SlideShare a Scribd company logo
1 of 1
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  For	
  our	
  Senior	
  Design	
  project,	
  we	
  designed	
  a	
  
facility	
  to	
  produce	
  100	
  million	
  pounds	
  of	
  ethanol-­‐amine	
  
compounds	
  annually	
  at	
  99%	
  weight	
  purity	
  with	
  350	
  
operaAng	
  days	
  per	
  year.	
  	
  The	
  proposed	
  facility	
  produces	
  
ethanol-­‐amines	
  by	
  reacAng	
  ethylene	
  oxide	
  with	
  
aqueous	
  ammonia	
  in	
  the	
  liquid	
  phase.	
  	
  Ethanol-­‐amines	
  
are	
  mainly	
  used	
  as	
  acid	
  gas	
  absorbents	
  to	
  scrub	
  off	
  
gases	
  like	
  hydrogen	
  sulfide	
  and	
  carbon	
  dioxide.	
  They	
  
are	
  also	
  used	
  as	
  feedstock	
  for	
  detergents,	
  chemical	
  
intermediates,	
  and	
  pharmaceuAcals.	
  Various	
  product	
  
distribuAons	
  consisAng	
  of	
  different	
  amounts	
  of	
  mono-­‐
ethanolamine,	
  di-­‐ethanolamine,	
  and	
  tri-­‐ethanolamine	
  
were	
  explored	
  using	
  the	
  Aspen	
  Plus	
  V8.4	
  simulator.	
  This	
  
analysis	
  focuses	
  on	
  maximizing	
  the	
  profit	
  of	
  an	
  ethanol-­‐
amines	
  facility.	
  	
  
Introduc)on	
  
Design	
  of	
  an	
  Ethanolamines	
  Produc)on	
  Facility	
  
Student Team: Aaron Kirschen, Anais Flynn, Scott Torres, Vinh Tran
Project Managers: Professor Gregory Miller, Professor Nael El-Farra
Maximum	
  Profit	
  Process	
  Flowchart
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Upstream	
  	
  
In	
  the	
  upstream	
  secAon	
  of	
  our	
  facility,	
  ammonia,	
  ethylene	
  
oxide,	
  and	
  water	
  are	
  preheated	
  and	
  pumped	
  to	
  the	
  reactor	
  
inlet	
  temperature	
  and	
  pressure	
  separately.	
  The	
  reactor	
  is	
  4	
  
feet	
  long	
  and	
  0.5	
  feet	
  in	
  diameter	
  with	
  50	
  tubes.	
  The	
  reactor	
  
runs	
  at	
  750	
  psia	
  with	
  an	
  inlet	
  temperature	
  of	
  100	
  °F	
  and	
  an	
  
outlet	
  temperature	
  of	
  136	
  °F.	
  The	
  reactor	
  converted	
  virtually	
  
all	
  of	
  the	
  ethylene	
  oxide	
  into	
  a	
  product	
  distribuAon	
  of	
  mono-­‐
ethanolamine,	
  di-­‐ethanolamine,	
  and	
  tri-­‐ethanolamine.	
  
Flash	
  and	
  Ammonia	
  Recycle	
  
The	
  effluent	
  from	
  the	
  reactor	
  was	
  cooled	
  and	
  depressurized	
  
before	
  being	
  charged	
  to	
  a	
  flash	
  separaAon	
  unit,	
  which	
  
funcAons	
  to	
  remove	
  as	
  much	
  ammonia	
  from	
  the	
  effluent	
  
stream	
  as	
  possible.	
  The	
  ammonia	
  from	
  the	
  top	
  of	
  the	
  flash	
  is	
  
then	
  compressed	
  to	
  150	
  psia	
  with	
  three	
  stage	
  compression	
  
and	
  purified	
  in	
  a	
  disAllaAon	
  column.	
  The	
  pure	
  ammonia	
  is	
  then	
  
cooled,	
  pumped	
  to	
  the	
  feed	
  pressure,	
  and	
  recycled	
  back	
  into	
  
the	
  ammonia	
  feed	
  stream.	
  
