SlideShare a Scribd company logo
1 of 70
Download to read offline
Jeremy Rhodes, Jack Cochran,
 Will Steinhilber, Brandon Cobb,
Jeremy Boone
Polymers
Final Report
December 4th, 2013
1
Table of Contents:
1 Abstract 3
2 introduction 4
3 Apparatus 5
4 Procedures 6­10
5 Results/Discussion 12
5.1 Materials selection 11­14
5.2 Statistical analysis 15
5.3 Material Properties 15­23
5.4 Eco­audit/sustainability 23­32
5.5 Physical Tests 33­39
5.6 Impact Test 39­42
5.7 Final Material Decision 42­43
5.8 Conceptual prototype 43­44
5.9 Economic feasibility 44­45
6 Conclusion 45­47
7 References
48­50
8 Appendix 51­69
2
Abstract
The GP Beverage Company has requested a new design for the bottle the                       
company is currently using to protect their product. The objective is to discover the                         
most cost effective material within the Polymer family to fulfill this need.  The                       
material we chose has to be strong, cost efficient, and easy to manufacture. The                         
experiments will show how the material reacts with the series of optical, mechanical,                       
thermal, chemical, magnetic, and electrical tests. These results will provide further                   
information about the final selection of one material within the polymer family. The                       
material selection and material properties research yields vital information about                 
which materials will satisfy the objective of the project. The three materials that were                         
chosen include: Polyethylene terephthalate (PET), Polypropylene (PP), and             
Polyvinylchloride (PVC). The experiments still need to be conducted in order to fully                       
analyze and select a final polymer for the GP Beverage Company. 
3
Introduction
The GP beverage company has requested the investigation of the various                   
materials within the assigned family in order to provide them with the best option in                           
protecting their product throughout its life cycle. The life cycle of a bottle used to                           
protect the product will be clearly outlined in this report. The objective is to find the                             
best polymer to utilize in the protecting of the liquid inside the GP beverage                         
container. The container that GP eventually uses to protect its product will be made                         
from one of the polymers suggested in this report. The overall goal of the report is to                               
maximize toughness and minimize cost. By doing so, GP beverage company will                     
receive the greatest quality polymer. We will provide vast scientific data depicting                     
why the specific polymers in that family of materials were chosen. The initial                       
constraints of the project include, but are not limited to: a 5 Liter bottle, must                           
withstand a fall from 5ft, and must be able to manufacture at least 100,000 bottles.                           
All of these initial constraints will have environmental, social, technical, and                   
economic impacts. Balancing these impacts will be a challenge in itself.
Polymers have been around in a natural form of science since life began and                         
naturally occurring biological polymers play an extremely important role in plant and                     
animal life (Young, 1). A polymer is a long molecule, which contains a chain of                           
atoms held together by covalent bonds. A covalent bond is a chemical bond that                         
involves the sharing of electron pairs between atoms. Polymers are produced                   
through a process known as polymerization whereby monomer molecules react                 
together chemically to form either linear chains or a three­dimensional network of                     
polymer chains (Young, 2). These can be classified into three groups, which                     
include: thermoplastics, elastics, and thermosets. Currently, the specific polymer               
used to protect carbonated products as well as water is PET (polyethylene                     
terephthalate)(Ophardt, 1). With that said, this report will mainly be concerned with                     
thermoplastics because they are low in cost, easy to mold and shape, and possess                         
mechanical and chemical properties that will enhance the protection of the GP                     
beverage product. FDA has approved plastic beverage containers made from                 
polyethylene terephthalate, PET. Several companies are using this polyester as a                   
material for lightweight, energy­efficient, breakage­resistant containers (Beverage           
Container Deposit Legislation, 57).
One main problem that polymers have had in the past with beverage                     
containment has been the fact that they are harmful to the environment because                       
some of them are not recyclable. Some technical questions that we must ask                       
ourselves include:
● What is the life cycle of each polymer we are considering?
● How much CO2 admission does each polymer exert within the way we will be                         
utilizing it?
● How much raw polymer material will be needed to produce the amount of                       
bottles the GP Company has requested (100,000 bottles)?
● What are the dimensions of the bottle?
4
Apparatus
A series of different apparatuses will be used during the testing of the three                         
polymers. The apparatuses used are included in the table below, separated by the                       
test in which each one will be used for.
Figure 1: Apparatus
Note: In Figure 1, the * symbolizes the length of the material being used. All other                             
dimensions are assumed to be a portion of the sheet for the respective material.
The estimated costs for the three materials chosen are listed below. The costs                       
come straight from the manufactures’ websites. US Plastics will be the sole provider                       
of the three materials that were chosen for this project. US Plastics have been                         
recommended by John Wild and various other sources. US Plastics have great                     
prices, quality products, and fast delivery time.
5
Procedures
A series of six different tests will be run in order to validate the design,                           
innovation, and modification. The six tests include, but are not limited to: optical,                       
electrical, thermal, chemical, mechanical, and magnetic. Please note that each                 
procedure will be conducted within the physics, chemistry, and engineering labs of                     
James Madison University. The procedures are based off of what equipment is                     
readily available to the team. Further tests may be conducted to learn more about                         
each polymer. These tests are not to be considered limited factors during the                       
research of these materials and may be subject to change.
Optical
Test Method 1 (UV Radiation)
Tensile portion
1. Turn on Instron Machine
2. Start up Blue Hill Software located on the desktop
3. Login to Blue Hill by using “DUKES” as both the password and username (if                         
using this machine at James Madison University, home of the Dukes).
4. Make sure the crossheads are in the correct position, 2 inches apart from                       
each other. If not, hit the “Return” button on the pendant of the machine.
5. Place material sample in the top grip and make it as vertical as possible.
6. Tare the machine by hitting the soft key and then hit “balance load”. This                         
ensures that the force recorded is due to the tensile force on the sample,                         
rather than the weight of the sample or the crossheads.
7. Tighten the lower grip on the machine
8. After logging into Blue Hill, click the correct dimensions, and saving                   
mechanism.
9. Start the test by hitting “play” on the software and wait until material plastically                         
deforms. The machine will stop pulling at this point.
10. Export data using USB device and import into excel on personal computer
11. Analysis data by creating stress vs. strain graphs in excel.
12. Repeat steps 4­11 for all three polymer samples
UV portion
1. Place all three samples of polymers in separate containers
2. Obtain three UV lights and place them directly over the samples
3. Turn on the UV lights and let them run for a week straight, check up on                             
samples twice a day to ensure the lights have not burnt out and samples                         
are still there.
4. After a week, turn off the UV lights and remove samples from their                       
respective containers.
5. Take the samples and run the Instron tensile test for all three
6. Repeat steps 1­12 in the tensile testing portion of this test.
6
Purpose: The purpose of this test is to see if long exposure to UV light affects the                               
strength of the material in anyway. UV radiation could degrade the material and                       
cause structural damage.
Validate – ASTM D4329 – 13 Standard Practice for Fluorescent Ultraviolet (UV)                     
Lamp Apparatus Exposure of Plastics
Electrical
Test Method 1 (Resistivity)
1. Gather Digital Multimeter (DMM), 3 double­sided wire sets, and a power                   
source.
2. Connect the wires to the DMM, power source, and the polymer material
3. Make sure that all items are in series with each other and that it is a closed                               
circuit
4. DO NOT turn on power supply until you check to see if step 3 is complete
5. Turn on power supply
6. Using the DMM, measure the current running through the wires before the                     
polymer material and then again after the polymer material
7. Repeat steps 3­6 for all three polymer samples
Purpose: The purpose of this test is to find out how much resistivity each polymer                           
has. Knowing that polymers are insulators, results may be minimal and could                     
possibly tell us nothing.
Validate – ASTM D257 –07, “Standard Test Methods for DC Resistance or                     
Conductance of Insulating Materials” The resistance of a material Is determined                   
from a measurement of current and voltage drop under certain conditions. Using                     
the appropriate electrode system can provide values that can be used to calculate                       
resistivity and conductivity.
Thermal
Test Method 1 (Melting Point)
1. Set up the hot plate on the table
2. Cover the hot plate with Aluminum foil
3. Record the temperature of the aluminum foil on the hot plate
4. Record the room temperature
5. Place the tested material on the aluminum foil
6. Record the temperature of the material on the hot plate
7. Turn on the hot plate to the highest setting
8. Watch the material very closely to ensure that when it starts to plastically                       
deform in any way you are ready to record the temperature. Note that the                         
temperature of the melting point will not change during the melting process.
9. Record the temperature at the melting point
10. Repeat steps 2­9 for all three polymer samples
Purpose: The purpose of this test is to explore the experimental melting point of the                           
specific material. The melting point will show what temperature the material begins                     
to melt, which will inform the manufacturer of where not to place the material in the                             
7
factory. If the factory can get up to these temperatures, the company will risk plastic                           
deformation of the bottles. This same concept applies to shipping across the world.                       
If the company is shipping the material to an area of the world with known higher                             
temperatures, than the melting point should be a concern.
Validate – ASTM D3045 – 92(2010) Standard Practice for Heat Aging of Plastics                       
Without Load
Test Method 2 (Thermal Conductivity)
1. Turn on computer and open up LabView. Set up the DAQ to thermocouples
2. Obtain polymer rod sample (10 inches in length)
3. Drill one hole at the end of the rod
4. Attach thermocouples to rod and LabView dock. Measure the distance from                   
the top of the rod to the thermocouples
5. Place cartridge heater in drilled hole
6. Attach cartridge heater to power supply
7. Place other the other end of rod in ice
8. Make sure everything is connected properly and turn on the power supply                     
(Note that power supply output reading should be somewhere between                 
0­30V)
9. Allow LabView to collect data until temperatures reach a steady state, or the                       
slope of the line on the graph is zero.
10. Repeat steps 2­9 for all three polymer samples
Purpose: The purpose of this lab is to determine the thermal conductivity of each                         
material tested. The thermal conductivity will allow the GP Beverage Company to                     
see how long it takes for the bottle to become cold after being placed in the                             
refrigerator of the customer. This should allow the company to market this result if it                           
turns out to benefit the product.
Validate – ASTM C177 – 10 Standard Test Method for Steady­State Heat Flux                       
Measurements and Thermal Transmission Properties by Means of the               
Guarded­Hot­Plate Apparatus
Chemical
Test Method 1 (Material Degradation)
1. Obtain nine separate containers with sealable tops. Make sure that the                   
containers are at least 2 inches in height.
2. Pour phosphorous, carbonic acid, and citric acid into the nine containers.                   
Make sure that three containers contain phosphorous, three contain carbonic                 
acid, and three contain citric acid. Make sure that the containers are at least                         
5 inches apart.
3. Place a 2­inch sample of each material into each one of the chemicals.
4. Let the material samples sit in the chemicals for a week total, untouched.                       
This ensures that the chemicals will soak into the materials being tested.
5. Move into the tensile testing portion to test the tensile strength of the material                         
after soaking in the chemicals. Refer to the tensile results in the tensile test                         
towards the bottom of this procedure and the found tensile strengths in CES                       
8
to compare.
Tensile portion
1. Turn on Instron Machine
2. Start up Blue Hill Software located on the desktop
3. Login to Blue Hill by using “DUKES” as both the password and username (if                         
using this machine at James Madison University, home of the Dukes).
4. Make sure the crossheads are in the correct position, 2 inches apart from                       
each other. If not, hit the “Return” button on the pendant of the machine.
5. Place material sample in the top grip and make it as vertical as possible.
6. Tare the machine by hitting the soft key and then hit “balance load”. This                         
ensures that the force recorded is due to the tensile force on the sample,                         
rather than the weight of the sample or the crossheads.
7. Tighten the lower grip on the machine
8. After logging into Blue Hill, click the correct dimensions, and saving                   
mechanism.
9. Start the test by hitting “play” on the software and wait until material plastically                         
deforms. The machine will stop pulling at this point.
10. Export data using USB device and import into excel on personal computer
11. Analysis data by creating stress vs. strain graphs in excel.
Repeat steps 4­11 for all three polymer samples
Purpose: The chemicals used in this test are chosen because they are the main                         
three acids found in common soda. This test will ensure that if the materials are                           
sitting in these chemicals for a long period of time, they will not be affected in terms                               
of the strength of the material.
Validate – ASTM D543 – 06 Standard Practices for Evaluating the Resistance of                       
Plastics to Chemical Reagents
Test Method 2 (Material Degradation)
1. Place eight containers on a table that will remain in the same location for at                           
least three weeks. Ensure that the containers have sealable caps and they                     
are at room temperature. Also make sure to record what the room                     
temperature is.
2. Fill one container with water, and one with Coca­Cola. Fill the next three with                         
water and the different materials in each one, and three with Coca­Cola and                       
the materials in each one.
3. Record the pH of all the containers right after the materials are placed in the                           
said containers.
4. Let the containers sit for three weeks and take pH samples every week.
5. After the three weeks, take a pH sample again and compare it to the first pH                             
samples taken.
Purpose: The purpose of this test is to discover whether the degradation, if any, of                           
the materials are affecting the contents of the containers. The contents of the                       
container will act as the product GP Beverage Company produces and provides to                       
its customers. Please note that the lifecycle of a bottle far exceeds the testing                         
9
duration. This is because the testing duration is limited.
Validate ­ ASTM D5226 ­98(2010)e1, Standard Practice for Dissolving Polymer                 
Materials
Mechanical
Test Method (Tensile Test)
1. Turn on Instron Machine
2. Start up Blue Hill Software located on the desktop
3. Login to Blue Hill by using “DUKES” as both the password and username (if                         
using this machine at James Madison University, home of the Dukes).
4. Make sure the crossheads are in the correct position, 2 inches apart from                       
each other. If not, hit the “Return” button on the pendant of the machine.
5. Place material sample in the top grip and make it as vertical as possible.
6. Tare the machine by hitting the soft key and then hit “balance load”. This                         
ensures that the force recorded is due to the tensile force on the sample,                         
rather than the weight of the sample or the crossheads.
7. Tighten the lower grip on the machine
8. After logging into Blue Hill, click the correct dimensions, and saving                   
mechanism.
9. Start the test by hitting “play” on the software and wait until material plastically                         
deforms. The machine will stop pulling at this point.
10. Export data using USB device and import into excel on personal computer
11. Analysis data by creating stress vs. strain graphs in excel.
12. Repeat steps 4­11 for all three material samples
Purpose: The purpose of this lab is to test the strength of the material to see how it                                 
will hold up under strenuous conditions. The strength of every material will vary                       
based on how it was made and where it is from, so conducting this test is a                               
necessity. The yield strength and Young’s Modulus can be found by conducting this                       
experiment which will relate back to the stiffness and strength values in terms of                         
compression.
Validate – ASTM D638­10 Standard Test Method for Tensile Properties of                   
Plastics
Magnetic
Test Method 1 (Gauss Meter)
1. Gather three samples of the different materials.
2. Tie a string to each of the materials
3. One at a time, hold the material away from your body (full arms length)
4. Place the metal node of the Gauss meter on the material and record the                         
reading displayed on the screen
5. Repeat steps 3 and 4 for the remaining two polymers
Purpose: The purpose of this test was to test the magnetic field generated from                         
each material. Magnetic field can create an electric field which can then create the                         
possibility of shocking. It is important for the GP Beverage Company to know if the                           
10
materials will magnetically react with the different materials that may be placed                     
around them. Validate ­ASTM E1444 Standard Practice for Magnetic Particle                 
Testing
Material Selection
There are many standardized methods for material selection within industry.                 
The methods are divided between the design led approach and the science led                       
approach. The team decided to use the design led process illustrated in Materials:                       
engineering, science, processing and design by Michael Ashby, Hugh Shercliff,                 
and David Cebon for the familiarity and ease of access with the team. The process                           
is made up of four steps, translation, screening, ranking, and documentation.                   
Translation is organizing the team’s objectives and customer needs into constraints                   
or must be met criteria. Screening is eliminating materials that do not meet the                         
constraints. Ranking is using material indices, which are based on what the                     
designer wants to maximize, to rank the screened material. Documentation is using                     
known literature to assist in deciding on a material. This report will fully dive into the                             
first two steps of the design led process and partially into the latter two. The time                             
between this report and the next report will be dedicated to fully completing the                         
design material selection process.(Ashby)
The team first identified a list of customer needs based on the customers                       
criteria as well research into the industry of bottle containers.
Table 1: Customer Needs
The customer needs are then translated into the function, the constraints, the                     
objective, and free variables. The function is the purpose of the design. The                       
constraints are the must be met criteria. The objective is what needs to be                         
maximized or minimized. The free variables are variables that designers are                   
permitted to change to any value that the designers see as beneficial towards the                         
design. The four designations can be seen in Table 1.
11
Table 2: Design Variables
In order to narrow down the choice of materials to those that fit the design criteria,                             
simulated values for the constraints must be calculated or found through available                     
literature. Many of the constraints are dependent on the shape and dimensions of                       
the container.
Workable Dimensions
In order to create dimensions that could be used to calculate estimated                     
constraint values, many assumptions had to be made as well as research on how                         
the container will interact with the end user. It is assumed that the container will act                             
as a pressure vessel since it will contain a carbonated beverage. The optimum                       
shape for a pressure vessel is a sphere but a sphere is relatively difficult to produce                             
compared to a cylinder so the team has decided to model the container after a                           
cylinder. (Pressure Vessels Ensure Safety). Ergonomics is the use of introducing                   
the human psyche into the design process. More ergonomic designs have a track                       
record of selling more inventory (Ergonomics 101). It is assumed by the design                       
team that a container that can be easily carried or grasped by the average person                           
will be more enticing to a consumer then a container that is not easily grasped or                             
carried. The average person’s hand has the length of 180.5 mm (Hand Grip                       
Strength). The estimated circular cross section of the simulated cylindrical container                   
will be a function of the average hand length. Appendix Figure 1 demonstrates how                         
the length of the hand is curved around the cross section. It is assumed that a hand                               
that is able to cover at least half of the bottle in order to satisfy the comfortable                               
grasp for a human. With a hand wrapped around half of the cross section (π in                             
12
radians), an estimated radius can be calculated. It is also assumed that the                       
thickness negligible compared to the radius.
Table 3: List of the constraint values calculated above.
Figure 2 shows the polymers that are left when the constraint values are placed in                           
the limits of the CES software. The values entered can be seen in the material                           
selection appendix.
Figure 2: Polymers passing constraints
The objective of the material selection process was to minimize cost. The                     
cost limited design of the stiffness design in chapter 5 of the Materials:                       
engineering, science, processing and design by Michael Ashby, Hugh Shercliff,                 
13
and David Cebon, was selected because the flat plate material indices was                     
deemed close enough to what needs to be optimized for the container to be used.
 (Eq. 11)M = E3
1
ρC
The material indices graphed with CES is seen in figure 3. The slope of the indices                             
is in a unique spot where it cannot be limited to three. The selection jumps from two                               
to four materials.
Figure 3: Material index Graph
The four materials that were left from the material indices are PET, PP, PLA, and                           
tpPVC. The team then used documentation from known literature and research in                     
how easily available the remaining materials are to narrow the choice down to three.                         
The three materials remaining after documentation is PP, PET, and tpPVC.
14
Statistical Analysis
Statistical analysis was performed to determine if the material we selected                   
was significantly different from a material of another material group for a specific                       
property. We chose to use the hardness test to compare PET and low carbon steel.                           
The first equation below was used to determine the pooled standard deviation.                     
Next, the t actual was determined by the second equation.
Once we knew t actual we could determine with what degree of certainty we
could say that the materials were different. We found t actual to be 643.5159. This
an unusually high number for t actual could be explained because we used 30
samples for each material and the materials we projected to have large differences
in hardness. Then it was determined that we could could say with a confidence level
of 99.9% and using a critical value for our degrees of freedom determined by the
third and last equation above. The critical value was 3.2368 which is much smaller
than the t actual which means we can statistically say with at least 99.9% certainty
that the two materials are different.
Material Properties
Polyethylene terephthalate (PET)
Almost all soda and water bottles in the U.S. are made from PET. PET is a synthetic                               
fiber that is clear, strong, light, and stiff. PET is in the thermoplastic family and the                             
polyester family. Water or carbon dioxide cannot pass through PET, but small                     
amounts of oxygen can pass through. It can be recycled into carpet and clothing and                           
the recycle number is one. PET is produced by using a process called                       
polymerization (Polyethylene). The two ingredients in the process are ethylene glycol                   
and terephthalic acid. This process also produces water (PET Resin). J.Rex                   
Whinfield and James T. Dickson first patented the material in England in 1941 and                         
production did not begin until 1952 by a USA company called Du Pont (John Rex).
Polypropylene (PP)
This material is very similar to PET. It is also a synthetic polymer fiber and part of                               
15
the thermoplastic family. PP is tough, lightweight, heat resistant, and flexible. It also                       
is flammable and degrades in UV rays. PP can be recycled and the recycle number                           
is 5. Polypropylene is often used for ropes, crates, and insulation (Polypropylene).                     
Giulio Natta discovered PP in 1954 and commercial production began in 1957.
Polyvinylchloride (tpPVC/PVC)
PVC is lightweight and rigid, but can become more flexible by adding chemicals                       
like phthalates. It is used for many things including plumbing, insulation, siding,                     
signs, windows, and healthcare products. PVC is recyclable but is difficult to do so                         
and the production process creates a very toxic chemical called dioxin (Polyvinyl).                     
PVC was discovered in 1872 by Eugen Baumann but did not appear in commercial                         
products until Waldo Semon developed a way to use additives to plasticize the                       
chemical and make it more flexible and easily processed.
General properties
The tables show that PET and PP are similar in price but PVC is usually                           
much cheaper by the pound. The tables also show that if we had the same weight of                               
each material PET and PVC would be similar in volume but PP would be much                           
larger in volume. PET PVC and PP would all be lighter compared to soda lime                           
glass (152­155 Lb/ft^3) which could reduce transportation costs and may improve                   
stacking ability. The prices of these polymers are slightly less expensive than the                       
price of aluminum alloys which is 1.08 to 1.18 USD/lb. The main difference in the                           
chemical composition is that PET is a much larger molecule than PP or PVC and                           
PVC has a chlorine atom in its chemical composition.
Table 4: PET
Property Lower limit Upper limit Units
Density 80.5 87.4 Lb/ft^3
Price .939 1.03 USD/lb
Molecular
composition
C10H8O4
Table 5: PP
Property Lower limit Upper limit Units
Density 55.6 56.8 Lb/ft^3
Price .871 1 USD/lb
Molecular
composition
C3H6
Table 6: PVC
Property Lower limit Upper limit Units
Density 81.2 98.6 Lb/ft^3
Price .64 .703 USD/lb
Molecular
composition
C2H3Cl
16
Mechanical properties
Mechanical properties are important to determine if a structure will fail when a load                         
is applied. The loads that may be applied to the beverage may include the pressure                           
inside the bottle, a person twisting the cap off the bottle, and any stacking bottles                           
during transportation or storage. Yield strength, tensile strength, and compressive                 
strength are important to determining if the bottle can withstand the applied loads.                       
The bottle must also withstand an impact when dropped from 5 feet. The property                         
most related to the impact test would be the fracture toughness. Fracture toughness                       
determines if a material would fracture when a load is applied. These polymers                       
would perform better than soda lime glass which has a fracture toughness of around                         
0.5 to 0.6 ksi in^0.5. PET does best with regards to fracture toughness follow by                           
PVC then PP. Young’s modulus is a measure of stress divided by strain.
Table 7: PET
Property Lower limit Upper limit Units
Youngs modulus 0.4 0.6 10^6 psi
Shear modulus 0.144 0.216 10^6 psi
Bulk modulus 0.718 0.754 10^6 psi
Yield strength 8.19 9.04 Ksi
Tensile strength 7.01 10.5 Ksi
Compressive
strength
9.01 9.94 ksi
elongation 30 300 % strain
Fracture toughness 4.1 5.01 Ksi in^0.5
Hardness (Vickers) 17 18.7 HV
Table 8: PP
Property Lower limit Upper limit Units
Youngs modulus 0.13 0.225 10^6 psi
Shear modulus 0.0458 0.0795 10^6 psi
Bulk modulus 0.363 0.377 10^6 psi
Yield strength 3 5.4 Ksi
Tensile strength 4 6 Ksi
Compressive
strength
3.64 8.01 ksi
elongation 100 600 % strain
Fracture toughness 2.73 4.1 Ksi in^0.5
Hardness (Vickers) 6.2 11.2 HV
Table 9: PVC
Property Lower limit Upper limit Units
Youngs modulus 0.31 0.6 10^6 psi
Shear modulus 0.111 0.216 10^6 psi
Bulk modulus 0.682 0.711 10^6 psi
17
Yield strength 5.13 7.56 Ksi
Tensile strength 5.9 9.45 Ksi
Compressive
strength
6.16 13 ksi
elongation 11.9 80 % strain
Fracture toughness 1.33 4.66 Ksi in^0.5
Hardness (Vickers) 10.6 15.6 HV
Thermal properties
Thermal properties are important in order to find out the best process to use to                           
shape the material into a product. It is also important to determine if the                         
temperatures the material might experience will cause the material to deform.                   
Thermal conductivity determines how good the material is at conducting heat. The                     
low thermal conductivity means that all three materials are very good insulators. It is                         
important that these materials be insulators so that a person’s hand does not get                         
cold if someone is drinking a cold drink. The materials here are much better than                           
both soda lime glass(0.404­0.751 BTU ft/(h*ft^2* °F)) and aluminum alloys                 
(68.8­139 BTU ft/(h*ft^2* °F)) when it comes to insulating. The specific heat is the                         
amount of energy required to heat one pound of material.
Table 10: PET
Property Lower limit Upper limit Units
Melting point 413 509 Degrees Fahrenheit 
(°F)
Maximum service 
temp
152 188 Degrees Fahrenheit 
(°F)
Minimum service 
temp
­190 ­99.7 Degrees Fahrenheit 
( °F)
Thermal conductivity 0.0797 0.0872 BTU ft/(h*ft^2* °F)
Specific heat 0.339 0.352 BTU/lb*°F
Table 11: PP
Property Lower limit Upper limit Units
Melting point 302 347 Degrees Fahrenheit 
(°F)
Maximum service 
temp
212 239 Degrees Fahrenheit 
(°F)
Minimum service 
temp
­190 ­99.7 Degrees Fahrenheit 
(°F)
Thermal conductivity 0.0653 0.0965 BTU ft/(h*ft^2*°F)
Specific heat 0.447 0.467 BTU/lb*°F
Table 12: PVC
Property Lower limit Upper limit Units
Melting point 413 509 Degrees Fahrenheit 
18
(°F)
Maximum service 
temp
140 158 Degrees Fahrenheit 
(°F)
Minimum service 
temp
­190 ­99.7 Degrees Fahrenheit 
(°F)
Thermal conductivity 0.0849 0.169 BTU ft/(h*ft^2*°F)
Specific heat 0.324 0.345 BTU/lb*°F
Electrical properties
Electrical properties determine whether a material is a conductor, semiconductor,                 
or insulator. The high resistance in these polymers means that they are all good                         
insulators. Good insulators can often be used in capacitors to increase                   
capacitance. The dielectric constant determines the amount that capacitance is                 
increased if put in the middle of the capacitor.
Table 13: PET
Property Lower limit Upper limit Units
Electrical resistivity 3.3e20 3e21 Micro ohms cm
Dielectric constant 3.5 3.7 none
Table 14: PP
Property Lower limit Upper limit Units
Electrical resistivity 3.3e22 3e23 Micro ohms cm
Dielectric constant 2.1 2.3 none
Table 15: PVC
Property Lower limit Upper limit Units
Electrical resistivity 1e20 1e22 Micro ohms cm
Dielectric constant 3.1 4.4 none
Optical properties
Refractive index is the ratio of the velocity of light in a vacuum to that in the material.                                 
This change of speeds causes the light to bend or refract. Transparent means that                         
the materials is clear and all light is let through the material, while a translucent                           
material only allows some light to travel through the material, and finally opaque                       
materials don’t allow any light though the material.
Table 16: PET
Property Lower limit Upper limit Units
Refractive index 1.57 1.58 none
Transparency Transparent
Table 17: PP
Property Lower limit Upper limit Units
19
Refractive index 1.48 1.5 none
Transparency Translucent
Table 18: PVC
Property Lower limit Upper limit Units
Refractive index 1.54 1.56 none
Transparency Translucent
Chemical properties
Chemical properties describe weather or not a stimulus could change the chemical                     
composition of the material. Stimuli include UV rays, solutions, or chemicals. We                     
have chosen citric acid and phosphoric acid because these are chemicals that are                       
often in sodas (Verhoff). The CES software says that all three materials perform                       
very well in citric acid and phosphoric acid. The software also shows us that PP                           
does not become very chemically stable when exposed to sunlight.
Table 19: PET
Durability­ citric acid 10% Excellent
Durability­ phosphoric acid 10% Excellent
Durability­ UV radiation good
Table 20: PP
Property Lower limit Upper limit Units
Durability­ citric acid   
10%
Excellent
Durability­
phosphoric acid 
10%
Excellent
Durability­ UV 
radiation
Poor
Table 21: PVC
Durability­ citric acid 10% Excellent
Durability­ phosphoric acid 10% Excellent
Durability­ UV radiation good
Magnetic properties
When applying magnetic fields to our materials, they do not respond in a                       
diamagnetic, paramagnetic, or ferromagnetic way. These polymers therefore do not                 
have any magnetic properties.
Processability
The processability ratings indicate that these polymers should not use any type of                       
cast molding where the material is melted down and poured into a mold and                         
20
allowed to re solidify. The high scores in moldability show that the materials can                         
easily be shaped using injection molding, blow molding, or compression molding.                   
They can also easily be welded and joint together very easily. The polymers may                         
also experience good machinability, meaning that they may be effectively cut into                     
shape and have a good finish.
Table 22: PET
Process Scale from 1 to 5 where one is not recommended and five                     
is excellent
Castability 1/2
Moldability 4/5
Machinability 3/4
Weldability 5
Table 23: PP
Process Scale from 1 to 5 where one is not recommended and five                     
is excellent
Castability 1/2
Moldability 4/5
Machinability 3/4
Weldability 5
Table 24: PVC
Process Scale from 1 to 5 where one is not recommended and five                     
is excellent
Castability 1/2
Moldability 4/5
Machinability 3/4
Weldability 5
Eco properties
All three polymers can be recycled but it is significantly more difficult to                       
recycle PVC. Pure PVC is easily recyclable but because there are many different                       
chemicals and treatments that are usually performed on PVC, it becomes either non                       
recyclable or only recyclable with PVC with similar treatments. The other materials                     
also may undergo treatments, but there are not as many different types of treatment                         
as PVC and they are also less common than in PVC. Therefore, it is important to                             
consider whether the plastic should undergo treatment that might make it more                     
difficult to recycle. The process that creates PVC also creates a powerful toxin                       
known as dioxin, which is an environmental concern. There has been a considerable                       
movement to avoid using PVC and instead use a different plastic for this reason.                         
The carbon footprint of all three is significantly lower than Aluminum alloys, which is                         
12.5 to 13.8 lb/lb. The carbon footprint for a recycled version of the material is                           
21
significantly lower for PET and PP so recycling should be encouraged.
Table 25: PET
Property Lower limit Upper limit Units
Embodied energy 8.76e3 9.7e3 Kcal/lb
CO2 Footprint 3.76 4.15 Lb/lb
Water usage 15.1 16.8 Gal/lb
Recycle Yes
Table 26: PP
Property Lower limit Upper limit Units
Embodied energy 8.2e3 9.07e3 Kcal/lb
CO2 Footprint 2.96 3.27 Lb/lb
Water usage 15.46 4.94 Gal/lb
Recycle Yes
Table 27: PVC
Property Lower limit Upper limit Units
Embodied energy 6e3 6.63e3 Kcal/lb
CO2 Footprint 2.37 2.62 Lb/lb
Water usage 23.6 26.1 Gal/lb
Recycle Yes
Summary of design guidelines, technical notes, and typical             
uses:
PET
Limits of permeability to oxygen are overcome by having a layer of                     
polyethylvinylidene­alcohol between two layers of PET. This can still be blow                   
molded. Made by using a condensation reaction with an alcohol and an acid                       
creating the polymer and water. Typical uses include electrical fittings; blow molded                     
bottles, films, magnetic tape, fibers, and credit cards.
PP
Stiffness and strength can be improved by reinforcing with glass chalk or talc. It is                           
very resistant to water and can be colored many different colors. There are three                         
basic groups of PP: homopolymers (pure PP), copolymers (PP made with another                     
polymer), and composites. Typical uses include ropes, garden furniture, washing                 
22
machine tank, cable insulation, capacitor dielectrics, car bumpers, shatterproof               
glass, crates, and artificial turf.
PVC
Plasticizers can make it into a softer material, which could then be used as a                           
substitute to leather. It is also used for transparent disposable containers because it                       
was so cheap. It can be join very easily. PVC may be a thermoplastic or thermoset                             
depending on the process used to make it. Types of PVC include type I, type II,                             
CPVC, acrylic/PVC blend, and clear PVC. Typical uses include pipes, fittings, road                     
signs, canoes, garden hoses, vinyl flooring, medical tubes, artificial leather, wire                   
insulation, and fabric.
Eco Audit and Sustainability
After researching possible materials and deciding on the materials that                 
would perform best for the project an Eco Audit had to be done using the CES                             
software. To do this the three materials, polyethylene terephthalate (PET),                 
polypropylene (PP), and polyvinylchloride (tpPVC), were placed into the Eco Audit                   
Project Table. Once this was done the correct material was chosen. Once the                       
material was put into the table the mass, primary process, end life, and quantity of                           
each material was entered. The mass of the material was discussed in the Material                         
Selection section. The primary process was chosen between polymer molding and                   
polymer extrusion. After doing research it was found that the capital cost of polymer                         
molding averaged to be $27,060 and the capital cost of polymer extrusion averaged                       
to be $738,000 (CES). This was backed up by further research done that found that       
                   
