SlideShare a Scribd company logo
1 of 9
Download to read offline
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
48
Experimental Investigation on Effect of Head and Bucket Splitter
Angle on the Power Output of A Pelton Turbine
Chukwuneke J. L. Achebe C. H. Okolie P. C. Okwudibe H. A.
Mechanical Engineering Department, Nnamdi Azikiwe University, P.M.B 5025 Awka, Nigeria
Corresponding Author: jl.chukwuneke@unizik.edu.ng
Abstract
This paper investigates through experiment, the effect of head and bucket splitter angle on the power output of a
pelton turbine (water turbine), to improve the power generation by the use of efficient Hydro-electric power
generation systems. Experiments were conducted on pelton turbine head conditions, high head and low flow with
increased pressure delivered more energy on the bucket splitter which then generates a force in driving the wheel
compared to the result obtained from low head and high flow operating conditions. The power output was
maximum at 23o
splitter angle followed by 21o
, 15o
, 10o
and 3o
using varied turbine speed (1700, 1400, 1200 and
1000rpm). The force generated by the bucket due to the splitter was increased as the turbine speed was
increasing. The force generated by the bucket was increased (0 to 0.38N) due to the energy delivered to the
wheel by the head, the turbine output increases from (0 to 7.47kW) which influences the output. This increase in
the power output was as a result of their head conditions and the bucket splitter angle.
1. INTRODUCTION
Electricity plays a very important role in the socio-economic and technological development of every nation.
The electricity demand in Nigeria far outstrips the supply and the supply is epileptic in nature. The country is
faced with acute electricity problems, which is hindering its development, notwithstanding the availability of
vast natural resources in the country. It is widely accepted that there is a strong correlation between socio-
economic development and the availability of electricity. There is a huge energy resource potential in Nigeria,
which, if utilized, could minimize the present energy crisis prevailing in the country and enhance the process of
rural electrification. The total exploitable renewable energy that can be derived annually from primary solar
radiation, wind, forest biomass, hydropower, animal waste, crop residue and human waste is about 1,959x
Tcal per year [1, 2]. Out of this, the share of hydro power is about 53.08 percent. Recently the country is
involved in NIPP (National Integrated Power Projects) which are mainly gas turbine power generation projects.
This work therefore sets out to complement the Gas Turbine sector in boosting the power generation of the
country by use of efficient Hydro – electric power generating systems.
According to Newman [3], over 1.7billion people worldwide do not have access to electricity. This lack of
electricity usually indicates low levels of infrastructure, development, education, health and quality of life. Using
Nigeria as a point of reference in Africa where about half a million people lack access to electricity, even the
power produced from Kanji dam and other dams are limited compared to the demand for power in the country.
To make up for lack of electricity and to cope with increasing energy demands, so called traditional fuel use is
high. This includes primarily the use of wood, charcoal, animal waste and other biomass. Over half a million
people in Nigeria rely on traditional biomass fuels, with the highest rates of traditional fuel use correlating with
areas of lowest access to electricity. The high use of biomass fuels has many negative environmental, social and
health consequences. The demand for biomass generally leads to deforestation that in turn can causes soil
erosion, habitat loss and desertification among other things. These biomass fuels are generally burned in
inefficient stoves or lamps releasing soot into the atmosphere and leading to poor indoor air quality. Indoor air
pollution accounts for 2.7% of all global disease [3, 4]. Due to their inherent low useful energy conversion
efficiencies, high demand and dwindling supply, they are fast becoming the most expensive items for
impoverished rural populations. In some cases, fuel accounts for 20 – 30% of total household income. To attain
the level of power supply which the country requires, our dams have to be optimized by introducing pelton
turbines for power generation schemes, in addition to improving and upgrading the available sources of energy
in the country.
The work investigated through experimentation, the effect of head and bucket splitter angle on power output of a
pelton turbine. The power output of a pelton turbine was equally investigated and a tachometer was used to
check the speed of the shaft thereby determining the flow rate from the nozzle and how much energy is delivered
by the pump to the wheel. The methodology involves a mathematical equation for hydraulic power delivered by
the jet of water to the wheel at varied head which influences the turbine power output. Experiment and
simulation were carried out to estimate the head conditions for a pelton turbine.
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
49
2. METHOD AND ANALYSIS
2.1. Experiment on Pelton Turbine
Fig.1 shows the arrangement, in which water is supplied from the reservoir, fed to a vertical pipe terminating in a
tapered nozzle, pump is installed along the pipeline to boost the flow, pressure gauge is installed after the pump
to determine the water pressure leaving the pump and a flow meter installed after the pump to determine the
volumetric flow rate coming from the pump before reaching the nozzle. A bucket is attached at the periphery of
the wheel which the jet of water strikes, thereby causing the rotary motion of the wheel which influences the
power output of the turbine positively or negatively. A pulley is connected at the shaft with a belt to transmit the
power to another pulley connected at the generator, causing the rotary motion of the shaft of the generator,
thereby generating electricity. The valve is fully on, before the flow is allowed through the pump to the nozzle,