Separa)on	
  Sec)on	
  
The	
  separaAon	
  secAon	
  contains	
  six	
  disAllaAon	
  columns.	
  The	
  
first	
  column	
  funcAons	
  to	
  remove	
  the	
  excess	
  water	
  from	
  the	
  
reactor	
  to	
  avoid	
  an	
  azeotrope	
  between	
  MEA	
  and	
  water.	
  The	
  
second	
  column	
  purifies	
  the	
  MEA	
  before	
  it	
  is	
  cooled	
  to	
  the	
  
selling	
  temperature.	
  The	
  third	
  column	
  separates	
  the	
  TEA	
  from	
  
the	
  product	
  stream	
  with	
  the	
  TEA	
  coming	
  off	
  of	
  the	
  boYom	
  of	
  
the	
  column.	
  The	
  fourth	
  column	
  purifies	
  the	
  DEA	
  from	
  the	
  
stream	
  and	
  removes	
  it	
  off	
  the	
  boYom	
  of	
  the	
  column	
  for	
  sale.	
  
The	
  first	
  four	
  columns	
  remove	
  most	
  of	
  the	
  product,	
  however	
  
about	
  5%	
  of	
  the	
  total	
  MEA	
  product	
  and	
  some	
  ethylene	
  glycol	
  
byproduct	
  remains.	
  The	
  fiZh	
  and	
  sixth	
  columns	
  separate	
  the	
  
MEA	
  and	
  ethylene	
  glycol	
  out	
  respecAvely	
  for	
  sale.	
  While	
  it	
  is	
  
expensive	
  to	
  add	
  these	
  extra	
  columns,	
  the	
  revenue	
  gained	
  
from	
  the	
  extra	
  product	
  sale	
  outweighs	
  the	
  cost.	
  	
  
Economic	
  Analysis	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
OSBL	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Acknowledgements	
  
	
  
	
  
	
  
	
  
	
  
	
  
ISBL	
  
Design	
  Approach	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Conclusions	
  and	
  Recommenda)ons	
  
We	
  would	
  like	
  to	
  acknowledge	
  and	
  thank	
  Professor	
  Nael	
  El-­‐Farra	
  
and	
  Professor	
  Gregory	
  Miller	
  for	
  their	
  invaluable	
  guidance	
  in	
  the	
  
compleAon	
  of	
  this	
  project.	
  We	
  would	
  also	
  like	
  to	
  acknowledge	
  the	
  
UC	
  Davis	
  Department	
  of	
  Chemical	
  Engineering	
  and	
  Materials	
  
Science	
  for	
  supplying	
  the	
  resources	
  to	
  make	
  this	
  project	
  possible.	
  
	
  
This	
  analysis	
  of	
  the	
  construcAon	
  of	
  an	
  ethanol-­‐amines	
  
producAon	
  facility	
  in	
  January	
  2018	
  yielded	
  posiAve	
  results.	
  It	
  was	
  
found	
  that	
  the	
  producAon	
  of	
  103	
  million	
  pounds	
  of	
  product	
  per	
  
year	
  would	
  yield	
  a	
  profit	
  of	
  91.5	
  million	
  dollars	
  over	
  the	
  20	
  year	
  
life	
  of	
  the	
  project	
  with	
  an	
  annual	
  profit	
  of	
  approximately	
  7	
  
million	
  dollars	
  per	
  year.	
  	
  
A	
  sensiAvity	
  analysis	
  of	
  the	
  feedstock	
  and	
  product	
  prices	
  showed	
  
that	
  the	
  price	
  of	
  the	
  feedstock	
  and	
  the	
  selling	
  price	
  greatly	
  
affected	
  the	
  profit	
  margins.	
  For	
  example,	
  a	
  2	
  cent	
  increase	
  in	
  
product	
  selling	
  price	
  could	
  increase	
  annual	
  profit	
  by	
  2	
  million	
  
dollars	
  per	
  year.	
  It	
  is	
  recommended	
  that	
  the	
  market	
  condiAons	
  
are	
  monitored	
  closely	
  for	
  the	
  life	
  of	
  this	
  product.	
  Overall,	
  the	
  
construcAon	
  of	
  this	
  facility	
  is	
  recommended	
  due	
  to	
  high	
  
profitability	
  and	
  a	
  growing	
  market	
  for	
  mono-­‐ethanolamines.	
  	