polymer molding had recently become much cheaper due to recent changes made                     
in machines that perform polymer molding (Al­Helou). The end of life of each                       
polymer was chosen based on the fact that PET, PP, and tpPVC are all recyclable                           
materials. The quantity of the material was known from the customer, GP Beverage,                       
and how many bottles they are expecting.
Table 28: Material, Manufacture, End of Life (PET) (CES)
The next step of the Eco Audit was the transport type. The type of transport                           
chosen for the beverage containers was Truck Delivery. This would be done on a                         
32­ton truck and the trucks would have to drive an average of 1000 miles to deliver                             
the containers to their destination (CES).
Table 29: Transport (CES)
23
After the transport analysis was done the next step was to look into the use of                             
the containers. The product life was determined to be one half of a year and only                             
used in North America. The product life was determined by analyzing the life cycle                         
of a beverage container. After a beverage container is produced it spends time in                         
storage, and then is shipped. This could take anywhere from one week to one                         
month. Once the containers are shipped it arrives at retailers that sell the                       
containers. The container could sit on the shelf of a retailer from one day to one                             
month. Once the container is bought it is taken off of the shelf and is put to use. The                                   
actual use of the container could last as long as three months. Once the container is                             
done being used it is recycled, and that process takes around a month. So from                           
manufacturing to recycling, a container could be in use for up to six months. The                           
location was chosen because GP Beverage is located in North America and keeps                       
all business on the continent (CES). The table below shows how the values were                         
plugged into the CES software.
Table 30: Use (CES)
Once the values were put in for a material the report tab showed the effects                           
of material, manufacturing, end of life, transport, and use in greater detail. The                       
report tab provides graphs and charts for both energy use and CO2 footprint. The                         
charts and graphs can be analyzed to show the benefits and downfalls of each                         
material (CES).
Figure 4: Energy Summary (PET) (CES)
24
The graph above shows that the material gathering and production has the                     
greatest energy usage out of all of the categories. Manufacturing has the second                       
highest energy usage, and transport, use, and disposal are very small in                     
comparison to material and manufacture. The EoL, or end of life potential shows                       
that by recycling PET it saves around 4e+8 kcal of energy. This is significant                         
because that is more than half of the energy used to gather and produce the                           
material. Therefore by recycling PET the total energy consumption can be cut nearly                       
in half.  The report also shows a graph displaying the CO2 footprint (CES).
Figure 5: CO2 Footprint Summary (PET) (CES)
The CO2 Footprint Summary shows similar findings to the Energy Usage                   
Summary. The material gathering and production has the greatest impact on CO2                     
footprint followed by manufacturing. Transport, use, and disposal have a very small                     
effect on CO2 footprint when compared to material and manufacture. The EoL                     
potential shows that recycling PET will reduce the overall CO2 footprint of using PET                         
(CES).
The report tab also provides the information in a table.
Table 31: Energy and CO2 Summary (PET) (CES)
The table above shows the same information presented in the graphs above                     
just in a different form. The table does show some extra information that is                         
beneficial. The percentage of energy usage and CO2 footprint show exactly how                     
25
much each phase is responsible for. CES software also states that any phase with                         
a percent fewer than twenty is usually not significant. The table also does a good                           
job representing the “Total for first life” and then the end of life potential. It shows                             
that by recycling the material and having a high end of life potential it decreases the                             
total used in the first life (CES).
The report tab also provides more in depth information about the energy use                       
and CO2 footprint during each phase of the materials life (CES).
Table 32: Detailed Energy Use (PET) (CES)
26
The tables above show each subcategory of the different phases of a                     
material’s life. It then totals up the total energy used during each phase of a                           
materials life. These tables can be used to see which phase has the greatest                         
energy consumption and what is causing the phase to have the highest energy                       
consumption. These tables are useful because they provide enough detail that the                     
main energy consumer can be located and possibly altered if necessary or feasible.                       
For PET the area that has the highest energy use is the material stage (CES).                           
Below are tables showing the carbon footprint of PET.
Table 33: Detailed CO2 Footprint (PET) (CES)
27
The tables above are similar to the tables for Detailed Energy Use and show                         
the CO2 footprint in each phase of a materials life. The tables can be used to find                               
the phase that has the greatest CO2 footprint. For PET the material phase has the                           
greatest CO2 footprint (CES).
(Tables and graphs for PP and tpPVC can be found in the Appendix (Eco Audit))
28
Another feature from CES is the summary chart. The summary chart                   
compares the chosen materials to one another. This allows the user to look at the                           
energy use and CO2 footprint of each material and compare them to one another                         
(CES).
Figure 6: Summary Chart (Energy) (CES)
The figure above compares PP, tpPVC, and PET and their energy use.                     
Looking at the material phase PP uses much more energy than the other two;                         
tpPVC and PET have very similar energy usage in the material phase. In the                         
manufacture phase of the materials life PET has the lowest energy consumption. In                       
the transport, use, and disposal phases none of the polymers have enough energy                       
consumption to consider when compared to the material and manufacture phases.                   
In the end of life potential phase PET has the highest negative energy, which says                           
that PET returns the most energy after being recycled. Since PET has the lowest                         
total energy consumption and the highest end of life potential PET has the lowest                         
total energy consumption over the life cycle of the polymers (CES).
CES also provides a summary chart based on CO2 footprint.
29
Figure 7: Summary Chart (CO2 footprint) (CES)
The figure above compares PP, tpPVC, and PET and the CO2 footprint of                       
each polymer in the different life phases. In the material phase of the polymers life                           
tpPVC has the lowest CO2 footprint followed by PET and PP has the highest CO2                           
footprint. In the manufacturing phase PET has the lowest CO2 footprint followed by                       
tpPVC, and PP has the highest. The transport, use, and disposal phases are small                         
enough to be disregarded when compared to the CO2 footprint during the material                       
and manufacturing phases. In the end of life potential phase PET is the only                         
polymer that has a negative CO2 footprint, which shows that recycling PET lessens                       
the CO2 footprint for the total life of the polymer. Both tpPVC and PP increase the                             
CO2 footprint for the total life of the material (CES).
CES also allows the user to compare polymers to any other material, which                       
is beneficial because it shows the benefits and downfalls of polymers. This was                       
done by using the Eco Audit feature and putting the materials in a summary chart to                             
compare the energy use and CO2 footprint of the different materials. The following                       
figures are the summary charts comparing the three polymers and non                   
age­hardening wrought Al­alloys, which is commonly used to make aluminum cans                   
for beverages (CES).
30
Figure 8: Summary Chart (Energy) (CES)
 