as the flow process starts a tachometer is placed at the shaft to check the speed of the rotating shaft. After the
reading must have been taken the valve is adjusted before taking another reading. This adjustment is made for
about 4 to 5 trials. From the result obtained, the velocity of jet discharging through the nozzle to the bucket, the
flow rate through the nozzle and the energy delivered to the wheel by the pump can be determined. The pump
speed is kept constant all through the experiment, only the valve is adjusted.
Fig.1: Pelton wheel in the Laboratory
2.2. Experiment Theory and Basic Equations
Fig.2: Flow from reservoir to wheel
It is necessary to establish the equation of flow process in fig.2 [5] in order to determine striking on the
bucket surface which influences the power delivered to the wheel. The Bernoulli’s equation is used to link the
flow from point 1 to point 2.
= + + (1)
= + + (2)
Using the principle of conservation of energy;
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
50
+ = - + [6] (3)
Therefore; + + - - - [6] (4)
From the fig.2, at the surface of the reservoir 1, the fluid moves very slowly compared to the pipe, so we can say
= 0, Also the pressure is atmospheric pressure = . is the elevation from the
nozzle to the water level in the reservoir, neglecting the minor and frictional losses. , = 0
2.3. The Energy Delivered to the Fluid by the Pump
Reducing Eq.4 to; = + - [6] (5)
For = is the velocity of the jet through the nozzle and can be determined from Eq.5, substituting values
obtained during the experiment in the laboratory. The flow rate Q was determined based on the valve adjustment
(for about 4 to 5 trials).
Q = x (6)
= f L/D x Church Chills’ [7] frictional factor equation.
The Power Required in Driving the Wheel; P = ρ x g x Q (7)
The turbine peripheral velocity will be half the water jet velocity, = ½ x
In metric form; 0.5 X (m/s) = 5.235 x x (rpm) x (mm)
Therefore the rotational velocity of the turbine is;
= 0.5 x 1.91 x x (8)
=5.235 x x (rpm) (9)
Shaft Power Output; = ρ Q U (U - ) (1 - cos ) (10)
Applying Eqs.(7 to 10) to the value obtained during the experiment and plotting the necessary graphs involved.
The values obtained during the experiment are presented in table 1.
3. EXPERIMENTAL RESULTS AND DISCUSSION
Data collected during the experiment: Nozzle size = 8mm, Elevation =0.6096m, Wheel = 220.98mm.
Table 1: Values obtained when the speed of turbine was 1700rpm
( ) Speed rpm (m/s) Q ( /s) J) N) kW)
3 1700 9.83 0.00049 5.53 0.0048 0.094
10 1700 9.83 0.00049 5.53 0.0072 1.42
15 1700 9.83 0.00049 5.53 0.16 3.15
21 1700 9.83 0.00049 5.53 0.32 6.29
25 1700 9.83 0.00049 5.53 0.38 7.47
Table 2: Values obtained when the speed of turbine was 1400rpm
[ ] Speed rpm (m/s) Q ( /s) (J) N) kW)
3 1400 8.09 0.00015 3.95 0.0039 0.047
10 1400 8.09 0.00015 3.95 0.059 0.705
15 1400 8.09 0.00015 3.95 0.134 1.59
21 1400 8.09 0.00015 3.95 0.26 3.05
25 1400 8.09 0.00015 3.95 0.31
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
51
Table 3: Values obtained when the speed of turbine was 1200rpm
[ ] Speed rpm (m/s) Q ( /s) (J) N) kW)
3 1200 6.94 0.00012 3.06 0.0034 0.047
10 1200 6.94 0.00012 3.06 0.051 0.705
15 1200 6.94 0.00012 3.06 0.12 1.59
21 1200 6.94 0.00012 3.06 0.22 3.05
25 1200 6.94 0.00012 3.06 0.27 3.75
Table 4: Values obtained when the speed of turbine was 1000rpm
[ ] Speed rpm (m/s) Q ( /s) (J) N) kW)
3 1000 5.78 0.00012 2.31 0.028 0.33
10 1000 5.78 0.00012 2.31 0.042 0.49
15 1000 5.78 0.00012 2.31 0.096 1.11
21 1000 5.78 0.00012 2.31 0.19 2.14
25 1000 5.78 0.00012 2.31 0.22 2.57
Fig.3: Shows Head Vs volumetric flow rate
Using the valve to control the energy delivered by the fluid to the wheel, the valve was adjusted from minimum
to maximum setting, the volumetric flow rate through the nozzle was increasing (0 to 0.0005 )as the
energy delivered by the head to the wheel was increasing from ( 0 to 5.3). As a result of this increase the turbine
speed and the power output was influenced positively.
Fig.4: Head Vs Turbine speed
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
52
Fig.5: Force generated by the bucket Vs splitter angle at different turbine speeds
Fig.6: power output Vs splitter angle at different turbine speeds
Fig.7: Force generated by the bucket Vs power output.
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
53
Fig.8: Turbine power output Vs Head
From Fig.4, as the head was increasing (2.31 to 5.53), the turbine speed was influenced (1000 to 1700rpm). This
influence increases the system power output.
From Fig.5, the force generated by the bucket was maximum at 23 splitter angle (0.38N, 0.31N, 0.027N and
0.22N) at a turbine speed of 1700rpm followed by 21 splitter angle (0.032N, 0.026N, 0.022N and 0.019N) at a
turbine speed of 1400rpm. At 15 splitter angle the force generated was (0.16N, 0.134N, 0.12N and 0.096N) at a
turbine speed of 1200rpm and other splitter angles are 10 (0.072N, 0.059N, 0.051Nand 0.042N) and 3
(0.0048N, 0.0039N, 0.0034N, 0.024N). The force generated by the bucket due to the splitter was increased as the
turbine speed was increasing.
From Fig.6, the power output was maximum at 23 splitter angle followed by 21 , 15 , 10 and 3 using varied
turbine speed (1700, 1400, 1200 and 1000rpm).
From Fig.7 and Fig.8, as the force generated by the bucket was increased (0 to 0.38N) due to the energy
delivered to the wheel by the head, the turbine power output increased from (0 to 7.47kW) which influenced the
output. This increase in the power output was as a result of head and the bucket splitter.
4. CONCLUSION
Experiment was conducted on a pelton turbine to determine the power output, using a tachometer to check the
speed at which the turbine was operating. During the experiment the head was low; the reason for the low head
was as a result of the pump operating at a constant speed. The flow pressure was slightly influenced as the valve
was adjusted. The flow through the nozzle was influenced while the pressure at which the jet strikes the bucket
changed slightly but not enough to generate much energy on the wheel. As the valve was adjusted from
minimum to maximum setting, the flow rate through the nozzle was increased after each adjustment thereby