  	
  
	
  
DisAllaAon	
  	
  
77%	
  
Heaters	
  
4%	
  
Compressor
4%	
  
Pumps	
  
12%	
  
Other	
  
3%	
  
Process	
  Equipment	
  
HEX	
  
42%	
  
Reflux	
  
Drums	
  
31%	
  
Reactor	
  
20%	
  
Flash	
  
Separator	
  	
  
7%	
  
Other	
  
Total	
  Capital	
  
Investment	
  
$90,500,000	
  
	
  	
  	
  ISBL	
   $43,760,000	
  
	
  	
  	
  OSBL	
   $17,920,000	
  
	
  	
  	
  	
  	
  	
  	
  Fixed	
   $61,680,000	
  
	
  	
  	
  ConAngencies	
  	
   $18,500,000	
  
	
  	
  	
  Working	
  Capital	
   $8,260,000	
  
	
  	
  	
  Startup	
   $2,190,000	
  
U)li)es	
  (+20%	
  
Capacity)	
  
$9,600,000	
  
Total	
  Product	
  Cost	
   $87,920,000	
  
Product	
  Value	
   $92,910,000	
  
Profit	
   $4,990,000	
  
Before	
  Tax	
  ROI	
   5.51%	
  
DCFROR	
   8%	
  
Net	
  Present	
  Value	
   $91,500,000	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
Millions	
  

More Related Content

Similar to Design.of.an.Ethanolamines.Production.Facility.Poster

Naphtha crackpdf
Naphtha crackpdfNaphtha crackpdf
Naphtha crackpdfrohan122
 
Economics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesEconomics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesIntratec Solutions
 
Senior Design Final Report (2)
Senior Design Final Report (2)Senior Design Final Report (2)
Senior Design Final Report (2)AN TRAN
 
Feasibility Studies: Ethylene Manufacturing
Feasibility Studies: Ethylene ManufacturingFeasibility Studies: Ethylene Manufacturing
Feasibility Studies: Ethylene ManufacturingIntratec Solutions
 
Feasibility Studies: Lactic Acid Manufacturing
Feasibility Studies: Lactic Acid ManufacturingFeasibility Studies: Lactic Acid Manufacturing
Feasibility Studies: Lactic Acid ManufacturingIntratec Solutions
 
Economics of Ethanol Production Processes
Economics of Ethanol Production ProcessesEconomics of Ethanol Production Processes
Economics of Ethanol Production ProcessesIntratec Solutions
 
G13 Presentation.pptx
G13 Presentation.pptxG13 Presentation.pptx
G13 Presentation.pptxPrakashGohil5
 
Coal to Methanol Senior Design Project Final Report
Coal to Methanol Senior Design Project Final ReportCoal to Methanol Senior Design Project Final Report
Coal to Methanol Senior Design Project Final ReportKyle Mattson, EIT
 
Feasibility Studies: Acrylic Acid Manufacturing
Feasibility Studies: Acrylic Acid ManufacturingFeasibility Studies: Acrylic Acid Manufacturing
Feasibility Studies: Acrylic Acid ManufacturingIntratec Solutions
 
Feasibility Studies: Propylene Manufacturing
Feasibility Studies: Propylene ManufacturingFeasibility Studies: Propylene Manufacturing
Feasibility Studies: Propylene ManufacturingIntratec Solutions
 
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...IJERA Editor
 
Alchohol Distillation Principles Equipment Relationships And Safety
Alchohol Distillation Principles Equipment Relationships And SafetyAlchohol Distillation Principles Equipment Relationships And Safety
Alchohol Distillation Principles Equipment Relationships And SafetyEdward Dobson
 
Biomass Program Overview
Biomass  Program  OverviewBiomass  Program  Overview
Biomass Program Overviewguest5dedf5
 
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...Kowshick Sen
 
At Adityabirla group
At Adityabirla groupAt Adityabirla group
At Adityabirla groupmahmoud fahmy
 

Similar to Design.of.an.Ethanolamines.Production.Facility.Poster (20)

Naphtha crackpdf
Naphtha crackpdfNaphtha crackpdf
Naphtha crackpdf
 
Economics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesEconomics of Adipic Acid Production Processes
Economics of Adipic Acid Production Processes
 
Senior Design Final Report (2)
Senior Design Final Report (2)Senior Design Final Report (2)
Senior Design Final Report (2)
 