Figure 9: Summary Chart (CO2 footprint) (CES)
31
The figures above show that the non age­hardening wrought Al­alloy has a                     
much higher total for energy use and a much higher total CO2 footprint than the three                             
polymers compared earlier in the Eco Audit. This shows that the non age­hardening                       
wrought Al­alloy will be much more detrimental to the environment and also cost                       
more money during the material phase of the material. Non age­hardening wrought                     
Al­alloy consumes less energy and has a smaller CO2 footprint in the manufacturing                       
stage but it does not make up for the difference seen in the material phase (CES).
The Eco Audit is very beneficial in investigating the environmental impacts                   
that each material has but does not return much information about the other pillars of                           
sustainability. The information given has to be interpreted in order to gather                     
information for economic, technical, and social sustainability.
The graphs give useful information when looking at economic sustainability.                 
Energy has a cost to it so the graphs of energy use can be directly linked to the                                 
economics of the material. The higher the energy consumption is the higher the                       
total cost will be. Looking at the graphs it is obvious that the two phases that will                               
cost the most money are material and manufacturing. The other phases are                     
insignificant when compared to material and manufacturing. The end of life                   
potential also has an impact on the economics of the material. If a material is taken                             
to a landfill then the cost will be very low but if the material is recycled at a plant it will                                       
cost much more money and this will have to be taken into account for the company.                             
Each phase of the life cycle requires workers so the entire life cycle provides jobs                           
for people, which will affect the economy.
Social sustainability is less obvious when using the Eco Audits and the end                       
results of the Eco Audit. Each phase in the life cycle of the materials will provide                             
jobs for people, which affects social sustainability.
Technical sustainability can affect each phase of the life cycle. If the                     
technology used during each phase is efficient and up to date then the phases will                           
be operating at minimum cost and maximum efficiency. If new technology comes                     
out that will change a certain phase of the life cycle then the graphs and charts                             
above will be altered. If a new low energy process is developed to produce the                           
material then the energy consumption during the material phase will be decreased                     
greatly.
The Eco Audit can be linked back to all four pillars of sustainability but is                           
much more useful for environmental sustainability.
32
Physical Testing
Tensile Testing
Tensile testing was performed using the instron machine in the mechanics                   
lab. The yield strength and Young’s modulus was calculated for each material using                       
the following  equations:
/Aσ = F
L/Lε = Δ
/εE = σ
Where  is the stress, F is the force, A is the cross sectional area,  is theσ ε
strain,   is the change in length, L is the initial length, and E is Young’s modulus.LΔ
Three trials were conducted for each of the three sample materials, and the average
values for stress, strain, and young’s modulus were taken between the three trials.
Graphs depicting stress vs. strain are shown in figure A16 in the appendix. The yield
strength was found using these graphs, and are shown in table 34 below, along with
the young’s modulus of each material.
Table 34: Tensile Test Results
Material Yield Strength (psi) Young’s Modulus (psi)
PET 10350.537 478,372.978
PP 5104.352 191,231.867
PVC 9362.543 463,356.735
These results show that PET has the highest yield strength, and from the
graph it is also seen that PET is much more ductile than PVC, which breaks almost
immediately after yielding. PP is quite ductile but has a much lower yield strength
than the other two. This indicates that based on the requirements provided for the
beverage container to withstand a five foot free­fall, PET is the best choice.
Optical Testing
The optical test conducted in order to determine if material properties were                     
affected by extended exposure to UV radiation. The sun provides the Earth’s                     
surface with roughly 4.7 kwh/day of sunlight to the Harrisonburg area on a sunny                         
day(GW Solar Institute). Converting this to kJ/week gives a value of 118440                     
kJ/week.
Three samples of each material were placed under a 120W UV light for one                         
week. This converts to approximately 72576 kJ/week. Upon comparison of the two,                     
the material samples were exposed to UV radiation equivalent to roughly 4 days of                         
sunlight in Harrisonburg, VA. This was chosen as gauge based on the example of a                           
33
beverage bottle accidentally being left in a car and exposed to sunlight for several                         
days. It is necessary to ensure that any material selected would not be noticeably                         
impacted by the UV exposure and have any effect on the structural integrity of the                           
container.
All three samples of each material were then put through the same tensile                       
testing process as their non­UV exposed counterpart. Using this data, stress, strain,                     
young’s modulus, and yield strength values were again calculated and averaged                   
across the three trials. Yield strength and young’s modulus values are shown in table                         
35, located below, and a graph of stress vs. strain for each material is shown in                             
figure A19 of the appendix.
Table 35: Results of UV Exposed Tensile Testing
Material Yield Strength (psi) Young’s Modulus (psi)
PET 9735.475 487,352.978
PP 4933.892 196,731.327
PVC 8955.436 463,364.757
The results of this test show that there was a very minimal impact on any of
the three materials caused by UV exposure. This test does not affect final material
selection because all three materials responded in roughly the same manner.
However, it does ensure that all three materials can withstand at least moderate UV
exposure and do not need to be ruled out of consideration.
Chemical Testing
Tensile:
The acid test was performed by soaking the materials in soda instead of                       
acid. This decision was reached because we did not have enough money in the                         
budget to buy the acids separately. we used RC Cola as our soda because that is                             
the most acidic soda with a pH of 2.387.
We then performed tensile test to determine if the acid in soda (citric,                       
phosphoric, and carbonic) had deteriorated the physical properties of the material.                   
The results are summarized in the table below.
34
Table 36: Results of Chemical Tensile Testing
The data collected was analyzed with statistics and was not found to be
statistically different than the trials conducted for the initial tensile test. Although this
shows that the chemicals did not affect the properties of the materials, not enough
tests were done to prove this statistically.
Material Degradation:
The material degradation test was simplified because we spent almost all of                     
our money on the materials and did not have enough money to buy all of the                             
containers. Instead we had one container with just soda (RC Cola was used again                         
for the soda in this experiment because we had it available form the first chemical                           
test) and three other containers with soda with one material submerged in each. We                         
did not fill any containers with water and used the container with just soda as our                             
control. Our results our shown in the table below.
Table 37: pH Change of  Chemical Test
The change in pH from day one to day seven in the control solution was                           
0.0333, the change in pH from day one to day seven of the solution with PP was                               
0.030, the change in pH from day one to day seven of the solution with PET was                               
0.0267, and the change in pH from day one to day seven of the solution with PVC                               
was 0.0333.
All solutions had an increase in pH. This could be explained by the loss of                           
carbonation of the soda over time which would lead to a decrease in the carbonic                           
acid levels in the solution. Another possible explanation for the increase in pH is that                           
the same pH meter was not used for both trials.
Magnetic Testing
The magnetic testing for each material was done using a gaussmeter and a                       
35
magnet as seen in figures 10 and 11.
Figure 10: Gauss Meter
Figure 11: Ferrous Magnet
The test was set up to examine the change in magnetic flux associated with                         
introducing the polymer material to the testing environment. The test was initiated by                       
recording the measurement of the ferrous magnet with the Gauss meter without any                       
polymer material added as a control to other trials. Each polymer material was                       
oriented on top of the magnet in a way that would optimize the change in flux across                               
the gauss meter. Each polymer was put through thirty trials of this. The data for each                             
trial can be seen in appendix under magnetic testing and the averages of each trial                           
set seen in table 38, below.
Table 38: Magnetic Properties Comparison
The comparison of the polymer samples to that of the control sample was done by                             
statistical analysis of the two means. Since the values of the actual t values are less                             
than the critical t values, it can be said that the average values of the polymers are                               
not statistically different from that of the control average with 95% confidence.                     
Calculations for the values in table 38 can be seen the appendix under magnetic                         
testing.
36
Electrical Testing
We determined that our electrical test would not be possible because of the                       
extremely high resistivity of our material. Not only would it require a high voltage that                           
is not obtainable in our labs, but it would also be extremely dangerous to be working                             
with such high voltages without more advanced protection. This can be explained by                       
ohms law.
RV = I
V is the voltage, I is the current and R is the resistance. We would need an                               
extremely high voltage to get any significant amount of electrical current running the                       
polymers because the resistance is so high. The safety problem is because the                       
resistance of the human body is much less than that of the polymers. According to                           
the NIOSH (National Institute for Occupational Safety and Health), the resistance of                     
the human body under the best conditions is 100,000 ohms. The resistance of a                         
tenth of a millimeter of our least resistive material is 1,000,000,000,000 ohms. If we                         
were to accidently touch the wires connecting to oppositely charged wires the                     
current running through the body would be 10,000,000 times greater than the current                       
running through the polymer. High voltage may breakdown the skin, which would                     
lower the resistance of the body and increases current flow even more. According to                         
the NIOSH the current, duration, and path of the electricity impacts weather or not an                           
electric shock is lethal. The possibility of an extremely high current running through                       
the body makes this test too dangerous to conduct.
Thermal Testing
Thermal Conductivity
The thermal test was done as proposed in the procedures section of the                       
report. Rods were obtained of each material and were cut to ten inches and holes                           
were drilled into the top of each rod. A cartridge heat was connected to a power                             
supply supplying 1.35 amps to the cartridge heater. The cartridge heater was then                       
put in the hole that was drilled in the top of the rod. Next, thermocouples were                             
attached to the rod at 3 inches and 7 inches from the top (side with the cartridge                               
heater). The other end of the thermocouples was then put into LabView that                       
collected the data for the lab. The other side of the rod was placed in a cup of ice to                                     
try and get the maximum amount of heat transfer through the rod. The power supply                           
was then turned on and heated up the cartridge heater. The experiment ran for 30                           
minutes. The experiment was ran for all three materials, PET, PP, and tpPVC. The                         
figure below illustrates the set up of the experiment.
37
Figure 12: Thermal Conductivity Experiment
The figure above shows the rod in the cup with ice that has thermocouples                         
attached to it as well as the cartridge heater in the top of it. The figure shows the                                 
power supply as well as the LabView equipment used to collect data.
After collecting and analyzing the data there was no significant temperature                   
change throughout the rod. There were only small fluctuations which were most                     
likely caused by temperature changes in the room or air flow through the room.                         
Since there was no temperature change the thermal conductivity value must be very                       
close to zero. This can be shown by using the equation, . It is                      A(dT/dx)Q = k    
obvious to see that if the temperature change in the system is zero then the heat                             
transfer is going to zero. Ultimately, showing that the thermal conductivity value is                       
going to be zero as well. This held true with our hypothesis that the thermal                           
conductivity would be very low. Since our experiment did not yield any good data                         
we decided to research the thermal conductivity values of our materials for                     
comparison sake. The following table shows the thermal conductivity values for the                     
three materials tested.
Table 39: Thermal Conductivities of Materials (CES)
Material Thermal Conductivity (W/m*C)
PP 0.140
PET 0.145
tpPVC 0.220
The table above shows that the thermal conductivities of PP and PET are                       
very similar but tpPVC has a much higher value. This suggests that PP and PET                           
would be the first choices when selecting a material in terms of its thermal                         
38
properties. A low thermal conductivity will both keep heat out and keep the                       
coolness of the drink in. In comparison to other materials, like metals and ceramics,                         
all of these values are very small. This means that the three materials we have                           
selected would do fine if used to make a beverage container. Since, we have a                           
choice though PP would be our first choice followed closely by PET because their                         
values are so close.
Melting Point
Before starting the melting point test discussed in the procedure section of                     
the report the team talked to Scott Padgett to ensure that the test was safe to run.                               
He said the test was not safe to run without the proper equipment. The team                           
decided to air on the side of safety and instead of doing the experiment rely on the                               
values that were found during the research stage earlier in the project. Tables that                         
show the melting points for the three materials are found in the material properties                         
section of the report.
Impact Test Procedure
1. Introduction
The accuracy of the results of the test are dependent on the liquid in the                           
plastic container. In order for the results of the test to be useable by the individual                             
running the test, only containers with the same liquid can be compared to one                         
another. The individual running the test should use the same liquid that the container                         
is designed to carry. This test is not intended for containers that will contain                         
hazardous materials.
2. Scope
2.1­This test method is used to determine the ability of a plastic container full of                           
liquid to survive an impact of “standardized” pendulum type hammers, mounted in a                       
“standardized” manner, in one pendulum swing. The results of the test method are                       
reported in terms of pass and fail depending on if the container has been ruptured.
2.2­The values stated in SI units are to be regarded as standard.
2.3 Reference Documents
ASTM Standards
∙      D618 Practice for conditioning plastics for testing
∙      D883 Terminology related to plastics
∙ D256­10 Standard test methods for determining the I­zod pendulum impact                   
resistance of plastics
2.4 Terminology
∙      Definitions – For definitions related to plastics see terminology D883
39
3. Summary of Test Method
3.1­This test method operates by clamping a container at each of its ends so its                           
center is exposed to a strike from the pendulum. The container should be aligned in                           
the clamps so that the center of the container is in the path of the pendulum.
4. Significance and Use
4.1­Tests made on the conditions of this standard have value in comparing a                       
containers ability to survive impact.
4.2 The impact of the pendulum test indicates the energy needed to break                       
containers, and are influence by the parameters, specimen mounting, container                 
dimensions, expansion properties of the liquid, and pendulum velocity at impact.
4.3 The energy lost by the pendulum during the breakage of the specimen is the                           
sum of the following.
∙      4.3.1­Energy to initiate fracture of the container
∙      4.3.2­Energy to bend the container
∙      4.3.3­Energy to create vibration in pendulum arm
∙      4.3.4­Energy to indent the container
∙      4.3.5­Energy to overcome friction caused by pendulum striker
∙      4.3.5­Energy to overcome friction in pendulum arm bearing.
4.4 The results of the test should be recorded as follows
∙      CR­Complete Rupture­container splits into two pieces
∙ PR­Partial Rupture­container splits and the inside liquid is leaking but the                     
container is still one piece.
∙ D­Dented­The container has been permanently deformed but has none of its                     
content leaking.
∙      NN­Not Noticeable­ The container has no noticeable effect from the pendulum.
o CR and PR will be categorized as a failure to withstand impact. D and NN will                               
be labeled as passing the impact test.
4.5 The value of the impact container method is mainly in the areas of quality                           
control, materials specification, and container specifications.
5. Apparatus
5.1 The machine which will hold the container shall have a wide base that is                           
mounted and rooted to a rigid frame. The machine must also have a holding and                           
releasing mechanism for the pendulum.
5.2 The pendulum will consist of a single arm with a bearing on one end and a head                                 
at the other. The arm must be sufficiently rigid to withstand the energy of the impact.
5.3 The head of the pendulum will made of hardened steel with a radius of curvature                             
of 0.8±0.20 mm. The contact between the container and the pendulum will occur no                         
farther than ±2.54 mm from the measured center of the container.
5.4 The position of the pendulum in the holding and releasing mechanism will be                         
raised to a vertical height of 610±2 mm which should produce a velocity of 3.5 m/s.
5.5 The length of the pendulum arm shall be 0.4 mm.
5.6 The machine shall come with a vice that is made up of two clamps. Each clamp                               
secures each side of the container being tested.
40
   Figure 13: Side View of Pendulum Impact Machine
Figure 14: Front View of Pendulum Impact Machine
6. Procedure
6.1­The test should be run on an individual container ten times. The container                       
obtains a passing grade if it gets a D or NN for all ten trials. If the container                                 
receives a CR or PR on a trial, the testing procedure ends and the container obtains                             
a failing grade.
6.2­The dimensions of the container must stay consistent. The tolerance of the                     
41
dimensions of the container must be ± 0.005 inches from each other, if the result of                             
the container is to be compared to the other materials.
6.3­Calculate the energy needed to test and select a pendulum of suitable energy.
6.4­Place the container in a clamped vice so that the center of the bottle is in line                               
with the pendulum.
6.5­If windage and friction energy is given make appropriate adjustments to the                     
pendulum so that the needed energy is delivered to the container.
Final Material Selection
The team decided to use a decision matrix to select the final material. The                         
selection criteria was chosen by the experiments that were done as well as what the                           
team decided was most important to the attributes of the bottle. Below is the                         
decision matrix.
Table 40: Decision Matrix
The decision matrix shows the selection criteria as well as what material                     
performed the best in the certain criteria. The selection criteria is weighted so the                         
most important criteria have a bigger impact on the final score of the selection                         
process. The decision matrix shows that PET was the best choice for our project                         
followed by tpPVC, and PP was the last choice.
42
Conceptual Prototype
The conceptual prototype was designed in SolidWorks. The design was                 
made by using the dimensions that were given in the Material Selection section of                         
the report. The design used the radius, height, and thickness that were decided in                         
the materials selection section and the volume, found by SolidWorks, was just over                       
five liters. The drawing was then presented to Dr. Nagel who said that the drawing                           
could be printed using the 3D printer but that it must be scaled down. The printers                             
that JMU has can only print at a certain size and also since the prototype has no real                                 
use it would be a waste of material. Scaling the drawing down also meant that the                             
prototype must be made solid because the thickness of the scale would not be                         
strong enough to support the shape.
After the material was scaled down the team took the design to the printing                         
room and with the help of Fletcher Grow, the TA for the solid modeling class, and                             
sent the drawing to the 3D printer. The printer then began the process that took                           
three hours. The final product was a scaled down version of the drawing found in                           
the figure below.
SolidWorks
43
Figure 15: Beverage Container Prototype
The scaled down version was approximately three and a half inches tall, and                       
the rest of the dimensions were scaled down the same. This gave the team an                           
actual hard part that could be presented to the customer. GP Beverage could now                         
have something to hold and see if it looked like something they would use and                           
market. After feedback is received the team will make changes to the alpha                       
prototype and then present the next stage of the prototype.
Economic Feasibility
The first thing that was done to see if the material being used would be                           
economically feasible was the initial mass of the container. This was done by using                         
the value previously found for the volume of the container itself and the density of the                             
material. The mass of the PET container was found the be 0.367 kg. The next thing                             
that was done was finding the cost of a single container. This was done by                           
multiplying the cost of PET, $2.18/kg (CES), by the mass of a single container.                         
Doing this gave the cost of one container to be $0.80.
GP Beverage wants 50,000 of these bottles so the next thing that had to be                           
done was to find the cost of 50,000 containers. This came out to be $39911.25.                           
This is the initial invest for GP Beverage. The cash flow depends on the amount that                             
the GP is going to charge for the bottle. Assuming, that GP will charge at least one                               
dollar per bottle and that the discount rate for the first year will be 5 percent. The net                                 
present value of the project can be found by using the equation,                          
. Using this equation with the values mentioned above thePV − o C/1 )N = C + ( + r                  
NPV for the first year of the project will be $7707. 79.
Seeing that the NPV for the project is positive I would recommend that GP                         
Beverage continue with the material chosen. Having an NPV that is positive gives a                         
positive outlook on the project for the years to come because, if the project does                           
well, the company will sell more bottles the next year which will return even more                           
money. Also, if the beverage container becomes popular with the customers the                     
company can start charging more per bottle which will also increase their profit.
Conclusion
Research suggests that using Polyethylene terephthalate (PET),           
Polypropylene (PP), and Polyvinylchloride (PVC) from the polymer family would be                   
the most cost efficient way to protect the product of the GP Beverage Company.                         
These materials meet the criteria listed above. The material properties process                   
shows a comparison of the three materials. This process compares the properties                     
44
of each material, which can highlight the strengths, and weaknesses of each                     
material. The material selection process depicts which materials out of the polymer                     
family would best be suited for the project. The design­lead method of defining                       
functions, constraints, objectives, and free variables is how each material was                   
selected. Through estimations and research, the team was able to simulate values                     
for defining the constraints of the bottle design. The team used material indices to                         
figure out the top four materials within the polymer family that would satisfy the                         
project objectives. Documentation is responsible for narrowing those four down to                   
the three stated throughout this report. The eco­audit analyzed the life phases of                       
each material and the energy use and CO2 footprint during each life phase. The                         
energy use and CO2 footprint of each material allows the GP Beverage Company to                         
see which material is most environmentally sustainable. The eco­audit also provides                   
enough information for the team to explore the economic, social, and technical                     
sustainability of each material. The manufacturers, chemical properties, and               
chemical structures of each material are depicted below.
b. c.
                a.
Figure 16:
Polypropylene (PP) (a.), Polyvinylchloride (PVC) (b.), Polyethylene
terephthalate (PET)(c.)
45
Figure 17: Polymers Utilized (Note that the location is for the Manufacturer)
After the preliminary work was done for the project more research had to be                         
done to decide on a final material that would be used. This was first done by doing                               
the tests that were planned before the preliminary report. A test was run for thermal,                           
optical, mechanical, magnetic, electrical, and optical. One of the major findings                   
from running these tests is that the three polymers that were selected for testing                         
were not impacted during the thermal, magnetic, or electrical tests. This was shown                       
by running the experiments and not getting any noticeable results. Also, the                     
chemical and optical tests did not have any majorly defining results. The chemicals                       
did not have any major affect any properties of the polymers and the UV light did not                               
affect the properties of the polymers.
The test that had the most impact on the project was the mechanical test.                         
The mechanical test was a tensile test and from that the team gathered information                         
about both the Young’s Modulus and the tensile strength of the three different                       
materials. This was beneficial because the project calls for a material that is tough                         
enough to survive a fall without breaking or cracking.
The final material was selected by using a decision matrix. Using this the                       
team was able to rank the selection criteria and compare the materials to one                         
another. After the team had finished the decision matrix it was decided that PET                         
was going to be the material of choice. After PET was chosen there were other                           
things that had to be done.
The team designed a bottle using SolidWorks. This was done by using the                       
dimensions that were found in the material selection section of the report. The team                         
drew the bottle and had to discuss the bottle with someone that was familiar with 3D                             
printing. After doing this it was decided that the container needed to be scaled                         
down before printing. The container was scaled down and then printed, giving the                       
team an alpha prototype.
Lastly, the team analyzed the economical side of the project. The project                     
was found to have a positive NPV for the first year which means the project has a                               
bright future. The team believes that GP Beverage should continue with the project                       
and with the material that the team has chosen for them.
Overall, the material we selected is the best material for the GP beverage                       
bottle in both the material family of polymers, and compared to other material                       
46
families. PET is proved to be the best polymer for the project by our research,                           
properties that we validated with physical tests, and decision matrix based upon                     
customer needs. When compared with the other material families the polymer family                     
makes the best sense for a bottle based upon the properties of cost, weight,                         
performance and processability. Therefore we can conclude that, because PET is                   
the best polymer and polymers are the best family group to construct the five liter                           
bottle, PET is the best material to construct the five liter bottle out of all available                             
materials according to our research.
References (MLA Format)
1. "3. PRESSURE SAFETY PRACTICES." MN471000. N.p., n.d. Web. 24
Oct. 2013.
2. Al­Helou, Bassam A. "Modification And Development Of A Blow Molding .
Machine." Engineering 4.4 (2012): 188­197. Academic Search .
Complete. Web. 23 Oct. 2013.
3. Ashby, M. F., Hugh Shercliff, and David Cebon. Materials: Engineering, .
Science, .Processing and Design. Oxford: Butterworth­Heinemann, .2010.
Print.
4. "Average Hand." Size. N.p., n.d. Web. 24 Oct. 2013.
47
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport
TheFinalReport