increasing the force generated by the bucket as the jet strikes the splitter.
From the graph obtained, as the force generated by the bucket was increased (0 to 0.38N) due to the energy
delivered to the wheel by the head, the turbine power output increased from (0 to 7.47kW) which influenced the
output. This increase in the power output was as a result of head condition and the bucket splitter. Alternator was
used as the generator for the conversion of mechanical energy to electrical energy on the system. A 60watt bulb
was connected at the output of the alternator terminals, as the flow was increasing by adjusting the valve the
60watt bulb lit up. The power output from the alternator is based on the system configuration from the
manufacturer, each generator has a specific speed at which the turbine should be running in order to meet the
required output and also the conversion of energy in the system. According to some researchers [8, 9] and
observation made during the experiment, the following conclusions can be reached; the pelton turbine operating
on high head and low flow with increased pressure condition generated a power output which could be applied in
siting a large hydro power plant while that of the low head and high flow with decreased pressure generated a
lesser output and could be applied in siting a small MHPP.
REFERENCE
[1] Brekke, H (1994). State of the art in pelton turbine hydro power and Dams.
Journal of Information Engineering and Applications www.iiste.org
ISSN 2224-5782 (print) ISSN 2225-0506 (online)
Vol.4, No.10, 2014
54
[2] Zoppe B. J and Pellone C. (2006). Flow Analysis inside pelton turbine bucket. Journal of
turbomachinery. 1(4), 128.
[3] Newman M. (2006). Study on a Renewable Energy for sustainable future. Oxford: Oxford university
press. Uk.
[4] Zhang Zh (2007). Flow interactions in pelton turbines and the hydraulic efficiency of the turbine system.
International journal of power and energy. 22(1), 343.
[5] Thapa B., Upadhyay P., and Gautem P. (2009). Performance Analysis of pelton turbine buckets Using
Impact testing and flow visualization techniques NHE. Katthmandu University Journal of science,
Engineering and Technology. 5(2), 42-50.
[6] Kelley, J. B. (1950). The Extension Bernoulli’s Equation. American J. Phys. 202-204. India.
[7] Church chill, S.W. (1977). Friction factor Equation Span of Fluid Flow Regimes. Chemical Eng. 7(3),
91-92.
[8] Zhang, Zh., Muggli, F., Parkinson, E., and Scha¨rer, Ch.(2000). Experimental investigation of a low
head jet flow at a model nozzle of a Pelton turbine. Proceedings of the 11th International Seminar on
Hydropower Plants, Vienna, Austria. 6, 181–188.
[9] Attaneyake I. U. (2000). Analytical study on flow through pelton turbine using boundary layer theory.
International journal of Engineering & technology by IJET. 9(19). Mechanical engineering dept, Open
University of sri Lanka Nawala.
Business, Economics, Finance and Management Journals PAPER SUBMISSION EMAIL
European Journal of Business and Management EJBM@iiste.org
Research Journal of Finance and Accounting RJFA@iiste.org
Journal of Economics and Sustainable Development JESD@iiste.org
Information and Knowledge Management IKM@iiste.org
Journal of Developing Country Studies DCS@iiste.org
Industrial Engineering Letters IEL@iiste.org
Physical Sciences, Mathematics and Chemistry Journals PAPER SUBMISSION EMAIL
Journal of Natural Sciences Research JNSR@iiste.org
Journal of Chemistry and Materials Research CMR@iiste.org
Journal of Mathematical Theory and Modeling MTM@iiste.org
Advances in Physics Theories and Applications APTA@iiste.org
Chemical and Process Engineering Research CPER@iiste.org
Engineering, Technology and Systems Journals PAPER SUBMISSION EMAIL
Computer Engineering and Intelligent Systems CEIS@iiste.org
Innovative Systems Design and Engineering ISDE@iiste.org
Journal of Energy Technologies and Policy JETP@iiste.org
Information and Knowledge Management IKM@iiste.org
Journal of Control Theory and Informatics CTI@iiste.org
Journal of Information Engineering and Applications JIEA@iiste.org
Industrial Engineering Letters IEL@iiste.org
Journal of Network and Complex Systems NCS@iiste.org
Environment, Civil, Materials Sciences Journals PAPER SUBMISSION EMAIL
Journal of Environment and Earth Science JEES@iiste.org
Journal of Civil and Environmental Research CER@iiste.org
Journal of Natural Sciences Research JNSR@iiste.org
Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL
Advances in Life Science and Technology ALST@iiste.org
Journal of Natural Sciences Research JNSR@iiste.org
Journal of Biology, Agriculture and Healthcare JBAH@iiste.org
Journal of Food Science and Quality Management FSQM@iiste.org
Journal of Chemistry and Materials Research CMR@iiste.org
Education, and other Social Sciences PAPER SUBMISSION EMAIL
Journal of Education and Practice JEP@iiste.org
Journal of Law, Policy and Globalization JLPG@iiste.org
Journal of New Media and Mass Communication NMMC@iiste.org
Journal of Energy Technologies and Policy JETP@iiste.org
Historical Research Letter HRL@iiste.org
Public Policy and Administration Research PPAR@iiste.org
International Affairs and Global Strategy IAGS@iiste.org
Research on Humanities and Social Sciences RHSS@iiste.org
Journal of Developing Country Studies DCS@iiste.org
Journal of Arts and Design Studies ADS@iiste.org
The IISTE is a pioneer in the Open-Access hosting service and academic event management.
The aim of the firm is Accelerating Global Knowledge Sharing.
More information about the firm can be found on the homepage:
http://www.iiste.org
CALL FOR JOURNAL PAPERS
There are more than 30 peer-reviewed academic journals hosted under the hosting platform.
Prospective authors of journals can find the submission instruction on the following
page: http://www.iiste.org/journals/ All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than those
inseparable from gaining access to the internet itself. Paper version of the journals is also
available upon request of readers and authors.
MORE RESOURCES
Book publication information: http://www.iiste.org/book/
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek
EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

