengantar_KRIMINOLOGI (1).pdfBuku_Pengantar_KRIMINOLOGI (1).pdf
Buku_Pengantar_KRIMINOLOGI (1).pdf
 
buku pengantar hukum pidana-revcompressed.pdf
buku pengantar hukum pidana-revcompressed.pdfbuku pengantar hukum pidana-revcompressed.pdf
buku pengantar hukum pidana-revcompressed.pdf
 
buku ajar hukum pidana.pdf
buku ajar hukum pidana.pdfbuku ajar hukum pidana.pdf
buku ajar hukum pidana.pdf
 
BIG_VII_Banda_Lesser_Sunda_7.pdf
BIG_VII_Banda_Lesser_Sunda_7.pdfBIG_VII_Banda_Lesser_Sunda_7.pdf
BIG_VII_Banda_Lesser_Sunda_7.pdf
 
archbold1989.pdf
archbold1989.pdfarchbold1989.pdf
archbold1989.pdf
 
43_51_1_PB.pdf.pdf
43_51_1_PB.pdf.pdf43_51_1_PB.pdf.pdf
43_51_1_PB.pdf.pdf
 
barber_1981 Timor structure.pdf
barber_1981 Timor structure.pdfbarber_1981 Timor structure.pdf
barber_1981 Timor structure.pdf
 
11-stratigrafi-dan-sejarahgeologi.pdf
11-stratigrafi-dan-sejarahgeologi.pdf11-stratigrafi-dan-sejarahgeologi.pdf
11-stratigrafi-dan-sejarahgeologi.pdf
 