More Related Content

What's hot

Biosimilar & Patents - Challenges for Research & Analysis
Biosimilar & Patents - Challenges for Research & AnalysisBiosimilar & Patents - Challenges for Research & Analysis
Biosimilar & Patents - Challenges for Research & AnalysisIntellectPeritus Services
 
Fragment Based Drug Discovery
Fragment Based Drug DiscoveryFragment Based Drug Discovery
Fragment Based Drug DiscoveryAnthony Coyne
 
IRJET- Insilico Studies of Molecular Property and Bioactivity of Organic ...
IRJET-  	  Insilico Studies of Molecular Property and Bioactivity of Organic ...IRJET-  	  Insilico Studies of Molecular Property and Bioactivity of Organic ...
IRJET- Insilico Studies of Molecular Property and Bioactivity of Organic ...IRJET Journal
 
Slas talk 2016
Slas talk 2016Slas talk 2016
Slas talk 2016Sean Ekins
 
CB vs Neat Poly F15 Poster
CB vs Neat Poly F15 PosterCB vs Neat Poly F15 Poster
CB vs Neat Poly F15 PosterKelsey Harlow
 
Five Considerations for the Use of Thermoplastics in Medical Applications
Five Considerations for the Use of Thermoplastics in Medical ApplicationsFive Considerations for the Use of Thermoplastics in Medical Applications
Five Considerations for the Use of Thermoplastics in Medical ApplicationsJohn MacDonald
 
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...IRJET Journal
 
Solutions to life sciences
Solutions to life sciencesSolutions to life sciences
Solutions to life sciencesEUROPAGES
 
Knowledge-based chemical fragment analysis in protein binding sites
Knowledge-based chemical fragment analysis in protein binding sitesKnowledge-based chemical fragment analysis in protein binding sites
Knowledge-based chemical fragment analysis in protein binding sitesCresset
 

What's hot (9)

Biosimilar & Patents - Challenges for Research & Analysis
Biosimilar & Patents - Challenges for Research & AnalysisBiosimilar & Patents - Challenges for Research & Analysis
Biosimilar & Patents - Challenges for Research & Analysis
 
Fragment Based Drug Discovery
Fragment Based Drug DiscoveryFragment Based Drug Discovery
Fragment Based Drug Discovery
 
IRJET- Insilico Studies of Molecular Property and Bioactivity of Organic ...
IRJET-  	  Insilico Studies of Molecular Property and Bioactivity of Organic ...IRJET-  	  Insilico Studies of Molecular Property and Bioactivity of Organic ...
IRJET- Insilico Studies of Molecular Property and Bioactivity of Organic ...
 
Slas talk 2016
Slas talk 2016Slas talk 2016
Slas talk 2016
 
CB vs Neat Poly F15 Poster
CB vs Neat Poly F15 PosterCB vs Neat Poly F15 Poster
CB vs Neat Poly F15 Poster
 
Five Considerations for the Use of Thermoplastics in Medical Applications
Five Considerations for the Use of Thermoplastics in Medical ApplicationsFive Considerations for the Use of Thermoplastics in Medical Applications
Five Considerations for the Use of Thermoplastics in Medical Applications
 
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...
IRJET- Experimental Analysis of Mechanical and Thermal Properties of the Natu...
 