More Related Content

What's hot

Evolutionary algorithms based optimization of pid controller for hybrid renew...
Evolutionary algorithms based optimization of pid controller for hybrid renew...Evolutionary algorithms based optimization of pid controller for hybrid renew...
Evolutionary algorithms based optimization of pid controller for hybrid renew...IJARIIT
 
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...IDES Editor
 
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion SystemDynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion SystemIJRES Journal
 
DADRI GAS POWER PLANT report
DADRI GAS POWER PLANT reportDADRI GAS POWER PLANT report
DADRI GAS POWER PLANT report94600banti
 
training report NTPC Muzaffarpur Bihar
training report  NTPC Muzaffarpur Bihar training report  NTPC Muzaffarpur Bihar
training report NTPC Muzaffarpur Bihar Dilip kumar
 
Tarun Project Report On NTPC Kanti
Tarun  Project Report On NTPC KantiTarun  Project Report On NTPC Kanti
Tarun Project Report On NTPC KantiTarun Kumar
 
(CCGT - Final) Preliminary FS
(CCGT - Final) Preliminary FS(CCGT - Final) Preliminary FS
(CCGT - Final) Preliminary FSAiman Ali
 
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...IrisPublishers
 
Experimental study of a tubular solar still with phase change material
Experimental study of a tubular solar still with phase change materialExperimental study of a tubular solar still with phase change material
Experimental study of a tubular solar still with phase change materialIAEME Publication
 
synopsis- Energy genration using exaust
synopsis- Energy genration using exaustsynopsis- Energy genration using exaust
synopsis- Energy genration using exaustItnesh Kumar
 
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...Application of Exergy and Taguchi Methodology for a Power Plant under Varying...
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...IJERA Editor
 
Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...IJECEIAES
 
comparative analysis of solar photovoltaic thermal (pvt) water and solar
comparative analysis of solar photovoltaic thermal (pvt) water and solarcomparative analysis of solar photovoltaic thermal (pvt) water and solar
comparative analysis of solar photovoltaic thermal (pvt) water and solarIJCMESJOURNAL
 

What's hot (19)

Evolutionary algorithms based optimization of pid controller for hybrid renew...
Evolutionary algorithms based optimization of pid controller for hybrid renew...Evolutionary algorithms based optimization of pid controller for hybrid renew...
Evolutionary algorithms based optimization of pid controller for hybrid renew...
 
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...
Intelligent Gradient Detection on MPPT Control for VariableSpeed Wind Energy ...
 
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion SystemDynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
Dynamic Simulation of a Hybrid Solar and Ocean Thermal Energy Conversion System
 
It3615251530
It3615251530It3615251530
It3615251530
 
DADRI GAS POWER PLANT report
DADRI GAS POWER PLANT reportDADRI GAS POWER PLANT report
DADRI GAS POWER PLANT report
 
training report NTPC Muzaffarpur Bihar
training report  NTPC Muzaffarpur Bihar training report  NTPC Muzaffarpur Bihar
training report NTPC Muzaffarpur Bihar
 
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Col...
 
Tarun Project Report On NTPC Kanti
Tarun  Project Report On NTPC KantiTarun  Project Report On NTPC Kanti
Tarun Project Report On NTPC Kanti
 
jeas_0116_3445
jeas_0116_3445jeas_0116_3445
jeas_0116_3445
 
(CCGT - Final) Preliminary FS
(CCGT - Final) Preliminary FS(CCGT - Final) Preliminary FS
(CCGT - Final) Preliminary FS
 
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...
Iris Publishers- Journal of Engineering Sciences | Performance and Design Opt...
 
Experimental study of a tubular solar still with phase change material
Experimental study of a tubular solar still with phase change materialExperimental study of a tubular solar still with phase change material
Experimental study of a tubular solar still with phase change material
 
synopsis- Energy genration using exaust
synopsis- Energy genration using exaustsynopsis- Energy genration using exaust
synopsis- Energy genration using exaust
 
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...Application of Exergy and Taguchi Methodology for a Power Plant under Varying...
Application of Exergy and Taguchi Methodology for a Power Plant under Varying...
 
Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...
 
fluied power engineering
fluied power engineeringfluied power engineering
fluied power engineering
 
comparative analysis of solar photovoltaic thermal (pvt) water and solar
comparative analysis of solar photovoltaic thermal (pvt) water and solarcomparative analysis of solar photovoltaic thermal (pvt) water and solar
comparative analysis of solar photovoltaic thermal (pvt) water and solar
 
01_A Study of Heat Exchanger Produces Hot Water from Air Conditioning Incorp...
01_A Study of Heat Exchanger Produces Hot Water from Air Conditioning  Incorp...01_A Study of Heat Exchanger Produces Hot Water from Air Conditioning  Incorp...
01_A Study of Heat Exchanger Produces Hot Water from Air Conditioning Incorp...
 