Recently uploaded

Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 

barber_audleycharles_1976 Timor metamorphics.pdf

  • 1. Z’ectonophysics, 30 (1976) 119-128 @ Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands THE SIGNIFICANCE OF THE METAMORPHIC ROCKS OF TIMOR IN THE DEVELOPMENT OF THE BANDA ARC, EASTERN INDONESIA A.J. BARBER and M.G. AUDLEY-CHARLES Department of Geology, Chelsea College, University of London, London (England) Department of Geology, Imperial College of Science and Technology, IJniversity of London, London (England) (Submitted January 23, 1975; revised version accepted July 21, 1975) ABSTRACT Barber, A.J. and Audley-Charles, M.G., 1976. The significance of the metamorphic rocks of Timor in the development of the Banda Arc, Eastern Indonesia. Tectonophysics, 30: 119-128. The metamorphic rocks of Timor are reinterpreted in the light of reconnaissance mapping of the whole island. All metamorphic rocks that crop out in Timor are alloch- thonous. Several metamorphic massifs are reported for the first time, the outline of others is revised. On the basis of their grade, three distinct groups can be mapped: lustrous slate, amphibolite-serpentinite, and a granulite-amphibolite-greenschist complex. Each group has distinctive structural relations to other allochthonous elements. The granulite facies meta-anorthosite in Timor must have originated near the boundary between the continental mantle and the crust. These and related high-grade metamorphic rocks may represent slices of an ancient Asian continental basement. These rocks imply that the history of the Mesozoic-Cainozoic fold belt of the Outer Banda Arc extends into the Precambrian Era. The metamorphic rocks of Seram appear to be remarkably similar to those of Timor in grade, distribution and structural relations. The overthrust directions of the metamorphic rocks in Timor is southwards, in Seram it is northwards. As the islands are separated by the 4-5 km deep Banda Sea, these directly opposite thrusts may be explained in terms of the Banda Arc acouiring its sinuosity after the emplacement of the metamorphic rocks. INTRODUCTION The island of Timor lies on the southern limb of the Banda Arc (Fig. l), a double island arc which encloses the Banda Sea. The Banda Arc is generally regarded as a product of Mesozoic and Tertiary erogenic events which are still continuing. The Permian, Mesozoic and Tertiary stratigraphy of the region is known in outline, but its earlier geological history remains almost completely unknown. Recent geologic studies in Timor suggest that the
  • 2. c r. L __.- <A‘. )(M .- ..J SEA I- Fig. 1. Outcrop map of the metamorphic rocks (shown in black) in the islands of the Outer Banda Arc. history of the metamorphic rocks probably extends from Precambrian to Mesozoic time. This paper is not a detailed discussion of all the metamorphic rocks of Timor but attempts to show how reconnaissance mapping (on a scale of 1 : 100,000) of the whole island has revealed aspects of their composition, spatial distribution of three clearly distinguishable metamorphic elements and their different structural position that have important bearings on the history of the Banda Arc. THE METAMORPHIC ROCKS OF TIMOR Metamorphic rocks in Timor, called the Lolotoi Complex by Audley- Charles (1968), form a zone of massifs, with mountainous topography, rising to a height of nearly 3,090 m in Indonesian Timor and extending the whole length of the Island (Fig. 2). A general account and detailed de- scriptions of the metamorphic rocks of Timor are in reports of the University of Amsterdam’s pre-war expedition to the area (De Roever, 1940; Tappen- beck, 1940) and the work of Lie Waard (1964,1966,1957a, 1967b, 1959). The metamorphic massifs of Portuguese Timor were delineated by
  • 3. 12i MAINLY AMPHIBOLITE 8 SERPENTINITE MAiNLY LUSTROUS SLATE Fig. 2. Outcrop map of the metamorphic rocks in Timor. The boundary between Por- tuguese and Indonesian Timor, as well as the Ocussi enclave in Indonesian Timor, are indicated. Audley-Charles (1968). Subsequently we re-examined the specimens col- lected by the University of Amsterdam’s expedition, and visited most of the metamorphic massifs in both Indonesian and Portuguese Timor. Three groups of metamorphic rocks can be distinguished in Timor on the basis of their metamorphic grade. HIGH-GRADE METAMORPHIC ROCKS The highest grade metamorphic rocks are garnet meta-anorthosite ob- tained from the Booi massif in western Timor. These rocks contain pyrope- almandine (Py, sGrl 4Alms s ) garnet and plagioclase of labradorite (An, s ) composition. The presence of a high proportion of the pyrope molecule in the garnets indicates that these rocks were metamorphosed in the granu- lite facies. This is the first record of rocks of this grade occurring in the Banda Arc. Rocks metamorphosed in the amphibolite facies occur in many of the massifs throughout Timor. The rock types include pyroxene amphibolite, garnet amphibolite, and garnet-hornblendediopside gneiss (with brownish- green hornblende, plagioclase at least as calcic as oligoclase, and rutile). These rocks are commonly folded, foliated and lineated. Many specimens of garnet amphibolite in particular show a complex progressive metamorphic and structural history in inclusion trails within garnet crystals, many of which are sigmoidal (De Waard, 1957b). An equally complex history is in-