Solutions to life sciences
Solutions to life sciencesSolutions to life sciences
Solutions to life sciences
 
Knowledge-based chemical fragment analysis in protein binding sites
Knowledge-based chemical fragment analysis in protein binding sitesKnowledge-based chemical fragment analysis in protein binding sites
Knowledge-based chemical fragment analysis in protein binding sites
 

Similar to TheFinalReport

Studies on the mechanical and sorption properties of anacardium
Studies on the mechanical and sorption properties of anacardiumStudies on the mechanical and sorption properties of anacardium
Studies on the mechanical and sorption properties of anacardiumAlexander Decker
 
ACTIVITY_8__Module_8_.docx (2).pdf
ACTIVITY_8__Module_8_.docx (2).pdfACTIVITY_8__Module_8_.docx (2).pdf
ACTIVITY_8__Module_8_.docx (2).pdfEdaAngelaOab
 
combinepdf (1).pdf
combinepdf (1).pdfcombinepdf (1).pdf
combinepdf (1).pdfEdaAngelaOab
 
Compound strength test method of composite film used for plastic cup cover fo...
Compound strength test method of composite film used for plastic cup cover fo...Compound strength test method of composite film used for plastic cup cover fo...
Compound strength test method of composite film used for plastic cup cover fo...Labthink International,Inc.
 
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...IOSR Journals
 
NOISE ABSORBING MATERIAL USING BIOPOLYMERS
NOISE ABSORBING MATERIAL USING BIOPOLYMERSNOISE ABSORBING MATERIAL USING BIOPOLYMERS
NOISE ABSORBING MATERIAL USING BIOPOLYMERSIRJET Journal
 
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...Merck Life Sciences
 
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...MilliporeSigma
 
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsLignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsBiorefineryEPC™
 
dipesh-shah-catalent-pharma-solutions-usa.ppt
dipesh-shah-catalent-pharma-solutions-usa.pptdipesh-shah-catalent-pharma-solutions-usa.ppt
dipesh-shah-catalent-pharma-solutions-usa.pptssusereeda48
 
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)Alitek97
 
2012 Biocompatibele MEMS / Microsystems Packaging
2012 Biocompatibele MEMS / Microsystems  Packaging2012 Biocompatibele MEMS / Microsystems  Packaging
2012 Biocompatibele MEMS / Microsystems PackagingJan Eite Bullema
 
Finding Optimal Compound Dosage for Anti-Aging Drugs
Finding Optimal Compound Dosage for Anti-Aging DrugsFinding Optimal Compound Dosage for Anti-Aging Drugs
Finding Optimal Compound Dosage for Anti-Aging DrugsWenlan Hu
 
Final gap analysis and impact assessment for packaging development for pharma...
Final gap analysis and impact assessment for packaging development for pharma...Final gap analysis and impact assessment for packaging development for pharma...
Final gap analysis and impact assessment for packaging development for pharma...hncsaurav
 
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...Challenges using Multiple Single-use Systems: Functionality versus Extractabl...
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...MilliporeSigma
 

Similar to TheFinalReport (20)

Studies on the mechanical and sorption properties of anacardium
Studies on the mechanical and sorption properties of anacardiumStudies on the mechanical and sorption properties of anacardium
Studies on the mechanical and sorption properties of anacardium
 
ACTIVITY_8__Module_8_.docx (2).pdf
ACTIVITY_8__Module_8_.docx (2).pdfACTIVITY_8__Module_8_.docx (2).pdf
ACTIVITY_8__Module_8_.docx (2).pdf
 
combinepdf (1).pdf
combinepdf (1).pdfcombinepdf (1).pdf
combinepdf (1).pdf
 
Compound strength test method of composite film used for plastic cup cover fo...
Compound strength test method of composite film used for plastic cup cover fo...Compound strength test method of composite film used for plastic cup cover fo...
Compound strength test method of composite film used for plastic cup cover fo...
 
Final RP Paper
Final RP PaperFinal RP Paper
Final RP Paper
 
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...
Mechanical Properties of Tere-Phthalic Unsaturated Polyester Resin Reinforced...
 
NOISE ABSORBING MATERIAL USING BIOPOLYMERS
NOISE ABSORBING MATERIAL USING BIOPOLYMERSNOISE ABSORBING MATERIAL USING BIOPOLYMERS
NOISE ABSORBING MATERIAL USING BIOPOLYMERS
 
ICHQ5C
ICHQ5CICHQ5C
ICHQ5C
 
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
 
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
Upcoming USP 665 - Level of Characterization of Single-Use Systems Today and ...
 
1 oxygen permeability test method of pudding cups
1   oxygen permeability test method of pudding cups1   oxygen permeability test method of pudding cups
1 oxygen permeability test method of pudding cups
 
Polymers, Effect of heat on plastic behavior IDM12
Polymers, Effect of heat on plastic behavior IDM12Polymers, Effect of heat on plastic behavior IDM12
Polymers, Effect of heat on plastic behavior IDM12
 
Stability studies
Stability studiesStability studies
Stability studies
 
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab ProtocolsLignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
Lignocellulose Biomass- Hydrolysis & Fermentation Lab Protocols
 
dipesh-shah-catalent-pharma-solutions-usa.ppt
dipesh-shah-catalent-pharma-solutions-usa.pptdipesh-shah-catalent-pharma-solutions-usa.ppt
dipesh-shah-catalent-pharma-solutions-usa.ppt
 
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)
Production Fuel From Waste Plastic By Pyrolysis (Theoretical part)
 
2012 Biocompatibele MEMS / Microsystems Packaging
2012 Biocompatibele MEMS / Microsystems  Packaging2012 Biocompatibele MEMS / Microsystems  Packaging
2012 Biocompatibele MEMS / Microsystems Packaging
 
Finding Optimal Compound Dosage for Anti-Aging Drugs
Finding Optimal Compound Dosage for Anti-Aging DrugsFinding Optimal Compound Dosage for Anti-Aging Drugs
Finding Optimal Compound Dosage for Anti-Aging Drugs
 
Final gap analysis and impact assessment for packaging development for pharma...
Final gap analysis and impact assessment for packaging development for pharma...Final gap analysis and impact assessment for packaging development for pharma...
Final gap analysis and impact assessment for packaging development for pharma...
 
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...Challenges using Multiple Single-use Systems: Functionality versus Extractabl...
Challenges using Multiple Single-use Systems: Functionality versus Extractabl...
 