Training NTPC
Training NTPCTraining NTPC
Training NTPC
 

Similar to Experimental investigation on effect of head and bucket splitter angle on the power output of a pelton turbine

Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...eSAT Publishing House
 
Runner profile optimisation of gravitational vortex water turbine
Runner profile optimisation of gravitational vortex water turbine Runner profile optimisation of gravitational vortex water turbine
Runner profile optimisation of gravitational vortex water turbine IJECEIAES
 
Performance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedDickens Mimisa
 
Design, Modeling & Analysis of Pelton Wheel Turbine Blade
Design, Modeling & Analysis of Pelton Wheel Turbine BladeDesign, Modeling & Analysis of Pelton Wheel Turbine Blade
Design, Modeling & Analysis of Pelton Wheel Turbine BladeIJSRD
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...Comparison of Differential Evolution and Particle Swarm Optimization for Opti...
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...IOSRJEEE
 
Pelton wheel experiment
Pelton wheel experimentPelton wheel experiment
Pelton wheel experimentDickens Mimisa
 
Prashant report final NTPC ANTA
Prashant report final NTPC ANTAPrashant report final NTPC ANTA
Prashant report final NTPC ANTAprashant shukla
 
Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...IRJET Journal
 
1 Computational and Experimental Investigation of Runner for Gravitational Wa...
1 Computational and Experimental Investigation of Runner for Gravitational Wa...1 Computational and Experimental Investigation of Runner for Gravitational Wa...
1 Computational and Experimental Investigation of Runner for Gravitational Wa...MaFeEvangelineSapon1
 
Design and Analysis of Pelton Wheel
Design and Analysis of Pelton WheelDesign and Analysis of Pelton Wheel
Design and Analysis of Pelton Wheelijtsrd
 
Detail Feasibility Study Of Wind Power Water Lifting Project in Mustang,Nepal
Detail Feasibility Study Of Wind Power Water Lifting  Project in Mustang,NepalDetail Feasibility Study Of Wind Power Water Lifting  Project in Mustang,Nepal
Detail Feasibility Study Of Wind Power Water Lifting Project in Mustang,NepalBimal Gyawali
 
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...Daniel Ngoma
 
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...dngoma
 
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...dngoma
 
WIND POWER GENERATION_GROUP 4.pptx
WIND POWER GENERATION_GROUP 4.pptxWIND POWER GENERATION_GROUP 4.pptx
WIND POWER GENERATION_GROUP 4.pptxSamDelmo
 
The Wind Powered Generator
The Wind Powered GeneratorThe Wind Powered Generator
The Wind Powered GeneratorIOSR Journals
 

Similar to Experimental investigation on effect of head and bucket splitter angle on the power output of a pelton turbine (20)

Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...Design and development of pico micro hydro system by using house hold water s...
Design and development of pico micro hydro system by using house hold water s...
 
Ba4102382385
Ba4102382385Ba4102382385
Ba4102382385
 
Runner profile optimisation of gravitational vortex water turbine
Runner profile optimisation of gravitational vortex water turbine Runner profile optimisation of gravitational vortex water turbine
Runner profile optimisation of gravitational vortex water turbine
 
Qt464972qm
Qt464972qmQt464972qm
Qt464972qm
 
Performance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosavedPerformance of a_centrifugal_pump_autosaved
Performance of a_centrifugal_pump_autosaved
 
Design, Modeling & Analysis of Pelton Wheel Turbine Blade
Design, Modeling & Analysis of Pelton Wheel Turbine BladeDesign, Modeling & Analysis of Pelton Wheel Turbine Blade
Design, Modeling & Analysis of Pelton Wheel Turbine Blade
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...Comparison of Differential Evolution and Particle Swarm Optimization for Opti...
Comparison of Differential Evolution and Particle Swarm Optimization for Opti...
 
Pelton wheel experiment
Pelton wheel experimentPelton wheel experiment
Pelton wheel experiment
 
Prashant report final NTPC ANTA
Prashant report final NTPC ANTAPrashant report final NTPC ANTA
Prashant report final NTPC ANTA
 
Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...Design and implementation of micro hydro turbine for power generation and its...
Design and implementation of micro hydro turbine for power generation and its...
 
1 Computational and Experimental Investigation of Runner for Gravitational Wa...
1 Computational and Experimental Investigation of Runner for Gravitational Wa...1 Computational and Experimental Investigation of Runner for Gravitational Wa...
1 Computational and Experimental Investigation of Runner for Gravitational Wa...
 
Design and Analysis of Pelton Wheel
Design and Analysis of Pelton WheelDesign and Analysis of Pelton Wheel
Design and Analysis of Pelton Wheel
 
Detail Feasibility Study Of Wind Power Water Lifting Project in Mustang,Nepal
Detail Feasibility Study Of Wind Power Water Lifting  Project in Mustang,NepalDetail Feasibility Study Of Wind Power Water Lifting  Project in Mustang,Nepal
Detail Feasibility Study Of Wind Power Water Lifting Project in Mustang,Nepal
 
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
 
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...
Crossflow turbine design specifications for hhaynu micro hydropower plant, mb...
 
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
Crossflow turbine design specifications for hhaynu micro-hydropower plant, Mb...
 