  • 4. dicated in the field where, for instance in the Mosu massif in the northwest. foliated and lineated hornblende gneiss is cut by unfoliated diorite and amphibolite dykes. Amphibolitc-facies metasedimentary rocks also occur in many of the massifs, for instance marble and talc-silicate rocks in Lalan Asu (De Waard, 1957b) and Lakaan. An extensive mass of cordierite gneiss occurs in the Mosu massif in northwestern Timor. Massifs lying farther to the south and east, Mollo, Mutis, Miomaffo and Lakaan, contain biotite gneiss and mica schist with kyanite, garnet and staurolite. A thin section studied by Tappen- beck (1940, p. 61, slide T127) and material collected by us from the Booi massif (Fig. 2), shows original garnet-kyanite assemblage in process of replacement by a cordierite-sillimanitespinel assemblage. Garnet crystals are enclosed in rims of cordierite, whereas sillimanite occurs as aggregates of coarse crystals pseudomorphic after kyanite. Spine1 forms a corona around the sillimanite pseudomorphs. The textural relations indicate that the high-pressure garnet-kyanite assemblage was formed early in the history of the complex and the low-pressure cordieritesillimanite assemblage at a later stage. GREENSCHISTFACIESMETAMORPHICROCKS Many of the amphibolite-facies basic and pelitic rocks show the effects of later deformation and retrograde metamorphism with the replacement of high-grade metamorphic minerals by aggregates of albite, epidote, chlorite and actinolite of the greenschist facies. Relict garnet, hornblende and plagio- clase crystals enclosed in augen, and large rutile crystals enclosed in sphene rims, may be the only indication that the rock was formerly a high-grade mineral assemblage. Further complexity can be seen where greenschist facies foliation is itself refolded (De Roever, 1940, pl. V2). High-grade crystalline rocks on the southern side of the Usu massif have been reduced to fine-grained, banded, greenschist mylonite, resembling very closely mylonite found in major thrust belts such as the Moine thrust belt of the northwest Highlands of Scotland (Barber, 1965). In addition to retrogressed high-grade rocks, many massifs, e.g. Mollo (Tappenbeck, 1940) and Mutis (De Roever, 1940), include metavolcanic and metasedimentary rocks which have been metamorphosed directly in the greenschist facies. Rock types represented are serpentine-schist, albite- epidote-chlorite-actinolite-schist, albite--epidote-chlorite-schist, spessartite-piedmontite-quartzite, quartz-graphite-schist and graphite-. marble. These rock types appear to represent a volcano-sedimentary se- quence of serpentine, pillow lava, tuff, manganese chert and black shale. These rock types are intimately associated in the field with retrogressed amphibolite-facies rocks (De Roever, 1940) suggesting that they were tectonically incorporated into pre-existing high-grade metamorphic com-
  • 5. plexes before both rock groups were affected by greenschist facies meta- morphism. Tappenbeck (1940) observed the mineral glaucophane in the Mollo massif, indicative of very high-pressure metamorphism. This record has been used by others (e.g. Suwa, 1961) to make large-scale reconstructions of circum-Pacific erogenic belts. The thin sections in which the glaucophane was reported (T 193, T 288) were re-examined at the University of Am- sterdam. The mineral from rocks collected in situ from the Mollo massif was found to be blue-green actinolite, typical of the greenschist facies, not glaucophane. SLATE AND ASSOCIATED ROCKS The third group of metamorphic rocks in Timor forms the Dili massif on the northern side of the island. The southern margin of this massif is composed of deformed crinoidal limestone and volcanic rocks of Permian age (Maubisse facies of Audley-Charles, 1968) associated with slate, which is by far the most important lithology of this massif. Towards the north coast coarse-grained arenite becomes more important, and the slates develop into mica schists intruded by occasional masses of gabbro. At the eastern end of the Dili massif, near Manatuto the rocks include hornblende gneiss and serpentine associated with marble in which crinoid ossicles may still be recognized. This complex assemblage of slates, arenites, schists and ophiolite suite were grouped as the Aileu facies by Audley-Charles (1968), who mapped their contact with the highly fossiliferous Permian Maubisse Formation as a thrust. Recent more detailed study of this contact has shown it to be a stratigraphical transition in the Maubisse region. The im- portance of this revision is that it proves the Permian age of at least part of the slate succession of the Aileu facies as suggested by Gageonnet and Lemoine (1958) on the basis of poorly preserved pelecypods in the slates. It is possible that the Aileu sequence of slates and arenites extends up- wards into the Mesozoic and possibly downwards into the older Palaeozoic. In this massif both the complexity of the fold structures and the grade of metamorphism increase towards the north coast, where it reaches garnet grade in places. The Permian limestones with volcanic rocks (Maubisse facies) also form several smaller isolated thrust massifs throughout the length of central Timor. SIGNIFICANCE AND STRUCTURAL POSITION OF THE METAMORPHIC ROCKS OF TIMOR The granulite and amphibolite facies rocks of Timor may represent fragments of ancient continental crust. The formation of pyrope garnet and kyanite requires pressures greater than 5 kbars, which can be generated