Feasibility Studies: Ethylene Manufacturing
Feasibility Studies: Ethylene ManufacturingFeasibility Studies: Ethylene Manufacturing
Feasibility Studies: Ethylene Manufacturing
 
Feasibility Studies: Lactic Acid Manufacturing
Feasibility Studies: Lactic Acid ManufacturingFeasibility Studies: Lactic Acid Manufacturing
Feasibility Studies: Lactic Acid Manufacturing
 
0708 4 abs
0708 4 abs0708 4 abs
0708 4 abs
 
Economics of Ethanol Production Processes
Economics of Ethanol Production ProcessesEconomics of Ethanol Production Processes
Economics of Ethanol Production Processes
 
G13 Presentation.pptx
G13 Presentation.pptxG13 Presentation.pptx
G13 Presentation.pptx
 
Coal to Methanol Senior Design Project Final Report
Coal to Methanol Senior Design Project Final ReportCoal to Methanol Senior Design Project Final Report
Coal to Methanol Senior Design Project Final Report
 
Feasibility Studies: Acrylic Acid Manufacturing
Feasibility Studies: Acrylic Acid ManufacturingFeasibility Studies: Acrylic Acid Manufacturing
Feasibility Studies: Acrylic Acid Manufacturing
 
Feasibility Studies: Propylene Manufacturing
Feasibility Studies: Propylene ManufacturingFeasibility Studies: Propylene Manufacturing
Feasibility Studies: Propylene Manufacturing
 
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...
Comparative Ethanol Productivities of Two Different Recombinant Fermenting St...
 
Alchohol Distillation Principles Equipment Relationships And Safety
Alchohol Distillation Principles Equipment Relationships And SafetyAlchohol Distillation Principles Equipment Relationships And Safety
Alchohol Distillation Principles Equipment Relationships And Safety
 
Propane propylene splitter
Propane propylene splitterPropane propylene splitter
Propane propylene splitter
 
barba1985.pdf
barba1985.pdfbarba1985.pdf
barba1985.pdf
 
Biomass Program Overview
Biomass  Program  OverviewBiomass  Program  Overview
Biomass Program Overview
 
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...
Report on Effluent Treatment Plant (ETP) Operation and Maintenance of Interst...
 
At Adityabirla group
At Adityabirla groupAt Adityabirla group
At Adityabirla group
 
chen2016.pdf
chen2016.pdfchen2016.pdf
chen2016.pdf
 
289109277 design-project-1-final
289109277 design-project-1-final289109277 design-project-1-final
289109277 design-project-1-final
 