TheFinalReport

  • 2. Table of Contents: 1 Abstract 3 2 introduction 4 3 Apparatus 5 4 Procedures 6­10 5 Results/Discussion 12 5.1 Materials selection 11­14 5.2 Statistical analysis 15 5.3 Material Properties 15­23 5.4 Eco­audit/sustainability 23­32 5.5 Physical Tests 33­39 5.6 Impact Test 39­42 5.7 Final Material Decision 42­43 5.8 Conceptual prototype 43­44 5.9 Economic feasibility 44­45 6 Conclusion 45­47 7 References 48­50 8 Appendix 51­69 2
  • 3. Abstract The GP Beverage Company has requested a new design for the bottle the                        company is currently using to protect their product. The objective is to discover the                          most cost effective material within the Polymer family to fulfill this need.  The                        material we chose has to be strong, cost efficient, and easy to manufacture. The                          experiments will show how the material reacts with the series of optical, mechanical,                        thermal, chemical, magnetic, and electrical tests. These results will provide further                    information about the final selection of one material within the polymer family. The                        material selection and material properties research yields vital information about                  which materials will satisfy the objective of the project. The three materials that were                          chosen include: Polyethylene terephthalate (PET), Polypropylene (PP), and              Polyvinylchloride (PVC). The experiments still need to be conducted in order to fully                        analyze and select a final polymer for the GP Beverage Company.  3
  • 4. Introduction The GP beverage company has requested the investigation of the various                    materials within the assigned family in order to provide them with the best option in                            protecting their product throughout its life cycle. The life cycle of a bottle used to                            protect the product will be clearly outlined in this report. The objective is to find the                              best polymer to utilize in the protecting of the liquid inside the GP beverage                          container. The container that GP eventually uses to protect its product will be made                          from one of the polymers suggested in this report. The overall goal of the report is to                                maximize toughness and minimize cost. By doing so, GP beverage company will                      receive the greatest quality polymer. We will provide vast scientific data depicting                      why the specific polymers in that family of materials were chosen. The initial                        constraints of the project include, but are not limited to: a 5 Liter bottle, must                            withstand a fall from 5ft, and must be able to manufacture at least 100,000 bottles.                            All of these initial constraints will have environmental, social, technical, and                    economic impacts. Balancing these impacts will be a challenge in itself. Polymers have been around in a natural form of science since life began and                          naturally occurring biological polymers play an extremely important role in plant and                      animal life (Young, 1). A polymer is a long molecule, which contains a chain of                            atoms held together by covalent bonds. A covalent bond is a chemical bond that                          involves the sharing of electron pairs between atoms. Polymers are produced                    through a process known as polymerization whereby monomer molecules react                  together chemically to form either linear chains or a three­dimensional network of                      polymer chains (Young, 2). These can be classified into three groups, which                      include: thermoplastics, elastics, and thermosets. Currently, the specific polymer                used to protect carbonated products as well as water is PET (polyethylene                      terephthalate)(Ophardt, 1). With that said, this report will mainly be concerned with                      thermoplastics because they are low in cost, easy to mold and shape, and possess                          mechanical and chemical properties that will enhance the protection of the GP                      beverage product. FDA has approved plastic beverage containers made from                  polyethylene terephthalate, PET. Several companies are using this polyester as a                    material for lightweight, energy­efficient, breakage­resistant containers (Beverage            Container Deposit Legislation, 57). One main problem that polymers have had in the past with beverage                      containment has been the fact that they are harmful to the environment because                        some of them are not recyclable. Some technical questions that we must ask                        ourselves include: ● What is the life cycle of each polymer we are considering? ● How much CO2 admission does each polymer exert within the way we will be                          utilizing it? ● How much raw polymer material will be needed to produce the amount of                        bottles the GP Company has requested (100,000 bottles)? ● What are the dimensions of the bottle? 4
  • 5. Apparatus A series of different apparatuses will be used during the testing of the three                          polymers. The apparatuses used are included in the table below, separated by the                        test in which each one will be used for. Figure 1: Apparatus Note: In Figure 1, the * symbolizes the length of the material being used. All other                              dimensions are assumed to be a portion of the sheet for the respective material. The estimated costs for the three materials chosen are listed below. The costs                        come straight from the manufactures’ websites. US Plastics will be the sole provider                        of the three materials that were chosen for this project. US Plastics have been                          recommended by John Wild and various other sources. US Plastics have great                      prices, quality products, and fast delivery time. 5
  • 6. Procedures A series of six different tests will be run in order to validate the design,                            innovation, and modification. The six tests include, but are not limited to: optical,                        electrical, thermal, chemical, mechanical, and magnetic. Please note that each                  procedure will be conducted within the physics, chemistry, and engineering labs of                      James Madison University. The procedures are based off of what equipment is                      readily available to the team. Further tests may be conducted to learn more about                          each polymer. These tests are not to be considered limited factors during the                        research of these materials and may be subject to change. Optical Test Method 1 (UV Radiation) Tensile portion 1. Turn on Instron Machine 2. Start up Blue Hill Software located on the desktop 3. Login to Blue Hill by using “DUKES” as both the password and username (if                          using this machine at James Madison University, home of the Dukes). 4. Make sure the crossheads are in the correct position, 2 inches apart from                        each other. If not, hit the “Return” button on the pendant of the machine. 5. Place material sample in the top grip and make it as vertical as possible. 6. Tare the machine by hitting the soft key and then hit “balance load”. This                          ensures that the force recorded is due to the tensile force on the sample,                          rather than the weight of the sample or the crossheads. 7. Tighten the lower grip on the machine 8. After logging into Blue Hill, click the correct dimensions, and saving                    mechanism. 9. Start the test by hitting “play” on the software and wait until material plastically                          deforms. The machine will stop pulling at this point. 10. Export data using USB device and import into excel on personal computer 11. Analysis data by creating stress vs. strain graphs in excel. 12. Repeat steps 4­11 for all three polymer samples UV portion 1. Place all three samples of polymers in separate containers 2. Obtain three UV lights and place them directly over the samples 3. Turn on the UV lights and let them run for a week straight, check up on                              samples twice a day to ensure the lights have not burnt out and samples                          are still there. 4. After a week, turn off the UV lights and remove samples from their                        respective containers. 5. Take the samples and run the Instron tensile test for all three 6. Repeat steps 1­12 in the tensile testing portion of this test. 6
  • 7. Purpose: The purpose of this test is to see if long exposure to UV light affects the                                strength of the material in anyway. UV radiation could degrade the material and                        cause structural damage. Validate – ASTM D4329 – 13 Standard Practice for Fluorescent Ultraviolet (UV)                      Lamp Apparatus Exposure of Plastics Electrical Test Method 1 (Resistivity) 1. Gather Digital Multimeter (DMM), 3 double­sided wire sets, and a power                    source. 2. Connect the wires to the DMM, power source, and the polymer material 3. Make sure that all items are in series with each other and that it is a closed                                circuit 4. DO NOT turn on power supply until you check to see if step 3 is complete 5. Turn on power supply 6. Using the DMM, measure the current running through the wires before the                      polymer material and then again after the polymer material 7. Repeat steps 3­6 for all three polymer samples Purpose: The purpose of this test is to find out how much resistivity each polymer                            has. Knowing that polymers are insulators, results may be minimal and could                      possibly tell us nothing. Validate – ASTM D257 –07, “Standard Test Methods for DC Resistance or                      Conductance of Insulating Materials” The resistance of a material Is determined                    from a measurement of current and voltage drop under certain conditions. Using                      the appropriate electrode system can provide values that can be used to calculate                        resistivity and conductivity. Thermal Test Method 1 (Melting Point) 1. Set up the hot plate on the table 2. Cover the hot plate with Aluminum foil 3. Record the temperature of the aluminum foil on the hot plate 4. Record the room temperature 5. Place the tested material on the aluminum foil 6. Record the temperature of the material on the hot plate 7. Turn on the hot plate to the highest setting 8. Watch the material very closely to ensure that when it starts to plastically                        deform in any way you are ready to record the temperature. Note that the                          temperature of the melting point will not change during the melting process. 9. Record the temperature at the melting point 10. Repeat steps 2­9 for all three polymer samples Purpose: The purpose of this test is to explore the experimental melting point of the                            specific material. The melting point will show what temperature the material begins                      to melt, which will inform the manufacturer of where not to place the material in the                              7
  • 8. factory. If the factory can get up to these temperatures, the company will risk plastic                            deformation of the bottles. This same concept applies to shipping across the world.                        If the company is shipping the material to an area of the world with known higher                              temperatures, than the melting point should be a concern. Validate – ASTM D3045 – 92(2010) Standard Practice for Heat Aging of Plastics                        Without Load Test Method 2 (Thermal Conductivity) 1. Turn on computer and open up LabView. Set up the DAQ to thermocouples 2. Obtain polymer rod sample (10 inches in length) 3. Drill one hole at the end of the rod 4. Attach thermocouples to rod and LabView dock. Measure the distance from                    the top of the rod to the thermocouples 5. Place cartridge heater in drilled hole 6. Attach cartridge heater to power supply 7. Place other the other end of rod in ice 8. Make sure everything is connected properly and turn on the power supply                      (Note that power supply output reading should be somewhere between                  0­30V) 9. Allow LabView to collect data until temperatures reach a steady state, or the                        slope of the line on the graph is zero. 10. Repeat steps 2­9 for all three polymer samples Purpose: The purpose of this lab is to determine the thermal conductivity of each                          material tested. The thermal conductivity will allow the GP Beverage Company to                      see how long it takes for the bottle to become cold after being placed in the                              refrigerator of the customer. This should allow the company to market this result if it                            turns out to benefit the product. Validate – ASTM C177 – 10 Standard Test Method for Steady­State Heat Flux                        Measurements and Thermal Transmission Properties by Means of the                Guarded­Hot­Plate Apparatus Chemical Test Method 1 (Material Degradation) 1. Obtain nine separate containers with sealable tops. Make sure that the                    containers are at least 2 inches in height. 2. Pour phosphorous, carbonic acid, and citric acid into the nine containers.                    Make sure that three containers contain phosphorous, three contain carbonic                  acid, and three contain citric acid. Make sure that the containers are at least                          5 inches apart. 3. Place a 2­inch sample of each material into each one of the chemicals. 4. Let the material samples sit in the chemicals for a week total, untouched.                        This ensures that the chemicals will soak into the materials being tested. 5. Move into the tensile testing portion to test the tensile strength of the material                          after soaking in the chemicals. Refer to the tensile results in the tensile test                          towards the bottom of this procedure and the found tensile strengths in CES                        8
  • 9. to compare. Tensile portion 1. Turn on Instron Machine 2. Start up Blue Hill Software located on the desktop 3. Login to Blue Hill by using “DUKES” as both the password and username (if                          using this machine at James Madison University, home of the Dukes). 4. Make sure the crossheads are in the correct position, 2 inches apart from                        each other. If not, hit the “Return” button on the pendant of the machine. 5. Place material sample in the top grip and make it as vertical as possible. 6. Tare the machine by hitting the soft key and then hit “balance load”. This                          ensures that the force recorded is due to the tensile force on the sample,                          rather than the weight of the sample or the crossheads. 7. Tighten the lower grip on the machine 8. After logging into Blue Hill, click the correct dimensions, and saving                    mechanism. 9. Start the test by hitting “play” on the software and wait until material plastically                          deforms. The machine will stop pulling at this point. 10. Export data using USB device and import into excel on personal computer 11. Analysis data by creating stress vs. strain graphs in excel. Repeat steps 4­11 for all three polymer samples Purpose: The chemicals used in this test are chosen because they are the main                          three acids found in common soda. This test will ensure that if the materials are                            sitting in these chemicals for a long period of time, they will not be affected in terms                                of the strength of the material. Validate – ASTM D543 – 06 Standard Practices for Evaluating the Resistance of                        Plastics to Chemical Reagents Test Method 2 (Material Degradation) 1. Place eight containers on a table that will remain in the same location for at                            least three weeks. Ensure that the containers have sealable caps and they                      are at room temperature. Also make sure to record what the room                      temperature is. 2. Fill one container with water, and one with Coca­Cola. Fill the next three with                          water and the different materials in each one, and three with Coca­Cola and                        the materials in each one. 3. Record the pH of all the containers right after the materials are placed in the                            said containers. 4. Let the containers sit for three weeks and take pH samples every week. 5. After the three weeks, take a pH sample again and compare it to the first pH                              samples taken. Purpose: The purpose of this test is to discover whether the degradation, if any, of                            the materials are affecting the contents of the containers. The contents of the                        container will act as the product GP Beverage Company produces and provides to                        its customers. Please note that the lifecycle of a bottle far exceeds the testing                          9
  • 10. duration. This is because the testing duration is limited. Validate ­ ASTM D5226 ­98(2010)e1, Standard Practice for Dissolving Polymer                  Materials Mechanical Test Method (Tensile Test) 1. Turn on Instron Machine 2. Start up Blue Hill Software located on the desktop 3. Login to Blue Hill by using “DUKES” as both the password and username (if                          using this machine at James Madison University, home of the Dukes). 4. Make sure the crossheads are in the correct position, 2 inches apart from                        each other. If not, hit the “Return” button on the pendant of the machine. 5. Place material sample in the top grip and make it as vertical as possible. 6. Tare the machine by hitting the soft key and then hit “balance load”. This                          ensures that the force recorded is due to the tensile force on the sample,                          rather than the weight of the sample or the crossheads. 7. Tighten the lower grip on the machine 8. After logging into Blue Hill, click the correct dimensions, and saving                    mechanism. 9. Start the test by hitting “play” on the software and wait until material plastically                          deforms. The machine will stop pulling at this point. 10. Export data using USB device and import into excel on personal computer 11. Analysis data by creating stress vs. strain graphs in excel. 12. Repeat steps 4­11 for all three material samples Purpose: The purpose of this lab is to test the strength of the material to see how it                                  will hold up under strenuous conditions. The strength of every material will vary                        based on how it was made and where it is from, so conducting this test is a                                necessity. The yield strength and Young’s Modulus can be found by conducting this                        experiment which will relate back to the stiffness and strength values in terms of                          compression. Validate – ASTM D638­10 Standard Test Method for Tensile Properties of                    Plastics Magnetic Test Method 1 (Gauss Meter) 1. Gather three samples of the different materials. 2. Tie a string to each of the materials 3. One at a time, hold the material away from your body (full arms length) 4. Place the metal node of the Gauss meter on the material and record the                          reading displayed on the screen 5. Repeat steps 3 and 4 for the remaining two polymers Purpose: The purpose of this test was to test the magnetic field generated from                          each material. Magnetic field can create an electric field which can then create the                          possibility of shocking. It is important for the GP Beverage Company to know if the                            10
  • 11. materials will magnetically react with the different materials that may be placed                      around them. Validate ­ASTM E1444 Standard Practice for Magnetic Particle                  Testing Material Selection There are many standardized methods for material selection within industry.                  The methods are divided between the design led approach and the science led                        approach. The team decided to use the design led process illustrated in Materials:                        engineering, science, processing and design by Michael Ashby, Hugh Shercliff,                  and David Cebon for the familiarity and ease of access with the team. The process                            is made up of four steps, translation, screening, ranking, and documentation.                    Translation is organizing the team’s objectives and customer needs into constraints                    or must be met criteria. Screening is eliminating materials that do not meet the                          constraints. Ranking is using material indices, which are based on what the                      designer wants to maximize, to rank the screened material. Documentation is using                      known literature to assist in deciding on a material. This report will fully dive into the                              first two steps of the design led process and partially into the latter two. The time                              between this report and the next report will be dedicated to fully completing the                          design material selection process.(Ashby) The team first identified a list of customer needs based on the customers                        criteria as well research into the industry of bottle containers. Table 1: Customer Needs The customer needs are then translated into the function, the constraints, the                      objective, and free variables. The function is the purpose of the design. The                        constraints are the must be met criteria. The objective is what needs to be                          maximized or minimized. The free variables are variables that designers are                    permitted to change to any value that the designers see as beneficial towards the                          design. The four designations can be seen in Table 1. 11
  • 12. Table 2: Design Variables In order to narrow down the choice of materials to those that fit the design criteria,                              simulated values for the constraints must be calculated or found through available                      literature. Many of the constraints are dependent on the shape and dimensions of                        the container. Workable Dimensions In order to create dimensions that could be used to calculate estimated                      constraint values, many assumptions had to be made as well as research on how                          the container will interact with the end user. It is assumed that the container will act                              as a pressure vessel since it will contain a carbonated beverage. The optimum                        shape for a pressure vessel is a sphere but a sphere is relatively difficult to produce                              compared to a cylinder so the team has decided to model the container after a                            cylinder. (Pressure Vessels Ensure Safety). Ergonomics is the use of introducing                    the human psyche into the design process. More ergonomic designs have a track                        record of selling more inventory (Ergonomics 101). It is assumed by the design                        team that a container that can be easily carried or grasped by the average person                            will be more enticing to a consumer then a container that is not easily grasped or                              carried. The average person’s hand has the length of 180.5 mm (Hand Grip                        Strength). The estimated circular cross section of the simulated cylindrical container                    will be a function of the average hand length. Appendix Figure 1 demonstrates how                          the length of the hand is curved around the cross section. It is assumed that a hand                                that is able to cover at least half of the bottle in order to satisfy the comfortable                                grasp for a human. With a hand wrapped around half of the cross section (π in                              12
  • 13. radians), an estimated radius can be calculated. It is also assumed that the                        thickness negligible compared to the radius. Table 3: List of the constraint values calculated above. Figure 2 shows the polymers that are left when the constraint values are placed in                            the limits of the CES software. The values entered can be seen in the material                            selection appendix. Figure 2: Polymers passing constraints The objective of the material selection process was to minimize cost. The                      cost limited design of the stiffness design in chapter 5 of the Materials:                        engineering, science, processing and design by Michael Ashby, Hugh Shercliff,                  13
  • 14. and David Cebon, was selected because the flat plate material indices was                      deemed close enough to what needs to be optimized for the container to be used.  (Eq. 11)M = E3 1 ρC The material indices graphed with CES is seen in figure 3. The slope of the indices                              is in a unique spot where it cannot be limited to three. The selection jumps from two                                to four materials. Figure 3: Material index Graph The four materials that were left from the material indices are PET, PP, PLA, and                            tpPVC. The team then used documentation from known literature and research in                      how easily available the remaining materials are to narrow the choice down to three.                          The three materials remaining after documentation is PP, PET, and tpPVC. 14
  • 15. Statistical Analysis Statistical analysis was performed to determine if the material we selected                    was significantly different from a material of another material group for a specific                        property. We chose to use the hardness test to compare PET and low carbon steel.                            The first equation below was used to determine the pooled standard deviation.                      Next, the t actual was determined by the second equation. Once we knew t actual we could determine with what degree of certainty we could say that the materials were different. We found t actual to be 643.5159. This an unusually high number for t actual could be explained because we used 30 samples for each material and the materials we projected to have large differences in hardness. Then it was determined that we could could say with a confidence level of 99.9% and using a critical value for our degrees of freedom determined by the third and last equation above. The critical value was 3.2368 which is much smaller than the t actual which means we can statistically say with at least 99.9% certainty that the two materials are different. Material Properties Polyethylene terephthalate (PET) Almost all soda and water bottles in the U.S. are made from PET. PET is a synthetic                                fiber that is clear, strong, light, and stiff. PET is in the thermoplastic family and the                              polyester family. Water or carbon dioxide cannot pass through PET, but small                      amounts of oxygen can pass through. It can be recycled into carpet and clothing and                            the recycle number is one. PET is produced by using a process called                        polymerization (Polyethylene). The two ingredients in the process are ethylene glycol                    and terephthalic acid. This process also produces water (PET Resin). J.Rex                    Whinfield and James T. Dickson first patented the material in England in 1941 and                          production did not begin until 1952 by a USA company called Du Pont (John Rex). Polypropylene (PP) This material is very similar to PET. It is also a synthetic polymer fiber and part of                                15