  • 6. 12.1 only at depths of 15-20 km. Garnet meta-anorthosite, such as that of the Booi massif, is known elsewhere only from continental Precambrian shields. An outstanding feature of the metamorphic rocks of Timor is the absence of rocks of granitic composition, especially migmatitic gneiss, which is a characteristic feature of most ancient continental shield terrains. The metamorphic rocks of Timor are isolated massifs, on thrust planes above folded Permian to Jurassic sedimentary rocks of the Australian con- tinental shelf (Audley-Charles, 1968). The metamorphic rocks are overlain unconformably by Cretaceous sedimentary rocks (Palelo Series of Tappen- beck, 1940) and unconformably by both Eocene limestone, tuff and ag- glomerate and Early Miocene limestone. These Tertiary rocks are overlain by the Bobonaro Scaly Clay, interpreted as an olistostrome (Audley-Charles, 1965a), which is composed of a great variety of rock fragments, some nearly 0.5 km across the outcrop, in a fine-grained matrix of scaly clay. The Bobonaro Scaly Clay generally surrounds the metamorphic massifs and covers their slopes. In many river sections this deposit can be seen resting on the metamorphic rocks. North of the Lolotoi metamorphic massifs and clearly overriding them is a northward-dipping thrust sheet composed of Permian limestone with volcanic rocks (Maubisse facies) which passes stratigraphically into a much more extensive area of lustrous slate, arenite and a small ophiolite complex (Aileu facies). OTHER ISLANDS OF THE OUTER BANDA ARC Metamorphic rocks, similar to those described from Timor have been recognized in many of the smaller islands of the Outer Banda Arc (Fig. 1) j .-.I L._. I.. LA -- ky-1 1 LUSTROUS SLAT! 6 GRLYWACKE m PHYLL ITf .: 4 GREENSCHIST AMPWIBO:~TE 8 ‘GRANULITE I Fig. 3. Outcrop map of the metamorphic rocks of Seram (after Germeraad, 1946; Van der Sluis, 1950; and Valk, 1945).
  • 7. 125 and summarized by Van Bemmelen (1949). In Seram (Fig. 3) are exten- sive outcrops of amphibolite-facies gneiss, greenschist phyllite, and lustrous slate. Among the amphibolite facies gneiss, metapelite with kyanite (Valk, 1945) or cordierite (Germeraad, 1946) have been recorded, indicating that both high- and low-pressure metamorphic terrains are present. INTERPRETATION Of the two main divisions of the Lolotoi the higher-grade metamorphic rocks form the earliest unit, perhaps representing fragments of an ancient Precambrian continental shield. This would imply that the greenschist facies volcano-sedimentary sequence accreted to these older continental rocks during Late Precambrian or Palaeozoic time. Two alternative hypotheses can be proposed to account for the high- grade continental metamorphic rocks in the Banda Arc. These rocks may represent the southeast margin of Sundaland of the Asiatic continent, detached from Western Indonesia and overthrust onto the northern margin of the Australian continent when the two continents collided during the Cenozoic (Fig. 4). The obvious obstacle to this hypothesis is that the Banda Arc is separated from Western Indonesia by the Banda Sea. This difficulty might be resolved if the Banda Sea could be shown to be a marginal basin of the Sea of Japan type (Matsuda and Uyeda, 1970), formed by the devel- opment of a spreading axis which has separated the Banda Arc from Western Indonesia. Fig. 4. Sketch cross-section through the southern part of the Banda Arcs interpreting the allochthonous metamorphic rocks in Timor as detached thrust sheets from the continental margin of Western Indonesia. The absence of volcanism since the Pliocene in the islands opposite Timor may indicate subduction has ceased in this part of the Banda Arc.
  • 8. 1“6 -- ._ ..--- Fig. 5. Sketch cross-section through the southern part of the Banda Arcs interpreting the allochthonous metamorphic Lolotoi rocks in Timor as basement slices of the Australian continental margin overthrust onto the imbricated strata of the outer part of the Australian shelf, which forms the para-autochthon in Timor. Alternatively the Lolotoi metamorphic rocks may represent crystalline basement rocks which formed the northern edge of the Australian con- tinent. According to this interpretation (Fig. 5) the leading edge was thrust back over continental-shelf deposits when it reached a subduction trench during the northerly drift of Australia (Audley-Charles et al., 1972). A variation of this interpretation has already been put forward by W. Hamilton (1973 and written communication, 1974). Hamilton also regards the Lolotoi metamorphic rocks as part of the Australian continent but considers that they have been driven over a wedge of melange and imbricated materials by the advance of an island arc migrating outwards from Sulawesi during the Cenozoic. The overthrust succession of lustrous slates in the Outer Banda Arc, is closely associated in Timor and Leti with Permian limestone and volcanic rocks, which must have accumulated in tropical seas because they contain tropical faunas. During the Permian, Australia lay far to the south according to palaeomagnetic and palaeoclimatic data (Smith et al., 1973). Audley- Charles (1965b) suggested that the Maubisse facies of Permian limestone and volcanic rocks were derived from the northern margin of Tethys be- cause of the presence of tropical faunas and similarity of the rocks in parts of Western Indonesia. Our recent observation that the Maubisse facies locally passes laterally into the Aileu facies of lustrous slate suggests that all the rocks of the Dili metamorphic massif originated at the Asian con- tinental margin, perhaps forming part of southeast Sundaland from where the Lolotoi may have been derived. Certainly the stratigraphical association between the Aileu and Maubisse Permian facies seems to rule out the pos-