WIND POWER GENERATION_GROUP 4.pptx
WIND POWER GENERATION_GROUP 4.pptxWIND POWER GENERATION_GROUP 4.pptx
WIND POWER GENERATION_GROUP 4.pptx
 
SUMMER Training report AT NTPC FOR INSTRUMENTATION (kbunl)
SUMMER Training report AT NTPC FOR INSTRUMENTATION (kbunl)SUMMER Training report AT NTPC FOR INSTRUMENTATION (kbunl)
SUMMER Training report AT NTPC FOR INSTRUMENTATION (kbunl)
 
The Wind Powered Generator
The Wind Powered GeneratorThe Wind Powered Generator
The Wind Powered Generator
 

More from Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

More from Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Experimental investigation on effect of head and bucket splitter angle on the power output of a pelton turbine

  • 1. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 48 Experimental Investigation on Effect of Head and Bucket Splitter Angle on the Power Output of A Pelton Turbine Chukwuneke J. L. Achebe C. H. Okolie P. C. Okwudibe H. A. Mechanical Engineering Department, Nnamdi Azikiwe University, P.M.B 5025 Awka, Nigeria Corresponding Author: jl.chukwuneke@unizik.edu.ng Abstract This paper investigates through experiment, the effect of head and bucket splitter angle on the power output of a pelton turbine (water turbine), to improve the power generation by the use of efficient Hydro-electric power generation systems. Experiments were conducted on pelton turbine head conditions, high head and low flow with increased pressure delivered more energy on the bucket splitter which then generates a force in driving the wheel compared to the result obtained from low head and high flow operating conditions. The power output was maximum at 23o splitter angle followed by 21o , 15o , 10o and 3o using varied turbine speed (1700, 1400, 1200 and 1000rpm). The force generated by the bucket due to the splitter was increased as the turbine speed was increasing. The force generated by the bucket was increased (0 to 0.38N) due to the energy delivered to the wheel by the head, the turbine output increases from (0 to 7.47kW) which influences the output. This increase in the power output was as a result of their head conditions and the bucket splitter angle. 1. INTRODUCTION Electricity plays a very important role in the socio-economic and technological development of every nation. The electricity demand in Nigeria far outstrips the supply and the supply is epileptic in nature. The country is faced with acute electricity problems, which is hindering its development, notwithstanding the availability of vast natural resources in the country. It is widely accepted that there is a strong correlation between socio- economic development and the availability of electricity. There is a huge energy resource potential in Nigeria, which, if utilized, could minimize the present energy crisis prevailing in the country and enhance the process of rural electrification. The total exploitable renewable energy that can be derived annually from primary solar radiation, wind, forest biomass, hydropower, animal waste, crop residue and human waste is about 1,959x Tcal per year [1, 2]. Out of this, the share of hydro power is about 53.08 percent. Recently the country is involved in NIPP (National Integrated Power Projects) which are mainly gas turbine power generation projects. This work therefore sets out to complement the Gas Turbine sector in boosting the power generation of the country by use of efficient Hydro – electric power generating systems. According to Newman [3], over 1.7billion people worldwide do not have access to electricity. This lack of electricity usually indicates low levels of infrastructure, development, education, health and quality of life. Using Nigeria as a point of reference in Africa where about half a million people lack access to electricity, even the power produced from Kanji dam and other dams are limited compared to the demand for power in the country. To make up for lack of electricity and to cope with increasing energy demands, so called traditional fuel use is high. This includes primarily the use of wood, charcoal, animal waste and other biomass. Over half a million people in Nigeria rely on traditional biomass fuels, with the highest rates of traditional fuel use correlating with areas of lowest access to electricity. The high use of biomass fuels has many negative environmental, social and health consequences. The demand for biomass generally leads to deforestation that in turn can causes soil erosion, habitat loss and desertification among other things. These biomass fuels are generally burned in inefficient stoves or lamps releasing soot into the atmosphere and leading to poor indoor air quality. Indoor air pollution accounts for 2.7% of all global disease [3, 4]. Due to their inherent low useful energy conversion efficiencies, high demand and dwindling supply, they are fast becoming the most expensive items for impoverished rural populations. In some cases, fuel accounts for 20 – 30% of total household income. To attain the level of power supply which the country requires, our dams have to be optimized by introducing pelton turbines for power generation schemes, in addition to improving and upgrading the available sources of energy in the country. The work investigated through experimentation, the effect of head and bucket splitter angle on power output of a pelton turbine. The power output of a pelton turbine was equally investigated and a tachometer was used to check the speed of the shaft thereby determining the flow rate from the nozzle and how much energy is delivered by the pump to the wheel. The methodology involves a mathematical equation for hydraulic power delivered by the jet of water to the wheel at varied head which influences the turbine power output. Experiment and simulation were carried out to estimate the head conditions for a pelton turbine.