Design.of.an.Ethanolamines.Production.Facility.Poster

  • 1.                                            For  our  Senior  Design  project,  we  designed  a   facility  to  produce  100  million  pounds  of  ethanol-­‐amine   compounds  annually  at  99%  weight  purity  with  350   operaAng  days  per  year.    The  proposed  facility  produces   ethanol-­‐amines  by  reacAng  ethylene  oxide  with   aqueous  ammonia  in  the  liquid  phase.    Ethanol-­‐amines   are  mainly  used  as  acid  gas  absorbents  to  scrub  off   gases  like  hydrogen  sulfide  and  carbon  dioxide.  They   are  also  used  as  feedstock  for  detergents,  chemical   intermediates,  and  pharmaceuAcals.  Various  product   distribuAons  consisAng  of  different  amounts  of  mono-­‐ ethanolamine,  di-­‐ethanolamine,  and  tri-­‐ethanolamine   were  explored  using  the  Aspen  Plus  V8.4  simulator.  This   analysis  focuses  on  maximizing  the  profit  of  an  ethanol-­‐ amines  facility.     Introduc)on   Design  of  an  Ethanolamines  Produc)on  Facility   Student Team: Aaron Kirschen, Anais Flynn, Scott Torres, Vinh Tran Project Managers: Professor Gregory Miller, Professor Nael El-Farra Maximum  Profit  Process  Flowchart                                               Upstream     In  the  upstream  secAon  of  our  facility,  ammonia,  ethylene   oxide,  and  water  are  preheated  and  pumped  to  the  reactor   inlet  temperature  and  pressure  separately.  The  reactor  is  4   feet  long  and  0.5  feet  in  diameter  with  50  tubes.  The  reactor   runs  at  750  psia  with  an  inlet  temperature  of  100  °F  and  an   outlet  temperature  of  136  °F.  The  reactor  converted  virtually   all  of  the  ethylene  oxide  into  a  product  distribuAon  of  mono-­‐ ethanolamine,  di-­‐ethanolamine,  and  tri-­‐ethanolamine.   Flash  and  Ammonia  Recycle   The  effluent  from  the  reactor  was  cooled  and  depressurized   before  being  charged  to  a  flash  separaAon  unit,  which   funcAons  to  remove  as  much  ammonia  from  the  effluent   stream  as  possible.  The  ammonia  from  the  top  of  the  flash  is   then  compressed  to  150  psia  with  three  stage  compression   and  purified  in  a  disAllaAon  column.  The  pure  ammonia  is  then   cooled,  pumped  to  the  feed  pressure,  and  recycled  back  into   the  ammonia  feed  stream.   Separa)on  Sec)on   The  separaAon  secAon  contains  six  disAllaAon  columns.  The   first  column  funcAons  to  remove  the  excess  water  from  the   reactor  to  avoid  an  azeotrope  between  MEA  and  water.  The   second  column  purifies  the  MEA  before  it  is  cooled  to  the   selling  temperature.  The  third  column  separates  the  TEA  from   the  product  stream  with  the  TEA  coming  off  of  the  boYom  of   the  column.  The  fourth  column  purifies  the  DEA  from  the   stream  and  removes  it  off  the  boYom  of  the  column  for  sale.   The  first  four  columns  remove  most  of  the  product,  however   about  5%  of  the  total  MEA  product  and  some  ethylene  glycol   byproduct  remains.  The  fiZh  and  sixth  columns  separate  the   MEA  and  ethylene  glycol  out  respecAvely  for  sale.  While  it  is   expensive  to  add  these  extra  columns,  the  revenue  gained   from  the  extra  product  sale  outweighs  the  cost.     Economic  Analysis                                         OSBL                   Acknowledgements               ISBL   Design  Approach                             Conclusions  and  Recommenda)ons   We  would  like  to  acknowledge  and  thank  Professor  Nael  El-­‐Farra   and  Professor  Gregory  Miller  for  their  invaluable  guidance  in  the   compleAon  of  this  project.  We  would  also  like  to  acknowledge  the   UC  Davis  Department  of  Chemical  Engineering  and  Materials   Science  for  supplying  the  resources  to  make  this  project  possible.     This  analysis  of  the  construcAon  of  an  ethanol-­‐amines   producAon  facility  in  January  2018  yielded  posiAve  results.  It  was   found  that  the  producAon  of  103  million  pounds  of  product  per   year  would  yield  a  profit  of  91.5  million  dollars  over  the  20  year   life  of  the  project  with  an  annual  profit  of  approximately  7   million  dollars  per  year.     A  sensiAvity  analysis  of  the  feedstock  and  product  prices  showed   that  the  price  of  the  feedstock  and  the  selling  price  greatly   affected  the  profit  margins.  For  example,  a  2  cent  increase  in   product  selling  price  could  increase  annual  profit  by  2  million   dollars  per  year.  It  is  recommended  that  the  market  condiAons   are  monitored  closely  for  the  life  of  this  product.  Overall,  the   construcAon  of  this  facility  is  recommended  due  to  high   profitability  and  a  growing  market  for  mono-­‐ethanolamines.         DisAllaAon     77%   Heaters   4%   Compressor 4%   Pumps   12%   Other   3%   Process  Equipment   HEX   42%   Reflux   Drums   31%   Reactor   20%   Flash   Separator     7%   Other   Total  Capital   Investment   $90,500,000        ISBL   $43,760,000        OSBL   $17,920,000                Fixed   $61,680,000        ConAngencies     $18,500,000        Working  Capital   $8,260,000        Startup   $2,190,000   U)li)es  (+20%   Capacity)   $9,600,000   Total  Product  Cost   $87,920,000   Product  Value   $92,910,000   Profit   $4,990,000   Before  Tax  ROI   5.51%   DCFROR   8%   Net  Present  Value   $91,500,000   0   2   4   6   8   10   12   Millions