  • 16. the thermoplastic family. PP is tough, lightweight, heat resistant, and flexible. It also                        is flammable and degrades in UV rays. PP can be recycled and the recycle number                            is 5. Polypropylene is often used for ropes, crates, and insulation (Polypropylene).                      Giulio Natta discovered PP in 1954 and commercial production began in 1957. Polyvinylchloride (tpPVC/PVC) PVC is lightweight and rigid, but can become more flexible by adding chemicals                        like phthalates. It is used for many things including plumbing, insulation, siding,                      signs, windows, and healthcare products. PVC is recyclable but is difficult to do so                          and the production process creates a very toxic chemical called dioxin (Polyvinyl).                      PVC was discovered in 1872 by Eugen Baumann but did not appear in commercial                          products until Waldo Semon developed a way to use additives to plasticize the                        chemical and make it more flexible and easily processed. General properties The tables show that PET and PP are similar in price but PVC is usually                            much cheaper by the pound. The tables also show that if we had the same weight of                                each material PET and PVC would be similar in volume but PP would be much                            larger in volume. PET PVC and PP would all be lighter compared to soda lime                            glass (152­155 Lb/ft^3) which could reduce transportation costs and may improve                    stacking ability. The prices of these polymers are slightly less expensive than the                        price of aluminum alloys which is 1.08 to 1.18 USD/lb. The main difference in the                            chemical composition is that PET is a much larger molecule than PP or PVC and                            PVC has a chlorine atom in its chemical composition. Table 4: PET Property Lower limit Upper limit Units Density 80.5 87.4 Lb/ft^3 Price .939 1.03 USD/lb Molecular composition C10H8O4 Table 5: PP Property Lower limit Upper limit Units Density 55.6 56.8 Lb/ft^3 Price .871 1 USD/lb Molecular composition C3H6 Table 6: PVC Property Lower limit Upper limit Units Density 81.2 98.6 Lb/ft^3 Price .64 .703 USD/lb Molecular composition C2H3Cl 16
  • 17. Mechanical properties Mechanical properties are important to determine if a structure will fail when a load                          is applied. The loads that may be applied to the beverage may include the pressure                            inside the bottle, a person twisting the cap off the bottle, and any stacking bottles                            during transportation or storage. Yield strength, tensile strength, and compressive                  strength are important to determining if the bottle can withstand the applied loads.                        The bottle must also withstand an impact when dropped from 5 feet. The property                          most related to the impact test would be the fracture toughness. Fracture toughness                        determines if a material would fracture when a load is applied. These polymers                        would perform better than soda lime glass which has a fracture toughness of around                          0.5 to 0.6 ksi in^0.5. PET does best with regards to fracture toughness follow by                            PVC then PP. Young’s modulus is a measure of stress divided by strain. Table 7: PET Property Lower limit Upper limit Units Youngs modulus 0.4 0.6 10^6 psi Shear modulus 0.144 0.216 10^6 psi Bulk modulus 0.718 0.754 10^6 psi Yield strength 8.19 9.04 Ksi Tensile strength 7.01 10.5 Ksi Compressive strength 9.01 9.94 ksi elongation 30 300 % strain Fracture toughness 4.1 5.01 Ksi in^0.5 Hardness (Vickers) 17 18.7 HV Table 8: PP Property Lower limit Upper limit Units Youngs modulus 0.13 0.225 10^6 psi Shear modulus 0.0458 0.0795 10^6 psi Bulk modulus 0.363 0.377 10^6 psi Yield strength 3 5.4 Ksi Tensile strength 4 6 Ksi Compressive strength 3.64 8.01 ksi elongation 100 600 % strain Fracture toughness 2.73 4.1 Ksi in^0.5 Hardness (Vickers) 6.2 11.2 HV Table 9: PVC Property Lower limit Upper limit Units Youngs modulus 0.31 0.6 10^6 psi Shear modulus 0.111 0.216 10^6 psi Bulk modulus 0.682 0.711 10^6 psi 17
  • 18. Yield strength 5.13 7.56 Ksi Tensile strength 5.9 9.45 Ksi Compressive strength 6.16 13 ksi elongation 11.9 80 % strain Fracture toughness 1.33 4.66 Ksi in^0.5 Hardness (Vickers) 10.6 15.6 HV Thermal properties Thermal properties are important in order to find out the best process to use to                            shape the material into a product. It is also important to determine if the                          temperatures the material might experience will cause the material to deform.                    Thermal conductivity determines how good the material is at conducting heat. The                      low thermal conductivity means that all three materials are very good insulators. It is                          important that these materials be insulators so that a person’s hand does not get                          cold if someone is drinking a cold drink. The materials here are much better than                            both soda lime glass(0.404­0.751 BTU ft/(h*ft^2* °F)) and aluminum alloys                  (68.8­139 BTU ft/(h*ft^2* °F)) when it comes to insulating. The specific heat is the                          amount of energy required to heat one pound of material. Table 10: PET Property Lower limit Upper limit Units Melting point 413 509 Degrees Fahrenheit  (°F) Maximum service  temp 152 188 Degrees Fahrenheit  (°F) Minimum service  temp ­190 ­99.7 Degrees Fahrenheit  ( °F) Thermal conductivity 0.0797 0.0872 BTU ft/(h*ft^2* °F) Specific heat 0.339 0.352 BTU/lb*°F Table 11: PP Property Lower limit Upper limit Units Melting point 302 347 Degrees Fahrenheit  (°F) Maximum service  temp 212 239 Degrees Fahrenheit  (°F) Minimum service  temp ­190 ­99.7 Degrees Fahrenheit  (°F) Thermal conductivity 0.0653 0.0965 BTU ft/(h*ft^2*°F) Specific heat 0.447 0.467 BTU/lb*°F Table 12: PVC Property Lower limit Upper limit Units Melting point 413 509 Degrees Fahrenheit  18
  • 19. (°F) Maximum service  temp 140 158 Degrees Fahrenheit  (°F) Minimum service  temp ­190 ­99.7 Degrees Fahrenheit  (°F) Thermal conductivity 0.0849 0.169 BTU ft/(h*ft^2*°F) Specific heat 0.324 0.345 BTU/lb*°F Electrical properties Electrical properties determine whether a material is a conductor, semiconductor,                  or insulator. The high resistance in these polymers means that they are all good                          insulators. Good insulators can often be used in capacitors to increase                    capacitance. The dielectric constant determines the amount that capacitance is                  increased if put in the middle of the capacitor. Table 13: PET Property Lower limit Upper limit Units Electrical resistivity 3.3e20 3e21 Micro ohms cm Dielectric constant 3.5 3.7 none Table 14: PP Property Lower limit Upper limit Units Electrical resistivity 3.3e22 3e23 Micro ohms cm Dielectric constant 2.1 2.3 none Table 15: PVC Property Lower limit Upper limit Units Electrical resistivity 1e20 1e22 Micro ohms cm Dielectric constant 3.1 4.4 none Optical properties Refractive index is the ratio of the velocity of light in a vacuum to that in the material.                                  This change of speeds causes the light to bend or refract. Transparent means that                          the materials is clear and all light is let through the material, while a translucent                            material only allows some light to travel through the material, and finally opaque                        materials don’t allow any light though the material. Table 16: PET Property Lower limit Upper limit Units Refractive index 1.57 1.58 none Transparency Transparent Table 17: PP Property Lower limit Upper limit Units 19
  • 20. Refractive index 1.48 1.5 none Transparency Translucent Table 18: PVC Property Lower limit Upper limit Units Refractive index 1.54 1.56 none Transparency Translucent Chemical properties Chemical properties describe weather or not a stimulus could change the chemical                      composition of the material. Stimuli include UV rays, solutions, or chemicals. We                      have chosen citric acid and phosphoric acid because these are chemicals that are                        often in sodas (Verhoff). The CES software says that all three materials perform                        very well in citric acid and phosphoric acid. The software also shows us that PP                            does not become very chemically stable when exposed to sunlight. Table 19: PET Durability­ citric acid 10% Excellent Durability­ phosphoric acid 10% Excellent Durability­ UV radiation good Table 20: PP Property Lower limit Upper limit Units Durability­ citric acid    10% Excellent Durability­ phosphoric acid  10% Excellent Durability­ UV  radiation Poor Table 21: PVC Durability­ citric acid 10% Excellent Durability­ phosphoric acid 10% Excellent Durability­ UV radiation good Magnetic properties When applying magnetic fields to our materials, they do not respond in a                        diamagnetic, paramagnetic, or ferromagnetic way. These polymers therefore do not                  have any magnetic properties. Processability The processability ratings indicate that these polymers should not use any type of                        cast molding where the material is melted down and poured into a mold and                          20
  • 21. allowed to re solidify. The high scores in moldability show that the materials can                          easily be shaped using injection molding, blow molding, or compression molding.                    They can also easily be welded and joint together very easily. The polymers may                          also experience good machinability, meaning that they may be effectively cut into                      shape and have a good finish. Table 22: PET Process Scale from 1 to 5 where one is not recommended and five                      is excellent Castability 1/2 Moldability 4/5 Machinability 3/4 Weldability 5 Table 23: PP Process Scale from 1 to 5 where one is not recommended and five                      is excellent Castability 1/2 Moldability 4/5 Machinability 3/4 Weldability 5 Table 24: PVC Process Scale from 1 to 5 where one is not recommended and five                      is excellent Castability 1/2 Moldability 4/5 Machinability 3/4 Weldability 5 Eco properties All three polymers can be recycled but it is significantly more difficult to                        recycle PVC. Pure PVC is easily recyclable but because there are many different                        chemicals and treatments that are usually performed on PVC, it becomes either non                        recyclable or only recyclable with PVC with similar treatments. The other materials                      also may undergo treatments, but there are not as many different types of treatment                          as PVC and they are also less common than in PVC. Therefore, it is important to                              consider whether the plastic should undergo treatment that might make it more                      difficult to recycle. The process that creates PVC also creates a powerful toxin                        known as dioxin, which is an environmental concern. There has been a considerable                        movement to avoid using PVC and instead use a different plastic for this reason.                          The carbon footprint of all three is significantly lower than Aluminum alloys, which is                          12.5 to 13.8 lb/lb. The carbon footprint for a recycled version of the material is                            21
  • 22. significantly lower for PET and PP so recycling should be encouraged. Table 25: PET Property Lower limit Upper limit Units Embodied energy 8.76e3 9.7e3 Kcal/lb CO2 Footprint 3.76 4.15 Lb/lb Water usage 15.1 16.8 Gal/lb Recycle Yes Table 26: PP Property Lower limit Upper limit Units Embodied energy 8.2e3 9.07e3 Kcal/lb CO2 Footprint 2.96 3.27 Lb/lb Water usage 15.46 4.94 Gal/lb Recycle Yes Table 27: PVC Property Lower limit Upper limit Units Embodied energy 6e3 6.63e3 Kcal/lb CO2 Footprint 2.37 2.62 Lb/lb Water usage 23.6 26.1 Gal/lb Recycle Yes Summary of design guidelines, technical notes, and typical              uses: PET Limits of permeability to oxygen are overcome by having a layer of                      polyethylvinylidene­alcohol between two layers of PET. This can still be blow                    molded. Made by using a condensation reaction with an alcohol and an acid                        creating the polymer and water. Typical uses include electrical fittings; blow molded                      bottles, films, magnetic tape, fibers, and credit cards. PP Stiffness and strength can be improved by reinforcing with glass chalk or talc. It is                            very resistant to water and can be colored many different colors. There are three                          basic groups of PP: homopolymers (pure PP), copolymers (PP made with another                      polymer), and composites. Typical uses include ropes, garden furniture, washing                  22
  • 23. machine tank, cable insulation, capacitor dielectrics, car bumpers, shatterproof                glass, crates, and artificial turf. PVC Plasticizers can make it into a softer material, which could then be used as a                            substitute to leather. It is also used for transparent disposable containers because it                        was so cheap. It can be join very easily. PVC may be a thermoplastic or thermoset                              depending on the process used to make it. Types of PVC include type I, type II,                              CPVC, acrylic/PVC blend, and clear PVC. Typical uses include pipes, fittings, road                      signs, canoes, garden hoses, vinyl flooring, medical tubes, artificial leather, wire                    insulation, and fabric. Eco Audit and Sustainability After researching possible materials and deciding on the materials that                  would perform best for the project an Eco Audit had to be done using the CES                              software. To do this the three materials, polyethylene terephthalate (PET),                  polypropylene (PP), and polyvinylchloride (tpPVC), were placed into the Eco Audit                    Project Table. Once this was done the correct material was chosen. Once the                        material was put into the table the mass, primary process, end life, and quantity of                            each material was entered. The mass of the material was discussed in the Material                          Selection section. The primary process was chosen between polymer molding and                    polymer extrusion. After doing research it was found that the capital cost of polymer                          molding averaged to be $27,060 and the capital cost of polymer extrusion averaged                        to be $738,000 (CES). This was backed up by further research done that found that                            polymer molding had recently become much cheaper due to recent changes made                      in machines that perform polymer molding (Al­Helou). The end of life of each                        polymer was chosen based on the fact that PET, PP, and tpPVC are all recyclable                            materials. The quantity of the material was known from the customer, GP Beverage,                        and how many bottles they are expecting. Table 28: Material, Manufacture, End of Life (PET) (CES) The next step of the Eco Audit was the transport type. The type of transport                            chosen for the beverage containers was Truck Delivery. This would be done on a                          32­ton truck and the trucks would have to drive an average of 1000 miles to deliver                              the containers to their destination (CES). Table 29: Transport (CES) 23
  • 24. After the transport analysis was done the next step was to look into the use of                              the containers. The product life was determined to be one half of a year and only                              used in North America. The product life was determined by analyzing the life cycle                          of a beverage container. After a beverage container is produced it spends time in                          storage, and then is shipped. This could take anywhere from one week to one                          month. Once the containers are shipped it arrives at retailers that sell the                        containers. The container could sit on the shelf of a retailer from one day to one                              month. Once the container is bought it is taken off of the shelf and is put to use. The                                    actual use of the container could last as long as three months. Once the container is                              done being used it is recycled, and that process takes around a month. So from                            manufacturing to recycling, a container could be in use for up to six months. The                            location was chosen because GP Beverage is located in North America and keeps                        all business on the continent (CES). The table below shows how the values were                          plugged into the CES software. Table 30: Use (CES) Once the values were put in for a material the report tab showed the effects                            of material, manufacturing, end of life, transport, and use in greater detail. The                        report tab provides graphs and charts for both energy use and CO2 footprint. The                          charts and graphs can be analyzed to show the benefits and downfalls of each                          material (CES). Figure 4: Energy Summary (PET) (CES) 24
  • 25. The graph above shows that the material gathering and production has the                      greatest energy usage out of all of the categories. Manufacturing has the second                        highest energy usage, and transport, use, and disposal are very small in                      comparison to material and manufacture. The EoL, or end of life potential shows                        that by recycling PET it saves around 4e+8 kcal of energy. This is significant                          because that is more than half of the energy used to gather and produce the                            material. Therefore by recycling PET the total energy consumption can be cut nearly                        in half.  The report also shows a graph displaying the CO2 footprint (CES). Figure 5: CO2 Footprint Summary (PET) (CES) The CO2 Footprint Summary shows similar findings to the Energy Usage                    Summary. The material gathering and production has the greatest impact on CO2                      footprint followed by manufacturing. Transport, use, and disposal have a very small                      effect on CO2 footprint when compared to material and manufacture. The EoL                      potential shows that recycling PET will reduce the overall CO2 footprint of using PET                          (CES). The report tab also provides the information in a table. Table 31: Energy and CO2 Summary (PET) (CES) The table above shows the same information presented in the graphs above                      just in a different form. The table does show some extra information that is                          beneficial. The percentage of energy usage and CO2 footprint show exactly how                      25
  • 26. much each phase is responsible for. CES software also states that any phase with                          a percent fewer than twenty is usually not significant. The table also does a good                            job representing the “Total for first life” and then the end of life potential. It shows                              that by recycling the material and having a high end of life potential it decreases the                              total used in the first life (CES). The report tab also provides more in depth information about the energy use                        and CO2 footprint during each phase of the materials life (CES). Table 32: Detailed Energy Use (PET) (CES) 26
  • 27. The tables above show each subcategory of the different phases of a                      material’s life. It then totals up the total energy used during each phase of a                            materials life. These tables can be used to see which phase has the greatest                          energy consumption and what is causing the phase to have the highest energy                        consumption. These tables are useful because they provide enough detail that the                      main energy consumer can be located and possibly altered if necessary or feasible.                        For PET the area that has the highest energy use is the material stage (CES).                            Below are tables showing the carbon footprint of PET. Table 33: Detailed CO2 Footprint (PET) (CES) 27
  • 28. The tables above are similar to the tables for Detailed Energy Use and show                          the CO2 footprint in each phase of a materials life. The tables can be used to find                                the phase that has the greatest CO2 footprint. For PET the material phase has the                            greatest CO2 footprint (CES). (Tables and graphs for PP and tpPVC can be found in the Appendix (Eco Audit)) 28
  • 29. Another feature from CES is the summary chart. The summary chart                    compares the chosen materials to one another. This allows the user to look at the                            energy use and CO2 footprint of each material and compare them to one another                          (CES). Figure 6: Summary Chart (Energy) (CES) The figure above compares PP, tpPVC, and PET and their energy use.                      Looking at the material phase PP uses much more energy than the other two;                          tpPVC and PET have very similar energy usage in the material phase. In the                          manufacture phase of the materials life PET has the lowest energy consumption. In                        the transport, use, and disposal phases none of the polymers have enough energy                        consumption to consider when compared to the material and manufacture phases.                    In the end of life potential phase PET has the highest negative energy, which says                            that PET returns the most energy after being recycled. Since PET has the lowest                          total energy consumption and the highest end of life potential PET has the lowest                          total energy consumption over the life cycle of the polymers (CES). CES also provides a summary chart based on CO2 footprint. 29
  • 30. Figure 7: Summary Chart (CO2 footprint) (CES) The figure above compares PP, tpPVC, and PET and the CO2 footprint of                        each polymer in the different life phases. In the material phase of the polymers life                            tpPVC has the lowest CO2 footprint followed by PET and PP has the highest CO2                            footprint. In the manufacturing phase PET has the lowest CO2 footprint followed by                        tpPVC, and PP has the highest. The transport, use, and disposal phases are small                          enough to be disregarded when compared to the CO2 footprint during the material                        and manufacturing phases. In the end of life potential phase PET is the only                          polymer that has a negative CO2 footprint, which shows that recycling PET lessens                        the CO2 footprint for the total life of the polymer. Both tpPVC and PP increase the                              CO2 footprint for the total life of the material (CES). CES also allows the user to compare polymers to any other material, which                        is beneficial because it shows the benefits and downfalls of polymers. This was                        done by using the Eco Audit feature and putting the materials in a summary chart to                              compare the energy use and CO2 footprint of the different materials. The following                        figures are the summary charts comparing the three polymers and non                    age­hardening wrought Al­alloys, which is commonly used to make aluminum cans                    for beverages (CES). 30
  • 32. The figures above show that the non age­hardening wrought Al­alloy has a                      much higher total for energy use and a much higher total CO2 footprint than the three                              polymers compared earlier in the Eco Audit. This shows that the non age­hardening                        wrought Al­alloy will be much more detrimental to the environment and also cost                        more money during the material phase of the material. Non age­hardening wrought                      Al­alloy consumes less energy and has a smaller CO2 footprint in the manufacturing                        stage but it does not make up for the difference seen in the material phase (CES). The Eco Audit is very beneficial in investigating the environmental impacts                    that each material has but does not return much information about the other pillars of                            sustainability. The information given has to be interpreted in order to gather                      information for economic, technical, and social sustainability. The graphs give useful information when looking at economic sustainability.                  Energy has a cost to it so the graphs of energy use can be directly linked to the                                  economics of the material. The higher the energy consumption is the higher the                        total cost will be. Looking at the graphs it is obvious that the two phases that will                                cost the most money are material and manufacturing. The other phases are                      insignificant when compared to material and manufacturing. The end of life                    potential also has an impact on the economics of the material. If a material is taken                              to a landfill then the cost will be very low but if the material is recycled at a plant it will                                        cost much more money and this will have to be taken into account for the company.                              Each phase of the life cycle requires workers so the entire life cycle provides jobs                            for people, which will affect the economy. Social sustainability is less obvious when using the Eco Audits and the end                        results of the Eco Audit. Each phase in the life cycle of the materials will provide                              jobs for people, which affects social sustainability. Technical sustainability can affect each phase of the life cycle. If the                      technology used during each phase is efficient and up to date then the phases will                            be operating at minimum cost and maximum efficiency. If new technology comes                      out that will change a certain phase of the life cycle then the graphs and charts                              above will be altered. If a new low energy process is developed to produce the                            material then the energy consumption during the material phase will be decreased                      greatly. The Eco Audit can be linked back to all four pillars of sustainability but is                            much more useful for environmental sustainability. 32
  • 33. Physical Testing Tensile Testing Tensile testing was performed using the instron machine in the mechanics                    lab. The yield strength and Young’s modulus was calculated for each material using                        the following  equations: /Aσ = F L/Lε = Δ /εE = σ Where  is the stress, F is the force, A is the cross sectional area,  is theσ ε strain,   is the change in length, L is the initial length, and E is Young’s modulus.LΔ Three trials were conducted for each of the three sample materials, and the average values for stress, strain, and young’s modulus were taken between the three trials. Graphs depicting stress vs. strain are shown in figure A16 in the appendix. The yield strength was found using these graphs, and are shown in table 34 below, along with the young’s modulus of each material. Table 34: Tensile Test Results Material Yield Strength (psi) Young’s Modulus (psi) PET 10350.537 478,372.978 PP 5104.352 191,231.867 PVC 9362.543 463,356.735 These results show that PET has the highest yield strength, and from the graph it is also seen that PET is much more ductile than PVC, which breaks almost immediately after yielding. PP is quite ductile but has a much lower yield strength than the other two. This indicates that based on the requirements provided for the beverage container to withstand a five foot free­fall, PET is the best choice. Optical Testing The optical test conducted in order to determine if material properties were                      affected by extended exposure to UV radiation. The sun provides the Earth’s                      surface with roughly 4.7 kwh/day of sunlight to the Harrisonburg area on a sunny                          day(GW Solar Institute). Converting this to kJ/week gives a value of 118440                      kJ/week. Three samples of each material were placed under a 120W UV light for one                          week. This converts to approximately 72576 kJ/week. Upon comparison of the two,                      the material samples were exposed to UV radiation equivalent to roughly 4 days of                          sunlight in Harrisonburg, VA. This was chosen as gauge based on the example of a                            33
  • 34. beverage bottle accidentally being left in a car and exposed to sunlight for several                          days. It is necessary to ensure that any material selected would not be noticeably                          impacted by the UV exposure and have any effect on the structural integrity of the                            container. All three samples of each material were then put through the same tensile                        testing process as their non­UV exposed counterpart. Using this data, stress, strain,                      young’s modulus, and yield strength values were again calculated and averaged                    across the three trials. Yield strength and young’s modulus values are shown in table                          35, located below, and a graph of stress vs. strain for each material is shown in                              figure A19 of the appendix. Table 35: Results of UV Exposed Tensile Testing Material Yield Strength (psi) Young’s Modulus (psi) PET 9735.475 487,352.978 PP 4933.892 196,731.327 PVC 8955.436 463,364.757 The results of this test show that there was a very minimal impact on any of the three materials caused by UV exposure. This test does not affect final material selection because all three materials responded in roughly the same manner. However, it does ensure that all three materials can withstand at least moderate UV exposure and do not need to be ruled out of consideration. Chemical Testing Tensile: The acid test was performed by soaking the materials in soda instead of                        acid. This decision was reached because we did not have enough money in the                          budget to buy the acids separately. we used RC Cola as our soda because that is                              the most acidic soda with a pH of 2.387. We then performed tensile test to determine if the acid in soda (citric,                        phosphoric, and carbonic) had deteriorated the physical properties of the material.                    The results are summarized in the table below. 34
  • 35. Table 36: Results of Chemical Tensile Testing The data collected was analyzed with statistics and was not found to be statistically different than the trials conducted for the initial tensile test. Although this shows that the chemicals did not affect the properties of the materials, not enough tests were done to prove this statistically. Material Degradation: The material degradation test was simplified because we spent almost all of                      our money on the materials and did not have enough money to buy all of the                              containers. Instead we had one container with just soda (RC Cola was used again                          for the soda in this experiment because we had it available form the first chemical                            test) and three other containers with soda with one material submerged in each. We                          did not fill any containers with water and used the container with just soda as our                              control. Our results our shown in the table below. Table 37: pH Change of  Chemical Test The change in pH from day one to day seven in the control solution was                            0.0333, the change in pH from day one to day seven of the solution with PP was                                0.030, the change in pH from day one to day seven of the solution with PET was                                0.0267, and the change in pH from day one to day seven of the solution with PVC                                was 0.0333. All solutions had an increase in pH. This could be explained by the loss of                            carbonation of the soda over time which would lead to a decrease in the carbonic                            acid levels in the solution. Another possible explanation for the increase in pH is that                            the same pH meter was not used for both trials. Magnetic Testing The magnetic testing for each material was done using a gaussmeter and a                        35
  • 36. magnet as seen in figures 10 and 11. Figure 10: Gauss Meter Figure 11: Ferrous Magnet The test was set up to examine the change in magnetic flux associated with                          introducing the polymer material to the testing environment. The test was initiated by                        recording the measurement of the ferrous magnet with the Gauss meter without any                        polymer material added as a control to other trials. Each polymer material was                        oriented on top of the magnet in a way that would optimize the change in flux across                                the gauss meter. Each polymer was put through thirty trials of this. The data for each                              trial can be seen in appendix under magnetic testing and the averages of each trial                            set seen in table 38, below. Table 38: Magnetic Properties Comparison The comparison of the polymer samples to that of the control sample was done by                              statistical analysis of the two means. Since the values of the actual t values are less                              than the critical t values, it can be said that the average values of the polymers are                                not statistically different from that of the control average with 95% confidence.                      Calculations for the values in table 38 can be seen the appendix under magnetic                          testing. 36
  • 37. Electrical Testing We determined that our electrical test would not be possible because of the                        extremely high resistivity of our material. Not only would it require a high voltage that                            is not obtainable in our labs, but it would also be extremely dangerous to be working                              with such high voltages without more advanced protection. This can be explained by                        ohms law. RV = I V is the voltage, I is the current and R is the resistance. We would need an                                extremely high voltage to get any significant amount of electrical current running the                        polymers because the resistance is so high. The safety problem is because the                        resistance of the human body is much less than that of the polymers. According to                            the NIOSH (National Institute for Occupational Safety and Health), the resistance of                      the human body under the best conditions is 100,000 ohms. The resistance of a                          tenth of a millimeter of our least resistive material is 1,000,000,000,000 ohms. If we                          were to accidently touch the wires connecting to oppositely charged wires the                      current running through the body would be 10,000,000 times greater than the current                        running through the polymer. High voltage may breakdown the skin, which would                      lower the resistance of the body and increases current flow even more. According to                          the NIOSH the current, duration, and path of the electricity impacts weather or not an                            electric shock is lethal. The possibility of an extremely high current running through                        the body makes this test too dangerous to conduct. Thermal Testing Thermal Conductivity The thermal test was done as proposed in the procedures section of the                        report. Rods were obtained of each material and were cut to ten inches and holes                            were drilled into the top of each rod. A cartridge heat was connected to a power                              supply supplying 1.35 amps to the cartridge heater. The cartridge heater was then                        put in the hole that was drilled in the top of the rod. Next, thermocouples were                              attached to the rod at 3 inches and 7 inches from the top (side with the cartridge                                heater). The other end of the thermocouples was then put into LabView that                        collected the data for the lab. The other side of the rod was placed in a cup of ice to                                      try and get the maximum amount of heat transfer through the rod. The power supply                            was then turned on and heated up the cartridge heater. The experiment ran for 30                            minutes. The experiment was ran for all three materials, PET, PP, and tpPVC. The                          figure below illustrates the set up of the experiment. 37
  • 38. Figure 12: Thermal Conductivity Experiment The figure above shows the rod in the cup with ice that has thermocouples                          attached to it as well as the cartridge heater in the top of it. The figure shows the                                  power supply as well as the LabView equipment used to collect data. After collecting and analyzing the data there was no significant temperature                    change throughout the rod. There were only small fluctuations which were most                      likely caused by temperature changes in the room or air flow through the room.                          Since there was no temperature change the thermal conductivity value must be very                        close to zero. This can be shown by using the equation, . It is                      A(dT/dx)Q = k     obvious to see that if the temperature change in the system is zero then the heat                              transfer is going to zero. Ultimately, showing that the thermal conductivity value is                        going to be zero as well. This held true with our hypothesis that the thermal                            conductivity would be very low. Since our experiment did not yield any good data                          we decided to research the thermal conductivity values of our materials for                      comparison sake. The following table shows the thermal conductivity values for the                      three materials tested. Table 39: Thermal Conductivities of Materials (CES) Material Thermal Conductivity (W/m*C) PP 0.140 PET 0.145 tpPVC 0.220 The table above shows that the thermal conductivities of PP and PET are                        very similar but tpPVC has a much higher value. This suggests that PP and PET                            would be the first choices when selecting a material in terms of its thermal                          38
  • 39. properties. A low thermal conductivity will both keep heat out and keep the                        coolness of the drink in. In comparison to other materials, like metals and ceramics,                          all of these values are very small. This means that the three materials we have                            selected would do fine if used to make a beverage container. Since, we have a                            choice though PP would be our first choice followed closely by PET because their                          values are so close. Melting Point Before starting the melting point test discussed in the procedure section of                      the report the team talked to Scott Padgett to ensure that the test was safe to run.                                He said the test was not safe to run without the proper equipment. The team                            decided to air on the side of safety and instead of doing the experiment rely on the                                values that were found during the research stage earlier in the project. Tables that                          show the melting points for the three materials are found in the material properties                          section of the report. Impact Test Procedure 1. Introduction The accuracy of the results of the test are dependent on the liquid in the                            plastic container. In order for the results of the test to be useable by the individual                              running the test, only containers with the same liquid can be compared to one                          another. The individual running the test should use the same liquid that the container                          is designed to carry. This test is not intended for containers that will contain                          hazardous materials. 2. Scope 2.1­This test method is used to determine the ability of a plastic container full of                            liquid to survive an impact of “standardized” pendulum type hammers, mounted in a                        “standardized” manner, in one pendulum swing. The results of the test method are                        reported in terms of pass and fail depending on if the container has been ruptured. 2.2­The values stated in SI units are to be regarded as standard. 2.3 Reference Documents ASTM Standards ∙      D618 Practice for conditioning plastics for testing ∙      D883 Terminology related to plastics ∙ D256­10 Standard test methods for determining the I­zod pendulum impact                    resistance of plastics 2.4 Terminology ∙      Definitions – For definitions related to plastics see terminology D883 39
  • 40. 3. Summary of Test Method 3.1­This test method operates by clamping a container at each of its ends so its                            center is exposed to a strike from the pendulum. The container should be aligned in                            the clamps so that the center of the container is in the path of the pendulum. 4. Significance and Use 4.1­Tests made on the conditions of this standard have value in comparing a                        containers ability to survive impact. 4.2 The impact of the pendulum test indicates the energy needed to break                        containers, and are influence by the parameters, specimen mounting, container                  dimensions, expansion properties of the liquid, and pendulum velocity at impact. 4.3 The energy lost by the pendulum during the breakage of the specimen is the                            sum of the following. ∙      4.3.1­Energy to initiate fracture of the container ∙      4.3.2­Energy to bend the container ∙      4.3.3­Energy to create vibration in pendulum arm ∙      4.3.4­Energy to indent the container ∙      4.3.5­Energy to overcome friction caused by pendulum striker ∙      4.3.5­Energy to overcome friction in pendulum arm bearing. 4.4 The results of the test should be recorded as follows ∙      CR­Complete Rupture­container splits into two pieces ∙ PR­Partial Rupture­container splits and the inside liquid is leaking but the                      container is still one piece. ∙ D­Dented­The container has been permanently deformed but has none of its                      content leaking. ∙      NN­Not Noticeable­ The container has no noticeable effect from the pendulum. o CR and PR will be categorized as a failure to withstand impact. D and NN will                                be labeled as passing the impact test. 4.5 The value of the impact container method is mainly in the areas of quality                            control, materials specification, and container specifications. 5. Apparatus 5.1 The machine which will hold the container shall have a wide base that is                            mounted and rooted to a rigid frame. The machine must also have a holding and                            releasing mechanism for the pendulum. 5.2 The pendulum will consist of a single arm with a bearing on one end and a head                                  at the other. The arm must be sufficiently rigid to withstand the energy of the impact. 5.3 The head of the pendulum will made of hardened steel with a radius of curvature                              of 0.8±0.20 mm. The contact between the container and the pendulum will occur no                          farther than ±2.54 mm from the measured center of the container. 5.4 The position of the pendulum in the holding and releasing mechanism will be                          raised to a vertical height of 610±2 mm which should produce a velocity of 3.5 m/s. 5.5 The length of the pendulum arm shall be 0.4 mm. 5.6 The machine shall come with a vice that is made up of two clamps. Each clamp                                secures each side of the container being tested. 40
  • 41.    Figure 13: Side View of Pendulum Impact Machine Figure 14: Front View of Pendulum Impact Machine 6. Procedure 6.1­The test should be run on an individual container ten times. The container                        obtains a passing grade if it gets a D or NN for all ten trials. If the container                                  receives a CR or PR on a trial, the testing procedure ends and the container obtains                              a failing grade. 6.2­The dimensions of the container must stay consistent. The tolerance of the                      41
  • 42. dimensions of the container must be ± 0.005 inches from each other, if the result of                              the container is to be compared to the other materials. 6.3­Calculate the energy needed to test and select a pendulum of suitable energy. 6.4­Place the container in a clamped vice so that the center of the bottle is in line                                with the pendulum. 6.5­If windage and friction energy is given make appropriate adjustments to the                      pendulum so that the needed energy is delivered to the container. Final Material Selection The team decided to use a decision matrix to select the final material. The                          selection criteria was chosen by the experiments that were done as well as what the                            team decided was most important to the attributes of the bottle. Below is the                          decision matrix. Table 40: Decision Matrix The decision matrix shows the selection criteria as well as what material                      performed the best in the certain criteria. The selection criteria is weighted so the                          most important criteria have a bigger impact on the final score of the selection                          process. The decision matrix shows that PET was the best choice for our project                          followed by tpPVC, and PP was the last choice. 42
  • 43. Conceptual Prototype The conceptual prototype was designed in SolidWorks. The design was                  made by using the dimensions that were given in the Material Selection section of                          the report. The design used the radius, height, and thickness that were decided in                          the materials selection section and the volume, found by SolidWorks, was just over                        five liters. The drawing was then presented to Dr. Nagel who said that the drawing                            could be printed using the 3D printer but that it must be scaled down. The printers                              that JMU has can only print at a certain size and also since the prototype has no real                                  use it would be a waste of material. Scaling the drawing down also meant that the                              prototype must be made solid because the thickness of the scale would not be                          strong enough to support the shape. After the material was scaled down the team took the design to the printing                          room and with the help of Fletcher Grow, the TA for the solid modeling class, and                              sent the drawing to the 3D printer. The printer then began the process that took                            three hours. The final product was a scaled down version of the drawing found in                            the figure below. SolidWorks 43
  • 44. Figure 15: Beverage Container Prototype The scaled down version was approximately three and a half inches tall, and                        the rest of the dimensions were scaled down the same. This gave the team an                            actual hard part that could be presented to the customer. GP Beverage could now                          have something to hold and see if it looked like something they would use and                            market. After feedback is received the team will make changes to the alpha                        prototype and then present the next stage of the prototype. Economic Feasibility The first thing that was done to see if the material being used would be                            economically feasible was the initial mass of the container. This was done by using                          the value previously found for the volume of the container itself and the density of the                              material. The mass of the PET container was found the be 0.367 kg. The next thing                              that was done was finding the cost of a single container. This was done by                            multiplying the cost of PET, $2.18/kg (CES), by the mass of a single container.                          Doing this gave the cost of one container to be $0.80. GP Beverage wants 50,000 of these bottles so the next thing that had to be                            done was to find the cost of 50,000 containers. This came out to be $39911.25.                            This is the initial invest for GP Beverage. The cash flow depends on the amount that                              the GP is going to charge for the bottle. Assuming, that GP will charge at least one                                dollar per bottle and that the discount rate for the first year will be 5 percent. The net                                  present value of the project can be found by using the equation,                           . Using this equation with the values mentioned above thePV − o C/1 )N = C + ( + r                   NPV for the first year of the project will be $7707. 79. Seeing that the NPV for the project is positive I would recommend that GP                          Beverage continue with the material chosen. Having an NPV that is positive gives a                          positive outlook on the project for the years to come because, if the project does                            well, the company will sell more bottles the next year which will return even more                            money. Also, if the beverage container becomes popular with the customers the                      company can start charging more per bottle which will also increase their profit. Conclusion Research suggests that using Polyethylene terephthalate (PET),            Polypropylene (PP), and Polyvinylchloride (PVC) from the polymer family would be                    the most cost efficient way to protect the product of the GP Beverage Company.                          These materials meet the criteria listed above. The material properties process                    shows a comparison of the three materials. This process compares the properties                      44
  • 45. of each material, which can highlight the strengths, and weaknesses of each                      material. The material selection process depicts which materials out of the polymer                      family would best be suited for the project. The design­lead method of defining                        functions, constraints, objectives, and free variables is how each material was                    selected. Through estimations and research, the team was able to simulate values                      for defining the constraints of the bottle design. The team used material indices to                          figure out the top four materials within the polymer family that would satisfy the                          project objectives. Documentation is responsible for narrowing those four down to                    the three stated throughout this report. The eco­audit analyzed the life phases of                        each material and the energy use and CO2 footprint during each life phase. The                          energy use and CO2 footprint of each material allows the GP Beverage Company to                          see which material is most environmentally sustainable. The eco­audit also provides                    enough information for the team to explore the economic, social, and technical                      sustainability of each material. The manufacturers, chemical properties, and                chemical structures of each material are depicted below. b. c.                 a. Figure 16: Polypropylene (PP) (a.), Polyvinylchloride (PVC) (b.), Polyethylene terephthalate (PET)(c.) 45
  • 46. Figure 17: Polymers Utilized (Note that the location is for the Manufacturer) After the preliminary work was done for the project more research had to be                          done to decide on a final material that would be used. This was first done by doing                                the tests that were planned before the preliminary report. A test was run for thermal,                            optical, mechanical, magnetic, electrical, and optical. One of the major findings                    from running these tests is that the three polymers that were selected for testing                          were not impacted during the thermal, magnetic, or electrical tests. This was shown                        by running the experiments and not getting any noticeable results. Also, the                      chemical and optical tests did not have any majorly defining results. The chemicals                        did not have any major affect any properties of the polymers and the UV light did not                                affect the properties of the polymers. The test that had the most impact on the project was the mechanical test.                          The mechanical test was a tensile test and from that the team gathered information                          about both the Young’s Modulus and the tensile strength of the three different                        materials. This was beneficial because the project calls for a material that is tough                          enough to survive a fall without breaking or cracking. The final material was selected by using a decision matrix. Using this the                        team was able to rank the selection criteria and compare the materials to one                          another. After the team had finished the decision matrix it was decided that PET                          was going to be the material of choice. After PET was chosen there were other                            things that had to be done. The team designed a bottle using SolidWorks. This was done by using the                        dimensions that were found in the material selection section of the report. The team                          drew the bottle and had to discuss the bottle with someone that was familiar with 3D                              printing. After doing this it was decided that the container needed to be scaled                          down before printing. The container was scaled down and then printed, giving the                        team an alpha prototype. Lastly, the team analyzed the economical side of the project. The project                      was found to have a positive NPV for the first year which means the project has a                                bright future. The team believes that GP Beverage should continue with the project                        and with the material that the team has chosen for them. Overall, the material we selected is the best material for the GP beverage                        bottle in both the material family of polymers, and compared to other material                        46
  • 47. families. PET is proved to be the best polymer for the project by our research,                            properties that we validated with physical tests, and decision matrix based upon                      customer needs. When compared with the other material families the polymer family                      makes the best sense for a bottle based upon the properties of cost, weight,                          performance and processability. Therefore we can conclude that, because PET is                    the best polymer and polymers are the best family group to construct the five liter                            bottle, PET is the best material to construct the five liter bottle out of all available                              materials according to our research. References (MLA Format) 1. "3. PRESSURE SAFETY PRACTICES." MN471000. N.p., n.d. Web. 24 Oct. 2013. 2. Al­Helou, Bassam A. "Modification And Development Of A Blow Molding . Machine." Engineering 4.4 (2012): 188­197. Academic Search . Complete. Web. 23 Oct. 2013. 3. Ashby, M. F., Hugh Shercliff, and David Cebon. Materials: Engineering, . Science, .Processing and Design. Oxford: Butterworth­Heinemann, .2010. Print. 4. "Average Hand." Size. N.p., n.d. Web. 24 Oct. 2013. 47