  • 9. 127 sibility that the Aileu flysch slate facies could be the deformed equivalents of the Permian Australian marginal facies, as suggested by Audley-Charles et al. (1972). The presence of quartz arenites in the Aileu facies along the north coast of Portuguese Timor implies a landmass source for the sand, north of Timor. This accords with the suggestion that the Aileu facies thrust sheet was derived from Sundaland. The direction of overthrusting of the metamorphic rocks in Seram (Van Bemmelen, 1949) is towards the north, in Timor it is towards the south. Thus the present distribution of the metamorphic rocks in the Banda Arc (Fig. 1) suggests they have been thrust outwards away from the Banda Sea. As the Banda Sea is 4-5 km deep it seems a highly unlikely source for this variety of metamorphic rocks. These observations suggest that the sinuosity of the Banda Arc was acquired (cf. Visser and Hermes, 1962) after the metamorphic rocks had been overthrust onto Seram and Timor. This would produce an apparent divergence of thrust directions not rep- resentative of the original thrust movements. This hypothesis could be tested by palaeomagnetic studies of the unmetamorphosed intrusions into the overthrust metamorphic thrust sheets that field mapping indicates were emplaced before the thrusts were emplaced. Independent indications that the sinuosity of the Arc has been acquired are provided by the gross struc- ture of the Arc. The gradual diminution of the volcanic arc eastwards sug- gests that subduction may have been progressively less important towards the eastern end of the arc where strike-slip movements may have predom- inated at the plate boundary. This would allow the arc to have developed its sinuosity while it evolved. ACKNOWLEDGEMENTS W.P. de Roever provided facilities at the University of Amsterdam and commented on an early draft of the paper. W. Hamilton suggested improve- ments which have been incorporated. G. Witty carried out microprobe analyses, G.A. Chinner assisted in the identification of aluminium silicate minerals. REFERENCES Audley-Charles, M.G., 1965a. A Miocene gravity slide deposit from Timor. Geol. Msg., 102: 267--276. Audley-Charles, M.G., 1965b. Permian palaeogeography of the northern Australia- Timor region. Palaeogr. Palaeoclimatol. Palaeoecol., 1: 297-305. Audley-Charles, M.G., 1968. The geology of Portuguese Timor. Geol. Sot. Lond. Mem., 4: l-76. Audley-Charles, M.G., Carter, D.J. and Milsom, J.S., 1972. Tectonic development of eastern Indonesia in relation to Gondwanaland dispersal. Nature (Phys. Sci.), 239: 35-39.
  • 10. 12s Barber, A.J., 1965. The History of the Moine Thrust Zone, Lochcarron and Lochalsh, Scotland. Proc. Geol. Assoc., 76: 215-242. De Roever, W.P., 1940. Geological investigations in the south-western Moetis region (Netherlands Timor). Geol. Exped. Lesser Sunda Islands, 2: 97-344. De Waard, D., 1954. Structural development of the crystalline schists in Timor, tec- tonics of the Lalan Asu massif. Indones. J. Nat. Sci., 110: 143-153. De Waard, D., 1956. Geology of a N-S section across western Timor. Indones. J. Nat. Sci., 112: 101-114. De Waard, D., 1957a. Contributions to the geology of Timor XII. The third Timor geological expedition, preliminary results. Indones. J. Nat. Sci., 113: 7-42. De Waard, D., 1957b. Zones of regional metamorphism in the Lalan Asu massif, Timor. K. Ned. Akad. Wet., Proc., 60: 383-392. De Waard, D., 1959. Anorthite content of plagioclase in basic and pelitic crystalline schists as related to metamorphic zoning in the Usu massif. Timor. Am. J. Sci., 257: 553-562, Gageonnet, R. and Lemoine, M., 1958. Contribution ‘a la connaissance de la geologic de la province portugaise de Timor. Estudos Ensaios. Docum. Jta. Invest. Ultramar, 48: l-138. Germeraad, J.H., 1946. Geology of Central Seran. De Bussy, Amsterdam, pp. l-135. Hamilton, W., 1973. Tectonics of the Indonesian region. Geol. Sot. Malaysia Bull., 6: 3-10. Matsuda, T. and Uyeda, S., 1970. On the Pacific-type orogeny and its mode1 extension of the paired belts concept and possible origin of marginal seas. Tectonophysics, 11: 5-27. Smith, A.G., Briden, J.C. and Drewry, G.E., 1973. Phanerozoic World Maps. Spec. Pap. Palaeontol., 12: l-42. Suwa, K.; 1961. Petrological and geological studies in the Ryoke metamorphic belt. J. Earth Sci. Nagoya Univ., 9: 224-303. Tappenbeck, D., 1940. Geologic des Mollogebirges und einiger benachbarter Gebiete (Niederllndisch Timor). Geol. Exped. Lesser Sunda Islands, 1: l-105. Valk, W., 1945. Contributions to the Geology of Western Seran. De Bussy, Amster- dam, pp. l-104. Van Bemmelen, R.W., 1949. The geology of Indonesia. Netherlands Government Printing Office, The Hague, 997 p. Van der Sluis, J.P., 1950. Geology of East Seran. De Bussy, Amsterdam, pp. l-63. Visser, W.A. and Hermes, J.J., 1962. Geological results of the exploration for oil in Netherlands New Guinea. Verh. K. Ned. Geol. Mijnbouwkd. Genoot., 20: l-265.