  • 2. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 49 2. METHOD AND ANALYSIS 2.1. Experiment on Pelton Turbine Fig.1 shows the arrangement, in which water is supplied from the reservoir, fed to a vertical pipe terminating in a tapered nozzle, pump is installed along the pipeline to boost the flow, pressure gauge is installed after the pump to determine the water pressure leaving the pump and a flow meter installed after the pump to determine the volumetric flow rate coming from the pump before reaching the nozzle. A bucket is attached at the periphery of the wheel which the jet of water strikes, thereby causing the rotary motion of the wheel which influences the power output of the turbine positively or negatively. A pulley is connected at the shaft with a belt to transmit the power to another pulley connected at the generator, causing the rotary motion of the shaft of the generator, thereby generating electricity. The valve is fully on, before the flow is allowed through the pump to the nozzle, as the flow process starts a tachometer is placed at the shaft to check the speed of the rotating shaft. After the reading must have been taken the valve is adjusted before taking another reading. This adjustment is made for about 4 to 5 trials. From the result obtained, the velocity of jet discharging through the nozzle to the bucket, the flow rate through the nozzle and the energy delivered to the wheel by the pump can be determined. The pump speed is kept constant all through the experiment, only the valve is adjusted. Fig.1: Pelton wheel in the Laboratory 2.2. Experiment Theory and Basic Equations Fig.2: Flow from reservoir to wheel It is necessary to establish the equation of flow process in fig.2 [5] in order to determine striking on the bucket surface which influences the power delivered to the wheel. The Bernoulli’s equation is used to link the flow from point 1 to point 2. = + + (1) = + + (2) Using the principle of conservation of energy;
  • 3. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 50 + = - + [6] (3) Therefore; + + - - - [6] (4) From the fig.2, at the surface of the reservoir 1, the fluid moves very slowly compared to the pipe, so we can say = 0, Also the pressure is atmospheric pressure = . is the elevation from the nozzle to the water level in the reservoir, neglecting the minor and frictional losses. , = 0 2.3. The Energy Delivered to the Fluid by the Pump Reducing Eq.4 to; = + - [6] (5) For = is the velocity of the jet through the nozzle and can be determined from Eq.5, substituting values obtained during the experiment in the laboratory. The flow rate Q was determined based on the valve adjustment (for about 4 to 5 trials). Q = x (6) = f L/D x Church Chills’ [7] frictional factor equation. The Power Required in Driving the Wheel; P = ρ x g x Q (7) The turbine peripheral velocity will be half the water jet velocity, = ½ x In metric form; 0.5 X (m/s) = 5.235 x x (rpm) x (mm) Therefore the rotational velocity of the turbine is; = 0.5 x 1.91 x x (8) =5.235 x x (rpm) (9) Shaft Power Output; = ρ Q U (U - ) (1 - cos ) (10) Applying Eqs.(7 to 10) to the value obtained during the experiment and plotting the necessary graphs involved. The values obtained during the experiment are presented in table 1. 3. EXPERIMENTAL RESULTS AND DISCUSSION Data collected during the experiment: Nozzle size = 8mm, Elevation =0.6096m, Wheel = 220.98mm. Table 1: Values obtained when the speed of turbine was 1700rpm ( ) Speed rpm (m/s) Q ( /s) J) N) kW) 3 1700 9.83 0.00049 5.53 0.0048 0.094 10 1700 9.83 0.00049 5.53 0.0072 1.42 15 1700 9.83 0.00049 5.53 0.16 3.15 21 1700 9.83 0.00049 5.53 0.32 6.29 25 1700 9.83 0.00049 5.53 0.38 7.47 Table 2: Values obtained when the speed of turbine was 1400rpm [ ] Speed rpm (m/s) Q ( /s) (J) N) kW) 3 1400 8.09 0.00015 3.95 0.0039 0.047 10 1400 8.09 0.00015 3.95 0.059 0.705 15 1400 8.09 0.00015 3.95 0.134 1.59 21 1400 8.09 0.00015 3.95 0.26 3.05 25 1400 8.09 0.00015 3.95 0.31
  • 4. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 51 Table 3: Values obtained when the speed of turbine was 1200rpm [ ] Speed rpm (m/s) Q ( /s) (J) N) kW) 3 1200 6.94 0.00012 3.06 0.0034 0.047 10 1200 6.94 0.00012 3.06 0.051 0.705 15 1200 6.94 0.00012 3.06 0.12 1.59 21 1200 6.94 0.00012 3.06 0.22 3.05 25 1200 6.94 0.00012 3.06 0.27 3.75 Table 4: Values obtained when the speed of turbine was 1000rpm [ ] Speed rpm (m/s) Q ( /s) (J) N) kW) 3 1000 5.78 0.00012 2.31 0.028 0.33 10 1000 5.78 0.00012 2.31 0.042 0.49 15 1000 5.78 0.00012 2.31 0.096 1.11 21 1000 5.78 0.00012 2.31 0.19 2.14 25 1000 5.78 0.00012 2.31 0.22 2.57 Fig.3: Shows Head Vs volumetric flow rate Using the valve to control the energy delivered by the fluid to the wheel, the valve was adjusted from minimum to maximum setting, the volumetric flow rate through the nozzle was increasing (0 to 0.0005 )as the energy delivered by the head to the wheel was increasing from ( 0 to 5.3). As a result of this increase the turbine speed and the power output was influenced positively. Fig.4: Head Vs Turbine speed
  • 5. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 52 Fig.5: Force generated by the bucket Vs splitter angle at different turbine speeds Fig.6: power output Vs splitter angle at different turbine speeds Fig.7: Force generated by the bucket Vs power output.
  • 6. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 53 Fig.8: Turbine power output Vs Head From Fig.4, as the head was increasing (2.31 to 5.53), the turbine speed was influenced (1000 to 1700rpm). This influence increases the system power output. From Fig.5, the force generated by the bucket was maximum at 23 splitter angle (0.38N, 0.31N, 0.027N and 0.22N) at a turbine speed of 1700rpm followed by 21 splitter angle (0.032N, 0.026N, 0.022N and 0.019N) at a turbine speed of 1400rpm. At 15 splitter angle the force generated was (0.16N, 0.134N, 0.12N and 0.096N) at a turbine speed of 1200rpm and other splitter angles are 10 (0.072N, 0.059N, 0.051Nand 0.042N) and 3 (0.0048N, 0.0039N, 0.0034N, 0.024N). The force generated by the bucket due to the splitter was increased as the turbine speed was increasing. From Fig.6, the power output was maximum at 23 splitter angle followed by 21 , 15 , 10 and 3 using varied turbine speed (1700, 1400, 1200 and 1000rpm). From Fig.7 and Fig.8, as the force generated by the bucket was increased (0 to 0.38N) due to the energy delivered to the wheel by the head, the turbine power output increased from (0 to 7.47kW) which influenced the output. This increase in the power output was as a result of head and the bucket splitter. 4. CONCLUSION Experiment was conducted on a pelton turbine to determine the power output, using a tachometer to check the speed at which the turbine was operating. During the experiment the head was low; the reason for the low head was as a result of the pump operating at a constant speed. The flow pressure was slightly influenced as the valve was adjusted. The flow through the nozzle was influenced while the pressure at which the jet strikes the bucket changed slightly but not enough to generate much energy on the wheel. As the valve was adjusted from minimum to maximum setting, the flow rate through the nozzle was increased after each adjustment thereby increasing the force generated by the bucket as the jet strikes the splitter. From the graph obtained, as the force generated by the bucket was increased (0 to 0.38N) due to the energy delivered to the wheel by the head, the turbine power output increased from (0 to 7.47kW) which influenced the output. This increase in the power output was as a result of head condition and the bucket splitter. Alternator was used as the generator for the conversion of mechanical energy to electrical energy on the system. A 60watt bulb was connected at the output of the alternator terminals, as the flow was increasing by adjusting the valve the 60watt bulb lit up. The power output from the alternator is based on the system configuration from the manufacturer, each generator has a specific speed at which the turbine should be running in order to meet the required output and also the conversion of energy in the system. According to some researchers [8, 9] and observation made during the experiment, the following conclusions can be reached; the pelton turbine operating on high head and low flow with increased pressure condition generated a power output which could be applied in siting a large hydro power plant while that of the low head and high flow with decreased pressure generated a lesser output and could be applied in siting a small MHPP. REFERENCE [1] Brekke, H (1994). State of the art in pelton turbine hydro power and Dams.
  • 7. Journal of Information Engineering and Applications www.iiste.org ISSN 2224-5782 (print) ISSN 2225-0506 (online) Vol.4, No.10, 2014 54 [2] Zoppe B. J and Pellone C. (2006). Flow Analysis inside pelton turbine bucket. Journal of turbomachinery. 1(4), 128. [3] Newman M. (2006). Study on a Renewable Energy for sustainable future. Oxford: Oxford university press. Uk. [4] Zhang Zh (2007). Flow interactions in pelton turbines and the hydraulic efficiency of the turbine system. International journal of power and energy. 22(1), 343. [5] Thapa B., Upadhyay P., and Gautem P. (2009). Performance Analysis of pelton turbine buckets Using Impact testing and flow visualization techniques NHE. Katthmandu University Journal of science, Engineering and Technology. 5(2), 42-50. [6] Kelley, J. B. (1950). The Extension Bernoulli’s Equation. American J. Phys. 202-204. India. [7] Church chill, S.W. (1977). Friction factor Equation Span of Fluid Flow Regimes. Chemical Eng. 7(3), 91-92. [8] Zhang, Zh., Muggli, F., Parkinson, E., and Scha¨rer, Ch.(2000). Experimental investigation of a low head jet flow at a model nozzle of a Pelton turbine. Proceedings of the 11th International Seminar on Hydropower Plants, Vienna, Austria. 6, 181–188. [9] Attaneyake I. U. (2000). Analytical study on flow through pelton turbine using boundary layer theory. International journal of Engineering & technology by IJET. 9(19). Mechanical engineering dept, Open University of sri Lanka Nawala.
  • 8. Business, Economics, Finance and Management Journals PAPER SUBMISSION EMAIL European Journal of Business and Management EJBM@iiste.org Research Journal of Finance and Accounting RJFA@iiste.org Journal of Economics and Sustainable Development JESD@iiste.org Information and Knowledge Management IKM@iiste.org Journal of Developing Country Studies DCS@iiste.org Industrial Engineering Letters IEL@iiste.org Physical Sciences, Mathematics and Chemistry Journals PAPER SUBMISSION EMAIL Journal of Natural Sciences Research JNSR@iiste.org Journal of Chemistry and Materials Research CMR@iiste.org Journal of Mathematical Theory and Modeling MTM@iiste.org Advances in Physics Theories and Applications APTA@iiste.org Chemical and Process Engineering Research CPER@iiste.org Engineering, Technology and Systems Journals PAPER SUBMISSION EMAIL Computer Engineering and Intelligent Systems CEIS@iiste.org Innovative Systems Design and Engineering ISDE@iiste.org Journal of Energy Technologies and Policy JETP@iiste.org Information and Knowledge Management IKM@iiste.org Journal of Control Theory and Informatics CTI@iiste.org Journal of Information Engineering and Applications JIEA@iiste.org Industrial Engineering Letters IEL@iiste.org Journal of Network and Complex Systems NCS@iiste.org Environment, Civil, Materials Sciences Journals PAPER SUBMISSION EMAIL Journal of Environment and Earth Science JEES@iiste.org Journal of Civil and Environmental Research CER@iiste.org Journal of Natural Sciences Research JNSR@iiste.org Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL Advances in Life Science and Technology ALST@iiste.org Journal of Natural Sciences Research JNSR@iiste.org Journal of Biology, Agriculture and Healthcare JBAH@iiste.org Journal of Food Science and Quality Management FSQM@iiste.org Journal of Chemistry and Materials Research CMR@iiste.org Education, and other Social Sciences PAPER SUBMISSION EMAIL Journal of Education and Practice JEP@iiste.org Journal of Law, Policy and Globalization JLPG@iiste.org Journal of New Media and Mass Communication NMMC@iiste.org Journal of Energy Technologies and Policy JETP@iiste.org Historical Research Letter HRL@iiste.org Public Policy and Administration Research PPAR@iiste.org International Affairs and Global Strategy IAGS@iiste.org Research on Humanities and Social Sciences RHSS@iiste.org Journal of Developing Country Studies DCS@iiste.org Journal of Arts and Design Studies ADS@iiste.org
  • 9. The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing. More information about the firm can be found on the homepage: http://www.iiste.org CALL FOR JOURNAL PAPERS There are more than 30 peer-reviewed academic journals hosted under the hosting platform. Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors. MORE RESOURCES Book publication information: http://www.iiste.org/book/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar